

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 541 662 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

15.06.2005 Patentblatt 2005/24

(51) Int CI.⁷: **C10L 1/14**, C10L 1/18, C10L 1/22

(21) Anmeldenummer: 04028306.1

(22) Anmeldetag: 30.11.2004

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten:

AL HR LT LV MK YU

(30) Priorität: 11.12.2003 DE 10357880

(71) Anmelder: Clariant GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

 Krull, Matthias, Dr. 55296 Harxheim (DE) Siggelkow, Bettina, Dr. 46145 Oberhausen (DE)

Hess, Martina
 45479 Mülheim a. d. Ruhr (DE)

(74) Vertreter: Mikulecky, Klaus, Dr. et al Clariant Service GmbH Patente, Marken, Lizenzen Am Unisys-Park 1 65843 Sulzbach (DE)

- (54) Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
- (57) Gegenstand der Erfindung ist eine Brennstoffölzusammensetzung F), enthaltend

F1) ein Brennstofföl mineralischen Ursprungs und F2) ein Brennstofföl pflanzlichen und/oder tierischen Ursprungs, und

als Kälteadditiv die Bestandteile

- A) mindestens ein Copolymer aus Ethylen und 8 21 Mol-% mindestens eines Acryl- oder Vinylesters mit einem $\rm C_1\text{--}C_{18}\text{--}Alkylrest}$ und
- B) mindestens ein Kammpolymer, enthaltend Struktureinheiten aus

B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C_8 - C_{18} -Alkylrest trägt, und B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Amid- und/oder Imidgruppierung gebundenen C_8 - C_{16} -Alkylrest trägt,

wobei die Summe Q

$$Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{i} w_{2j} \cdot n_{2j}$$

der molaren Mittel der C-Kettenlängenverteilungen in den Alkylresten von Monomer 1 einerseits und den Alkylresten der Amid und/oder Imidgruppen von Monomer 2 andererseits von 21,0 bis 28,0 beträgt, worin

- w₁ der molare Anteil der einzelnen Kettenlängen in den Alkylresten von Monomer 1.
- w₂ der molare Anteil der einzelnen Kettenlängen in den Alkylresten der Amidund/oder Imidgruppen von Monomer 2,
- n₁ die einzelnen Kettenlängen in den Alkylresten von Monomer 1,
- n₂ die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer 2,
- i die Laufvariable für die einzelnen Kettenlängen in den Alkylresten von Monomer 1, und
- j die Laufvariable für die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer 2 sind.

Beschreibung

[0001] Die vorliegende Erfindung betrifft mineralische Brennstofföle, enthaltend Bestandteile pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften sowie die Verwendung eines Additivs als Kaltfließverbesserer für derartige Brennstofföle.

[0002] Im Zuge abnehmender Welterdölreserven und der Diskussion um die Umwelt beeinträchtigenden Konsequenzen des Verbrauchs fossiler und mineralischer Brennstoffe steigt das Interesse an alternativen, auf nachwachsenden Rohstoffen basierenden Energiequellen (Biokraftstoffe). Dazu gehören insbesondere native Öle und Fette pflanzlichen oder tierischen Ursprungs. Dies sind in der Regel Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen, die einen den herkömmlichen Brennstoffen vergleichbaren Heizwert haben, aber gleichzeitig als weniger schädlich für die Umwelt angesehen werden. Biokraftstoffe, d.h. von tierischem oder pflanzlichem Material abgeleitete Kraftstoffe werden aus erneuerbaren Quellen erhalten und erzeugen bei der Verbrennung somit nur soviel CO₂, wie vorher in Biomasse umgewandelt wurde. Es ist berichtet worden, dass bei der Verbrennung weniger Kohlendioxid als durch äquivalente Mengen an Erdöldestillatbrennstoff, z.B. Dieselkraftstoff, gebildet wird und dass sehr wenig Schwefeldioxid gebildet wird. Zudem sind sie biologisch abbaubar.

[0003] Aus tierischem oder pflanzlichem Material erhaltene Öle sind hauptsächlich Stoffwechselprodukte, die Triglyceride von Monocarbonsäuren umfassen, z.B. von Säuren mit 10 bis 25 Kohlenstoffatomen, und der Formel

25

5

10

15

30

35

40

entsprechen, in der R ein aliphatischer Rest mit 10 bis 25 Kohlenstoffatomen ist, der gesättigt oder ungesättigt sein kann.

[0004] Im allgemeinen enthalten solche Öle Glyceride von einer Reihe von Säuren, deren Anzahl und Sorte mit der Quelle des Öls variiert, und sie können zusätzlich Phosphoglyceride enthalten. Solche Öle können nach im Stand der Technik bekannten Verfahren erhalten werden.

[0005] Auf Grund der teilweise unbefriedigenden physikalischen Eigenschaften der Triglyceride ist die Technik dazu übergegangen, die natürlich vorkommenden Triglyceride in Fettsäureester niederer Alkohole wie Methanol oder Ethanol zu überführen

[0006] Als Hindernis bei der Verwendung von Fettsäureestern niederer einwertiger Alkohole als Dieselkraftstoffersatz alleine haben sich deren Verhalten gegenüber Motorteilen wie insbesondere verschiedenen Dichtungsmaterialien erwiesen, die immer wieder zu Ausfällen der mit diesen aus nachwachsenden Rohstoffen hergestellten Kraftstoffe betriebenen Motoren führen. Zur Umgehung dieser Probleme wird ein Einsatz dieser auf nachwachsenden Rohstoffen basierenden Öle als Beimischung zu konventionellen Mitteldestillaten bevorzugt.

45 tig Te so tei mo

55

[0007] Des weiteren hat sich bei der Verwendung von Triglyceriden wie auch von Fettsäureestern niederer einwertiger Alkohole als Dieselkraftstoffersatz alleine oder im Gemisch mit Dieselkraftstoff das Fließverhalten bei niedrigen Temperaturen als Hindernis erwiesen. Ursache dafür sind insbesondere ihr Gehalt an Estern gesättigter Fettsäuren sowie die hohe Einheitlichkeit (weniger als 10 Hauptkomponenten) dieser Öle im Vergleich zu Mineralölmitteldestillaten. So weist z.B. Rapsölsäuremethylester (RME) einen Cold Filter Plugging Point (CFPP) von -14°C, Sojaölsäuremethylester einen CFPP von +1°C und Tierfett einen CFPP von +9°C auf. Mit den Additiven des Standes der Technik ist es bisher oftmals nicht möglich, auf Basis dieser Ester bzw. diese Ester enthaltendem Mineraldiesel einen für die Verwendung als Winterdiesel in Mitteleuropa geforderten CFPP-Wert von -20°C sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Verschärft wird dieses Problem beim Einsatz von Ölen, die größere Mengen der ebenfalls gut zugänglichen Öle von Sonnenblumen und Soja enthalten. [0008] EP-B-0 665 873 offenbart eine Brennstoffölzusammensetzung, die einen Biobrennstoff, ein Brennstofföl auf Erdölhasis und ein Additiv umfasst, welches (a) ein öllösliches Ethylencopolymer oder (b) ein Kammpolymer oder (c)

Erdölbasis und ein Additiv umfasst, welches (a) ein öllösliches Ethylencopolymer oder (b) ein Kammpolymer oder (c) eine polare Stickstoffverbindung oder (d) eine Verbindung, in der mindestens eine im wesentlichen lineare Alkylgruppe mit 10 bis 30 Kohlenstoffatomen mit einem nicht polymeren organischen Rest verbunden ist, um mindestens eine lineare Kette von Atomen zu liefern, die die Kohlenstoffatome der Alkylgruppen und ein oder mehrere nicht endständige

Sauerstoffatome einschließt, oder (e) eine oder mehrere der Komponenten (a), (b), (c) und (d) umfasst.

[0009] EP-B-0 629 231 offenbart eine Zusammensetzung, die einen größeren Anteil Öl, das im wesentlichen aus Alkylestern von Fettsäuren besteht, die sich von pflanzlichen oder tierischen Ölen oder beiden ableiten, gemischt mit einem geringen Anteil Mineralölkaltfließverbesserer umfasst, der ein oder mehrere der folgenden:

5

10

- (I) Kammpolymer, das Copolymer von Maleinsäureanhydrid oder Fumarsäure und einem anderen ethylenisch ungesättigten Monomer, wobei das Copolymer verestert sein kann, oder Polymer oder Copolymer von α -Olefin, oder Fumaratoder Itaconatpolymer oder -copolymer ist,
- (II) Polyoxyalkylen-ester, -ester/ether oder eine Mischung derselben,
- (III) Ethylen/ungesättigter Ester-Copolymer,
- (IV) polarer, organischer, stickstoffhaltiger Paraffinkristallwachstumshemmstoff,
- (V) Kohlenwasserstoffpolymer,
- (VI) Schwefelcarboxyverbindungen und
- (VII) mit Kohlenwasserstoffresten versehenes aromatisches Stockpunktsenkungsmittel

15

umfasst, mit der Maßgabe, dass die Zusammensetzung keine Mischungen von polymeren Estern oder Copolymeren von Estern von Acryl- und/oder Methacrylsäure umfasst, die von Alkoholen mit 1 bis 22 Kohlenstoffatomen abgeleitet sind.

