(11) **EP 1 553 169 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:13.07.2005 Bulletin 2005/28

(21) Application number: 04075050.7

(22) Date of filing: 07.01.2004

(51) Int CI.7: **C12N 7/00**, C07K 14/165, A61K 39/215, C12Q 1/68, G01N 33/569, C07K 16/10

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Designated Extension States:

AL LT LV MK

(71) Applicant: Amsterdam Institute of Viral Genomics
 B.V.
 1105 BA Amsterdam (NL)

(72) Inventor: van der Hoek, Cornelia 1111 HK Diemen (NL) (74) Representative:

Prins, Adrianus Willem, Mr. Ir. et al Vereenigde, Nieuwe Parklaan 97 2587 BN Den Haag (NL)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

- (54) Coronavirus, nucleic acid, protein, and methods for the generation of vaccine, medicaments and diagnostics
- (57) A new coronavirus is disclosed herein with a tropism that includes humans. Means and methods are provided for diagnosing subjects (previously) infected with the virus. Also provided are among others vaccines, medicaments, nucleic acids and specific binding members.

Description

20

30

35

40

45

50

[0001] The invention relates to the fields of virology and medicine. More in particular the invention relates to the identification of a new coronavirus and to means and methods associated with a virus such as means and methods for typing the virus in various samples and diagnosing of disease, means and methods for developing vaccines and medicaments for the treatment of infected subjects or of subjects at risk thereof.

[0002] Coronaviruses, a genus in the family of Coronaviridae, are large enveloped plus strand RNA viruses. The genomic RNA is 27 to 32 kb in size, capped and polyadenylated. Three serologically distinct groups of coronaviruses have been identified. Within each group, viruses are identified by hosts range and genome sequence. Coronaviruses have been identified in mice, rats, chickens, turkeys, swine, dogs, cats, rabbits, horses, cattle and humans (39, 40). Most coronaviruses infect only one host species and can cause severe disease including gastroenteritis, and respiratory tract diseases. In humans, 3 coronaviruses have been studied in detail. HCoV-229E and HCoV-OC43 have been identified in the mid sixties and are known to cause common cold (13-17, 19, 41, 42). Besides common cold it has been suggested that the HCoV-229E may cause a more serious disease in infants as HCoV-229E virus has been isolated from infants suffering from lower respiratory tract disease(28). The third and most recently identified coronavirus: SARS-CoV, is, with its ability to cause a life threatening pneumonia (43), the most pathogenic human coronavirus identified thus far. It has been suggested that SARS-CoV is the first member of a fourth group of coronaviruses, or that the virus is an outlier of the group 2 coronaviruses (27, 44).

The genome of coronaviruses encodes four structural proteins: the spike protein, the membrane protein, the envelope protein and the nucleocapsid protein. Several non-structural proteins are involved in replication and transcription, which are encoded by two long overlapping open reading frames (ORFs) at the 5'end of the genome (1A and 1B). These 2 ORFs are connected via a ribosomal frame shift. The polypeptides encoded by ORF 1A and 1B are post-translationally processed by viral encoded proteases. Furthermore, additional non-structural proteins are encoded between the S and E gene, or between the M and N gene or downstream of the N gene. Some of these "accessory non-structural protein genes" have been found to be not essential for virus reproduction(45, 46). The coronavirus gene products of 1A and 1B are translated from the genomic RNA but the remaining viral proteins are translated from subgenomic mRNAs (sg mRNA), each with a 5'end derived from the 5' part of the genome. The sg mRNA are derived via a discontinuous transcription process that most probably occurs during negative strand synthesis (47). Discontinuous transcription requires base-pairing between cis-acting elements, the transcription associated sequences (TRSs), one located at the 5' part of the genome (the leader TRS) and others located upstream of the ORFs (the body TRSs)(48)).

[0003] The novel coronavirus that we present here was isolated from a child suffering from bronchiolitis. Infection by this virus was not an isolated case since we found 7 more persons suffering from respiratory tract disease carrying the virus. In addition, we show here the complete genome sequence providing critical information concerning the genome structure of the new coronavirus.

[0004] To date there is a range of human diseases with unknown etiology. For many of these a viral origin has been suggested, emphasizing the importance of a continuous search for new viruses^{22, 23, 24}. Major difficulties are encountered when searching for new viruses. First, some viruses do not replicate in vitro, at least not in the cells that are commonly used in viral diagnostics. Second, for those viruses that do replicate in vitro and that cause a cytopathic effect (CPE), the subsequent virus-identification methods may fail. Antibodies raised against known viruses may not recognize the cultured virus and virus specific PCR methods may not amplify the new viral genome. We have developed a method for virus discovery based on the cDNA amplified restriction fragment length polymorphism technique (cD-NA-AFLP). With this technique, RNA or DNA is reproducibly amplified. There is no need to have prior knowledge of the sequence of the target gene¹. Generally the cDNA-AFLP method is used to monitor differential gene expression, however, we modified this method such that it can amplify viral sequences either directly from patient blood-plasma/ serum samples or indirectly from CPE-positive virus culture (Figure 1). In the modified Virus-Discovery-cDNA-AFLP (VIDISCA) method the mRNA isolation step prior to amplification is replaced by a treatment to selectively enrich for viral nucleic acid. Of relevance to the purification is a centrifugation step to remove residual cells and mitochondria. In addition, a DNAse treatment can be used to remove interfering chromosomal and mitochondrial DNA from degraded cells whereas viral nucleic acid is protected within the viral particle. Finally, by choosing frequently cutting restriction enzymes, the method can be fine-tuned such that most viruses will be amplified.

[0005] In January 2003 a 7-month-old child appeared in the hospital with coryza, conjunctivitis and fever. Chest radiography showed typical features of bronchiolitis and a nasopharyngeal aspirate specimen was collected (sample nr: NL63) five days after the onset of disease. All diagnostic tests on this sample for respiratory syncytial virus (RSV), adenovirus, influenza A and B virus, parainfluenza virus type 1, 2 and 3, rhinovirus, enterovirus, HCoV-229E and HCoV-OC43 were negative. Immunofluorescent assays to detect RSV, adenovirus, influenza A and B virus, and parainfluenza virus type 1, 2 and 3 in cultures of the virus remained negative. Acid lability and chloroform sensitivity tests demonstrated that the virus was most likely enveloped and not a member of the Picornavirus group. In fact it was a new coronavirus.

