(11) **EP 1 538 232 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: **08.06.2005 Patentblatt 2005/23**

(51) Int Cl.⁷: **C22C 38/58**, C21D 7/00

(21) Anmeldenummer: 04450211.0

(22) Anmeldetag: 17.11.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten:

AL HR LT LV MK YU

(30) Priorität: 03.12.2003 AT 19382003

(71) Anmelder:

- BÖHLER Edelstahl GmbH A-8605 Kapfenberg (AT)
- Schoeller-Bleckmann Oilfield Technology GmbH & Co KG 2630 Ternitz (AT)

(72) Erfinder:

- Saller, Gabriele, Dr.-Ing. 8700 Leoben (AT)
- Aigner, Herbert, Dipl.-Ing. 2630 Buchbach (AT)
- Bernauer, Josef, Dipl.Ing.
 4490 St. Florian (AT)
- Huber, Raimund 8605 Kapfenberg (AT)
- (74) Vertreter: Wildhack, Helmut, Dipl.-Ing. Dr. et al Patentanwälte Dipl.-Ing. Dr. Helmut Wildhack Dipl.-Ing. Dr.Gerhard Jellinek Landstrasser Hauptstrasse 50 1030 Wien (AT)

(54) Korrosionsbeständige, austenitische Stahlregierung

(57) Die Erfindung betrifft eine austenitische, im Wesentlichen ferritfreie Stahllegierung enthaltend (in Gew.-%)

bis 0.35 % Kohlenstoff
bis 0.75 % Silicium
mehr als 19.0 % bis 30.0 % Mangan
mehr als 17.0 % bis 24.0 % Chrom
mehr als 1.90 % bis 5.5 % Molybdän
bis 2.0 % Wolfram
bis 15.0 % Nickel
bis 5.0 % Cobalt
0.35 % bis 1.05 % Stickstoff
bis 0.005 % Bor
bis 0.30 % Schwefel
weniger als 0.5 % Kupfer
weniger als 0.05 % Aluminium
weniger als 0.035 % Phosphor,

sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,

Rest Eisen und herstellungsbedingte Verunreinigungen.

wobei ein Summengehalt von Nickel und Cobalt größer als 2.50 % ist,

Beschreibung

20

30

35

45

50

[0001] Die Erfindung betrifft eine austenitische, im Wesentlichen ferritfreie Stahllegierung.

[0002] Weiter umfasst die Erfindung die Verwendung einer austenitischen, im Wesentlichen ferritfreien Stahllegierung.

[0003] Schließlich bezieht sich die Erfindung auf ein Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten, insbesondere Bohrstangen, für die Ölfeldtechnik.

[0004] Beim Niederbringen von Bohrungen, beispielsweise in der Ölfeldtechnik, ist es notwendig, einen Bohrlochverlauf möglichst exakt festzustellen. Dies erfolgt üblicherweise durch Bestimmung der Lage des Bohrkopfes mit Hilfe von Magnetfeldsonden, bei welchen das magnetische Feld der Erde zur Messung genutzt wird. Teile von Bohrgeräten, insbesondere Bohrstangen, sind deswegen aus nicht-magnetischen Legierungen gefertigt. In diesem Zusammenhang wird heute zumindest für die in unmittelbarer Nähe von Magnetfeldsonden befindlichen Teile von Bohrsträngen eine relative magnetische Permeabilität μ_r kleiner als 1.01 gefordert.

[0005] Austenitische Legierungen können im Wesentlichen ferritfrei, das heißt mit einer relativen magnetischen Permeabilität μ_r kleiner als 1.01, ausgebildet sein. Somit können austenitische Legierungen die vorstehende Forderung erfüllen und daher grundsätzlich für Bohrstrangkomponenten eingesetzt werden.

[0006] Um für einen Einsatz in der Form von Bohrstrangkomponenten insbesondere für Tieflochbohrungen geeignet zu sein, ist es weiter erforderlich, dass ein gewählter austenitischer Werkstoff Mindestwerte der mechanischen Eigenschaften, insbesondere der 0.2 %-Dehngrenze und Zugfestigkeit, erreicht und den beim Bohrbetrieb auftretenden dynamisch wechselnden Belastungen gewachsen ist, also zusätzlich eine hohe Dauerwechselfestigkeit aufweist. Andernfalls können beispielsweise Bohrstangen aus entsprechenden Legierungen den beim Gebrauch auftretenden hohen Zug- und Druckbeanspruchungen sowie Torsionsbeanspruchungen nicht oder nur für eine kurze Einsatzzeit standhalten; unerwünscht rasches bzw. vorzeitiges Materialversagen ist die Folge.

[0007] Austenitische Werkstoffe für Bohrstrangkomponenten werden in der Regel hoch mit Stickstoff legiert, um hohe Werte der Streckgrenze und der Zugfestigkeit von Komponenten wie Bohrstangen zu erreichen. Eine zu berücksichtigende Anforderung ist jedoch eine Porenfreiheit des eingesetzten Werkstoffes, welche durch Legierungszusammensetzung und Herstellverfahren beeinflussbar ist.

[0008] In diesem Bezug stellen sich wirtschaftlich günstig selbstredend Legierungen dar, welche bei Erstarrung unter Atmosphärendruck zu porenfreiem Halbzeug führen. In der Praxis sind solche austenitische Legierungen allerdings des hohen Stickstoffgehaltes wegen eher selten, und es ist durchwegs ein Erstarren unter erhöhtem Druck erforderlich, um eine Porenfreiheit zu erreichen. Ein Erschmelzen und Erstarren unter Stickstoffdruck kann auch notwendig sein, um genügend Stickstoff im erstarrten Material zu erhalten, wenn andernfalls eine unzureichende Stickstofflöslichkeit gegeben ist.

[0009] Schließlich sollten austenitische Legierungen, welche für einen Einsatz als Komponenten von Bohrsträngen vorgesehen sind, eine gute Beständigkeit gegen verschiedene Arten von Korrosion aufweisen. Insbesondere ist ein hoher Widerstand gegen Lochfraßkorrosion und Spannungsrisskorrosion vor allem in chloridhältigen Medien erwünscht.

[0010] Gemäß dem Stand der Technik sind austenitische Legierungen bekannt, welche jeweils einige dieser Anforderungen, nämlich weitgehende Ferritfreiheit, gute mechanische Eigenschaften, Porenfreiheit und hohe Korrosionsbeständigkeit, erfüllen.

[0011] Aus der DE 39 40 438 C1 sind Gegenstände aus einem warm- und kaltverformten und nachfolgend bei Temperaturen von über 300 °C ausgelagerten, austenitischen Werkstoff mit (in Gewichtsprozent) max. 0.12 % Kohlenstoff, 0.20 % bis 1.00 % Silicium, 17.5 % bis 20.0 % Mangan, maximal 0.05 % Phosphor, maximal 0.015 % Schwefel, 17.0 % bis 20.0 % Chrom, maximal 5 % Molybdän, maximal 3.0 % Nickel, 0.8 % bis 1.2 % Stickstoff, bekannt. Diese Gegenstände weisen allerdings, wie in der DE 196 07 828 A1 von einigen derselben Erfinder bemerkt wird, bescheidene Dauerwechselfestigkeiten von bestenfalls 375 MPa auf, welche in aggressiver Umgebung, z.B. in Salzlösung noch deutlich tiefer liegen.