[001

[0010] EP-B-0 543 356 offenbart ein Verfahren zur Herstellung von Zusammensetzungen mit verbessertem Tieftemperaturverhalten zum Einsatz als Kraftstoffe oder Schmiermittel, ausgehend von den Estern der aus natürlichen Vorkommen erhaltenen langkettigen Fettsäuren mit einwertigen C_1 - C_6 -Alkoholen (FAE) dadurch gekennzeichnet, dass man

25

- a) an sich bekannte, zur Verbesserung des Tieftemperaturverhaltens von Mineralölen verwendete Additive PPD ("Pour Point Depressant") in Mengen von 0,0001 bis 10 Gew.-% bezogen auf die langkettigen Fettsäureester FAE zusetzt und
- b) auf eine Temperatur unterhalb des Cold Filter Plugging Point der nichtadditivierten, langkettigen Fettsäureester FAE abkühlt und
- c) die entstehenden Niederschläge (FAN) abtrennt.

30

[0011] DE-A-40 40 317 offenbart Mischungen von Fettsäureniedrigalkylestern mit verbesserter Kältestabilität enthaltend

35

- a) 58 bis 95 Gew.-% mindestens eines Esters im lodzahlbereich 50 bis 150, der sich von Fettsäuren mit 12 bis 22 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen ableitet,
- b) 4 bis 40 Gew.-% mindestens eines Esters von Fettsäuren mit 6 bis 14 Kohlenstoffatomen und niederen aliphatischen Alkoholen mit 1 bis 4 Kohlenstoffatomen und
- c) 0,1 bis 2 Gew.-% mindestens eines polymeren Esters.

40

[0012] EP-B-0 153 176 offenbart die Verwendung von Polymeren auf Basis ungesättigter C_4 - C_8 -Dicarbonsäure-di-Alkylester mit mittleren Alkylkettenlängen von 12 bis 14 als Kaltfließverbesserer für bestimmte Erdöldestillatbrennstofföle. Als geeignete Comonomere werden ungesättigte Ester, insbesondere Vinylacetat, aber auch α -Olefine genannt. [0013] EP-B-0 153 177 offenbart ein Additivkonzentrat, das eine Kombination aus

45

- I) einem Copolymer mit mindestens 25 Gew.-% eines n-Alkylesters einer monoethylenisch ungesättigten C_4 - C_8 -Mono- oder Dicarbonsäure, wobei die durchschnittliche Zahl der Kohlenstoffatome in den n-Alkylresten 12 14 ist und einem anderen ungesättigten Ester oder einem Olefin enthält, mit
- II) einem anderen Niedertemperaturfließverbesserer für Destillatbrennstofföle umfasst.

50

[0014] EP-B-0 746 598 offenbart Kammpolymere als Kälteadditiv in Brennstoffölen, die einen Cloud Point von höchstens -10°C aufweisen.

55

[0015] Mit den bekannten Additiven ist es ist es bisher oftmals nicht möglich, Fettsäureester enthaltende Mitteldestillate auf einen für die Verwendung als Winterdiesel in Mitteleuropa geforderten CFPP-Wert von -20°C sowie für spezielle Anwendungen von -22°C und darunter sicher einzustellen. Problematisch bei den bekannten Additiven ist darüber hinaus eine mangelnde Sedimentationsstabilität der additivierten Öle. Die unterhalb des Cloud Points ausfallenden Paraffine und Fettsäureester sedimentieren bei längerer Lagerung unterhalb des Cloud Points und führen am Boden des Lagerbehälters zur Bildung einer Phase mit schlechteren Kälteeigenschaften.

Es bestand somit die Aufgabe, Brennstofföle mit verbesserten Kälteeigenschaften zur Verfügung zu stellen, die Mit-

teldestillate und Fettsäureester enthalten, wobei deren CFPP-Werte bei -20°C und darunter liegen. Ferner soll die Sedimentation ausgefallener Paraffine und Fettsäureester bei längerer Lagerung des Brennstofföls im Bereich seines Cloud Points bzw. darunter verlangsamt oder verhindert werden.

[0016] Überraschenderweise wurde nun gefunden, dass Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen und/oder tierischen Ursprungs, die ein Ethylencopolymere und bestimmte Kammpolymere enthaltendes Additiv umfassen, ausgezeichnete Kälteeigenschaften zeigen.

[0017] Gegenstand der Erfindung ist somit eine Brennstoffölzusammensetzung F), enthaltend

- F1) ein Brennstofföl mineralischen Ursprungs und
- F2) ein Brennstofföl pflanzlichen und/oder tierischen Ursprungs, und

als Kälteadditiv die Bestandteile

- A) mindestens ein Copolymer aus Ethylen und 8 21 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C₁-C₁₈-Alkylrest und
- B) mindestens ein Kammpolymer, enthaltend Struktureinheiten aus
 - B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C₈-C₁₈-Alkylrest trägt, und
 - B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Amid- und/oder Imidgruppierung gebundenen C₈-C₁₆-Alkylrest trägt,

wobei die Summe Q

 $Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{i} w_{2j} \cdot n_{2j}$

der molaren Mittel der C-Kettenlängenverteilungen in den Alkylresten von Monomer 1 einerseits und den Alkylresten der Amid und/oder Imidgruppen von Monomer 2 andererseits von 21,0 bis 28,0 beträgt, worin

- der molare Anteil der einzelnen Kettenlängen in den Alkylresten von Monomer 1, W_1
- der molare Anteil der einzelnen Kettenlängen in den Alkylresten der Amidund/oder Imidgruppen von Monomer 2, W_2
- die einzelnen Kettenlängen in den Alkylresten von Monomer 1, n_1
- die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer 2, n_2
- die Laufvariable für die einzelnen Kettenlängen in den Alkylresten von Monomer 1, und i
- die Laufvariable für die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer j 2 sind.

[0018] Ein weiterer Gegenstand der Erfindung ist die Verwendung des oben definierten Additivs, enthaltend die Bestandteile A) und B), zur Verbesserung der Kaltfließeigenschaften von Brennstoffölzusammensetzungen F), enthaltend Brennstofföle mineralischen (F1) und tierischen und/oder pflanzlichen (F2) Ursprungs.

[0019] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Brennstoffölzusammensetzungen F), enthaltend Brennstofföle mineralischen (F1) und tierischen und/oder pflanzlichen (F2) Ursprungs, mit verbesserten Kälteeigenschaften, indem man der Mischung von Brennstoffölen mineralischen (F1) und tierischen und/oder pflanzlichen (F2) Ursprungs das oben definierte Additiv, enthaltend die Bestandteile A) und B), zusetzt.

[0020] Bevorzugte Öle mineralischen Ursprungs sind Mitteldestillate. Das Mischungsverhältnis zwischen den Brennstoffölen tierischen und/oder pflanzlichen Ursprungs (die im folgenden auch als Biobrennstofföle bezeichnet werden) und Mitteldestillaten kann zwischen 1:99 und 99:1 liegen. Besonders bevorzugt sind Mischungen, die 2 bis 50 Vol.-%, insbesondere 5 bis 40 Vol.-% und speziell 10 bis 30 Vol.-% Biobrennstofföle enthalten. Diesen Mischungen verleihen die erfindungsgemäßen Additive überlegene Kälteeigenschaften.

In einer bevorzugten Ausführungsform der Erfindung nimmt Q Werte zwischen 22,0 und 27,0, insbesondere 23,0 bis 26,0 und beispielsweise 23, 24, 24,5, 25 oder 26 an.

[0021] Unter Seitenkettenlänge von Olefinen wird hier der vom Polymerrückgrat abgehende Alkylrest verstanden, also die Kettenlänge des monomeren Olefins abzüglich der beiden olefinisch gebundenen C-Atome. Bei Olefinen mit nicht endständigen Doppelbindungen wie z.B. Olefinen mit Vinylidengruppierung ist entsprechend die Gesamtketten-

4

25

20

10

15

30

35

40

45

länge des Olefins abzüglich der ins Polymerrückgrat übergehenden Doppelbindung zu berücksichtigen.

[0022] Als Ethylen-Copolymere A) eignen sich solche, die 8 bis 21 Mol-% eines oder mehrerer Vinyl- und/oder (Meth) acrylester und 79 bis 92 Gew.-% Ethylen enthalten. Besonders bevorzugt sind Ethylen-Copolymere mit 10 bis 18 Mol-% und speziell 12 bis 16 Mol-% mindestens eines Vinylesters. Geeignete Vinylester leiten sich von Fettsäuren mit linearen oder verzweigten Alkylgruppen mit 1 bis 30 C-Atomen ab. Als Beispiele seien genannt Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylhexanoat, Vinylhexanoat, Vinyloctanoat, Vinyllaurat und Vinylstearat sowie auf verzweigten Fettsäuren basierende Ester des Vinylalkohols wie Vinyl-iso-butyrat, Pivalinsäurevinylester, Vinyl-2-ethylhexanoat, iso-Nonansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und Neoundecansäurevinylester. Als Comonomere ebenfalls geeignet sind Ester der Acryl- und Methacrylsäure mit 1 bis 20 C-Atomen im Alkylrest wie Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und iso-Butyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth)acrylat sowie Mischungen aus zwei, drei, vier oder auch mehreren dieser Comonomere.

