FILED OF THE INVENTION
[0001] The present invention relates to an improved cutting blade for a shredder, particularly
to a round undulating blade that is integrally formed by punching a sheet metal in
a punching die or a round undulating blade module that is integrally formed by die-casting.
BACKGROUND OF THE INVENTION
[0002] The conventional shredders for cutting paper use a plurality of cutting blades and
spacers engaging over a rotary cutter shaft, and the shearing force that two parallel
and opposite rotary cutter shafts produce for transferring and cutting the paper-to-be-cut
along a longitudinal direction into strips. Shredders can be classed into two types,
the stripe-cut shredders and crosscut shredders, according to the machine cutting
style. The former shredders arrange cutting blades to the rotating cutter shafts in
a manner to cutting the paper in a longitudinal direction to form strips. The later
shredders include blades that include more than one cutting edge part, and each cutter
is disposed helically along the rotary cutter shaft for first cutting paper along
a horizontal direction into strips and then cutting paper along a longitudinal direction
into approximate 4 mm ×40 mm paper chips.
[0003] By referring to the assembled perspective view of a conventional blade illustrated
in Fig. 1 and a planar view showing the operation of the conventional blade in Fig.
2, the conventional blade is made by punching a sheet metal having a thickness of
approximately 2 mm into a circular blade by a die. The blade includes a polygonal
central hole A1 through which a rotary shaft may pass. The blade also includes cutting
edges A2 that are spaced in about 120 degrees apart around the periphery. As shown,
when two blades are arranged on the rotary shafts S in a back-to-back manner to combine
into a set of blades A, the cutting edges of the two blades assume a V-like edge A3.
The opposite rotary shafts S' space the two blades apart by space rings (not shown)
in a face-to-face manner to form a set of blade A'. When the paper to be cut passes
through the two reverse rotary shafts S, S', the opposing rotation of the periphery
of the blades, that is, flanks A4 and flanks A4, will cut the paper like scissors.
The opposing rotation of cutting edges A2 and the opposite flanks A4 will then cut
the paper along a horizontal direction into 4 mm×40 mm paper chips.
[0004] During operating of the conventional blades, to ensure smooth cutting of the paper
along the horizontal direction, sharp blades with proper orientations are needed.
However, because the blades are formed by a punch die, the die wear that increases
with the time will reduce sharpness of the blade edges, which does not improve until
replacing the die, to result in inconsistent quality. To ensure quality of the blades,
it is necessary to shorten the service term of the die, which results in increment
of the cost. In addition, in the conventional blades, the thickness of the blade is
the same as the width of paper to be cut. To ensure the strength of blades while cutting
along the horizontal direction, the blades cannot be too thin, or else the blades
tend to deform or fracture. Such a limitation attributes to the high material cost,
which is less competitive as compared to the current market price. In addition, because
the thickness of the conventional blades is same as the width of the paper to be cut,
and because the location of the width define the horizontal cutting points, the narrower
width of cross-section is, the smaller output power is needed to cut along the horizontal
direction. In other words, the motor can supply a minimum power for cutting along
the horizontal direction, that is, to reduce the power consumed by the motor. But
because of the width of the paper cut by the conventional blades is 4 mm, the motor
needs to output higher power to drive the blades and flanks moving in opposing directions
to cut the paper along the horizontal direction smoothly.
SUMMARY OF THE INVENTION
[0005] In view of the above, this invention overcomes the shortcoming of the conventional
blades.
[0006] It is a primary objective of the present invention is to provide a round undulating
blade for shredders, that is integrally punched from a sheet metal in a die into a
round undulating blade to effectively reduce the material cost and the weigh of the
blade to thereby reduce the motor loading and power consumption.
[0007] It is a further objective of the present invention is to provide two sets of round
undulating blade modules for shredders, each of which is constructed of a pair of
integrally formed round undulating blades of round undulating blades that are arranged
in a face-to-face and back-to-back manner, by die-casting, respectively.