[0012] Eine andere austenitische Legierung ist aus der nebenbei schon erwähnten DE 196 07 828 A1 bekannt. Gemäß dieser Schrift werden Gegenstände für die offshore-Industrie vorgeschlagen, die aus einer austenitischen Legierung mit (in Gewichtsprozent) 0.1 % Kohlenstoff, 8 % bis 15 % Mangan, 13 % bis 18 % Chrom, 2.5 % bis 6 % Molybdän, 0 % bis 5 % Nickel und 0.55 % bis 1.1 % Stickstoff bestehen. Derartige Gegenstände sollen hohe mechanische Kennwerte und eine höhere Dauerwechselwechselfestigkeit als Gegenstände nach der DE 39 40 438 C1 aufweisen. Nachteilig ist jedoch eine auf die Legierungszusammensetzung zurückführbare geringe Stickstofflöslichkeit, weshalb unter Druck geschmolzen und erstarren gelassen werden muss oder noch aufwändigere pulvermetallurgische Herstellverfahren anzuwenden sind.

[0013] Eine bei Erschmelzen unter Atmosphärendruck zu Gegenständen mit geringer magnetischer Permeabilität und guten mechanischen Eigenschaften führende austenitische Legierung ist in der AT 407 882 B beschrieben. Eine solche Legierung weist insbesondere eine hohe 0.2 % Dehngrenze, hohe Zugfestigkeit und eine hohe Dauerwechsel-

festigkeit auf. Legierungen gemäß der AT 407 882 B werden zweckmäßigerweise warmverformt und bei Temperaturen von 350°C bis etwa 600°C einer zweiten Verformung unterworfen. Die Legierungen eigenen sich für eine Herstellung von Bohrstangen, welche im Rahmen eines Bohreinsatzes in der Ölfeldtechnik auch den hohen Anforderungen hinsichtlich statischer und dynamischer Belastbarkeit über lange Einsatzzeiten in zufriedenstellender Weise Rechnung tragen.

[0014] Dennoch, so wurde festgestellt, kann es zu Materialversagen kommen, weil Bohrstrangkomponenten wie Bohrstangen bei einem Einsatz neben hohen mechanischen Beanspruchungen auch hochkorrosiven Medien bei erhöhten Temperaturen ausgesetzt sind. In der Folge kann es zu Spannungsrisskorrosion kommen. Da Bohrstangen und andere Teile von Bohreinrichtungen auch während Stehzeiten mit korrosiven Medien in Kontakt stehen können, kann Lochfraßkorrosion ebenfalls entscheidend zum Materialversagen beitragen. Beide Korrosionsarten bewirken in der Praxis eine Verkürzung der maximalen theoretischen Gebrauchsdauer bzw. der Einsatzzeit von Bohrstangen, wie sie auf Grund der mechanischen Eigenschaften bzw. Kennwerte zu erwarten wäre.

[0015] Gemäß dem dargelegten Stand der Technik zeigt sich, dass bei hochstickstoffhältigen austenitischen Legierungen, welche unter Atmosphärendruck zu zumindest weitgehend porenfreien Blöcken erschmelzbar sind, die Anforderungen hinsichtlich guter mechanischer Eigenschaften und gleichzeitig hoher Beständigkeit gegen Korrosion bei Zug- und Druckbelastung als auch gegen Lochfraßkorrosion nicht zufriedenstellend erfüllt sind.

[0016] Hier knüpft die Erfindung an und stellt sich zur Aufgabe, eine austenitische Stahllegierung anzugeben, welche bei Atmosphärendruck erschmelzbar und zu porenfreiem Halbzeug verarbeitbar ist und welche bei guten mechanischen Eigenschaften, insbesondere bei hoher 0.2 % Dehngrenze, hoher Zugfestigkeit und hoher Dauerwechselfestigkeit, gleichzeitig eine hohe Beständigkeit sowohl gegen Spannungsrisskorrosion als auch gegen Lochfraßkorrosion aufweist.

20

30

35

45

50

[0017] Ein weiteres Ziel der Erfindung ist es, Verwendungen für eine austenitische, im Wesentlichen ferritfreie Legierung anzugeben.

[0018] Die genannte Aufgabe löst eine Stahllegierung nach Anspruch 1. Vorteilhafte Weiterbildungen einer erfindungsgemäßen Stahllegierung sind Gegenstand der Ansprüche 2 bis 21.

[0019] Die mit der Erfindung erzielten Vorteile sind insbesondere darin zu sehen, dass eine austenitische, im Wesentlichen ferritfreie Stahllegierung bereitgestellt wird, welche gute mechanische Eigenschaften, insbesondere hohe Werte der 0.2 % Dehngrenze und der Zugfestigkeit aufweist und welche gleichzeitig eine hohe Beständigkeit gegen Spannungsrisskorrosion und auch gegen Lochfraßkorrosion aufweist.

[0020] Auf Grund einer synergetisch abgestimmten Legierungszusammensetzung ist eine hohe Stickstofflöslichkeit gegeben. In vorteilhafter Weise kann somit ein zumindest weitgehend porenfreier Block aus einer erfindungsgemäßen Legierung bei Schmelzen und Erstarren unter Atmosphärendruck erstellt werden.

[0021] Nach einer Warmverformung eines Gussstückes in einem oder mehreren Schritten, einem wahlweise darauffolgenden Lösungsglühen des Halbzeuges und einer danach folgenden weiteren Verformung bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600 °C, insbesondere im Bereich von 300 °C bis 550 °C, liegt ein erfindungsgemäß zusammengesetzter Werkstoff im Wesentlichen frei von stickstoffhältigen und/ oder karbidischen Ausscheidungen vor. Dies bewirkt eine hohe Dauerwechselfestigkeit desselben, weil der gesamte Stickstoff in Lösung vorliegt und beispielsweise Karbide, welche als Mikrokerben wirken, stark reduziert sind. Dementsprechend weist ein Gegenstand aus der erfindungsgemäßen Legierung bei Raumtemperatur eine Dauerwechselfestigkeit von mehr als 400 MPa bei 10⁷ Lastwechsel auf.

[0022] Andererseits bewirkt eine Freiheit von stickstoffhältigen und/oder karbidischen Ausscheidungen allgemein eine hohe Korrosionsbeständigkeit des Stahls, weil vor allem Chrom und Molybdän nicht als Karbide bzw. Nitride gebunden sind und daher in Bezug auf Korrosionsbeständigkeit ihre passivierende Wirkung vollflächig entfalten. So können Teile aus erfindungsgemäßen Stahllegierungen bei besseren mechanischen Eigenschaften Beständigkeiten gegen Spannungsrisskorrosion und Lochfraßkorrosion aufweisen, die jene von hochlegierten Cr-Ni-Mo-Austeniten übertreffen.

[0023] Im Folgenden sind die Wirkungen der jeweiligen Elemente einzeln und im Zusammenwirken mit den übrigen Legierungsbestandteilen näher beschrieben.

[0024] Kohlenstoff (C) kann in einer erfindungsgemäßen Stahllegierung in Gehalten bis zu 0.35 Gew.-% vorhanden sein. Kohlenstoff ist ein Austenitbildner und wirkt sich in Bezug auf hohe mechanische Kennwerte günstig aus. Im Hinblick auf eine Vermeidung von karbidischen Ausscheidungen, insbesondere bei größeren Dimensionen, ist es bevorzugt, den Kohlenstoffgehalt auf 0.01 Gew.-% bis 0.06 Gew.-% einzustellen.

[0025] Silicium (Si) ist in Gehalten bis 0.75 Gew.-% vorgesehen und dient in der Hauptsache einer Desoxidation des Stahls. Höhere Gehalte als 0.75 Gew.-% erweisen sich im Hinblick auf eine Ausbildung intermetallischer Phasen als nachteilig. Silicium ist überdies ein Ferritbildner und auch deswegen sollte ein Siliciumgehalt auf maximal 0.75 Gew.-% begrenzt sein. Günstig und daher bevorzugt ist es, Silicium in Gehalten von 0.15 Gew.-% bis 0.30 Gew.-% vorzusehen, weil in diesem Gehaltsbereich eine ausreichend desoxidierende Wirkung bei geringem Beitrag von Silicium zur Ferritbildung gegeben ist.