[0023] Besonders bevorzugte Terpolymerisate des 2-Ethylhexansäurevinylesters, des Neononansäurevinylesters bzw. des Neodecansäurevinylesters enthalten außer Ethylen bevorzugt 3,5 bis 20 Mol-%, insbesondere 8 bis 15 Mol-% Vinylacetat und 0,1 bis 12 Mol-%, insbesondere 0,2 bis 5 Mol-% des jeweiligen langkettigen Vinylesters, wobei der gesamte Comonomergehalt zwischen 8 und 21 Mol-%, bevorzugt zwischen 12 und 18 Mol-% liegt. Weitere bevorzugte Copolymere enthalten neben Ethylen und 8 bis 18 Mol-% Vinylestern noch 0,5 bis 10 Mol-% Olefine wie Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbornen.

Die Copolymere A haben bevorzugt Molekulargewichte, die Schmelzviskositäten bei 140° C von 20 bis 10.000 mPas insbesondere 30 bis 5.000 mPas und speziell 50 bis 1.000 mPas entsprechen. Die mittels 1 H-NMR-Spektroskopie bestimmten Verzweigungsgrade liegen bevorzugt zwischen 1 und 9 CH $_{3}$ /100 CH $_{2}$ -Gruppen, insbesondere zwischen 2 und 6 CH $_{3}$ /100 CH $_{2}$ -Gruppen wie beispielsweise 2,5 bis 5 CH $_{3}$ /100 CH $_{2}$ -Gruppen, die nicht aus den Comonomeren stammen.

[0024] Die Copolymere (A) sind durch die üblichen Copolymerisationsverfahren wie beispielsweise Suspensionspolymerisation, Lösungsmittelpolymerisation, Gasphasenpolymerisation oder Hochdruckmassepolymerisation herstellbar. Bevorzugt wird die Hochdruckmassepolymerisation bei Drucken von 50 bis 400 MPa, bevorzugt 100 bis 300 MPa und Temperaturen von 100 bis 300°C, bevorzugt 150 bis 220°C durchgeführt. In einer besonders bevorzugten Herstellungsvariante erfolgt die Polymerisation in einem Mehrzonenreaktor, wobei die Temperaturdifferenz zwischen den Peroxiddosierungen entlang des Rohrreaktors möglichst niedrig gehalten wird, d.h. < 50°C, bevorzugt < 30°C, insbesondere <15°C. Bevorzugt differieren die Temperaturmaxima in den einzelnen Reaktionszonen dabei um weniger als 30°C, besonders bevorzugt um weniger als 20°C und speziell um weniger als 10°C.

[0025] Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxidcarbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.

[0026] Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren, diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein. Bevorzugt ist die im wesentlichen lösungsmittelfreie Arbeitsweise. In einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Monomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Bevorzugte Moderatoren sind beispielsweise Wasserstoff, gesättigte und ungesättigte Kohlenwasserstoffe wie beispielsweise Propan oder Propen, Aldehyde wie beispielsweise Propionaldehyd, n-Butyraldehyd oder iso-Butyraldehyd, Ketone wie beispielsweise Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon und Alkohole wie beispielsweise Butanol. Die Comonomeren wie auch die Moderatoren können dabei sowohl gemeinsam mit Ethylen als auch getrennt über Seitenströme in den Reaktor dosiert werden. Hierbei können die Monomerenströme unterschiedlich zusammengesetzt sein (EP-A-0 271 738 und EP-A-0 922 716).

[0027] Als geeignete Co- bzw. Terpolymere sind beispielsweise zu nennen:

20

30

35

40

45

50

55

Ethylen-Vinylacetat-Copolymere mit 10 - 40 Gew.-% Vinylacetat und 60 - 90 Gew.-% Ethylen;

die aus DE-A-34 43 475 bekannten Ethylen-Vinylacetat-Hexen-Terpolymere;

die in EP-B-0 203 554 beschriebenen Ethylen-Vinylacetat-Diisobutylen-Terpolymere;

die aus EP-B-0 254 284 bekannte Mischung aus einem Ethylen-Vinylacetat-Diisobutylen-Terpolymerisat und einem Ethylen/Vinylacetat-Copolymer;

die in EP-B-0 405 270 offenbarten Mischungen aus einem Ethylen-Vinylacetat-Copolymer und einem Ethylen-Vinylacetat-N-Vinylpyrrolidon-Terpolymerisat;

die in EP-B-0 463 518 beschriebenen Ethylen/Vinylacetat/iso-Butylvinylether-Terpolymere;

die aus EP-B-0 493 769 bekannten Ethylen/Vinylacetat/Neononansäurevinylester bzw. Neodecansäurevinylester-Terpolymere, die außer Ethylen 10 - 35 Gew.-% Vinylacetat und 1 - 25 Gew.-% der jeweiligen Neoverbindung enthalten;

die in EP-0 778 875 beschriebenen Terpolymere aus Ethylen, einem ersten Vinylester mit bis zu 4 C-Atomen und einem zweiten Vinylester, der sich von einer verzweigten Carbonsäure mit bis zu 7 C-Atomen oder einer verzweigten aber nicht tertiären Carbonsäure mit 8 bis 15 C-Atomen ableitet;

die in DE-A-196 20 118 beschriebenen Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C_2 - bis C_{20} -Monocarbonsäuren und 4-Methylpenten-1;

die in DE-A-196 20 119 offenbarten Terpolymere aus Ethylen, dem Vinylester einer oder mehrerer aliphatischer C_2 - bis C_{20} -Monocarbonsäuren und Bicyclo[2.2.1]hept-2-en;

die in EP-A-0 926 168 beschriebenen Terpolymere aus Ethylen und wenigstens einem olefinisch ungesättigten Comonomer, das eine oder mehrere Hydroxylgruppen enthält.

[0028] Bevorzugt werden Mischungen gleicher oder verschiedener Ethylencopolymere eingesetzt. Besonders bevorzugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen. Das Mischungsverhältnis der verschiedenen Ethylencopolymere liegt dabei bevorzugt zwischen 20:1 und 1:20, bevorzugt 10:1 bis 1:10, insbesondere 5:1 bis 1:5.

[0029] Die Copolymere B leiten sich bevorzugt von Copolymeren ethylenisch ungesättigter Dicarbonsäuren und deren Derivaten wie niederen Estern und Anhydriden ab. Bevorzugt sind Maleinsäure, Fumarsäure, Itaconsäure und deren Ester mit niederen Alkoholen mit 1 bis 6 C-Atomen sowie deren Anhydride wie beispielsweise Maleinsäureanhydrid. Als Comonomere sind Monoolefine mit 10 bis 20, insbesondere mit 12 bis 18 C-Atomen besonders geeignet. Diese sind bevorzugt linear und die Doppelbindung ist vorzugsweise endständig wie beispielsweise bei Dodecen, Tridecen, Tetradecen, Pentadecen, Hexadecen, Heptadecen und Octadecen. Das Verhältnis von Dicarbonsäure bzw. Dicarbonsäurederivat zu Olefin bzw. Olefinen im Polymer ist bevorzugt im Bereich 1:1,5 bis 1,5:1, speziell ist es equimolar.

[0030] In untergeordneten Mengen von bis zu 20 Mol-%, bevorzugt < 10 Mol-%, speziell < 5 Mol-% können auch weitere Comonomere im Copolymer B enthalten sein, die mit ethylenisch ungesättigten Dicarbonsäuren und den genannten Olefinen copolymerisierbar sind, wie z.B. kürzer- und längerkettige Olefine, Allylpolyglykolether, C_1 - C_{30} -Alkyl (meth)acrylate, Vinylaromaten oder C_1 - C_{20} -Alkylvinylether. Des gleichen werden in untergeordneten Mengen Poly (isobutylene) mit Molekulargewichten von bis zu 5.000 g/mol eingesetzt, wobei hochreaktive Varianten mit hohem Anteil an endständigen Vinylidengruppen bevorzugt sind. Diese weiteren Comonomere werden bei der Berechnung des für die Wirksamkeit entscheidenden Faktors Q nicht berücksichtigt.