[0008] It is another objective of the present invention is to provide a round undulating
blade for shredders, that uses the varying curvatures of the round undulating blade
to cut paper into paper chips each having a wider center tapering towards the ends,
so as to reduce the power that that motor needs to output for cutting the two ends
to thereby reduce the motor loading and the power consumption.
[0009] To realize the above objectives, the present invention provides a round undulating
blade for a shredder, the blade comprising: a periphery; an undulating blade flank,
including at least two cambers having a first curvature and at least two cambers having
a second curvature alternatively arranged with respect to the cambers having the first
curvature; and hooked edges formed on the periphery of the cambers having the first
curvature, wherein the undulating blade flank of the blade serves to cut paper along
a longitudinal direction to form paper strips having double-tapering end, and the
hooked edges serve to cut the strips along a horizontal direction into paper chips.
[0010] According to one aspect of this invention, the present invention provides a round
undulating blade module for a shredder, the blade module including two round undulating
blades, each of the blades comprising: a periphery; an undulating blade flank, including
at least two cambers having a first curvature and at least two cambers having a second
curvature alternatively arranged with respect to the cambers having the first curvature;
and hooked edges formed on the periphery of the cambers having the first curvature,
wherein the undulating blades are arranged in such a manner that the cambers having
the same curvature of each of the undulating blades face each other; and wherein the
undulating blade flanks of the blades serve to cut paper along a longitudinal direction
to form paper strips having double-tapering end, and the hooked edges serve to cut
the strips along a horizontal direction into paper chips.
[0011] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the cambers are equally spaced or unequally distant from
one another.
[0012] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the flank is formed with at least one rib protruding towards
a direction opposing the curvature of the cambers at where the rib is formed.
[0013] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the at least one rib is formed on the cambers where no hooked
edges are formed.
[0014] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the periphery of the blade is integrally formed into serration.
[0015] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the center of the blade is formed with a polygonal hole.
[0016] According to one aspect of this invention, the round undulating blade for shredder
is characterized in that the blade is made from a sheet metal punched integrally in
a punching die.
[0017] According to one aspect of this invention, the round undulating blade module for
shredder is characterized in that the blade module is integrally formed by die-casting.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] The present invention will be described in further detail hereinafter, with reference
to accompanying drawings.
Fig. 1 is an assembled perspective of a conventional shredder;
Fig. 2 is a planar view of a conventional shredder in operation;
Fig. 3 is a perspective view of the round undulating blade of the present invention;
Fig. 4 is the front elevational view of the round undulating blade of the present
invention;
Fig. 5 is the bottom plan view of he round undulating blade of the present invention;
Fig. 6 is the side elevational view of he round undulating blade of the present invention;
Fig. 7 is a perspective view of the round undulating blade assembled to the rotary
shafts;
Fig. 8 is an operating view of the round undulating blade of the present invention
in cutting paper;
Fig. 9 is a planar view showing a plurality of blade sets being assembled to the rotary
shafts;
Fig. 10 is a perspective view of an alternative embodiment of the round undulating
blade of the present invention;
Fig. 11 is a front elevational view of the round undulating blade shown in Fig. 10
Fig. 12 is a cross-sectional view taken along lines 12-12 of Fig. 11;
Fig. 13 is a cross-sectional view taken along lines 13-13 of Fig. 11;
Fig. 14 is a perspective view of an alternative embodiment of the round undulating
blade of the present invention;
Fig. 15 is a front elevational view of the round undulating blade shown in Fig. 14
Fig. 16 is a cross-sectional view taken along lines 16-16 of Fig. 15;
Fig. 17 is a cross-sectional view taken along lines 17-17 of Fig. 15; and
Fig. 18 is a perspective view showing round undulating blade modules of the present
invention made by die-casting.
DESCRIPTION OF THE PREFERRED EMBODIMENT
[0019] Please refer to Figs. 3 to 6, where Figs. 3 and 4 illustrate the perspective and
planar views of the present invention, respectively, and Figs. 5 and 6 are cross-sectional
views taken from lines 5-5 and lines 6-6 in Fig. 4, respectively.