[0026] Mangan (Mn) ist in Gehalten von mehr als 19.0 Gew.-% bis zu 30.0 Gew.-% vorgesehen. Dieses Element trägt wesentlich zu einer hohen Stickstofflöslichkeit bei. Porenfreie Werkstoffe aus einer erfindungsgemäßen Stahllegierung sind deshalb auch bei Erstarren unter Atmosphärendruck herstellbar. Hinsichtlich einer Stickstofflöslichkeit einer Legierung im schmelzflüssigen Zustand sowie während und nach der Erstarrung ist es bevorzugt, Mangan in Gehalten von mehr als 20 Gew.-% einzusetzen. Mangan stabilisiert überdies das Austenitgefüge speziell bei hohen Verformungsgraden gegen die Bildung von Umformmartensit. Mit Bezug auf eine bevorzugt gute Korrosionsbeständigkeit hat sich eine obere Grenze des Mangangehaltes mit 25.5 Gew.-% ergeben.

[0027] Chrom (Cr) erweist sich in Gehalten von 17.0 Gew.-% oder mehr als notwendig für eine hohe Korrosionsbeständigkeit. Außerdem ermöglicht Chrom ein Zulegieren großer Stickstoffmengen. Höhere Gehalte als 24.0 Gew.-% können sich nachteilig auf eine magnetische Permeabilität auswirken, weil Chrom zu den ferritstabilisierenden Elementen zählt. Besonders vorteilhaft sind Chrom-Gehalte von 19.0 % bis 23.5 %, vorzugsweise 20.0 % bis 23.0 %. Bei diesen Gehalten zeigt eine gemeinsame Betrachtung der Neigung zur Bildung von chromhältigen Ausscheidungen und Beständigkeit gegen Lochfraß- und Spannungsrisskorrosion ein Optimum.

10

15

20

30

35

40

45

50

55

[0028] Molybdän (Mo) ist ein Element, welches in einer Stahllegierung gemäß der Erfindung wesentlich zur Korrosionsbeständigkeit im allgemeinen und zur Lochfraßkorrosionsbeständigkeit im besonderen beiträgt, wobei die Wirkung von Molybdän in einem Gehaltsbereich von mehr als 1.90 Gew.-% durch eine Anwesenheit von Nickel verstärkt wird. Ein optimaler und daher bevorzugter Bereich des Molybdängehaltes in Bezug auf eine Korrosionsbeständigkeit ist durch eine untere Grenze von 2.05 Gew.-%, ein besonders bevorzugter Bereich durch eine untere Grenze von 2.5 Gew.-%, festgelegt. Da Molybdän zum einen ein teures Element ist und zum anderen bei größeren Gehalten die Tendenz zur Bildung intermetallischer Phasen steigt, ist ein Molybdängehalt mit 5.5 Gew.-%, in bevorzugten Varianten der Erfindung mit 5.0 Gew.-%, insbesondere mit 4.5 Gew.-%, begrenzt.

[0029] Wolfram (W) kann in Konzentrationen von bis zu 2.0 Gew.-% anwesend sein und zur Steigerung der Korrosionsbeständigkeit beitragen. Wenn eine im Wesentlichen ausscheidungsfreie Legierung gefordert ist, ist es zweckmäßig einen Wolframgehalt zwischen 0.05 Gew.-% und 0.2 Gew.-% zu halten. Um intermetallische bzw. stickstoffhältige und/oder karbidische Ausscheidungen von Wolfram bzw. Wolfram und Molybdän hintan zuhalten, ist es günstig, wenn ein Summengehalt X (in Gew.-%) dieser Elemente, berechnet nach X = (%Molybdän) + 0.5*(% Wolfram), größer als 2 und kleiner als 5.5 ist.

[0030] Nickel (Ni) trägt, wie gefunden wurde, in einem Gehaltsbereich von mehr als 2.50 Gew.-% bis 15.0 Gew.-% und im Zusammenwirken mit den übrigen Legierungselementen aktiv und positiv zur Korrosionsbeständigkeit bei. Insbesondere, und dies ist aus fachmännischer Sicht als völlig überraschend zu werten, ist bei Anwesenheit von mehr als 2.50 Gew.-% Nickel eine hohe Spannungsrisskorrosionsbeständigkeit gegeben. Entgegen der in einschlägigen Lehr- und Fachbüchem dargelegten Meinung, dass mit steigenden Nickelgehalten die Spannungsrisskorrosionsbeständigkeit von chromhältigen Austeniten in chloridhältigen Medien dramatisch abnimmt und bei etwa 20 Gew.-% ein Minimum einnimmt (siehe, z.B.: A.J. Sedriks, *Corrosion of Stainless Steels*, 2nd Edition, John Wiley & Sons Inc., 1996, Seite 276), kann in einer erfindungsgemäßen Stahllegierung auch bei Nickelgehalten von mehr als 2.50 Gew.-% bis 15.0 Gew.-% in chloridhältigen Medien eine hohe Spannungsrisskorrosionsbeständigkeit erreicht werden.

[0031] Eine abgesicherte wissenschaftliche Erklärung dieses Effekts liegt noch nicht vor. Vermutet wird Folgendes: Für eine Entstehung transkristalliner Spannungsrisskorrosion durch Gleitvorgänge ist eine planare Versetzungsanordnung notwendig, welche durch eine niedrige Stapelfehlerenergie begünstigt wird. In einer erfindungsgemäßen Legierung erhöht Nickel die Stapelfehlerenergie. Dies führt bei mehr als 2.50 Gew.-% Nickel zu hohen Stapelfehlerenergien und zu Versetzungsknäuel, wodurch eine Anfälligkeit gegen Spannungsrisskorrosion verringert ist.

[0032] Besonders bevorzugt sind in diesem Zusammenhang Nickelgehalte von zumindest 2.65 Gew.-%, vorzugsweise zumindest 3.6 Gew.-%, insbesondere 3.8 Gew.-% bis 9.8 Gew.-%, Nickel.

[0033] Cobalt (Co) kann in Gehalten bis zu 5.0 Gew.-% zur Substitution von Nickel vorgesehen sein. Bevorzugt ist es jedoch schon der hohen Kosten dieses Elementes wegen, einen Cobaltgehalt unter 0.2 Gew.-% zu halten.

[0034] Nickel leistet, wie oben dargelegt, einen hohen Beitrag zur Korrosionsbeständigkeit und ist ein starker Austenitbildner. Demgegenüber leistet Molybdän zwar auch einen wesentlichen Beitrag zur Korrosionsbeständigkeit, ist aber ein Ferritbildner. Daher ist es günstig, wenn der Nickelgehalt gleich oder größer ist, als der Molybdängehalt. Besonders günstig ist in diesem Zusammenhang, wenn ein Nickelgehalt mehr als das 1.3-fache, vorzugsweise mehr als das 1.5-fache, eines Molybdängehaltes beträgt.

[0035] Stickstoff (N) ist in Gehalten von zumindest 0.35 Gew.-% bis 1.05 Gew.-% erforderlich, um eine hohe Festigkeit sicherzustellen. Weiter trägt Stickstoff zur Korrosionsbeständigkeit bei und ist ein starker Austenitbildner, weswegen höhere Gehalte als 0.40 Gew.-%, insbesondere höher als 0.60 Gew.-%, günstig sind. Auf der anderen Seite steigt mit zunehmendem Stickstoffgehalt die Neigung zu einer Bildung von stickstoffhältigen Ausscheidungen, beispielsweise Cr₂N. In vorteilhaften Varianten der Erfindung ist ein Stickstoffgehalt daher mit 0.95 Gew.-%, vorzugsweise 0.90 Gew.-%, begrenzt.