[0006] In the present invention we present a detailed description of a novel human coronavirus. Coronaviruses are characterized by a very long non-segmented, single-stranded, (+) sense RNA of approximately 27-31 kb. This is the longest genome of any known RNA virus. The genome has a 5' methylated cap and 3' poly-A and functions directly as mRNA. Thus far only 3 human coronaviruses have been characterized, therefore sorting out the characteristics of a fourth human coronavirus supplies attractive information on the variation among the human coronaviruses. The novel virus is a member of the group 1 coronaviruses and is most related to HCoV-229E, yet the differences are prominent. The similarity is not larger than 85% at the nucleotide level, at the position of the 4A and 4B gene of HCoV-229E only one ORF is present in HCoV-NL63 (ORF 3), and the 5' region of the S gene of HCoV-NL63 contains a unique in frame insertion of 537 nucleotides. Since binding of the receptor has been mapped to the N-terminal part of the protein, the 179 amino acids encoded by the insertion are most likely involved in receptor binding. This unique part at the N-terminus of the spike protein might explain the expanded host range of the virus in cell culture. Where HCoV-229E is fastidious in cell culture with a narrow host range, HCoV-NL63 replicates efficiently in monkey kidney cells. Besides HCoV-NL63 also SARS-CoV is able to replicate in monkey kidney cells (Vero-E6 cells and NCI-H292 cells for SARS-CoV (21)). Yet, comparing the predicted Spike genes did not identify a protein region that is shared by both viruses to clarify the common host range of the viruses in vitro. Also the insertion in the S gene of HCoV-NL63 was not present in the SARS S gene. Alternatively, other viral proteins may be involved in the cell tropism of a virus, however we did not identify any gene of HCoV-NL63 that had more similarity at the protein level to the SARS-CoV than to the similarity to HCoV-229E. [0007] The 2 major differences between HCoV-229E and HCoV-NL63: the insertion in the S gene and the altered non-structural accessory proteins genes, are comparably to the differences that are noted between the porcine coronaviruses PRCoV and TGEV. Although these 2 porcine viruses are antigenically and genetically related their pathogenicity is very different. TGEV causes severe diarrhea with a high mortality in neonatal swine. It replicates and destroys the enterocytes in the small intestine whereas PRCoV has a selective tropism for respiratory tissue with very little to no replication in intestinal tissue. The genome differences in the S, 3A and 3B genes between TGEV and PRCoV are comparable with the differences between HCoV-NL63 and HCoV-229E. Alike HCoV-NL63, TGEV has a unique in frame insertion at the 5' part of the S gene ranging from 672 to 681nt (53). Furthermore, the accessory protein genes 3A and 3B that are intact in TGEV, are often mutated or inactive in the PRCoV. Extrapolating these data to the human coronaviruses one can speculate that HCoV-NL63 might be a more pathogenic human virus in comparison with HCoV-229E. However there are no epidemiological data supporting this. Based on our data it seems likely that HCoV-NL63 and HCoV-229E share the same pathogenicity. The common cold virus HCoV-229E can cause a more serious disease in infants (28), comparable to our data that suggest that HCoV-NL63 is causing a respiratory disease only in infants and immuno-compromised patients.

10

20

30

35

45

50

55

[0008] To date, a viral pathogen cannot be identified in a substantial portion of respiratory disease cases in humans (on average 20%⁵⁹), our data indicate that in a part of these cases HCoV-NL63 is involved. The frequency with which HCoV-NL63 was detected in patients suffering from respiratory disease was up to 5% in January 2003. The virus was not detected in any of the samples collected in the spring or summer of 2003, which is in harmony with the epidemiology of human coronaviruses that have a tendency to spread predominantly in the winter season (15). The primers for our diagnostic PCR were located in the 1B gene and the genomic RNA can be used as template. Using primers that anneal in the nucleocapsid gene or 3'UTR supplies more template in the PCR because besides the genomic RNA also all sg mRNA in infected cells are template for amplification. It might be that the number of persons that we found positive for HCoV-NL63 is an underestimation of the correct number of persons carrying HCoV-NL63.

[0009] The newly found coronavirus, (designated HCoV-NL63) was characterized and sequenced. A sequence of a prototype HCoV-NL63 is provided in figure 19 and parts thereof in table 3. In one aspect the invention therefore provides an isolated and/or recombinant nucleic acid comprising a sequence as depicted in figure 19 and/or table 3, or a functional part, derivative and/or analogue thereof. The virus HCoV-NL63 is characterized by the prototype, however, many natural variants exist as for instance shown in figure 16 for polymorphisms in the ORF 1a region. The existence of such natural variants is normal for RNA viruses that undergo frequent mutation through for instance the introduction of mistakes by the polymerases that copy the genome. HCoV-NL63 viruses that have a slightly divergent nucleic acid sequence are thus also provided by the present invention. Such viruses are considered to be a derivative of the nucleic acid having the prototype nucleic acid sequence. The variant does not necessarily have to be a natural variant. It is very well possible to generate variants through recombinant means. For instance many parts of the virus can be altered through nucleotide substitution to make use of the redundancy in the triplet genetic code for particular amino acids. Thus without altering the amino acid sequence of the encoded proteins. However, even amino acid alterations can typically be introduced without affecting the replicating and coding potential of the viruses. For instance conservative amino acid substitutions are often tolerated. Alterations in the prototype virus may be up to 70% of the nucleic acid sequence without altering the replicating potential of the virus. Thus in one embodiment the invention provides an isolated and/or recombinant nucleic acid that is at least 70% homologous to a nucleic acid of the prototype HCoV-NL63. Most of the viable variants however are at least 95% homologous and more preferably at least 99% to a nucleic acid according to the prototype HCoV-NL63. The homology between different coronaviruses in the UTR regions is typically

high, for this reason the homology in this application is measured in a region outside the UTR regions, preferably in a protein coding region. Thus the invention provides a derivative of HCoV-NL63 virus comprising at least 95% homology and preferably at least 99% homology (on the nucleic acid level) in at least one protein coding region depicted figure 20, 21, 22, 23, or table 3. The nucleic acid of the virus or parts thereof can be cloned and used as a probe to detect the virus in samples. Thus the present invention further provides an isolated and/or recombinant nucleic acid comprising a stretch of 100 consecutive nucleotides of a nucleic acid of the prototype virus, or a region that is at least 95% and preferably at least 99% homologous to said 100 consecutive nucleotides(when measured on the nucleic acid level outside a UTR region). A stretch of 100 consecutive nucleotides is considered to be a functional part of the virus of the present invention. Further provided is a bacterial vector comprising a nucleic acid of HCoV-NL63 or a functional part, derivative and/or analogue thereof. Further provided is a bacterium comprising said bacterial vector. The sequence of HCoV-NL63 or a part thereof can be used to generate a primer that is specific for HCoV-NL63 and thus capable of specifically replicating HCoV-NL63 nucleic acid. Similarly, a probe can be generated that specifically hybridizes to HCoV-NL63 nucleic acid under stringent conditions. Thus the invention further provides a primer and/or probe, capable of specifically hybridizing to a nucleic acid of a HCoV-NL63 virus or functional part, derivative or analogue thereof. Preferably, said primer or probe is capable of hybridizing to said nucleic acid under stringent conditions. In a particularly preferred embodiment said primer and/or probe comprises a sequence as depicted in table 3, table 7, table 10 or

10

20

30

35

45

50

55

The nucleic acid of the prototype virus encodes various proteins and polyproteins. These proteins are expressed for instance in cells producing the virus or transformed with a nucleic acid encoding the (poly)protein. The invention thus further provides an isolated and/or recombinant proteinaceous molecule comprising a sequence as depicted in figure 20, 21,22, 23 or table 3, or a functional part, derivative and/or analogue thereof. Many different variants of the proteins having the same function in kind, not necessarily in amount are, as mentioned above, present in nature and can be generated artificially, thus the invention further provides an isolated and/or recombinant proteinaceous molecule that is at least 70% homologues to a proteinaceous molecule mentioned above. Such homologous proteins are considered derivatives of a protein encoded by the prototype. Preferably, a derivative protein comprises at least 95% and more preferably at least 99% homology with a protein encoded by the prototype HCoV-NL63. Fragments and parts of a proteinaceous molecule encoded by the prototype virus can be generated, such parts are therefore also provided by the present invention. In a preferred embodiment is provided an isolated and/or recombinant proteinaceous molecule comprising a stretch of at least 30 consecutive amino acids of a proteinaceous molecule encoded by the prototype virus. A protein encoded by the prototype virus can be encoded through a variety of different nucleic acid sequences using the redundancy of the genetic code. Thus the invention further provides a nucleic acid encoding a protein depicted in figure 20, 21,22, 23 or table 3.