[0031] Allylpolyglykolether entsprechen der allgemeinen Formel

50

5

10

15

20

25

30

35

40

45

$$\begin{array}{c}
 & \text{CH}_{2} & \text{CH}_{2} & \\
 & \text{CH}_{2} & \\
 & \text{H}_{2} & \text{C} & \text{CH}_{2} & \text{CH}_{2} & \\
 & \text{CH}_{2} & \text{CH}_{2} & \text{CH}_{2} & \\
 & \text{R}_{2} & \\
\end{array}$$

15 worin

20

30

35

40

45

50

55

 R^1 Wasserstoff oder Methyl,

 R^2 Wasserstoff oder C₁-C₄-Alkyl,

eine Zahl von 1 bis 100, m

 $\begin{array}{l} C_1\text{-}C_{24}\text{-}\text{Alkyl},\ C_5\text{-}C_{20}\text{-}\text{Cycloalkyl},\ C_6\text{-}C_{18}\text{-}\text{Aryl oder -C(O)-R}^4,\\ C_1\text{-}C_{40}\text{-}\text{Alkyl},\ C_5\text{-}C_{10}\text{-}\text{Cycloalkyl oder }C_6\text{-}C_{18}\text{-}\text{Aryl, bedeuten.} \end{array}$ R^3

 R^4

[0032] Die Herstellung der erfindungsgemäßen Copolymere B) erfolgt vorzugsweise bei Temperaturen zwischen 50 und 220°C, insbesondere 100 bis 190°C, speziell 130 bis 170°C. Das bevorzugte Herstellungsverfahren ist die lösemittelfreie Massepolymerisation, es ist jedoch auch möglich, die Polymerisation in Gegenwart aprotischer Lösemittel wie Benzol, Toluol, Xylol oder von höhersiedenden aromatischen, aliphatischen oder isoaliphatischen Lösemitteln bzw. Lösemittelgemischen wie Kerosin oder Solvent Naphtha durchzuführen. Besonders bevorzugt ist die Polymerisation in wenig moderierenden, aliphatischen oder isoaliphatischen Lösemitteln. Der Lösemittelanteil im Polymerisationsgemisch liegt im allgemeinen zwischen 10 und 90 Gew.-%, bevorzugt zwischen 35 und 60 Gew.-%. Bei der Lösungspolymerisation kann die Reaktionstemperatur durch den Siedepunkt des Lösemittels oder durch Arbeiten unter Unteroder Überdruck besonders einfach eingestellt werden.

[0033] Die mittlere Molekülmasse der erfindungsgemäßen Copolymere B beträgt im allgemeinen zwischen 1.200 und 200.000 g/mol, insbesondere zwischen 2.000 und 100.000 g/mol, gemessen mittels Gelpermeationschromatographie (GPC) gegen Polystyrolstandards in THF. Erfindungsgemäße Copolymere B müssen in praxisrelevanten Dosiermengen öllöslich sein, das heißt sie müssen sich in dem zu additivierenden Öl bei 50°C rückstandsfrei lösen.

[0034] Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide und Peroxide wie z.B. Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(tbutyl)peroxid, sowie Azoverbindungen wie z.B. 2,2'-Azo-bis(2methylpropanonitril) oder 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.

[0035] Die Copolymere B können entweder durch Umsetzung von Malein-, Fumar- und/oder Itaconsäure bzw. deren Derivaten mit dem entsprechenden Amin und anschließende Copolymerisation oder durch Copolymerisation von Olefin bzw. Olefinen mit mindestens einer ungesättigten Dicarbonsäure oder deren Derivat wie beispielsweise Itaconund/ oder Maleinsäureanhydrid und anschließende Umsetzung mit Aminen hergestellt werden. Bevorzugt wird eine Copolymerisation mit Anhydriden durchgeführt und das entstandene Copolymer nach der Herstellung in ein Amid und/oder ein Imid überführt.

[0036] Die Umsetzung mit Aminen erfolgt in beiden Fällen beispielsweise durch Umsetzung mit 0,8 bis 2,5 mol Amin pro mol Anhydrid, bevorzugt mit 1,0 bis 2,0 mol Amin pro mol Anhydrid bei 50 bis 300°C. Bei Einsatz von ca. 1 mol Amin pro mol Anhydrid entstehen bei Reaktionstemperaturen von ca. 50 bis 100°C bevorzugt Halbamide, die zusätzlich eine Carboxylgruppe pro Amidgruppe tragen. Bei höheren Reaktionstemperaturen von ca. 100 bis 250°C entstehen aus primären Aminen unter Wasserabspaltung bevorzugt Imide. Bei Einsatz größerer Mengen Amin, bevorzugt 2 Mol Amin pro Mol Anhydrid entstehen bei ca. 50 bis 200°C Amid-Ammoniumsalze und bei höheren Temperaturen von beispielsweise 100 - 300°C, bevorzugt 120 - 250°C Diamide. Das Reaktionswasser kann dabei mittels eines Inertgasstroms abdestilliert oder in Gegenwart eines organischen Lösemittels mittels azeotroper Destillation ausgetragen werden. Bevorzugt werden dazu 20-80, insbesondere 30-70, speziell 35-55 Gew.-% mindestens eines organischen Lösemittels eingesetzt. Als Halbamide werden hier (50 %ig in Lösemittel eingestellte) Copolymere mit Säurezahlen von

30 - 70 mg KOH/g, bevorzugt von 40 - 60 mg KOH/g betrachtet. Entsprechende Copolymere mit Säurezahlen von weniger als 40, speziell weniger als 30 mg KOH/g werden als Diamide bzw. Imide betrachtet. Besonders bevorzugt sind Halbamide und Imide.

[0037] Geeignete Amine sind primäre und sekundäre Amine mit einem oder zwei C₈-C₁₆-Alkylresten. Sie können eine, zwei oder drei Aminogruppen tragen, die über Alkylenreste mit zwei oder drei C-Atomen verknüpft sind. Bevorzugt sind Monoamine. Insbesondere tragen sie lineare Alkylreste, sie können jedoch auch untergeordnete Mengen, z. B. bis zu 30 Gew.-%, bevorzugt bis zu 20 Gew.-% und speziell bis zu 10 Gew.-% (in 1- oder 2-Position) verzweigte Amine enthalten. Kürzer- wie auch längerkettige Amine können eingesetzt werden, doch liegt ihr Anteil bevorzugt unter 20 Mol-% und speziell unter 10 Mol-% wie beispielsweise zwischen 1 und 5 Mol-% bezogen auf die Gesamtmenge der eingesetzten Amine.

[0038] Besonders bevorzugt als primäre Amine sind Octylamin, 2-Ethylhexylamin, Decylamin, Undecylamin, Dodecylamin, n-Tridecylamin, iso-Tridecylamin, Tetradecylamin, Pentadecylamin, Hexadecylamin und deren Mischungen. [0039] Bevorzugte sekundäre Amine sind Dioctylamin, Dinonylamin, Didecylamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin, sowie Amine mit unterschiedlichen Alkylkettenlängen wie beispielsweise N-Octyl-N-decylamin, N-Decyl-N-decylamin, N-Decyl-N-tetradecylamin, N-Dodecyl-N-hexadecylamin, N-Decyl-N-hexadecylamin, N-Dodecyl-N-hexadecylamin, N-Tetradecyl-N-hexadecylamin. Auch sekundäre Amine, die neben einem C_8 - C_{16} -Alkylrest kürzere Seitenketten mit 1 bis 5 C-Atomen wie beispielsweise Methyl- oder Ethylgruppen tragen, sind erfindungsgemäß geeignet. Bei sekundären Aminen wird für die Berechnung des Q-Faktors als Alkylkettenlänge n der Mittelwert der Alkylkettenlängen von C_8 bis C_{16} berücksichtig. Kürzere wie längere Alkylreste, sofern anwesend, werden bei der Berechnung nicht berücksichtigt, da sie nicht zur Wirksamkeit der Additive beitragen.

Besonders bevorzugte Copolymere B sind Halbamide und Imide primärer Monoamine.

10

20

30

35

45

50

[0040] Durch Einsatz von Mischungen verschiedener Olefine bei der Polymerisation und Mischungen verschiedener Amine bei der Amidierung bzw. Imidierung kann die Wirksamkeit weiter auf spezielle Fettsäureesterzusammensetzungen angepasst werden.

[0041] In einer bevorzugten Ausführungsform werden Mischungen der erfindungsgemäßen Copolymere B eingesetzt, mit der Maßgabe, dass der Mittelwert der Q-Werte der Mischungskomponenten wiederum Werte von 21,0 bis 28,0, bevorzugt Werte von 22,0 bis 27,0 und speziell Werte von 23,0 bis 26,0 annimmt.

[0042] Das Mischungsverhältnis der erfindungsgemäßen Additive A und B beträgt (in Gewichtsteilen) 20:1 bis 1:20, vorzugsweise 10:1 bis 1:10, insbesondere 5:1 bis 1:2.