[0036] Als vorteilhaft hat sich erwiesen, wenn das Verhältnis der Gewichtsanteile von Stickstoff zu Kohlenstoff größer als 15 ist, weil dann eine Bildung von rein karbidhältigen Ausscheidungen, welche sich äußerst nachteilig auf eine

Korrosionsbeständigkeit des Werkstoffes auswirken, zumindest weitgehend ausgeschlossen ist.

[0037] Bor (B) kann in Gehalten bis zu 0.005 Gew.-% vorgesehen sein und begünstigt insbesondere in einem Bereich von 0.0005 Gew.-% bis 0.004 Gew.-% eine Warmverformbarkeit des erfindungsgemäß zusammensetzten Werkstoffes.

[0038] Kupfer (Cu) ist in einer erfindungsgemäßen Stahllegierung in einem Gehalt von weniger als 0.5 Gew.-% tolerierbar. In Gehalten von 0.04 Gew.-% bis 0.35 Gew.-% erweist sich Kupfer als durchaus vorteilhaft bei speziellen Einsatzzwecken von Bohrstangen, beispielsweise wenn Bohrstangen bei Bohrungen mit Medien wie Schwefelwasserstoffen, insbesondere H_2S , in Kontakt kommen. Gehalte höher als 0.5 Gew.-% fördern eine Ausscheidungsbildung und erweisen sich als nachteilig für die Korrosionsbeständigkeit.

[0039] Aluminium (Al) trägt neben Silicium zu einer Desoxidation des Stahles bei, ist jedoch ein starker Nitridbildner, weshalb dieses Element gewichtsmäßig auf weniger als 0.05 Gew.-% eingeschränkt wird.

[0040] Schwefel (S) ist in Gehalten bis zu 0.30 Gew.-% vorgesehen. Größere Gehalte als 0.1 Gew.-% wirken sich sehr günstig auf eine Verarbeitung einer erfindungsgemäßen Stahllegierung aus, weil eine spanabhebende Bearbeitung erleichtert ist. Wenn jedoch ein Augenmerk höchster Korrosionsbeständigkeit des Werkstoffes gilt, ist ein Schwefelgehalt mit 0.015 Gew.-% begrenzt.

[0041] In einer Stahllegierung gemäß der Erfindung ist der Gehalt an Phosphor (P) geringer als 0.035 Gew.-%. Vorzugsweise ist ein Phosphorgehalt mit maximal 0.02 Gew.-% begrenzt.

[0042] Vanadium (V), Niob (Nb), Titan (Ti) wirken komfeinend im Stahl und können zu diesem Zweck einzeln oder in beliebiger Kombination vorhanden sein, wobei eine Summenkonzentration der vorhandenen Elemente maximal 0.85 Gew.-% beträgt. Im Hinblick auf eine kornfeinende Wirkung und eine Vermeidung von groben Ausscheidungen dieser starken Karbidbildner, ist es von Vorteil, wenn eine Summenkonzentration der vorhandenen Elemente mehr als 0.08 Gew.-% und weniger als 0.45 Gew.-% beträgt.

[0043] In einer erfindungsgemäßen Stahllegierung tragen die Elemente Wolfram, Molybdän, Mangan, Chrom, Vanadium, Niob und Titan positiv zur Löslichkeit von Stickstoff bei.

[0044] Es ist besonders günstig, wenn Halbzeug aus einer erfindungsgemäßen Legierung bei einer Temperatur von mehr als 750 °C warmverformt, wahlweise lösungsgeglüht und abgeschreckt, und anschließend bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600°C, insbesondere im Temperaturbereich von 300 °C bis 500 °C, verformt ist. In diesem Zustand des Werkstoffes liegt ein Gefüge frei von stickstoffhältigen und/oder karbidischen Ausscheidungen vor. Bei Anwendung der genannten Verfahrensschritte kann ein homogenes, feines austenitisches Gefüge ohne Umformmartensit erreicht werden. Derart behandelte Werkstoffe weisen bei Raumtemperatur eine Dauerwechselfestigkeit von mehr als 400 MPa bei 10⁷ Lastwechseln auf.

[0045] Das weitere Ziel der Erfindung, Verwendungen für eine austenitische, im Wesentlichen ferritfreie Legierung anzugeben, wird durch Verwendung einer erfindungsgemäßen Stahllegierung als Werkstoff für Komponenten für die Ölfeldtechnik erreicht. Insbesondere als günstig erweist es sich, wenn die Komponente ein Bohrstrangteil ist.

[0046] Das weitere Ziel der Erfindung wird auch durch Verwendung einer Legierung gemäß der Erfindung für auf Zug und Druck beanspruchte Bauteile, welche mit korrosiven Medien, insbesondere einer korrosiven Flüssigkeit wie salzhältiges Wasser, in Kontakt kommen, erreicht.

[0047] Die Vorteile einer erfindungsgemäßen Verwendung sind insbesondere darin zu sehen, dass bei Einsatz der genannten Legierungen korrosionschemischer Verschleiß verzögert ist und die Komponenten bzw. Bauteile eine erhöhte Gebrauchsdauer aufweisen.

[0048] Im Rahmen einer Weiterverarbeitung von stangenförmigem Material aus einer erfindungsgemäßen Legierung zu Bohrstangen durch Drehen und Schälen hat sich überraschenderweise gezeigt, dass ein Verschleiß von Dreh- bzw. Schälwerkzeugen bei Vergleich mit Material gemäß dem Stand der Technik erheblich verringert ist.

[0049] Zufolge diesem Aspekt stellt es ein verfahrensmäßiges Ziel der Erfindung dar, ein Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten für die Ölfeldtechnik anzugeben, mit welchem insbesondere Bohrstangen hoher Korrosionsbeständigkeit mit geringerem Werkzeugverschleiß kostengünstig herstellbar sind.

[0050] Das verfahrensgemäße Ziel der Erfindung wird durch ein Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten, insbesondere Bohrstangen, für die Ölfeldtechnik, wobei zuerst ein Gussstück enthaltend (in Gew.-%)

50 bis 0.35 % Kohlenstoff

20

30

35

45

bis 0.75 % Silicium

mehr als 19.0 % bis 30.0 % Mangan

mehr als 17.0 % bis 24.0 % Chrom

mehr als 1.90 % bis 5.5 % Molybdän

bis 2.0 % Wolfram

bis 15.0 % Nickel

bis 5.0 % Cobalt

0.35 % bis 1.05 % Stickstoff

bis 0.005 % Bor bis 0.30 % Schwefel weniger als 0.5 % Kupfer weniger als 0.05 % Aluminium

weniger als 0.035 % Phosphor,

wobei ein Summengehalt von Nickel und Cobalt größer als 2.50 % ist,

sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,

Rest Eisen und herstellungsbedingte Verunreinigungen

erstellt wird, worauf das Gussstück bei einer Temperatur von mehr als 750°C in mehreren Warmverformungsteilschritten zu einem Halbzeug verformt wird,

wobei wahlweise vor dem ersten Teilschritt oder zwischen den Teilschritten ein Homogenisieren des Halbzeuges bei einer Temperatur von mehr als 1150 °C erfolgt, worauf nach dem letzten Warmverformungsteilschritt und einem darauf wahlweise durchgeführten Lösungsglühen des Halbzeuges bei einer Temperatur von mehr als 900 °C das Halbzeug einer verstärkten Abkühlung unterworfen wird und in einem weiteren Verformungsschritt bei einer Temperatur unterhalb der Rekristallisationstemperatur, insbesondere unter 600 °C, verformt wird, wonach aus dem Halbzeug durch spanabhebende Bearbeitung eine Komponente gefertigt wird, erreicht.

[0051] Die mit einem derartigen Verfahren erreichten Vorteile sind insbesondere darin zu sehen, dass Komponenten für die Ölfeldtechnik, welche bei für Einsatzzwecke ausreichenden mechanischen Eigenschaften verbesserte Korrosionsbeständigkeit aufweisen, bei einem um bis zu 12 % verringertem Werkzeugverschleiß herstellbar sind. Ein Homogenisieren kann dabei sowohl vor einem ersten Warmverformungsschritt als auch nach einem ersten Warmverformungsschritt, jedoch vor einem zweiten Warmverformungsschritt, vorgenommen werden.