The HCoV-NL63 virus can be replicated using in vitro growing cell lines. The virus can be harvested from such cultures and used in a variety of different application including but not limited to the generation of an immune response in a subject. The invention thus further provides an isolated or recombinant virus comprising a HCoV-NL63 nucleic acid sequence or a functional part, derivative and/or analogue thereof. Also provided is an isolated or recombinant virus comprising a proteinaceous molecule as depicted in figure 20, 21, 22, 23 or table 3, or a functional part, derivative and/or analogue thereof. Subjects that have become infected with HCoV-NL63 can display a number of different clinical and/or subclinical symptoms. Thus further provided is an isolated or recombinant virus or a functional part, derivative or analogue thereof capable of inducing a HCoV-NL63-related disease.

The virus comprises substances that can be used to generate specific binding partners that are able to specifically bind the substance of the virus. Binding partners can be generated by means of injection of the virus into in an immuno-competent subject. As a result of the immunization the serum obtained from the subject will typically contain a number of different antibodies specific for the virus or an immunogenic part, derivative and/or analogue thereof. Specific binding partners can of course be generated through a large variety of different technologies. For instance phage display technologies. The method of producing the specific binding partner is not limited herein. The binding is typically specific for a proteinaceous part of the virus. But can of course also be specific for a virus specific post translation modification of a protein contained in the virus. Thus the present invention further provides an isolated binding molecule capable of specifically binding a proteinaceous molecule of a HCoV-NL63 virus, preferably against encoded by a nucleic acid of the prototype HCoV-NL63. Preferably, a proteinaceous molecule as depicted in figure 20, 21,22, 23 or table 3, or a functional part, derivative and/or analogue thereof. The binding molecule can be capable of specifically binding a nucleic acid sequence of a HCoV-NL63, preferably of figure 19 or table 3. The binding molecule is preferably a proteinaceous molecule. However, other binding molecules are also within the scope of the present invention. For instance, it is possible to generate protein mimetics or analogues having the same binding quality as a protein in kind not necessarily in amount. Provided is further a method for producing a binding molecule according to the invention comprising

- producing molecules capable of binding a HCoV-NL63 virus or functional part, derivative or analogue thereof or an isolated and/or recombinant proteinaceous molecule encoded by a prototype nucleic acid of HCoV-NL63, and

- selecting a proteinaceous binding molecule that is specific for said virus and/or said proteinaceous molecule.

[0010] The overall homology of HCoV-NL63 virus with other human coronaviruses is not very high. Thus many different binding molecules capable of specifically binding to HCoV-NL63 virus can be generated. Such binding molecules can be used to detect HCoV-NL63 virus in a sample. The invention thus further provides an isolated or recombinant virus which is immunoreactive with a binding molecule capable of specifically binding HCoV-NL63 virus. Similarly, the invention provides the use of an isolated and/or recombinant proteinaceous molecule as depicted in figure 20, 21,22, 23 or table 3, or a functional part, derivative and/or analogue thereof, for detecting a binding molecule capable of specifically binding HCoV-NL63 virus, or functional part, derivative and/or analogue of said virus in a sample Vise versa, HCoV-NL63 virus can be used to detect a molecule capable of specifically binding said virus in a sample. Binding of HCoV-NL63 virus to a susceptible target cell occurs via a specific receptor. This receptor can be used as a binding molecule of the invention. Preferably, the binding molecule comprises an antibody or functional equivalent thereof. The detection methods can be used to diagnose HCoV-NL63 related disease in a subject. Thus provided is a method for detecting a HCoV-NL63 virus or functional part, derivative or analogue thereof in a sample, comprising hybridizing and/or amplifying a nucleic acid of said virus or functional part, derivative or analogue with a HCoV-NL63 specific primer and/or probe and detecting hybridized and/or amplified product. Further provided is a kit, preferably a diagnostic kit comprising a HCoV-NL63 virus or functional part, derivative or analogue thereof, a binding molecule according to the invention, and/or a HCoV-NL63 virus specific primer/probe according to invention.

10

20

30

35

45

50

55

[0011] In a particular preferred embodiment is provided the use of a primer or probe capable of specifically hybridizing to a nucleic acid of a HCoV-NL63 virus or functional part, derivative or analogue thereof or a binding molecule capable of specifically binding a proteinaceous molecule depicted in figure 20, 21,22, 23 or table 3 or an HCoV-NL63 virus and/or a nucleic acid or functional part, derivative or analogue of a prototype HCoV-NL63 for detecting and/or identifying a HCoV-NL63 coronavirus in a sample. Preferably said nucleic acid comprises a sequence as depicted in table 3.

[0012] The invention further provides a vaccine comprising HCoV-NL63 virus or functional part, derivative or analogue thereof. Further provided is a vaccine comprising a proteinaceous molecule depicted in figure 20, 21, 22, 23 or table 3 or functional part, derivative and/or analogue of such a proteinaceous molecule. A proteinaceous molecule of the invention may be provided as a vaccine by itself or as a part of the protein or as derivatives or analogues thereof. A suitable analogue is a nucleic acid encoding a HCoV-NL63 virus proteinaceous molecule or a functional part or derivative thereof. The nucleic acid may be used in a DNA vaccine approach which is also provided in the present invention. As carrier for the DNA vaccine it is often suitable to incorporate an expressible HCoV-NL63 virus nucleic acid in a viral replicon allowing replication of the HCoV-NL63 virus nucleic acid in the target cell and thereby allowing boosting of the provided immune response. A HCoV-NL63 virus encoded protein that is suited for such a DNA vaccine approach is the S protein depicted in figure 22 or a functional part, derivative and/or analogue thereof.. A part of an S protein preferably comprises an immunogenic part of the 537 in frame insertion as compared with HCoV-229E virus. Preferably said part comprises essentially said 537 insertion. With the 537 insertion is meant a sequence corresponding to sequences 20472 to 21009 of figure 19. Other suitable candidates are the M and or the N protein or a functional part, derivative and/or analogue thereof. Typically a vaccine includes an appropriate adjuvant. Apart from the use in a vaccine the mentioned virus and/or proteinaceous molecules can also be used to generate and/or boost a HCoV-NL63 virus specific immune response in a subject. The immune response can be both cellular or humoral. Thus further provided is an isolated T-cell comprising a T-cell receptor that is specific for HCoV-NL63 virus or a proteinaceous molecule encoded by a prototype HCoV-NL63 virus. Further provided is an isolated B-cell producing an antibody specific for HCoV-NL63 virus or a proteinaceous molecule encoded by a HCoV-NL63 virus. The antibody or T-cell receptor can be cloned whereupon a cell line can be provided with an expression cassette comprising the cloned receptor or antibody. Thus the invention further provides a cell producing such a receptor or antibody. Such a cell is preferably a cell that is suitable for large scale production of the mentioned proteins such as CHO cells.