[0043] Die erfindungsgemäßen Additive werden Ölen in Mengen von 0,001 bis 5 Gew.-%, bevorzugt 0,005 bis 1 Gew.-% und speziell 0,01 bis 0,5 Gew.-% zugesetzt. Dabei können sie als solche oder auch gelöst bzw. dispergiert in Lösemitteln, wie z.B. aliphatischen und/oder aromatischen Kohlenwasserstoffen oder Kohlenwasserstoffgemischen wie z. B. Toluol, Xylol, Ethylbenzol, Decan, Pentadecan, Benzinfraktionen, Kerosin, Naphtha, Diesel, Heizöl, Isoparaffine oder kommerziellen Lösemittelgemischen wie Solvent Naphtha, ®Shellsol AB, ®Solvesso 150, ®Solvesso 200, ®Exxsol-, ®Isopar- und ®Shellsol D-Typen eingesetzt werden. Bevorzugt sind sie in Brennstofföl tierischen oder pflanzlichen Ursprungs auf Basis von Fettsäurealkylestern gelöst. Bevorzugt enthalten die erfindungsgemäßen Additive 1-80 %, speziell 10 - 70 %, insbesondere 25 - 60 % Lösemittel.

[0044] In einer bevorzugten Ausführungsform handelt es sich bei dem Brennstofföl F2, das häufig auch als "Biodiesel", "Biobrennstoff" oder "Biokraftstoff" bezeichnet wird, um Fettsäurealkylester aus Fettsäuren mit 12 bis 24 C-Atomen und Alkoholen mit 1 bis 4 C-Atomen. Gewöhnlich enthält ein größerer Teil der Fettsäuren ein, zwei oder drei Doppelbindungen.

[0045] Beispiele für Öle F2, die sich von tierischem oder pflanzlichem Material ableiten, und die erfindungsgemäß verwendet werden können, sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin partiell veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des weiteren sind die ebenfalls weit verbreiteten Öle von Sonnenblumen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.

[0046] Besonders geeignet als Biokraftstoffe F2) sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht, die bevorzugt eine lodzahl von 50 bis 150, insbesondere 90 bis 125 haben. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-%, Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1, 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren sind die Methylester von Ölsäure, Linolenschaften eine Retrackte von Fettsäuren eine Re

lensäure und Erucasäure.

10

20

30

35

45

50

[0047] Handelsübliche Mischungen der genannten Art werden beispielsweise durch Spaltung und Veresterung bzw. durch Umesterung von tierischen und pflanzlichen Fetten und Ölen mit niedrigen aliphatischen Alkoholen erhalten. Des gleichen sind auch gebrauchte Speiseöle als Ausgangsprodukte geeignet. Zur Herstellung von niedrigeren Alkylestern von Fettsäuren ist es vorteilhaft, von Fetten und Ölen mit hoher lodzahl auszugehen, wie beispielsweise Sonnenblumenöl, Rapsöl, Korianderöl, Castoröl (Ricinusöl), Sojaöl, Baumwollsamenöl, Erdnussöl oder Rindertalg. Niedrigere Alkylester von Fettsäuren auf Basis einer neuen Rapsölsorte, deren Fettsäurekomponente zu mehr als 80 Gewwon ungesättigten Fettsäuren mit 18 Kohlenstoffatomen abgeleitet ist, sind bevorzugt. Somit ist ein Biokraftstoff ein Öl, das aus pflanzlichem oder tierischem Material oder beidem erhalten wird oder ein Derivat derselben, welches als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden kann. Obwohl viele der obigen Öle als Biokraftstoffe verwendet werden können, sind Pflanzenölderivate bevorzugt, wobei besonders bevorzugte Biokraftstoffe Alkylesterderivate von Rapsöl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl, Olivenöl oder Palmöl sind, wobei Rapsölsäuremethylester, Sonnenblumenölsäuremethylester und Sojaölsäuremethylester ganz besonders bevorzugt sind. Besonders bevorzugt als Biokraftstoff bzw. als Komponente im Biokraftstoff sind darüber hinaus auch Altfettester wie beispielsweise Altfettmethylester.

[0048] Als Mineralölkomponente F1 sind insbesondere Mitteldestillate geeignet, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Vorzugsweise werden solche Mitteldestillate verwendet, die 0,05 Gew.-% Schwefel und weniger, besonders bevorzugt weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel und in speziellen Fällen weniger als 50 ppm Schwefel wie beispielsweise weniger als 10 ppm Schwefel enthalten. Es handelt sich dabei im allgemeinen um solche Mitteldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Vorzugsweise handelt es sich um solche Mitteldestillate, die 95 %-Destillationspunkte unter 370°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen. Auch synthetische Treibstoffe, wie sie zum Beispiel nach dem Fischer-Tropsch-Verfahren zugänglich sind, sind als Mitteldestillate geeignet.

[0049] Das Additiv kann dem zu additivierenden Öl gemäß im Stand der Technik bekannten Verfahren zugeführt werden. Wenn mehr als eine Additivkomponente oder Coadditivkomponente verwendet werden soll, können solche Komponenten zusammen oder separat in beliebiger Kombination und Reihenfolge in das Öl eingebracht werden. Mit den erfindungsgemäßen Additiven lässt sich der CFPP-Wert von Mischungen aus Biodiesel und Mineralölen weit effizienter verbessern als mit den bekannten Additiven des Standes der Technik. Besonders vorteilhaft sind die erfindungsgemäßen Additive in Ölmischungen, deren Mineralölkomponente F1) eine Siedebreite zwischen dem 20 und 90 %-Destillationspunkt von weniger als 120°C, insbesondere von weniger als 110°C und speziell von weniger als 100°C aufweist. Darüber hinaus sind sie besonders vorteilhaft in Ölmischungen, deren Mineralölkomponente F1) einen Cloud Point von unter -4°C, insbesondere von -6°C bis -20°C wie beispielsweise von -7°C bis -9°C aufweist, wie sie für einen Einsatz insbesondere im Winter eingesetzt werden. Des gleichen wird der Pour Point der erfindungsgemäßen Mischungen durch den Zusatz der erfindungsgemäßen Additive herabgesetzt. Die erfindungsgemäßen Additive sind besonders vorteilhaft in Ölmischungen F, die mehr als 2 Vol.-% an Biobrennstoff F2, bevorzugt mehr als 5 Vol.-% Biobrennstoff F2 und speziell mehr als 10 Vol.-% Biobrennstoff F2 wie beispielsweise 15 bis 35 Vol.-% Biobrennstoff F2 enthalten. Die erfindungsgemäßen Additive sind darüber hinaus besonders vorteilhaft in problematischen Ölen, deren Biobrennstoffkomponente F2 einen hohen Anteil an Estern gesättigter Fettsäuren von mehr als 4 %, insbesondere von mehr als 5 % und speziell von 7 bis 25 % wie beispielsweise von 8 bis 20 % enthält, wie es beispielsweise in Ölen aus Sonnenblumen und Soja der Fall ist. Derartige Biobrennstoffe weisen bevorzugt einen Cloud Point von über -5°C und speziell von über -3°C auf. Ölmischungen F), in denen die erfindungsgemäßen Additive besonders vorteilhafte Wirkung zeigen, haben bevorzugt Cloud Points von über -9°C und speziell von über -6°C. Es gelingt mit den erfindungsgemäßen Additiven somit auch, Rapsölsäuremethylester und Sonnenblumen- und/oder Sojaölfettsäuremethylester enthaltende Ölmischungen auf CFPP-Werte von -22°C und darunter einzustellen.

[0050] Zur Herstellung von Additivpaketen für spezielle Problemlösungen können die erfindungsgemäßen Additive auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind polare Verbindungen, die sich von den erfindungsgemäßen Polymeren B unterscheiden und die eine Paraffindispergierung bewirken (Paraffindispergatoren), Alkylphenolkondensate, Ester und Ether von Polyoxyalkylenverbindungen, Olefincopolymere sowie öllösliche Amphiphile.

So können die erfindungsgemäßen Additive zur weiteren Reduzierung der Sedimentation in der Kälte ausgefallener Paraffine und Fettsäureester in Mischung mit Paraffindispergatoren eingesetzt werden. Paraffindispergatoren reduzieren die Größe der Paraffin- und Fettsäureesterkristalle und bewirken, dass die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Als Paraffindispergatoren haben sich sowohl niedermolekulare wie auch polymere, öllösliche Verbindungen mit ionischen oder polaren Gruppen wie z.B. Aminsalze und/oder Amide bewährt. Besonders bevorzugte Paraffindispergatoren enthalten Umsetzungspro-

dukte von Fettaminen mit Alkylresten mit 18 bis 24 C-Atomen, insbesondere sekundären Fettaminen wie beispielsweise Ditalgfettamin, Distearylamin und Dibehenylamin mit Carbonsäuren und deren Derivaten. Besonders bewährt haben sich Paraffindispergatoren, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder Ethylendiamintetraessigsäure mit sekundären Aminen als Paraffindispergatoren geeignet (vgl. EP 0 398 101). Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β -ungesättigter Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP 0 154 177) und die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP 0 413 279 B1) und nach EP-A-0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α,β -ungesättigter Dicarbonsäureanhydride, α,β -ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole. [0051] Alkylphenol-Aldehyd-Harze sind beispielsweise im Römpp Chemie Lexikon, 9. Auflage, Thieme Verlag 1988-92, Band 4, S. 3351 ff. beschrieben. Die Alkylreste des o- oder p-Alkylphenols können bei den mit den erfindungsgemäßen Additiven einsetzbaren Alkylphenol-Aldehyd-Harzen gleich oder verschieden sein und besitzen 1 -50, vorzugsweise 1 - 20, insbesondere 4-12 Kohlenstoffatome; bevorzugt handelt es sich um n-, iso- und tert.-Butyl, n- und iso-Pentyl, n- und iso-Hexyl, n- und iso-Octyl, n- und iso-Nonyl, n- und iso-Decyl, n- und iso-Dodecyl und Octadecyl. Der aliphatische Aldehyd im Alkylphenol-Aldehydharz besitzt vorzugsweise 1 - 4 Kohlenstoffatome. Besonders bevorzugte Aldehyde sind Formaldehyd, Acetaldehyd und Butyraldehyd, insbesondere Formaldehyd. Das Molekulargewicht der Alkylphenol-Aldehyd-Harze beträgt 400 - 10.000, bevorzugt 400 - 5000 g/mol. Voraussetzung ist hierbei, dass die Harze öllöslich sind.