[0052] Höhere Temperaturen erleichtern eine Verformung im Verformungsschritt nach einer verstärkten Abkühlung und es ist daher günstig, wenn dieser bei einer Temperatur des Halbzeuges von über 350°C durchgeführt wird.

[0053] Wenn die zu erstellende Komponente eine Bohrstange ist, ist das Halbzeug zweckmäßigerweise eine Stange, welche im zweiten Verformungsschritt mit einem Verformungsgrad von 10 % bis 20 % verformt wird. Derartige Verformungsgrade erbringen eine ausreichende Festigkeit für Einsatzzwecke und erlauben eine Dreh- bzw. Schälbearbeitung bei verringertem Werkzeugverschleiß.

[0054] In Bezug auf eine Güte von erstellten Komponenten hat es sich als günstig erwiesen, wenn ein Block mittels Elektroschlacke-Umschmelz-Verfahren hergestellt wird.

[0055] Eine rasche und kostengünstige Fertigung von Komponenten wird ermöglicht, wenn die spanabhebende Bearbeitung ein Drehen und/oder Schälen umfasst.

[0056] Im Folgenden ist die Erfindung anhand von Beispielen noch weiter erläutert.

[0057] Durch Schmelzen unter Atmosphärendruck wurden Blöcke erstellt, deren chemische Zusammensetzungen den Legierungen 1 bis 5 sowie 7 in Tabelle 1 entsprechen. Ein Gusstück aus Legierung 6 in Tabelle 1 wurde unter Stickstoffatmosphäre bei 16 bar Druck umgeschmolzen und aufgestickt. Die porenfreien Blöcke wurden anschließend bei 1200 °C homogenisiert und bei 910 °C mit einem Verformungsgrad von 75 % warmverformt [Verformungsgrad = ((Ausgangsquerschnitt - Endquerschnitt) / Ausgangsquerschnitt)* 100]. Danach folgte eine Lösungsglühbehandlung zwischen 1000 °C und 1100 °C. Anschließend wurden die zu Halbzeug verformten Blöcke mit Wasser auf Umgebungstemperatur abgeschreckt und schließlich bei Temperatur von 380 °C bis 420 °C einem zweiten Verformungsschritt unterworfen, wobei ein Verformungsgrad 13 % bis 17 % betrug. Die so erstellten Gegenstände wurden untersucht bzw. zu Bohrstangen weiterverarbeitet.

[0058] Legierungen A, B, C, D und E, deren Zusammensetzungen ebenfalls aus Tabelle 1 ersichtlich sind, stellen am Markt erhältliche Produkte dar.

[0059] Gegenstände aus diesen Legierungen wurden zu Vergleichszwecken ebenfalls untersucht bzw. bearbeitet.

50

20

30

35

 55
 50
 45
 40
 35
 30
 25
 20
 15
 10
 5

Tabelle 1:

Chemische 2	Chemische Zusammensetzungen von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7 (Angaben in Gew%)																	
Legierung	С	Si	Mn	Р	s	Cr	Мо	Ni	V	W	Cu	Co	Ti	Al	Nb	В	Fe	N
Α	0,03	0,5	19,8	<0,05	<0,015	13,5	0,5	1,1	0,1	0,2	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,30
В	0,05	0,3	19,9	<0,05	<0,015	18,2	0,3	1,0	0,1	0,2	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,60
С	0,04	0,2	23,6	<0,05	<0,015	21.4	0,3	1,6	0,1	0,2	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,67
D	0,01	0,3	2,7	<0,05	<0,015	27,3	3,2	29,4	0,1	0,1	0,6	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,29
E	0,01	<0,05	0,1	<0,005	<0,001	20,6	3,1	Rest	0,02	<0,05	1,8	<0,05	2,1	0,2	0,3	0,003	27,8	<0,01
1	0,04	0,2	19,8	<0,035	<0,015	18,8	1,94	3,9	0,07	0,1	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0.62
2	0,04	0,2	21,4	<0,035	<0,015	18,5	2,13	5,8	0,10	0,1	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,60
3	0,04	0,2	23,3	<0,035	<0,015	20,7	2,03	4,5	0,05	0,1	0,2	0,1	<0,1	<0,01	<0,1	<0,005	Res	0,88
4	0,03	0,2	24,4	<0,035	<0,015	21,0	3,15	6,5	0,10	0,1	0,3	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,86
5	0,04	0,2	25,2	<0,035	0,0020	20,9	4,11	9,3	0,03	0,1	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0,78
6	0,15	0,5	19,3	<0,035	<0,015	18,2	2,05	2,7	0,01	0,1	0,1	0.1	<0,1	<0,01	0,1	<0,005	Rest	0.77
7	0,34	0,1	22,4	<0,035	<0,015	17,4	2,5	4,0	0,02	0,1	0,1	0,1	<0,1	<0,01	<0,1	<0,005	Rest	0.52

[0060] Die in Tabelle 1 angeführten Legierungen wurden hinsichtlich Lochfraßkorrosionsbeständigkeit und Spannungsrisskorrosion untersucht. Die Bestimmung der Lochfraßkorrosionsbeständigkeit erfolgte durch Messung des Lochkorrosionspotentials gegenüber einer Standard-Wasserstoffelektrode nach ASTM G 61. Die Spannungsrisskorrosion (SCC) wurde durch Ermittlung des Wertes der SCC-Grenzspannung nach ATSM G 36 bestimmt. Der Wert der SCC-Grenzspannung steht für jene außen angelegte maximale Prüfspannung, welche eine Prüfprobe mehr als 720 Stunden in bei 155 °C siedender 45%-MgCl₂-Lösung erträgt.

[0061] Untersuchungen an Gegenständen aus den in Tabelle 1 angeführten Legierungen belegen bei hohen mechanischen Kennwerten eine überragende Korrosionsbeständigkeit von erfindungsgemäßen Werkstoffen. Vor allem im Vergleich mit den aus dem Stand der Technik bekannten Cr-Mn-Austeniten (Legierungen A, B und C) zeigt sich gemäß Tabelle 2 und Tabelle 3, dass erfindungsgemäße Legierungen bei guten mechanischen Eigenschaften deutlich korrosionsbeständiger sind. Dabei zeigt sich eine erhöhte Beständigkeit erfindungsgemäßer Legierungen sowohl gegen Lochfraßkorrosion als auch gegen Spannungsrisskorrosion.

[0062] Ein Lochkorrosionspotential E_{pit} bzw. eine SCC-Grenzspannung kann sogar Werte entsprechend jenen von hochlegierten Cr-Ni-Mo-Stählen und Nickelbasislegierungen erreichen, wobei gleichzeitig, wie die Tabellen 4 und 5 belegen, bessere Festigkeitseigenschaften gegeben sind. Besonders günstig ist dabei mit Bezug auf eine SCC-Grenzspannung, wenn ein Summengehalt von Molybdän und Nickel 4.7 Gew.-% oder mehr, insbesondere mehr als 6 Gew.-%, beträgt.