[0020] The above-mentioned views disclose a revolutionized cutting blade 1 for a shredder,
which blade is able to provide an optimum sheet capacity based on the various types
of shredders. The present invention selects a sheet metal having a minimum thickness
of about 0.3 mm as a raw material, the selected sheet metal is punched by a die into
a blade including an undulating blade flank 12, formed into two cambers B' having
a first curvature and two cambers B' having a second curvature alternatively arranged
with respect to the cambers B having the first curvature. Preferably, the cambers
B, B' are equally spaced apart from one another. The cambers B, B' may also be equally
spaced apart from each other, if needed. The periphery 11, as shown in Fig. 3, of
the blade is integrally formed into serration. The periphery 11 of serration serves
to pull the paper to be cut downwards along a longitudinal direction into strips.
[0021] As shown in Figs. 5 and 6, the cambers B having the first curvature are integrally
formed with hooked edges 13 on the periphery 11 thereof for cutting the strips along
a horizontal direction into paper chips. The cambers B' having the second curvature
are not formed with any hooked edges. A polygonal hole 16 is formed in a center of
the blade 1, through which a rotary shaft may pass.
[0022] In this embodiment, a blade is punched in a punching die to form an undulating blade
flank 12 including two cambers B having a first curvature and two cambers B' having
a second curvature alternatively arranged with respect to the cambers B having the
first curvature, wherein the cambers B having the first curvature are integrally formed
with hooked edges 13 on the periphery 11 thereof for cutting the strips along a horizontal
direction into paper chips, and the cambers B' having the second curvature are not
formed with any hooked edges.
[0023] However, in case blades each of a larger dimension are needed to meet the increasing
sheet capacity, the hooked edges spaced apart by 180 degrees may not sustain the larger
capacity. Under such circumstances, three hooked edges that are spaced apart by 120
degrees or four hooked edges that are spaced apart by 90 degrees may also be implemented,
while the four of cambers are modified into six, eight or more according to the number
of hooked edges formed on the blades.
[0024] Figs. 10-13 illustrate an embodiment of a round undulating blade 100 of the present
invention having six cambers. The round undulating blade 100 is punched in a punching
die to form an undulating blade flank 112 including three cambers B having a first
curvature and three cambers B' having a second curvature alternatively arranged with
respect to the cambers B having the first curvature, as shown in Fig. 13, wherein
the cambers B having the first curvature are integrally formed with hooked edges 113
on the periphery 111 thereof for cutting the strips along a horizontal direction into
paper chips, and the cambers B' having the second curvature are not formed with any
hooked edges. The periphery 111, as shown in Fig. 10, of the blade is integrally formed
into serration. The periphery 111 of serration serves to pull the paper to be cut
downwards along a longitudinal direction into strips.