[0052] In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei diesen Alkylphenol-Formaldehydharzen um solche, die Oligo- oder Polymere mit einer repetitiven Struktureinheit der Formel

25

20

30

35

40

45

50

worin R^5 für C_1 - C_{50} -Alkyl oder -Alkenyl und n für eine Zahl von 2 bis 100 steht. Bevorzugt steht R^5 für C_4 - C_{20} -Alkyl oder -Alkenyl und insbesondere für C_6 - C_{16} -Alkyl oder -Alkenyl. Bevorzugt steht n für eine Zahl von 4 bis 50 und speziell für eine Zahl von 5 bis 25.

[0053] Weitere geeignete Fließverbesserer sind Polyoxyalkylenverbindungen wie beispielsweise Ester, Ether und Ether/Ester, die mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen. Wenn die Alkylgruppen von einer Säure stammen, stammt der Rest von einem mehrwertigen Alkohol; kommen die Alkylreste von einem Fettalkohol, so stammt der Rest der Verbindung von einer Polysäure.

[0054] Geeignete Polyole sind Polyethylenglykole, Polypropylenglykole, Polybutylenglykole und deren Mischpolymerisate mit einem Molekulargewicht von ca. 100 bis ca. 5000, vorzugsweise 200 bis 2000. Weiterhin geeignet sind Alkoxylate von Polyolen, wie beispielsweise von Glycerin, Trimethylolpropan, Pentaerythrit, Neopentylglykol, sowie die daraus durch Kondensation zugänglichen Oligomere mit 2 bis 10 Monomereinheiten, wie z.B. Polyglycerin. Bevorzugte Alkoxylate sind solche mit 1 bis 100, insbesondere 5 bis 50 mol Ethylenoxid, Propylenoxid und/oder Butylenoxid pro mol Polyol. Ester sind besonders bevorzugt.

[0055] Fettsäuren mit 12 bis 26 C-Atomen sind bevorzugt zur Umsetzung mit den Polyolen zur Bildung der Esteradditive, wobei bevorzugt C_{18} - bis C_{24} -Fettsäuren verwendet werden, speziell Stearin- und Behensäure. Die Ester können auch durch Veresterung von polyoxyalkylierten Alkoholen hergestellt werden. Bevorzugt sind vollständig veresterte polyoxyalkylierte Poylole mit Molekulargewichten von 150 bis 2000, bevorzugt 200 bis 1500. Besonders geeignet sind PEG-600-Dibehenat und Glycerin-Ethylenglykol-Tribehenat.

[0056] Als Bestandteil des erfindungsgemäßen Additivs geeignete Olefinpolymere können sich direkt von monoethylenisch ungesättigten Monomeren ableiten oder indirekt durch Hydrierung von Polymeren, die sich von mehrfach

ungesättigten Monomeren wie Isopren oder Butadien ableiten, hergestellt werden. Bevorzugte Copolymere enthalten neben Ethylen Struktureinheiten, die sich von α -Olefinen mit 3 bis 24 C-Atomen ableiten und Molekulargewichte von bis zu 120.000 aufweisen. Bevorzugte α -Olefine sind Propylen, Buten, Isobuten, n-Hexen, Isohexen, n-Octen, Isoocten, n-Decen, Isodecen. Der Comonomergehalt an Olefinen liegt bevorzugt zwischen 15 und 50 Mol-%, besonders bevorzugt zwischen 20 und 35 Mol-% und speziell zwischen 30 und 45 Mol-%. Diese Copolymeren können auch geringe Mengen, z.B. bis zu 10 Mol-% weiterer Comonomere wie z.B. nicht endständige Olefine oder nicht konjugierte Olefine enthalten. Bevorzugt sind Ethylen-Propylen-Copolymere. Die Olefincopolymere können nach bekannten Methoden hergestellt werden, z.B. mittels Ziegler- oder Metallocen-Katalysatoren.

[0057] Weitere geeignete Olefincopolymere sind Blockcopolymere, die Blöcke aus olefinisch ungesättigten, aromatischen Monomeren A und Blöcke aus hydrierten Polyolefinen B enthalten. Besonders geeignet sind Blockcopolymere der Struktur $(AB)_nA$ und $(AB)_m$, wobei n eine Zahl zwischen 1 und 10 und m eine Zahl zwischen 2 und 10 ist.

[0058] Das Mischverhältnis (in Gewichtsteilen) der erfindungsgemäßen Additive mit Paraffindispergatoren, Kammpolymeren, Alkylphenolkondensaten, Polyoxyalkylenderivaten bzw. Olefincopolymeren beträgt jeweils 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1 wie beispielsweise 1:1 bis 4:1.

[0059] Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Antioxidantien, Cetanzahlverbesserern, Dehazern, Demulgatoren, Detergenzien, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Leitfähigkeitsverbesserern, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points.

20 Beispiele

10

25

30

35

40

45

Charakterisierung der Testöle:

[0060] Die Bestimmung des CFPP-Werts erfolgt gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015. Beide Eigenschaften werden in °C bestimmt.

Tabelle 1:

Charakterisierung der eingesetzten Biobrennstofföle (F2)				
Öl Nr.		СР	CFPP	
E 1	Rapsölsäuremethylester	-2,3	-14°C	
E 2	80% Rapsölsäuremethylester + 20 % Sonnenblumenölsäuremethylester	-1,6	-10°C	
E 3	90% Rapsölsäuremethylester + 10 % Sojaölsäuremethylester	-2,0	-8°C	

Tabelle 2:

			_			ung der andteile;		_		
	C ₁₆	C _{16'}	C ₁₈	C _{18'}	C _{18"}	C _{18"}	C ₂₀	C _{20'}	C ₂₂	Σ gesättigt
RME	4,5	0,5	1,7	61,6	18,4	8,7	0,7	1,5	0,4	7,3
SBME	6,0	0,1	3,8	28,7	58,7	0,1	0,3	0,3	0,7	10,8
SojaME	10,4	0,1	4,1	24,8	51,3	6,9	0,5	0,4	0,4	15,4
RME = Rapsölsäuremethylester; SBME = Sonnenblumenölsäuremethylester;			er;							

Tabelle 3:

SojaME = Sojaölsäuremethylester

Charakterisierung der eingesetzten Mineralöle (F1)				
	D1	D2	D3	
Siedebeginn	193°C	181°C	200°C	

55

Tabelle 3: (fortgesetzt)

Charakterisierung der eingesetzten Mineralöle (F1)				
	D1	D2	D3	
20 % Destillation	230°C	235°C	247°C	
90% Destillation	332°C	344°C	339°C	
95 % Destillation	348°C	361°C	358°C	
(90-20)% Destillation	102°C	109°C	92°C	
Cloud Point	-6,0°C	-8,2°C	-4,7°C	
CFPP	-8°C	-12°C	-9°C	
S-Gehalt	20 ppm	32 ppm	9 ppm	

[0061] Folgende Additive wurden eingesetzt:

Ethylen-Copolymere A

5

10

15

20

25

30

35

45

50

55

[0062] Bei den eingesetzten Ethylen-Copolymeren handelt es sich um kommerzielle Produkte mit den in Tabelle 4 angegebenen Charakteristika. Die Produkte wurden als 65 %ige Einstellungen in Kerosin eingesetzt.