Tabelle 2:

Lochkorrosionspotential E_{pit} (bezogen jeweils auf eine Standard-Wasserstoffelektrode) von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7

Legierung	PREN-Wert*	Lochkorrosion	spotential E _{Pit}
		Test A (25 °C, 80000 ppm Cl ⁻)	Test B (60°C, synthetisches Meerwasser)
Α	20,0	< 0	< 0
В	28,8	164	< 0
С	36,3	527	49
D	42,5	kein Lochfraß	1142
E	30,8	kein Lochfraß	733
1	35,1	558	65
2	35,0	563	77
3	41,3	kein Lochfraß	671
4	45,3	kein Lochfraß	1091
5	46,9	kein Lochfraß	1188
6	37,3	kein Lochfraß	645
7	34,0	kein Lochfraß	598

^{*} PREN = <u>pitting resistance equivalent number</u> (PREN = Gew.-%Cr + 3,3* Gew.-%Mo + 16* Gew.-%N)

5

20

25

30

35

40

45

50

Tabelle 3:

Spannungsrisskorrosion(SCC) - Grenzspannung in Magnesiumchlorid (lösungsgeglühter und kaltverformter Zustand der Legierungen)									
Legierung	Mo-Gehalt [Gew: %]	Ni-Gehalt [Gew.%]	Σ(%Ni + %Mo) [Gew.%]	SCC- Grenzspannung [MPa]					
Α	0,5	1,1	1,6	250					
В	0,3	1,0	1,3	325					

Tabelle 3: (fortgesetzt)

Spannungsrisskorrosion(SCC) - Grenzspannung in Magnesiumchlorid (lösungsgeglühter und kaltverformter Zustand der Legierungen)

Legierung	Mo-Gehalt [Gew: %]	Ni-Gehalt [Gew.%]	Σ(%Ni + %Mo) [Gew.%]	SCC- Grenzspannung [MPa]
С	0,3	1,6	1,9	375
D	3,2	29,4	32,6	550
E	3,1	Rest	47,1	850
1	1,94	3,9	5,8	450
2	2,13	5,8	7,9	475
3	2,03	4,5	6,5	500
4	3,15	6,5	9,7	525
5	4,11	9,3	13,4	550
6	2,05	2,7	4,7	450
7	2,5	4,0	6,5	475

Tabelle 4:

Mechanische Eigenschaften und Komgröße von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7 im lösungsgeglühten Zustand

Legierung Mechanische Eigenscha					ASTM- Korn- größe
	0,2%- Dehngrenze R _{p0,2} [MPa]	ZugfestigkeitR _m [MPa]	Bruchdehnung A5 [%]	Kerbschlagarbeit A _v [J]	
Α	405	725	55	305	3-6
В	515	845	52	350	
С	599	942	48	325	
D	445	790	63	390	
E	310	672	75	335	
1	507	843	50	289	4-5
2	497	829	50	293	
3	598	944	51	303	
4	571	928	53	301	
5	564	903	54	295	
6	582	930	52	355	
7	550	925	54	378	

Tabelle 5:

Mechanische Eigenschaften von Vergleichslegierungen A bis E und erfindungsgemäßen Legierungen 1 bis 7 im lösungsgeglühten und kaltverformten Zustand

Legierung		Kaltver- formungsgrad [%]			
	0,2%- Dehngrenze R _{p0,2} [MPa]	Zugfestigkeit R _m [MPa]	Bruchdehnung A ₅ [%]	Kerbschlag- arbeit $\mathbf{A}_{_{\!$	
Α	825	915	30	225	10-30
В	1015	1120	25	190]
С	1120	1229	23	145]
D	982	1089	21	210	20-30
E	1015	1190	23	70	nicht bestimm
1	1021	1128	24	195	13- 17
2	996	1097	24	183]
3	1117	1230	22	147]
4	1103	1215	22	152]
5	1077	1192	23	156]
6	1112	1226	22	165]
7	1065	1195	23	188]

[0063] Weitere Erprobungen zeigten, dass Gegenstände aus den erfindungsgemäßen Legierungen 1 bis 7 eine relative magnetische Permeabilität von μ_r < 1.005 und bei Raumtemperatur Dauerwechselfestigkeiten von zumindest 400 MPa bei 10^7 Lastwechsel aufweisen.

[0064] Bei einer spanabhebenden Bearbeitung von stangenförmigem Material aus Legierung C sowie Material aus der Legierungen 3 und 4 im Rahmen einer Herstellung von Bohrstangen konnten Wendeschneidplatten bei Bearbeitung der Legierungen 3 und 4 um 12 % länger eingesetzt werden als bei Bearbeitung von Stangen aus Legierung C. Somit können Bohrstangen, welche hohe mechanische Kennwerte und eine verbesserte Korrosionsbeständigkeit aufweisen, mit geringerem Werkzeugverschleiß erzeugt werden.

[0065] Durch die Kombination aus höchster Festigkeit mit guter Zähigkeit und besten Korrosionseigenschaften eignet sich eine erfindungsgemäße Legierung optimal auch als Werkstoff für Befestigungs- oder Verbindungselemente, wie Schrauben, Nägel, Bolzen oder dergleichen Komponenten, wenn diese hohen mechanischen Belastungen sowie aggressiven Umgebungsbedingungen ausgesetzt sind.

[0066] Ein weiteres Anwendungsfeld, in dem Legierungen gemäß der Erfindung mit Vorteil Verwendung finden, liegt im Bereich korrosions- und verschleißbeanspruchter Teile wie Prallbleche oder Teilen, die hohen Belastungsgeschwindigkeiten ausgesetzt sind. In diesen Einsatzgebieten können Komponenten aus erfindungsgemäßen Legierungen auf Grund ihrer Eigenschaftskombination geringsten Materialverschleiß und damit eine maximale Lebensdauer erzielen.

Patentansprüche

5

10

15

20

25

30

35

45

50

55

1. Austenitische, im Wesentlichen ferritfreie Stahllegierung enthaltend (in Gew.-%)

bis 0.35 % Kohlenstoff bis 0.75 % Silicium

mehr als 19.0 % bis 30.0 % Mangan

mehr als 17.0 % bis 24.0 % Chrom

mehr als 1.90 % bis 5.5 % Molybdän

bis 2.0 % Wolfram

bis 15.0 % Nickel

bis 5.0 % Cobalt
0.35 % bis 1.05 % Stickstoff
bis 0.005 % Bor
bis 0.30 % Schwefel
weniger als 0.5 % Kupfer
weniger als 0.05 % Aluminium
weniger als 0.035 % Phosphor,

5

10

15

20

25

35

45

55

wobei ein Summengehalt von Nickel und Cobalt größer als 2.50 % ist,

sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,

Rest Eisen und herstellungsbedingte Verunreinigungen.

- 2. Stahllegierung nach Anspruch 1, enthaltend (in Gew.-%) zumindest 2.65 %, vorzugsweise zumindest 3.6 %, insbesondere 3.8 % bis 9.8 %, Nickel.
- 3. Stahllegierung nach Anspruch 1 oder 2, enthaltend (in Gew.-%) weniger als 0.2 % Cobalt.
- **4.** Stahllegierung nach einem der Ansprüche 1 bis 3, enthaltend (in Gew.-%) 2.05 % bis 5.0 %, vorzugsweise 2.5 % bis 4.5 %, Molybdän.
- 5. Stahllegierung nach einem der Ansprüche 1 bis 4, enthaltend (in Gew.-%) mehr als 20.0 % bis 25.5 % Mangan.
- **6.** Stahlegierung nach einem der Ansprüche 1 bis 5, enthaltend (in Gew.-%) 19.0 % bis 23.5 %, vorzugsweise 20.0 % bis 23.0 %, Chrom.
- 7. Stahllegierung nach einem der Ansprüche 1 bis 6, enthaltend (in Gew.-%) 0.15 % bis 0.30 % Silicium.
- 8. Stahllegierung nach einem der Ansprüche 1 bis 7, enthaltend (in Gew.-%) 0.01 % bis 0.06 % Kohlenstoff.
- Stahllegierung nach einem der Ansprüche 1 bis 8, enthaltend (in Gew.-%) 0.40 % bis 0.95 %, vorzugsweise 0.60 % bis 0.90 % Stickstoff.
 - **10.** Stahllegierung nach einem der Ansprüche 1 bis 9, wobei das Verhältnis der Gewichtsanteile von Stickstoff zu Kohlenstoff größer als 15 ist.
 - 11. Stahllegierung nach einem der Ansprüche 1 bis 10, enthaltend (in Gew.-%) 0.04 % bis 0.35 % Kupfer.
 - 12. Stahllegierung nach einem der Ansprüche 1 bis 11, enthaltend (in Gew.-%) 0.0005 % bis 0.004 % Bor.
- **13.** Stahllegierung nach einem der Ansprüche 1 bis 12 mit der Maßgabe, dass der Nickelgehalt gleich oder größer als der Molybdängehalt ist.
 - **14.** Stahllegierung nach einem der Ansprüche 1 bis 13, wobei der Nickelgehalt mehr als das 1.3-fache, vorzugsweise mehr als das 1.5-fache, des Molybdängehaltes beträgt.
 - **15.** Stahllegierung nach einem der Ansprüche 1 bis 14, welche zumindest zwei Elemente ausgewählt aus der Gruppe bestehend aus