[0013] It is also possible to provide a subject with passive immunity to HCoV-NL63 virus. To this end the subject can be provided with a HCoV-NL63 specific binding molecule of the invention. Such immunity can be used to provide a barrier for (further) infection with HCoV-NL63 virus in the subject, thus further provided is a vaccine comprising a HCoV-NL63 virus specific binding molecule according to the invention. In a preferred embodiment, passive immunity is provided by a human or humanized antibody capable of specifically binding a HCoV-NL63 virus of the invention. The barrier does not have to be perfect. The presence of a binding molecule at least reduces the spread of the virus to other target cells in the subject. The passive immunity may be administered to a subject as prophylactic to at least reduce the spread of HCoV-NL63 virus in the subject when exposed to the virus. Alternatively, the passive immunity may be provided to a subject already infected with the virus. In the latter case one or more HCoV-NL63 virus specific binding molecules of the invention are used as a medicament to at least reduce the spread of the virus in the subject and thereby at least in part combat the virus infection. The invention thus further provides a medicament comprising a HCoV-NL63 virus specific binding molecule according to the invention. Further provided is the use of a virus of the invention or functional part, derivative or analogue thereof or a proteinaceous molecule of the invention or a HCoV-NL63

virus specific binding molecule of the invention, for the preparation of a vaccine against a coronaviral genus related disease

Further provided is a method for treating an individual suffering from, or at risk of suffering from, an HCoV-NL63 related disease, comprising administering to said individual a vaccine or medicament according to the invention. In yet another embodiment is provided a method for determining whether an individual suffers from an HCoV-NL63 related disease, comprising obtaining a sample from said individual and detecting a HCoV-NL63 virus or functional part, derivative or analogue thereof in said sample.

[0014] In yet another embodiment is provided an isolated cell, or recombinant or cell line comprising HCoV-NL63 virus, or a functional part, derivative and/or analogue thereof. Preferably said cell is a primate cell, preferably a monkey cell. In a preferred embodiment, said cell is a cell that replicates the HCoV-NL63 virus of the invention. In a particular embodiment the cell is a kidney cell. The cell can be used to produce the HCoV-NL63 virus of the invention or to attenuate HCoV-NL63 such that it becomes less pathogenic. Virus attenuation is spontaneous upon continued culture of the virus on the mentioned preferred cell lines. Attenuated HCoV-NL63 virus can be used as a vaccine.

10

20

25

30

35

40

45

50

55

[0015] HCoV-NL63 virus encodes an endoprotease. A sequence for the protease in the prototype HCoV-NL63 virus is depicted in figure (21). The protease is important for the processing of the polyproteins encoded by HCoV-NL63. The action of the protease is at least in part inhibited by a viral protease inhibitor as further described herein. Thus the invention further provides a compound for at least in part inhibiting HCoV-NL63 virus replication. Preferred compounds are inhibitors of inosine monophosphate dehydrogenase (55) (e.g. Ribavirin(54) and mycophenolic acid), orotidine-5'-phosphate decarboxylase inhibitors (e.g. 6-azauridine and pyrazofurin), 3CL-protease inhibitors(56) (e.g. the VN-STLQ-AG7088 ester, see below), cap-methylase inhibitors(58) (carboxylic adenosine analogs e.g. Neoplanocin A and 3-deazaneoplancin A), nitrous oxide synthase inducing compounds (e.g. glycyrrhizin) and Interferons (57). Of these the protease inhibitors are particularly preferred. The sequence VNSTLQ is the N-terminal proteolytic processing site of SARS-3CLpro that is used in the 3Clpro inhibitor VNSTLQ-AG7088 (56). In this compound the hexapeptide VNSTLQ is C-terminally linked to the vinylogous ethyl ester (AG7088, see structural formula 1 depicted below,) that inhibits SARS 3CLpro activity.

Structure of formula I

[0016] The hexapeptide VNSTLQ corresponds to YNSTLQ in HCoV-NL63. Therefore YNSTLQ- AG7088 inhibits the HCoV-NL63 3CLpro orthologs. Thus in a preferred embodiment the protease inhibitor comprises the amino acid sequence VNSTLQ more preferably YNSTLQ. Analogues of such protease inhibitors that comprise the same activity in kind not necessarily in amount are also provided by the present invention. Such analogues include, compounds comprising a peptide with the preferred sequence, wherein the peptide comprises a modification. Other analogues include compounds having protein mimetic activity that mimic the preferred amino-acid sequence.

[0017] S-adenosylmethionine-dependant ribose 2'-orthomethyltransferase Plays a role in the methylation of cap structure (GpppNm) at the 5'end of the viral RNA. Antiviral compounds inhibiting this transfer of methyl groups to reaction (carboxylic adenosine analogs e.g. Neoplanocin A and 3-deazaneoplancin A) interfere with expression of viral proteins.

[0018] The invention further provides a proteinaceous molecule encoded by HCoV-NL63 nucleic acid, wherein said proteinaceous molecule is a 3CL protease or a functional equivalent thereof. Functional equivalents include an proteolytically active part and/or derivative having one or more conservative amino acid substitutions. There are many methods known in the art to determine whether a compound has anticoronaviral activity, preferably antiproteolytic activity of a coronavirus. The invention thus further provides a method for determining whether a compound comprises anticoronavirus replication activity characterized in that said method utilizes HCoV-NL63-virus or a HCoV-NL63 protein involved in replication of HCoV-NL63 or a functional part, derivative and/or analogue thereof. Preferably, the invention provides a method for determining whether a compound is capable of at least in part inhibiting a viral protease char-

acterized in that said protease is a 3CL protease of HCoV-NL63 or a functional part, derivative and/or analogue thereof. Preferred compounds that can be tested for 3CL inhibiting quality are hexapeptides located N-terminally of 3Clpro cleavage sites. Compounds effective in at least in part inhibiting 3Cl proteolytic activity can be used for the preparation of a medicament for the treatment of an individual suffering or at risk of suffering from a HCoV-NL63 virus infection.

[0019] One or more of the preferred anticoronaviral replication compounds can be used as a medicament for the treatment of a subject suffering from or at risk of suffering from a HCoV-NL63 virus infection. The invention thus further provides a medicament for the treatment of an individual suffering from an coronavirus infection or an individual at risk of suffering there from comprising wherein said coronavirus comprises a nucleic acid sequence of a HCoV-NL63 prototype virus or a functional part, derivative and/or analogue thereof.

[0020] In the present invention several different recombinant viruses are produced using HCoV-NL63 virus nucleic acid as a backbone. Such replication competent or replication defective recombinant virus can be used for instance as gene delivery vehicles. On the other hand parts of a HCoV-NL63 virus can be used in gene delivery vehicles that are based on other means for delivering genetic material to a cell. Thus the invention further provides a gene delivery vehicle comprising at least part of a HCoV-NL63 virus nucleic acid. Preferably of the prototype virus. Preferably comprising a nucleic acid encoding a protein of HCoV-NL63 virus or a functional part, derivative and/or analogue thereof. The invention also shows chimearic coronaviruses comprising nucleic acid derived from at least two coronaviruses wherein at least one of said parts is derived from a HCoV-NL63 virus. Said HCoV-NL63 virus derived part comprises preferably at least 50 nucleotides of a protein coding domain. More preferably said HCoV-NL63 derived part comprises at least 500 and more preferably at least 1000 nucleotides of the sequence as depicted in figure 19 or a functional derivative thereof. In a preferred embodiment the invention provides a chimearic coronavirus comprising at least 1000 nucleotides of a sequence as depicted in figure 19 and at least 1000 nucleotides of another coronavirus wherein said latter 1000 nucleotides comprise a sequence that is more than 5% sequence divergent with a sequence as depicted in figure 19. The sequences of a number of HCoV-NL63 virus fragments are depicted in table 3. The location of the fragments in the large genomic RNA is depicted in figure 5. The invention therefore, in one aspect, provides an isolated or recombinant virus comprising a nucleic acid sequence as depicted in table 3, or a functional part, derivative or analogue of said virus. With the aid of the identifying prototype fragments it is possible to further sequence the genome. One way of doing this by primer walking on the genome. A primer is directed to a region of which the sequence is known and this primer is used to sequence a flanking region that is as yet unknown. A subsequent primer can be generated against the newly identified sequence and a further region can be sequenced. This procedure can be repeated until the entire sequence of the virus is elucidated. As a source of the virus one may turn to Dr. C. van der Hoek, Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Nether-