[0025] Figs. 14-17 illustrate an embodiment of a round undulating blade 200 of the present
invention having eight cambers. The round undulating blade 200 is punched in a punching
die to form an undulating blade flank 212 including four cambers B having a first
curvature and four cambers B' having a second curvature alternatively arranged with
respect to the cambers B having the first curvature (Figs. 16 and 17 only illustrate
the cambers B), wherein the cambers B having the first curvature are integrally formed
with hooked edges 213 on the periphery 211 thereof for cutting the strips along a
horizontal direction into paper chips, and the cambers B' having the second curvature
are not formed with any hooked edges. The periphery 211, as shown in Fig. 14, of the
blade is integrally formed into serration. The periphery 211 of serration serves to
pull the paper to be cut downwards along a longitudinal direction into strips. With
reference to Fig. 3, according to a preferred embodiment of this invention, for a
round undulating blade having only two hooked edges, because the angle between the
two hooked edges is relatively large, the flank 12 may be formed with a plurality
of ribs 50 protruding towards a direction opposing the curvature of the cambers, by
punching, at where the ribs are formed, for enhancing anti-flexing capability of the
blade 4. In Fig. 3, the ribs 50 are formed on the cambers B' where no hooked edges
are provided. The ribs 50 may certainly be formed on the cambers B where the hooked
edges 13 are provided
[0026] As shown in the assembled perspective view of the present invention in Fig. 7, the
standardized round undulating blades punched from a sheet metal by a die are arranged
sequentially on a first and a second rotary shafts S, S' to be assembled into the
rotary cutting tool that is most important for a shredder. During assembly, the round
undulating blades are arranged in such a manner that the hooked edges 13 of two adjacent
blades 1 are located at the same location, and the hooked edges 13 of the blades 1
on the first rotary shaft S interlace with the hooked edges 13 of the blades 1 on
the second rotary shaft S'. As shown in Fig. 9, the two adjacent round undulating
blades on the first rotary shaft S are arranged in such a manner where their cambers
B having the hooked edges 13 face each other to form a first blade set; the two adjacent
round undulating blades on the second rotary shaft S' are arranged in such a manner
where their cambers B' without the hooked edges face each other to form a second blade
set.
[0027] The first blade set and second blade set assembled by joining two round undulating
blades to be mounted on the first rotary shaft S and second rotary shaft S', respectively,
may be formed into an integral blade module by die-casting. In other words, blade
modules 60, 70 configured to each have the features of the first blade set or second
blade set as described above, as shown in Fig. 18, may be die-cast from their respective
dies. The blade modules made by die-casting may accommodate heavy-duty shredders in
exchange for their higher cost of manufacturing.
[0028] As exemplified in Figs. 7 and 9, the first blade 21 and the second blade 22 on a
first rotary shaft S are arranged in such a manner where their cambers B having the
hooked edges 13 face each other to form a first blade set. Because the flanks of the
blades 21, 22 each include two cambers B having a first curvature and two cambers
B' having a second curvature alternatively arranged with respect to the cambers B
having the first curvature, the cambers B having the hooked edges 13 of the first
blade 21 and second blade 22 join to contact each other while the cambers B' without
the hooked edges of the first blade 21 and second blade 22 are separated from each
other to assume an open space 23. On the other hand, the first blade 31 and the second
blade 32 on the second rotary shaft S' are arranged in such a manner where their cambers
B' without the hooked edges face each other to form a second blade set. Similarly,
because the flanks of the blades 31, 32 each include two cambers B having a first
curvature and two cambers B' having a second curvature alternatively arranged with
respect to the cambers B having the first curvature, the cambers B having the hooked
edges 13 of the first blade 31 and second blade 32 are separated from each other to
assume an open space 33, while cambers B having the hooked edges 13 of the second
blade 32 and a first blade 31' of an adjoining second blade join to contact each other.
By adopting such arrangement, when the two rotary shafts S, S' rotate in opposing
directions, the hooked edges of the first blade 21 and the second blade 22 on the
first rotary shaft S after contacting each other adapt to insert into the open space
33 of the first blade 31 and second blade 32 on the second rotary shaft S'. When any
two adjacent hooked edges contact each other, they adapt to cut strips that have been
cut by the serrated edges I 1 of the blades, along a horizontal direction into paper
chips.
[0029] As shown in the operating view in Fig. 7 and the planar view in Fig. 9, the standardized
round undulating blades each including two cambers having a first curvature and two
cambers having a second curvature alternatively arranged with respect to the cambers
having the first curvature, enable the flanks of the corresponding blade sets to maintain
a certain contact gap at all time by means of the varying curvatures of the blades.
In other words, while viewing from the rear projection, the superposition of the blades
arranged on different rotary shafts are constant. Such a constant superposition can
ensure scissors like cutting effects between the flanks 12 when the two rotary shafts
S, S' rotate in opposing directions (shown in Fig. 9). When the cutting edges 13 formed
on the periphery 11 of the cambers B contact to join each other, the hooked edges
13 will cooperate with the flanks 12 on the cambers B' of the mating blades to cut
off the paper strips.