Vanadium

Niob

50 Titan

enthält, wobei der Gewichtsanteil dieser Elemente in Summe mehr als 0.08 Gew.-% und weniger als 0.45 Gew.-% beträgt.

- 16. Stahllegierung nach einem der Ansprüche 1 bis 15, enthaltend (in Gew.-%) maximal 0.015 % Schwefel.
- 17. Stahllegierung nach einem der Ansprüche 1 bis 16, enthaltend (in Gew.-%) maximal 0.02 % Phosphor.
- 18. Stahllegierung nach einem der Ansprüche 1 bis 17, enthaltend Molybdän und Wolfram, wobei der Summengehalt

X (in Gew.-%) berechnet nach X = (%Molybdän) + 0.5*(% Wolfram) größer als 2 und kleiner als 5.5 ist.

- 19. Stahllegierung nach einem der Ansprüche 1 bis 18, mit einer Dauerwechselfestigkeit bei Raumtemperatur von größer als 400 MPa bei 10⁷ Lastwechsel.
- 20. Stahllegierung nach einem der Ansprüche 1 bis 19, welche im Wesentlichen frei von stickstoffhältigen und/oder karbidischen Ausscheidungen vorliegt.
- 21. Stahllegierung nach einem der Ansprüche 1 bis 20, welche bei einer Temperatur von mehr als 750 °C warmver-10 formt, danach wahlweise lösungsgeglüht und anschließend bei einer Temperatur unterhalb der Rekristallisationstemperatur, vorzugsweise unterhalb von 600 °C, insbesondere im Temperaturbereich von 300 °C bis 550°C, verformt ist.
 - 22. Stahllegierung nach einem der Ansprüche 1 bis 21, welche in Form einer Komponente für die Ölfeldtechnik, insbesondere in Form eines Bohrstrangteils, vorliegt.
 - 23. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 21 als Werkstoff für Komponenten für die Ölfeldtechnik.
- 20 24. Verwendung einer Stahllegierung nach Anspruch 23, wobei die Komponente ein Bohrstrangteil ist.
 - 25. Verwendung einer Stahllegierung nach einem der Ansprüche 1 bis 21 für auf Zug und Druck beanspruchte Bauteile, welche mit korrosiven Medien, insbesondere einer korrosiven Flüssigkeit wie salzhältiges Wasser, in Kontakt kom-
 - 26. Verfahren zur Herstellung von austenitischen, im Wesentlichen ferritfreien Komponenten, insbesondere Bohrstangen, für die Ölfeldtechnik, wobei zuerst ein Gussstück enthaltend (in Gew.-%)

bis 0.35 % Kohlenstoff

bis 0.75 % Silicium

5

15

25

30

35

40

50

55

mehr als 19.0 % bis 30.0 % Mangan

mehr als 17.0 % bis 24.0 % Chrom

mehr als 1.90 % bis 5.5 % Molybdän

bis 2.0 % Wolfram

bis 15.0 % Nickel

bis 5.0 % Cobalt

0.35 % bis 1.05 % Stickstoff

bis 0.005 % Bor

bis 0.30 % Schwefel

weniger als 0.5 % Kupfer

weniger als 0.05 % Aluminium weniger als 0.035 % Phosphor,

wobei ein Summengehalt von Nickel und Cobalt größer als 2.50 % ist,

sowie wahlweise ein oder mehrere Element(e) ausgewählt aus der Gruppe bestehend aus Vanadium, Niob und Titan, wobei die Summenkonzentration der gewählten Elemente maximal 0.85 Gew.-% beträgt,

45 Rest Eisen und herstellungsbedingte Verunreinigungen

erstellt wird.

worauf das Gussstück bei einer Temperatur von mehr als 750°C in mehreren Warmverformungsteilschritten zu einem Halbzeug verformt wird, wobei wahlweise vor dem ersten Teilschritt oder zwischen den Teilschritten ein Homogenisieren des Halbzeuges bei einer Temperatur von mehr als 1150 °C erfolgt, worauf nach dem letzten Warmverformungsteilschritt und einem darauf wahlweise durchgeführten Lösungsglühen des Halbzeuges bei einer Temperatur von mehr als 900 °C das Halbzeug einer verstärkten Abkühlung unterworfen wird und in einem weiteren Verformungsschritt bei einer Temperatur unterhalb der Rekristallisationstemperatur, insbesondere unter 600 °C, verformt wird, wonach aus dem Halbzeug durch spanabhebende Bearbeitung eine Komponente gefertigt wird.

27. Verfahren nach Anspruch 26, wobei der Verformungsschritt nach einer verstärkten Abkühlung bei einer Temperatur des Halbzeuges von über 350°C durchgeführt wird.

	28.	Verfahren nach Anspruch 26 oder 27, wobei das Halbzeug eine Stange ist und diese im zweiten Verformungsschritt mit einem Verformungsgrad von 10 % bis 20 % verformt wird.
5	29.	Verfahren nach einem der Ansprüche 26 bis 28, wobei das erstellte Gussstück mittels Elektroschlacke-Umschmelz-Verfahren umgeschmolzen wird.
	30.	Verfahren nach einem der Ansprüche 26 bis 29, wobei die spanabhebende Bearbeitung ein Drehen und/oder Schälen umfasst.
10		
15		
20		
05		
25		
30		
35		
40		
45		
50		
55		

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 45 0211

	EINSCHLÄGIGE			
Kategorie	Kennzeichnung des Dokum der maßgeblicher	ents mit Angabe, soweit erforderlich n Teile	, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
X	AT 387 709 B (VORWE GMBH) 10. März 1989	RK & CO. INTERHOLDING (1989-03-10)	1,3,5,6, 8-11, 16-30	C22C38/58 C21D7/00
	* Zusammenfassung * * Seite 3, Zeile 31 * Seite 5, Zeile 20 * Seite 3	- Zeile 49 * - Zeile 54 *		
Υ	* Seite 3, Zeile 6	- Zeile 15 ^	1,3,16, 17,19, 20,25	
X	FR 2 493 344 A (GEN 7. Mai 1982 (1982-0		1,3,16, 17,19, 20,25	
	siehe englische Zus * Ansprüche 1-3 *	ammensetzung.		
X	EP 0 249 117 A (KAB 16. Dezember 1987 (USHIKI KAISHA TOSHIBA 1987-12-16)	16,17, 19-21,	
	* Zusammenfassung * * Seite 2, Zeile 1 * Seite 5, Zeile 19	- Zeile 9 * - Zeile 34 *	25-27	RECHERCHIERTE SACHGEBIETE (Int.CI.7) C22C C21D
Υ	* Seite 4, Zeile 30	- Zeile 35 *	1,3,16, 17,19, 20,25	
Х	EP 0 432 434 A (VER GMBH) 19. Juni 1991	EINIGTE SCHMIEDEWERKE (1991-06-19)	1,3,4,6, 10, 16-20,25	
	* Zusammenfassung * * Anspruch 1 *		10 20,23	
		-/		
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüfer
	München	8. April 2005	Bro	wn, A
X : von Y : von ande	L NTEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg	E : älteres Paten nach dem Ann mit einer D : in der Anmelc orie L : aus anderen (tdokument, das jedoc neldedatum veröffent dung angeführtes Dok Gründen angeführtes	licht worden ist xument Dokument
O : nich	nologischer Hintergrund itschriftliche Offenbarung schenliteratur		leichen Patentfamilie	, übereinstimmendes