20

30

35

45

50

[0021] Alignments of the determined nucleic acid sequences revealed the reading frame used in the sequences found, accordingly the invention further provides an isolated or recombinant virus comprising an amino acid sequence as depicted in (table 3). or a functional part, derivative or analogue of said virus. A particular amino acid sequence can be produced from a variety of nucleic acids depending on the codons used. Thus the invention further provides a nucleic acid encoding an amino acid sequence as depicted in (table 3). Further provided is an isolated or recombinant virus comprising a nucleic acid sequence encoding an amino acid sequence as depicted in (table 3), or a functional part, derivative or analogue of said virus.

[0022] Coronaviruses as many other types of viruses acquire a plurality of spontaneous and selected mutations upon spreading of the virus through the subject population and/or during culturing ex vivo. Moreover, artificial mutations having no recognized counterpart in nature can be introduced into the sequence of the prototype virus or a derivative thereof, without altering the viral- and/or disease causing properties of the virus. Having characterized the prototype of the newly discovered subtype gives access to this group of viruses belonging to the same subtype. Thus the invention further provides an isolated or recombinant virus comprising a nucleic acid sequence that is approximately 80% homologous to a sequence as depicted in table 3, or 80 % homologous to an amino acid sequence depicted in Table 3 (. Preferably the homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

[0023] The respective prototype fragments were compared with a database of viral sequences and hits having a particularly high homology are mentioned in the tables 5 and 6. It may be noted that the compared fragments do not share extensive homology with any of the currently known Coronaviruses. The invention thus provides an isolated and/ or recombinant virus comprising an amino acid sequence which is more than 89% homologous to 163- 2 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 60 % homologous to 163- 4 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising a nucleic acid sequence which is more than 85 % homologous to 163- 9 nucleic acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more

preferably at least 95% and even more preferably at least 99%.

20

30

35

45

50

Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 94 % homologous to 163- 10 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 50 % homologous to 163- 11 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

[0024] Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 87 % homologous to 163- 14 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 83 % homologous to 163- 15 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising an amino acid sequence which is more than 78 % homologous to 163- 18 amino acid sequence as depicted in Table 3. Preferably said homology is at least 90%, more preferably at least 95% and even more preferably at least 99%.

Further provided is an isolated or recombinant virus comprising a nucleic acid sequence which is at least 50 % homologous to a nucleic acid sequence as depicted in Table 3. Preferably said homology is at least 80%, more preferably at least 90%, more preferably at least 95% and even more preferably at least 99%.

[0025] The invention also provides a functional part, derivative and/or analogue of an isolated and/or recombinant HCoV-NL63 virus. A part of a virus can be a membrane containing part, a nucleocapsid containing part, a proteinaceous fragment and/or a nucleic acid containing part. The functionality of the part varies with the application chosen for the part, for instance, part of the virus may be used for immunization purposes. In this embodiment the functionality comprises similar immunogenic properties in kind as the entire virus not necessarily in amount. Another use of the virus is the infectivity of the virus, for instance, for in vitro (or in vivo) culture, in this embodiment the functionality comprises a similar infectivity in kind not necessarily in amount. Many other functionalities may be defined, as there are many different uses for viruses, non-limiting examples are the generation of chimeric viruses, (i.e. with one or more other (corona) viruses, and the generation of viral vectors for vaccination and/or gene therapeutic purposes. Such viruses and/or vectors also contain a functional part of HCoV-NL63 and are thus also encompassed in the present invention. A functional derivative of a virus of the invention is defined as a virus that has been altered such that the properties of said compound are essentially the same in kind, not necessarily in amount. A derivative can be provided in many ways, for instance through nucleotide substitution (preferably "wobble" based), through (conservative) amino acid substitution, subsequent modification, etcetera.

Analogous compounds of a virus can also be generated using methods in the art. For instance, a chimeric virus can be produced, or an HCoV-NL63 virus having a chimeric protein. For instance, HCoV-NL63 can be rendered more immunogenic by generating a cell surface associated fusion protein comprising at least part of an HCoV-NL63 surface protein and a non-HCoV-NL63 immunogenic part. HCoV-NL63 virus comprising such chimeric protein can be used for inducing an enhanced immune response in a host, for instance for vaccination purposes.

As used herein, the term "a virus of the invention" is meant to also comprise a functional part, derivative and/or analogue of said virus.

[0026] The three groups of coronaviruses are associated with a variety of diseases of humans and domestic animals, including gastroenteritis and upper and lower respiratory tract disease. The human coronaviruses HCoV-229E and HCoV-OC43 are associated with mild disease (the common cold) but more severe disease is observed in children ¹⁶, albeit at a very low incidence. Several coronaviruses cause a severe disease in animals and SARS-CoV is the first example of a coronavirus that causes severe disease in humans. However, it should be emphasized that a substantial part of respiratory disease cases in humans remains undiagnosed. For instance, a recent survey of respiratory viruses in hospitalized children with bronchiolitis in Canada could not reveal a viral pathogen in about 20% of the patients¹⁷. The fact that we identified the new coronavirus in a child with bronchiolitis shows that HCoV-NL63 is a pathogenic respiratory virus.

When considering that the HCoV-NL63 is a pathogenic respiratory virus able to cause bronchiolitis in infected children, the interesting question remains why HCoV-NL63 was not recognized previously by cell culture. We found that the virus can be cultured in monkey kidney cells (tMK or LLC-MK2 cells), cells that are often used in a routine diagnostic setting and one might therefore speculate that HCoV-NL63, like SARS-CoV, was newly introduced from an animal reservoir into the human population or that this is a human virus that recently broadened its host cell range. Clearly it is of importance to study the prevalence of HCoV-NL63 infection, and screening specimens from patients with respiratory tract disease using the HCoV-NL63 diagnostic RT-PCR will shed light on this issue.

It is remarkable that the new human coronavirus was harvested from tMK cells and LLC-MK2 cells since coronaviruses are typically fastidious in cell culture with a narrow host range. However, both SARS-CoV and HCoV-NL63 seem to

replicate efficiently in monkey kidney cells (Vero-E6 cells and NCI-H292 cells for SARS-CoV). The recently described genome of SARS-CoV has several exclusive features, including some unique open reading frames that are probably of biological significance^{15, 18}. We will therefore analyze the complete genome sequence of HCoV-NL63 to screen for similarities and differences with SARS-CoV that may determine the expanded host cell range and enhanced pathogenicity of these viruses.

[0027] HCoV-NL63 is associated with a particular phenotype in infected subjects. The phenotype can encompass bronchiolitis, coryza, conjunctivitis and fever and may further encompass other respiratory problems and diarrhea. In one embodiment the invention thus further provides an isolated and or recombinant virus of the invention (having one or more of the above mentioned homology) wherein said virus or functional part, derivative and/or analogue further comprises the capability to induce an HCoV-NL63 related disease or symptom in a subject. In another embodiment the invention provides an isolated and/or recombinant virus of the invention further comprising the property to cause CPE in tertiary monkey kidney cells (tMK; Cynomolgus monkey³⁷) and/or upon passage onto the monkey cell line LLC-MK2 (ECCAC 85062804, ATCC CCL-7). In a preferred embodiment said virus does not produce CPE in Verocells (ATCC CRL-1586)³⁴.