[0030] Along with the varying curvatures of the round undulating blades of this invention,
the paper is fragmented into paper chips each having a wider center tapering towards
the ends. Because of the two ends of the paper chip are the horizontal cutting positions,
the narrower width of cross-section is, and the smaller output power is needed to
cut along the horizontal direction. In other words, the motor can supply a minimum
power for cutting along the horizontal direction under a minimum load. The reduction
in the motor load also reduces the power consumption and increases service-life of
the motor.
[0031] As compared to the conventional blade that is punched from a sheet metal having a
thickness of about 2 mm, the round undulating blade of the present invention may be
punched from a sheet metal having a minimum thickness of about 0.3 mm, where the costs
of the two materials are significantly different, and the reduced weight also helps
to further reduce the power that the motor needs to supply to thereby increase the
service life of the motor and reduce the power consumption. In addition, the round
undulating blade module made by die-casting may be easily manufactured. These characteristics
all help to reduce the manufacturing cost and enhance the market competitiveness.
[0032] In summary, the present invention discloses a blade punched from a sheet metal, as
well as a blade module that is die-cast to form blades. In either occasion, each blade
includes at least two cambers having a first curvature and at least two cambers having
a second curvature alternatively arranged with respect to the cambers having the first
curvature. The periphery of the blade is integrally made into serration to serve as
a flank for cutting paper along a longitudinal direction. The periphery of the cambers
having the first curvature is integrally formed with hooked edges for cutting the
paper along a horizontal direction to form paper chips having double-tapering ends.
The revolutionized construction of the present invention reduces power consumption,
material cost, and lessens motor load, so as to enhance the market competitiveness
of the shredder.
[0033] In the present specification "comprises means "includes or consists of" and "comprising"
means "including or consisting of'.
[0034] The features disclosed in the foregoing description, or the following claims, or
the accompanying drawings, expressed in their specific forms or in terms of a means
for performing the disclosed function, or a method or process for attaining the disclosed
result, as appropriate, may, separately, or in any combination of such features, be
utilized for realizing the invention in diverse forms thereof.
1. A round undulating blade for a shredder, comprising:
a periphery;
an undulating blade flank, including at least two cambers having a first curvature
and at least two cambers having a second curvature alternatively arranged with respect
to the cambers having the first curvature; and
hooked edges formed on the periphery of the cambers having the first curvature.
2. A round undulating blade according to Claim 1, wherein the undulating blade flank
of the blade serves to cut paper along a longitudinal direction to form paper strips
having double-tapering end, and the hooked edges serve to cut the strips along a horizontal
direction into paper chips.
3. A round undulating blade according to either Claim 1 or Claim 2, wherein the cambers
are equally spaced from one another.
4. A round undulating blade according to any preceding claim, wherein the flank is formed
with at least one rib protruding towards a direction opposing the curvature of the
cambers at where the rib is formed.
5. A round undulating blade according to Claim 4, wherein the at least one rib is formed
on the cambers where no hooked edges are formed.
6. A round undulating blade according to any preceding claim, wherein the periphery of
the blade is integrally formed into serration.
7. A round undulating blade according to any preceding claim, wherein the center of the
blade is formed with a polygonal hole.
8. A round undulating blade according to any preceding claim, wherein the blade is made
from a sheet metal punched integrally in a punching die.
9. A round undulating blade module for a shredder, the blade module including at least
two undulating blades, each of the two blades comprising a round undulating blade
according to any preceding claim;
wherein the two undulating blades are arranged in such a manner that the cambers
having the same curvature of each of the undulating blades face each other.
10. A round undulating blade module according to Claim 9, wherein the round undulating
blades are arranged in such a manner that the cambers of each of the undulating blades
formed with the hooked edges join to contact each other.
11. A round undulating blade module according to either Claim 9, or Claim 10, wherein
the blade module is integrally formed by die-casting.