Tabelle 4:

	Charakterisierung der eingesetzten Ethylen-Copolymere (A)				
Beispiel	Comonomer(e)	V140	CH ₃ /100 CH ₂		
A1	13,6 Mol-% Vinylacetat	130 mPas	3,7		
A2	13,7 Mol-% Vinylacetat und 1,4 Mol-% Neodecansäurevinylester	105 mPas	5,3		
A3	i) 14,0 Mol-% Vinylacetat und 1,6 Mol-% Neodecansäurevinylester und ii) 12,9 Mol-% Vinylacetat im Verhältnis i) : ii) von 6 : 1	97 mPas 145 mPas	4,7 5,4		

Kammpolymere B

[0063] Die Polymerisation von Maleinsäureanhydrid (MSA) mit α -Olefinen erfolgt in einem höhersiedenden aromatischen Kohlenwasserstoffgemisch bei 160°C in Gegenwart einer Mischung gleicher Teile tert.-Butyl-peroxybenzoat und tert.-Butyl-peroxy-2-ethylhexanoat als Radikalkettenstarter. In Tabelle 5 sind beispielhaft verschiedene Copolymere und die zu ihrer Herstellung eingesetzten molaren Anteile der Monomere sowie Kettenlänge (R) und molare Menge (bezogen auf MSA) des zur Derivatisierung eingesetzten Amins und der daraus berechnete Faktor Q aufgeführt. Bei den eingesetzten Aminen handelt es sich, sofern nichts anderes angegeben ist, um Monoalkylamine.

[0064] Die Umsetzungen mit Aminen erfolgen in Gegenwart von Solvent Naphtha (40 bis 50 Gew.-%) bei 50 bis 100°C zum Halbamid bzw. zum Amid-Ammoniumsalz und bei 160 bis 200°C unter azeotropem Auskreisen von Reaktionswasser zum Imid bzw. Diamid. Der Amidierungsgrad ist der Säurezahl umgekehrt proportional.

Tabelle 5:

	Charakterisierung der eingesetzten Kammpolymere (B)					
Beispiel	Comonomere	Amin		Q	Säurezahl [mg KOH/g]	
		R	Mol			
B1	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₈	1	21	52	
B2	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₀	1	23,0	60	
В3	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₂	1	25,0	58	
B4	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₄	1	27,0	56	

Tabelle 5: (fortgesetzt)

Beispiel	Comonomere		Amin		Säurezah [mg KOH/g
		R	Mol		
B5 (V)	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₆	1	29,0	55
B6 (V)	MSA-co-C ₁₀ -α-Olefin (1 : 1)	C ₁₂	1	20,0	57
В7	MSA-co-C ₁₆ -α-Olefin (1 : 1)	C ₁₂	1	26,0	56
B8	MSA-co-C ₁₄ -α-Olefin (1 : 1)	C ₁₄	1	26,0	58
В9	MSA-co-C ₁₀ -α-Olefin (1 : 1)	C ₁₆ C ₁₈	0,5 0,5	25,0	59
B10	MSA-co-C $_{14}/_{16}$ - α -Olefin-co-Allylmethylpolyglykol (1:0,45 : 0,45:0,1)	C ₁₂	1	25,0	56
B11	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₂		25,0	0,32
B12	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	C ₁₂	1	25,0	1,5
B13	MSA-co-C ₁₄ / ₁₆ -α-Olefin (1 : 0,5 : 0,5)	di-C ₁₂	1	25,0	50
B14 (V)	Fumarat-Vinylacetat (1 : 1)	C ₁₄	2	n.a.	0,4

Weitere Fließverbesserer

[0065] Bei den eingesetzten weiteren Fließverbesserern C handelt es sich um kommerzielle Produkte mit den in Tabelle 6 angegebenen Charakteristika. Die Produkte wurden als 50 %ige Einstellungen in Solvent Naphtha eingesetzt.

Tabelle 6:

	Charakterisierung der eingesetzten weiteren Fließverbesserer
C3	Umsetzungsprodukt eines Copolymers aus C ₁₄ /C ₁₆ -Olefin und Maleinsäureanhydrid mit 2 Equivalenten sekundärem Talgfettamin pro Maleinsäureanhydrideinheit
C4	Umsetzungsprodukt von Phthalsäureanhydrid mit 2 Equivalenten di(hydriertem Talgfettamin) zum Amid-Ammoniumsalz
C5	Nonylphenolharz, hergestellt durch Kondensation einer Mischung von Dodecylphenol mit Formaldehyd, Mw 2000 g/mol
C6	Mischung aus 2 Teilen C3 und 1 Teil C5
C7	Mischung aus gleichen Teilen C4 und C5

45 Wirksamkeit der Additive

[0066] Es wurde der CFPP-Wert (gemäß EN 116, in °C) verschiedener Biobrennstoffe gemäß obiger Tabelle nach Zusatz von 1200 ppm, 1500 ppm sowie 2000 ppm Additivmischung bestimmt. Prozentangaben beziehen sich auf Gewichtanteile in den jeweiligen Mischungen. Die in den Tabellen 5 bis 7 wiedergegebenen Ergebnisse zeigen, dass Kammpolymere mit dem erfindungsgemäßen Faktor Q schon bei niedrigen Dosierraten hervorragende CFPP-Absenkungen erzielen und bei höheren Dosierraten zusätzliches Potential bieten.

Tabelle 7:

Bsp. Fließverbesserer		Kammpolymer / Coadditiv	CFPP nach Zusatz von Fließverbesserer				
			50 ppm	100 ppm	150 ppm	200ppm	
1	A2	150 ppm B1	-11	-18	-19	-22	
2	A2	150 ppm B2	18	-19	-20	-21	
3	A2	150 ppm B3	-21	-21	-21	-22	
4	A2	150 ppm B4	-11	-15	-18	-20	
5 (V)	A2	150 ppm B5	-9	-9	-11	-17	
6 (V)	A2	150 ppm B6	-10	-13	-13	-15	
7	A1	150 ppm B9	-19	-20	-22	-23	
8	A1	100 ppm B10	-20	-20	-21	-23	
9	A1	100 ppm B11	-19	-20	-20	-22	
10	A1	100 ppm B12	-21	-22	-22	-23	
11	A2	150 ppm B13	-18	-19	-19	-22	
12	A2	75 ppm B3 75 ppm A4	-18	-20	-22	-25	
13 (V)	A2	150 ppm B14	-10	-11	-15	-20	
14 (V)	A2	-	-11	-16	-17	-19	

Tabelle 8:

Bsp.	Ethylen-Copolymer	Kammpolymer	Coadditiv	CFPP			
				100 ppm	150 ppm	200 ppm	300 ppm
15	80 %A3	20 % B1	150 ppm C6	-18	-20	-22	-22
16	80 %A3	20 % B2	150 ppm C6	-20	-21	-21	-24
17	80 % A3	20 % B3	150 ppm C6	-20	-22	-23	-27
18	80 % A3	20 % B4	150 ppm C6	-20	-22	-22	-23
19	75 % A1	25 % B7	150 ppm C7	-19	-21	-22	-24
20	85 % A1	15 % B8	150 ppm C7	-19	-22	-24	-25
21	80 % A1	20 % B11	150 ppm C6	-20	-22	-23	-25
22	80 % A1	20 % B12	150 ppm C6	-20	-23	-24	-26
23 (V)	80 % A3	20 % B6	150 ppm C6	-18	-19	-20	-20
24 (V)	80 % A3	20 % B5	150 ppm C6	-10	-14	-17	-18
25 (V)	80 % A1	20 % B14	150 ppm C7	-15	-16	-18	-22
26 (V)	100 % A1	_	150 ppm C6	-18	-19	-20	-22

[0067] In dieser Messreihe wurden dem Öl jeweils eine konstante Menge Coadditiv sowie die angegebene Menge einer Mischung aus Ethylen-Copolymer und Kammpolymer zugesetzt.

Tabelle 9:

CFPP-Aus	CFPP-Austestung in einer Mischung aus 80 Vol% Testöl D3 und 20 Vol% Testöl E2 (CP = -3,3°C; CFPP = -10°C)					
Bsp.	Ethylen-Copolymer Kammpolymer CFPP					
			100 ppm	200 ppm	250 ppm	300 ppm
27	80 %A3	20 % B1	-16	-19	-24	-26
28	80 %A3	20 % B2	-20	-23	-25	-27
29	80 % A3	20 % B3	-21	-22	-24	-28
30	80 % A1	20 % B12	-21	-23	-25	-29
31	80 % A3	20 % B4	-19	-21	-23	-25
32 (V)	80 % A3	20 % B6	-15	-18	-22	-23
33 (V)	80 % A3	20 % B5	-10	-15	-17	-19
34 (V)	80 % A1	20 % B14	-15	-17	-19	-21
35 (V)	100 % A1	_	-11	-20	-22	-22

Patentansprüche

5

10

15

20

25

30

35

45

50

55

1. Brennstoffölzusammensetzung F), enthaltend

F1) ein Brennstofföl mineralischen Ursprungs und

F2) ein Brennstofföl pflanzlichen und/oder tierischen Ursprungs, und

als Kälteadditiv die Bestandteile

A) mindestens eine Copolymer aus Ethylen und 8 - 21 Mol-% mindestens eines Acryl- oder Vinylesters mit einem C_1 - C_{18} -Alkylrest und

B) mindestens ein Kammpolymer, enthaltend Struktureinheiten aus

B1) mindestens einem Olefin als Monomer 1, welches an der olefinischen Doppelbindung wenigstens einen C₈-C₁₈-Alkylrest trägt, und

B2) mindestens einer ethylenisch ungesättigten Dicarbonsäure als Monomer 2, welche mindestens einen über eine Amid- und/oder Imidgruppierung gebundenen C_8 - C_{16} -Alkylrest trägt,

40 wobei die Summe Q

$$Q = \sum_{i} w_{1i} \cdot n_{1i} + \sum_{j} w_{2j} \cdot n_{2j}$$

der molaren Mittel der C-Kettenlängenverteilungen in den Alkylresten von Monomer 1 einerseits und den Alkylresten der Amid und/oder Imidgruppen von Monomer 2 andererseits von 21,0 bis 28,0 beträgt, worin

w₁ der molare Anteil der einzelnen Kettenlängen in den Alkylresten von Monomer 1,

w₂ der molare Anteil der einzelnen Kettenlängen in den Alkylresten der Amidund/oder Imidgruppen von Monomer 2.

n₁ die einzelnen Kettenlängen in den Alkylresten von Monomer 1,

 n_2 die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer 2,

i die Laufvariable für die einzelnen Kettenlängen in den Alkylresten von Monomer 1, und

j die Laufvariable für die einzelnen Kettenlängen in den Alkylresten der Amid und/oder Imidgruppen von Monomer 2 sind.