[0028] The invention further provides a nucleic acid as depicted in table 3, and an amino acid sequence as depicted in Table 3, or a functional part and/or equivalent of such a nucleic acid and/or amino acid sequence. A functional equivalent of said nucleic acid comprises the same hybridization properties in kind, not necessarily in amount, as said nucleic acid (or part thereof). A functional equivalent of an amino acid sequence of the invention comprises the same immunogenic properties in kind, not necessarily in amount, as said amino acid sequence (or part thereof). A part of a nucleic acid of the invention comprises at least 15 nucleotides, preferably at least 20, more preferably at least 30 nucleotides. A part of an amino acid sequence comprises at least 5 amino acids in peptidic linkage with each other, more preferably at least 8, and more preferably at least 12, more preferably at least 16 amino acids. In a preferred embodiment said nucleotides and/or amino acids are at least semi-consecutive, more preferably, said nucleotides and/or amino acids are consecutive. An equivalent of a nucleic acid and/or amino acid sequence of the invention or part thereof comprises at least 80% homology to a nucleic acid and/or amino acid sequence of the invention, preferably at least 90% homology, more preferably at least 95% and even more preferably at least 99% homology to a nucleic acid and/or amino acid sequence of the invention or a part thereof.

20

30

35

40

45

50

55

[0029] The invention further provides a primer and/or probe, capable of specifically hybridizing to a nucleic acid of a virus or functional part, derivative or analogue according to the invention, preferably a primer and/or probe, capable of specifically hybridizing to a nucleic acid sequence as depicted in Table 3. More preferably, a primer and/or probe, which is capable of hybridizing to said nucleic acid under stringent conditions. In a particular preferred embodiment is provided a primer and/or probe, comprising a sequence as depicted in Table 7.

[0030] The art knows many ways in which a specific binding member can be generated against an identified nucleic acid, lipid and/or amino acid sequence. Such specific binding members may be of any nature but are typically of a nucleic acid and/or proteinaceous nature. The invention thus further provides an isolated molecule capable of specifically binding a virus, nucleic acid and/or amino acid or functional part, derivative or analogue thereof according to the invention. Said isolated molecule is also referred to as specific binding member. Preferably said specific binding member is capable of specifically binding at least part of a nucleic acid sequence as depicted in table 3 and/or at least part of an amino acid sequence as depicted in Table 3. In a preferred embodiment said binding member is a proteinaceous molecule. Preferably an antibody or a functional part, derivative and/or analogue thereof. A specific binding member preferably comprises a significantly better binding property for the HCoV-NL63 virus compared to unrelated control. However, for instance for antibodies, it is possible that the epitope specifically recognized in HCoV-NL63 is also present in a limited number of other molecules. Thus though the binding of the binding member may be specific, it may recognize also other molecules than those present in HCoV-NL63. This cross-reactivity is to be separated from a-specific binding and is a general property of antibodies. Cross-reactivity does not usually hinder the selection of suitable specific binding members for particular purposes. For instance a specific binding member that also recognized a protein in liver cells can be used in many applications even in the presence of liver cells, where additional information such as location in the cell can often be used to discriminate.

[0031] One source of an antibody of the invention is the blood of the infected subjects screened for the virus of the present invention. One may further characterize B-cells obtained from said subject. A suitable B-cell may be cultured and the antibody collected. Alternatively, the antibody may be sequenced from this B-cell and generated artificially. Another source of an antibody of the invention can be generated by immunisation of test animals or using artificial libraries to screen a purified fraction of virus. A functional part of an antibody has essentially the same properties of said antibody in kind, not necessarily in amount. Said functional part is preferably capable of specifically binding an antigen of HCoV-NL63. However, said functional part may bind such antigen to a different extend as compared to said whole antibody. A functional part or derivative of an antibody for instance comprises a FAB fragment or a single chain antibody. An analogue of an antibody for instance comprises a chimeric antibody. As used herein, the term "antibody" is also meant to comprise a functional part, derivative and/or analogue of said antibody.

[0032] Once antibody of the invention is obtained, a desired property, such as its binding capacity, can be improved. This can for instance be done by an Ala-scan and/or replacement net mapping method. With these methods, many different proteinaceous molecules are generated, based on an original amino acid sequence but each molecule containing a substitution of at least one amino acid residue. Said amino acid residue may either be replaced by Alanine (Ala-scan) or by any other amino acid residue (replacement net mapping). Each variant is subsequently screened for said desired property. Generated data are used to design an improved proteinaceous molecule.

[0033] There are many different ways in which a specific binding member can be generated. In a preferred embodiment the invention provides a method for producing a specific proteinaceous binding member comprising producing proteinaceous molecules capable of binding a virus according to the invention or to a functional part, derivative or analogue, and selecting a proteinaceous molecule that is specific for said virus. If need be, the method may be used to generate a collection of proteinaceous molecules capable of binding to said virus or functional part, derivative and/or analogue thereof and selecting from said collection one or more binding members capable of specifically binding said virus or functional part, derivative and/or analogue thereof.

[0034] Any specific binding member is characteristic for the HCoV-NL63virus of the invention. Thus a virus that is specifically reactive with such binding member is an HCoV-NL63 virus and thus provided by the invention. Thus the invention provides an isolated and/or recombinant virus that is immunoreactive with specific binding member of the invention, preferably a proteinaceous binding member. The invention further provides a composition of matter comprising isolated HCoV-NL63 virus, and/or a virus essentially corresponding to HCoV-NL63. The term, a virus "essentially corresponding to HCoV-NL63" refers to HCoV-NL63 viruses which are either identical to the HCoV-NL63 strain described hereinabove, or which comprises one or more mutations compared to the said HCoV-NL63strain. These mutations may include natural mutations or artificial mutations. Said mutations of course should allow detection with a specific binding member of HCoV-NL63, not necessarily with all of the specific binding members). Said mutations should allow the detection of the variants using common detection methods such as antibody interaction, amplification and/or hybridization.

20

30

35

45

50

[0035] Considering that specific binding members are important molecules for instance for diagnostic purposes, the invention further provides the use of a virus of the invention or functional part, derivative and/or analogue thereof, for detecting a molecule capable of specifically binding said virus in a sample. Further provided is the use of a nucleic acid and/or amino acid sequence of a virus or functional part, derivative or analogue as defined by the invention, for detecting a molecule capable of specifically binding said virus or functional part, derivative and/or analogue in a sample. Preferably said nucleic acid and/or amino acid sequence comprises a sequence as depicted in table 3 or Table 3 or a functional part, derivative or analogue thereof. Preferably said part is at least 30 nucleotides and/or amino acids long wherein said part preferably comprises more than 95% sequence identity, preferably more than 99%. In a preferred aspect said specific binding member comprises a specific ligand and/or antibody of said virus.

[0036] Further provided is a primer and/or probe according to the invention, a specific binding member of the invention, and/or a nucleic acid of a virus or functional part, derivative or analogue according to the invention, for detecting and/or identifying a HCoV-NL63 coronavirus or part thereof in a sample. Preferably, said nucleic acid comprises a sequence as depicted in table 3.