EPO FORM 1503 03.82 (P04C03)

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 45 0211

	EINSCHLÄGIGE		T 5 1 '''	1/1 400/FII/4 FION DED
Kategorie	Kennzeichnung des Dokum der maßgeblicher	ents mit Angabe, soweit erforderlich, Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
Х	US 3 847 599 A (HAR 12. November 1974 (1,3-8, 10,11, 16-21,25	
	* Zusammenfassung * * Spalte 1, Zeile 2 * Spalte 4, Zeile 1 * Tabelle 1 *	6 - Zeile 36 * 1 - Zeile 27 *		
X	PATENT ABSTRACTS OF Bd. 1995, Nr. 06, 31. Juli 1995 (1995 & JP 07 062432 A (K 01), 7. März 1995 (* Zusammenfassung * * Tabelle 1 *	-07-31) OBE STEEL LTD; others: 1995-03-07)	1-5,7, 13,14, 16-20,25	
Х	DE 197 58 613 C2 (K 7. Dezember 2000 (2	RUPP VDM GMBH) 000-12-07)	1,3-5,7, 10,12, 15-20,25	
	* Zusammenfassung * * Seite 2, Zeile 34 * Seite 2, Zeile 66 * Tabelle 1 *	- Zeile 51 * - Zeile 68 *	10 20,20	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
Y	DE 196 07 828 A1 (V SCHMIEDETECHNIK GMB ENERGIE- UND) 17. Oktober 1996 (1 * Zusammenfassung * * Seite 2, Zeile 27	н, 45143 ESSEN, DE; VS 996-10-17)	1,3,16, 17,19, 20,25	
Υ	US 3 936 297 A (HAR 3. Februar 1976 (19		1,3,16, 17,19, 20,25	
	* das ganze Dokumen	t * 		
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche		Prüfer
	München	8. April 2005	Bro	wn, A
X : von Y : von ande A : tech	NTEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrachte besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kategen ologischer Hintergrund tschriftliche Offenbarung	MENTE T: der Erfindung z E: älteres Patente et nach dem Anm mit einer D: in der Anmeld. prie L: aus anderen G	ugrunde liegende T lokument, das jedoc eldedatum veröffent ing angeführtes Dok ründen angeführtes	heorien oder Grundsätze sh erst am oder dicht worden ist kument

EPO FORM 1503 03.82 (P04C03)

Dokument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 45 0211

	EINSCHLÄGIGE	DOKUMEN	TE		
Kategorie	Kennzeichnung des Dokun der maßgebliche		soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
A	US 4 919 728 A (KOH 24. April 1990 (199 * das ganze Dokumer	0-04-24)		1-30	
A	EP 0 207 068 A (VEF AKTIENGESELLSCHAFT GES) 30. Dezember 1 * das ganze Dokumer	; SCHOELLE 1986 (1986-	R-BLECKMANN	1-30	
A	PATENT ABSTRACTS OF Bd. 018, Nr. 401 (0 27. Juli 1994 (1994 & JP 06 116683 A (k 26. April 1994 (199 * Zusammenfassung *	C-1231), H-07-27) KOBE STEEL 94-04-26)	LTD),	1-30	
					RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
				-	
Der vo	rliegende Recherchenbericht wu		·	<u> </u>	
	Recherchenort		ißdatum der Recherche		Prüfer
	München	8.	April 2005	Bro	own, A
X : von Y : von ande A : tech	TEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg nologischer Hintergrund	tet mit einer	E : älteres Patentdol nach dem Anmeld D : in der Anmeldung L : aus anderen Grü	kument, das jedo dedatum veröffer g angeführtes Do nden angeführte	ntlicht worden ist skument s Dokument
A : tech O : nich		ione			

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 45 0211

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

08-04-2005

	Recherchenbericht hrtes Patentdokume	ent	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
AT	387709	В	10-03-1989	DE AT CH ES FR GB IT	8132785 407882 656522 276262 2515953 2108888 1189411	A A5 U A1 A	15-04-1982 15-08-1988 15-07-1986 16-05-1984 13-05-1983 25-05-1983 04-02-1988
FR	2493344	А	07-05-1982	DE FR IT JP	3143096 2493344 1142037 57108249	A1 B	19-05-1982 07-05-1982 08-10-1986 06-07-1982
EP	0249117	A	16-12-1987	JP JP JP AU AU CA DE DE DE EP US	57155350 1652124 3005143 57156647 588944 6572986 8171082 1205659 3280179 3280440 3280440 0065631 0249117 4493733	C B A B2 A A A1 D1 D1 T2 A1 A2	25-09-1982 30-03-1992 24-01-1991 28-09-1982 28-09-1987 23-09-1982 10-06-1986 28-06-1990 29-07-1993 25-11-1993 01-12-1982 16-12-1987 15-01-1985
EP	0432434	Α	19-06-1991	DE AT DE EP JP	3940438 111968 59007249 0432434 6088160	T D1 A1	23-05-1991 15-10-1994 27-10-1994 19-06-1991 29-03-1994
US	3847599	A	12-11-1974	AR AT AU BE CA DE FR IT JP JP	202144 338857 779574 7388474 820687 1022366 2447318 2246645 1019356 1148365 50065413 57037664	B A A1 A1 A1 A1 B C	15-05-1975 26-09-1977 15-01-1977 08-04-1976 04-04-1975 13-12-1977 17-04-1975 02-05-1975 10-11-1977 26-05-1983 03-06-1975 11-08-1982

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 45 0211

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

08-04-2005

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
US	3847599	A		NL SE SE	7413055 421430 7410975	В	08-04-197 21-12-198 07-04-197
JP	07062432	Α	07-03-1995	KEINE			
DE	19758613	C2	07-12-2000	AT DE WO EP HU NO SK	202158 59800857 9848070 0977901 0001778 995133 145499	D1 A1 A1 A2 A	15-06-200 19-07-200 29-10-199 09-02-200 28-09-200 21-10-199 11-07-200
DE	19607828	A1	17-10-1996	KEINE			
US	3936297	A	03-02-1976	US AR AT AU AU BE CA DE ES FR GB IT JP NL PL SE	3820980 196246 337235 402673 469922 5464173 799250 974797 2322528 414527 2183933 1373197 984959 49048510 56013787 7306155 83802 384534	A1 B A B2 A A1 A1 A1 A1 A B A B A B1	28-06-197 10-12-197 27-06-197 15-10-197 26-02-197 24-10-197 08-11-197 23-09-197 29-11-197 01-02-197 21-12-197 06-11-197 20-11-197 10-05-197 31-03-198 12-11-197
US	4919728	Α	24-04-1990	AT AT DE EP JP	381658 187985 3681641 0207068 62001815	A D1 A2	10-11-198 15-04-198 31-10-199 30-12-198 07-01-198
EP	0207068	Α	30-12-1986	AT AT DE EP JP	381658 187985 3681641 0207068 62001815	A D1 A2	10-11-198 15-04-198 31-10-199 30-12-198 07-01-198

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 45 0211

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

08-04-2005

	Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
	EP	0207068	Α		US	4919728	Α	24-04-1990
	JP	06116683	Α	26-04-1994	KEINE			
P0461								
EPO FORM P0461								
EPC								

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82