- 2. Brennstoffölzusammensetzung nach Anspruch 1, worin Q von 22,0 bis 27,0 beträgt.
- 3. Brennstoffölzusammensetzung nach Anspruch 1 und/oder 2, worin in Bestandteil A außer Ethylen 3,5 bis 20 Mol-% Vinylacetat und 0,1 bis 12 Mol-% Neononansäurevinylester, Neodecansäurevinylester oder 2-Ethylhexansäurevinylester enthalten sind, wobei der gesamte Comonomergehalt zwischen 8 und 21 Mol-% liegt.
- **4.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 3, worin in Bestandteil A neben Ethylen und 8 bis 18 Mol-% Vinylestern noch 0,5 bis 10 Mol-% Olefine, ausgewählt aus Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen oder Norbornen enthalten sind.
- **5.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 4, worin die Copolymere, die Bestandteil A ausmachen, Schmelzviskositäten zwischen 20 und 10.000 mPas aufweisen.
- 6. Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 5, worin die Copolymere, die Bestandteil A ausmachen, Verzweigungsgrade zwischen 1 und 9 CH₃/100 CH₂-Gruppen, die nicht aus den Comonomeren stammen, aufweisen.
 - 7. Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 6, worin die Copolymere, die Bestandteil B ausmachen, Comonomere enthalten, welche von Amiden und/oder Imiden der Maleinsäure, Fumarsäure und/oder Itaconsäure abgeleitet sind.
 - **8.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 7, worin die Amide und/oder Imide des Bestandteils B von primären Aminen abgeleitet sind.
- 9. Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 8, worin die Amide und/oder Imide des Bestandteils B von Aminen mit linearen Alkylresten abgeleitet sind.
 - **10.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 9, worin die Amide und/oder Imide des Bestandteils B von Monoaminen abgeleitet sind.
 - **11.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 10, worin die mittlere Molekülmasse der erfindungsgemäßen Copolymere B zwischen 1.200 und 200.000 g/mol beträgt.
- **12.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 11, worin die Copolymere, die Bestandteil B ausmachen, Comonomere enthalten, welche von α -Olefinen abgeleitet sind.
 - **13.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, worin das Mischungsverhältnis A:B zwischen 10:1 und 1:10 liegt.
- **14.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 13, enthaltend polare stickstoffhaltige Paraffindispergatoren.
 - **15.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 14, worin der Anteil an F2 größer als 2 Vol.-% ist.
 - **16.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 15, **dadurch gekennzeichnet, dass** das Brennstofföl tierischen oder pflanzlichen Ursprungs einen oder mehrere Ester aus Monocarbonsäure mit 14 bis 24 C-Atomen und Alkohol mit 1 bis 4 C-Atomen enthält.
- **17.** Brennstoffölzusammensetzung nach Anspruch 16, **dadurch gekennzeichnet, dass** der Alkohol Methanol oder Ethanol ist.
 - **18.** Brennstoffölzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 17, **dadurch gekennzeichnet, dass** das Brennstofföl tierischen oder pflanzlichen Ursprungs mehr als 4 Gew.-% an Estern gesättigter Fettsäuren enthält.
 - 19. Verwendung eines Additivs wie in einem oder mehreren der Ansprüche 1 bis 14 definiert zur Verbesserung der Kaltfließeigenschaften von Mischungen aus mineralischen Brennstoffölen und Brennstoffölen tierischen oder

10

5

20

30

45

pflanzlichen Ursprungs.

20.	Verfahren zur Herstellung von Brennstoffölzusammensetzungen F, enthaltend Brennstofföle mineralischen (F1) und tierischen und/oder pflanzlichen (F2) Ursprungs, mit verbesserten Kälteeigenschaften, indem man der Mischung von Brennstoffölen mineralischen (F1) und tierischen und/oder pflanzlichen (F2) Ursprungs ein Additiv wie in einem oder mehreren der Ansprüche 1 bis 14 definiert zusetzt.
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 04 02 8306

г	EINSCHLÄGIGE					
Kategorie	Kennzeichnung des Dokum der maßgeblichei	nents mit Angabe, soweit erford n Teile	lerlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)	
Х	EP 1 146 108 A (CLA 17. Oktober 2001 (2 * Absätze [0020], [0037], [0040], [Ansprüche *	1-	20	C10L1/14 C10L1/18 C10L1/22		
Х	US 2003/163951 A1 (4. September 2003 (* Absätze [0038], Ansprüche 1,4 *	2003-09-04)	AL) 1-	20		
X	WO 94/10267 A (EXXO DAVIES, BRIAN, WILL L) 11. Mai 1994 (19 * Seite 7, Zeilen 2 * Seite 10, Zeile 1 Ansprüche 1,4,7,9,1	IAM; LEWTAS, KENNE 194-05-11) 15-29 * 7 - Seite 13, Zeil	ETH;	20		
A	US 4 985 048 A (WIF 15. Januar 1991 (19 * Ansprüche 1,5 *	1-	20	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)		
А	US 5 391 632 A (KRL 21. Februar 1995 (1 * Spalte 10, Zeile 6; Beispiele 5,9,16	.995-02-21) 67 - Spalte 11, Ze		20	C10L	
Der vo	rliegende Recherchenbericht wu Recherchenort	Abschlußdatum der Recl	herche		Prüfer	
	München	17. März 20	JU5	Ber	trand, S	
X : von l Y : von l ande A : tech O : nich	TEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung schenliteratur	E: älteres tet nach d mit einer D: in der orie L: aus an	s Patentdokume em Anmeldedat Anmeldung ang deren Gründen 	nt, das jedoc um veröffent eführtes Dok angeführtes	dicht worden ist Sument	

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 02 8306

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

17-03-2005

	nerchenbericht Bereitdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 11	46108	A	17-10-2001	DE BR CA EP JP NO US	10012267 0100233 2340524 1146108 2001288484 20011254 6565616	A A1 A2 A A	11-10-200 06-11-200 14-09-200 17-10-200 16-10-200 17-09-200 20-05-200
US 20	03163951	A1	04-09-2003	FR AT AU DE EP WO HU JP PL	2802940 284938 5787801 60016804 1252269 0148122 0204536 2003518549 356098	T A D1 A1 A1 A2 T	29-06-200 15-01-200 09-07-200 20-01-200 30-10-200 05-07-200 28-05-200 10-06-200
wo 94	10267	A	11-05-1994	AT AU AU BR CA DE WO EP FI NO RU US ZA	140474 674179 5336094 9307307 2146542 69303722 69303722 9410267 0665873 951965 8502539 951552 2129587 5743923 9307916	B2 A A1 D1 T2 A1 A1 A T A C1	15-08-199 12-12-199 24-05-199 01-06-199 11-05-199 28-11-199 11-05-199 09-08-199 25-04-199 24-04-199 27-04-199 28-04-199
US 49	85048	A	15-01-1991	DE CA DE EP ES FI JP JP	3742630 1337888 3887115 0320766 2061616 885781 1201348 2777810 885579	C D1 A2 T3 A ,B, A B2	29-06-198 02-01-199 24-02-199 21-06-198 16-12-199 17-06-198 14-08-198 23-07-199 19-06-198
US 53	91632	Α	21-02-1995	AT CA	158314 2112855		15-10-199 07-07-199

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 04 02 8306

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

17-03-2005

lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5391632 A		DE DK EP ES FI JP JP NO SG	59404053 606055 0606055 2110124 940033 3605130 6279551 940040 83642	T3 A2 T3 A B2 A	23-10-199 14-04-199 13-07-199 01-02-199 07-07-199 22-12-200 04-10-199 07-07-199 16-10-200
		SG 	83642 	A1 	16-10-200

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82