[0037] HCoV-NL63 virus may be used to generate an immune response in a subject. This can be useful for instance in vaccination strategies. Thus the invention further HCoV-NL63 provides HCoV-NL63 virus or functional part, derivative or analogue thereof for use as a vaccine or medicament. The medicament use is typically when the subject is already infected with the virus and the immunogen is used to augment the immune response against the virus. The invention further provides a specific binding member of the invention for use as a vaccine or medicament. This use is particularly favorable for when the specific binding member comprises a proteinaceous molecule, preferably an antibody or functional part, derivative and/or analogue thereof. Such an antibody can provide passive immunity but may also have active components such as proteases attached to it. The medicament use may again be the case wherein a subject infected with an HCoV-NL63 virus is treated with the specific binding member.

[0038] Vaccines may be generated in a variety of ways. One way is to culture the HCoV-NL63 virus for example on the mentioned monkey cell line(s) and to use inactivated virus harvested from the culture. Alternatively, attenuated virus may be used either inactivated or as a live vaccine. Methods for the generation of coronavirus vaccines may be adapted to produce vaccines for the HCoV-NL63 of the invention. The invention thus further provides the use of an HCoV-NL63 virus or functional part, derivative or analogue thereof for the preparation of a vaccine against a coronaviral genus related disease. The invention further provides the use of a specific binding member of the invention for the preparation of a vaccine or medicament against a coronaviral genus related disease. Further provided is the use of an HCoV-NL63 virus or functional part, derivative or analogue thereof, a specific binding member of the invention, a nucleic acid of the invention or a primer and/or probe of the invention for diagnosis of a coronaviral genus related disease. Preferably said coronaviral genus related disease comprises a HCoV-NL63 coronavirus related disease.

[0039] Further provided is a vaccine comprising an HCoV-NL63 virus or functional part, derivative or analogue thereof and/or a specific binding member of the invention. Also provided is a medicament comprising an HCoV-NL63 virus or

functional part, derivative or analogue thereof and/or a specific binding member of the invention. Preferably said vaccine or medicament is used for at least in part preventing and/or treating a HCoV-NL63 related disease.

[0040] An important use of the present invention is the generation of a diagnostic tool for determining whether a subject is suffering from an HCoV-NL63 virus infection or has been exposed to an HCoV-NL63 virus infection. Many different diagnostic applications can be envisioned. They typically contain an identifying component allowing the typing of the virus that is or was present in the subject. One diagnostic tool for HCoV-NL63 makes use of the particular proliferation characteristics of the virus in various cell lines. It replicates in the mentioned preferred monkey cell lines but does not replicate in Vero- cells. This property can be used to discriminate HCoV-NL63 from other known coronaviruses. Thus in one aspect the invention provides a diagnostic kit comprising at least one of the preferred monkey cell lines, preferably the tertiary monkey kidney cells (tMK; Cynomolgus monkey or the monkey cell line LLC-MK2. Many modern diagnostic kits comprise a specific binding member (to detect the virus or virus infected cells) and/or an HCoV-NL63 virus or a functional part, derivative and/or analogue thereof and/or amino acid of the invention or a functional part, derivative and/or analogue thereof (for detecting antibodies in blood components of the diagnosed subject). Many other current diagnostic kits rely on identification of HCoV-NL63 virus specific nucleic acid in a sample. There are various ways in which such an assay may be implemented one is a method for detecting an HCoV-NL63 virus or functional part, derivative or analogue thereof in a sample, comprising hybridizing and/or amplifying a nucleic acid of said virus or functional part, derivative or analogue with a primer and/or probe according to the invention and detecting hybridized and/or amplified product. The invention thus also provides a diagnostic kit comprising an HCoV-NL63 virus or functional part, derivative or analogue thereof, a specific binding member according to the invention and/or a primer/ probe according to the invention.

[0041] Further provided is a method for treating an individual suffering from, or at risk of suffering from, a HCoV-NL63 related disease, comprising administering to said individual a vaccine or medicament according to the invention. Also provided is a method for determining whether an individual suffers from a HCoV-NL63 related disease, comprising obtaining a sample from said individual and detecting a HCoV-NL63 virus or functional part, derivative or analogue thereof in said sample with a method and/or diagnostic kit of the invention.

[0042] Further provided is an isolated or recombinant nucleic acid encoding a virus or functional part, derivative and/ or analogue according to the invention and a nucleic acid according to the invention, comprising at least a functional part of a sequence as depicted in Table 3. Further provided is an amino acid sequence encoded by a nucleic acid according to the invention, and an amino acid sequence according to the invention, comprising at least a functional part of a sequence as depicted in Table 3. Further provided is a proteinaceous molecule capable of specifically binding HCoV-NL63, obtainable by a method according to the invention and, the use of such a proteinaceous molecule in a vaccine or a diagnostic method for the detection of HCoV-NL63.

EXAMPLES

Example 1

20

30

35

40

45

50

cDNA-AFLP for virus discovery

[0043] We modified the cDNA-AFLP technique such that it can amplify viral sequences from blood-plasma/serum samples or from CPE-positive culture supernatants (Figure 1). In the adjusted method the mRNA isolation step prior to amplification is replaced by a treatment to purify viral nucleic acid. Of importance to the purification is a centrifugation step to remove residual cells and mitochondria. In addition, a single DNAse treatment is sufficient to get rid of interfering chromosomal DNA and mitochondrial DNA from broken down cells and finally, by choosing frequent cutting restriction enzymes, the method is fine-tuned such that the majority of viruses will be amplified. With this so-called Virus Discovery cDNA-AFLP (VIDISCA) we were able to amplify viral nucleic acids from EDTA-plasma of a person with hepatitis B virus infection and a person with an acute Parvo B19 infection (results not shown). The technique can also detect HIV-1 in a positive culture supernatant demonstrating its capacity to identify both RNA and DNA viruses (results not shown). [0044] To eliminate residual cells, 110 µl of virus culture supernatant was spun down for 10 min at maximum speed in an Eppendorf microcentrifuge (13500 rpm). One hundred μl was transferred to a fresh tube and DNAse treated for 45 minutes at 37°C using 15 μl of DNAse buffer and 20 Units of DNAse I (Ambion). The DNAse treatment was included to get rid of chromosomal DNA from broken down cells. After this 900 μl of L6 lysis buffer and 40 μl of silica suspension was added and nucleic acids were extracted as described by Boom⁴. The viral nucleic acids were eluted in 40 μl H₂O. With 20 µl eluate the reverse transcription was performed using 2.5 µg random hexamers (Amersham Bioscience), 200 U MMLV-RT (InVitrogen) in a buffer containing 10 mM Tris-HCl pH 8.3, 50 mM KCl, 0.1% Triton X-100, 4.8 mM MgCl2, and 0.4 mM of each dNTP. The sample was incubated at 37°C for 90 minutes. Subsequently the second strand DNA synthesis was performed using 26 U Sequenase II (Amersham Bioscience), 7.5 U RNAse H (Amersham Bioscience) in 0.25 mM dNTPs each, 17.5 mM MgCl2 and 35 mM Tris-HCl pH 7.5. After the incubation at 37°C for 90

minutes a phenol/chloroform extraction was performed followed by an ethanol precipitation. The pellet was dissolved in 30 μ l of H₂O. The cDNA-AFLP was performed essentially as described by Bachem¹ with some modifications. The dsDNA was digested with the HinP I and Msel restriction enzymes (New England Biolabs) according to the manufacturers protocol. After the digestion, Msel adaptor and HinP I adaptor (see below) are added together with 5U ligase enzyme (InVitrogen) and ligase buffer, followed by an additional incubation of 2 hrs at 37°C. The Msel adaptor and HinP I adaptor were prepared previously by mixing a top strand oligo for the MSE and the HinP1 adaptors (Table 1) with a bottom strand oligo for the MSE adaptor and for the HinP1 adaptor, incubate at 65° C. followed by cooling down to room temperature in the presence of a 1:40 dilution of ligase buffer.

[0045] The first PCR was performed with 10 μl of ligation mixture as input, 2.5 U of AmpliTag polymerase (Perkin-Elmer), 100 ng of HinPI standard primer and 100 ng of Msel standard primer. The PCR reaction was performed according to the profile 5min 95C; 20 cycles of: 1min 95°C-1min 55°C-2min 72°C; 10 min 72 °C. Five μl of first PCR product was used as input in the second "selective" amplification step containing 100 ng of HinPI-N primer and 100 ng Msel-N (sequence of the standard primers extended with one nucleotide) and 2 U AmpliTag polymerase. The selective PCRs were amplified according to the profile of the "touch down PCR": 10 cycles of 60 sec 94° C-30 sec 65° C-1 min 72°C over which the annealing temperature was reduced from 65°C with 1 °C with each cycle, followed by 23 cycles: 30 sec 94°C-30 sec 56 °C-1 min 72 °C. Finally the sample was incubated for 10 min at 72°C. The PCR products were evaluated on 4% Metaphor® gels (Cambrex, Rockland, USA). If the bands on the gel were very faint the PCR products were concentrated by vacuum drying using 60 µl of the PCR product. The PCR fragments of interest were cut out of gel and DNA was eluted from the gel using the Qiagen gel purification kit according to the manufacturer's protocol. The PCR products were cloned using pCR® 2.1-TOPO plasmid (InVitrogen) and chemically competent One Shot E. coli (InVitrogen). A PCR on the colony was performed and this PCR product was input for sequencing the insert using Big Dye terminator chemistry (Applied Biosystems). The reverse transcription step was excluded, only HinP I digestion and adaptor ligation was performed, the first PCR was performed with 35 cycles instead of 20 and those first PCR fragments were visualized on agarose gel electrophoresis.

DNA sequencing and analysis.

20

30

35

45

50

55

[0046] Coronavirus-PCR product containing plasmids were sequenced with the BigDyeTM Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, Calif.), using the -21 M13RP and T7 primers. Electrophoresis of sequencing reaction mixtures was performed with an Applied Biosystems 377 automated sequencer, following the manufacturer's protocols. The Sequence Navigator (version 1.01) and Auto Assembler (version 2.1) software packages (ABI, California, USA) were used to analyze all sequencing data. Sequences were compared to all sequences in the Genbank database using the BLAST tool of the NCBI web page: http://www.ncbi.nlm.nih.gov/blast. For phylogenetic analysis the sequences were aligned using the ClustalX software package³⁴ with the following settings: Gap opening penalties: 10.00; Gap extension penalty 0.20, Delay divergent sequences switch at 30% and transition weight 0.59. Phylogenetic analysis was carried out using the neighbor-joining method of the MEGA program (9). The nucleotide distance matrix was generated either by Kimura's 2-parameter estimation or by the p-distance estimation (5). Bootstrap resampling (500 replications) was employed to place approximate confidence limits on individual branches.

Determining the nucleotide sequence of the complete HCoV-NL63 genome.

[0047] Using a combination of specific primers, located in the already sequenced domains of the HCoV-NL63 genome, and the proprietary PALM-method (WO 0151661) we are in the process of cloning and determining the full-length genomic sequence for this new coronavirus. Using a combination of 5'-oligonucleotides located in the analyzed part of the HCoV-NL63 genome and a 3' tagged random primer (JZH2R) additional fragments were amplified using a nested RT-PCR protocol similar to the one mentioned previously.

Isolation of SZ 163

[0048] In January 2003 a 7-month-old child appeared in hospital with coryza, conjunctivitis and fever. Chest radiography showed typical features of bronchiolitis and four days after the onset of disease a nasopharyngeal aspirate specimen was collected (sample nr: HCoV-NL63). All routinely used tests on this sample for adenovirus, respiratory syncytial virus (RSV), influenza A and B, parainfluenza 1, 2 and 3, rhinovirus, HCoV-229E and HCoV-OC43 were negative. The clinical sample was subsequently inoculated onto a variety of cells including human fibroblast lung (HFL) cells, tertiary monkey kidney cells (tMK; Cynomolgus) and R-HeLa cells. A CPE was detected exclusively on tMK cells and first noted at eight days post-inoculation. The CPE was diffuse with a refractive appearance in the affected cells followed by cell detachment after 7 days. More pronounced CPE was observed upon passage onto LLC-MK2 cells. Besides overall cell rounding, moderate cell enlargement was observed. Additional subculturing on human endothelial

lung cells, HFL, Rhabdomyosarcoma cells and Vero cells remained negative for CPE. Immunofluorescent assays to detect influenzavirus A and B, RSV, adenoviruses or parainfluenza virus types 1, 2 or 3 in the culture remained negative The culture supernatant of infected LLC-MK2 cells was subsequently analyzed by VIDISCA. As control we used the supernatant of uninfected LLC-MK2 cells. After the second PCR amplification step, several DNA fragments were present in the test sample but not in the control. These fragments were cloned and sequenced. A Blast search in GenBank revealed that 8 of 16 fragments had sequence similarity to the family of corona viruses with the highest homology the human corona virus 229E (Tables 4 and 5).

[0049] Phylogenetic analysis of a 270 nt fragment of the replicase 1B region indicated that we identified a distinct new member of the coronavirus group 1. With the VIDISCA technique, 8 HCOV-163-specific fragments, named 163-2, 163-4, 163-9, 163-10, 163-11, 163-14, 163-15 and 163-18 were isolated, cloned, sequenced and aligned with the relevant sequences from GenBank. The Genbank accession number of the used sequences are: MHV (mouse hepatitis virus): AF201929; HCoV-229E: AF304460; PEDV (porcine epidemic diarrhea virus): AF353511; TGEV (transmissible gastroenteritis virus): AJ271965; SARS-CoV: AY278554; IBV (avian infectious bronchitis virus): NC_001451; BCoV (bovine coronavirus): NC_003045; FCoV (feline coronavirus): Y13921 and X80799; CCoV (canine coronavirus): AB105373 and A22732; PRCoV (porcine respiratory coronavirus): M94097; FIPV (feline infectious peritonitis virus): D32044. Position of the HCoV-NL63 fragments compared to HCoV-229E (AF304460): Replicase 1AB gene: 15155-15361, 16049-16182, 16190-16315, 18444-18550, Spike gene: 22124-22266; Nucleocapsid gene: 25667-25882 and 25887-25957; 3'UTR: 27052-27123. Branch lengths indicate the number of substitutions per sequence. From the most closely related species sequence identity scores were calculated (Tables 5 and 6).

[0050] Also the deduced amino acid sequence were aligned to the corresponding domains in the open reading frames of related corona (-like) viruses (Table 6).

[0051] The human corona viruses account for 10 to 30% of the common colds in man⁷, and it is not unusual to find a coronavirus in a child with a respiratory illness. However, it is striking that the virus HCoV-NL63 was harvested from LLC-MK cells. Human Corona virus 229E and OC-43 are known for there inability to replicate on monkey kidney cells. Intriguingly, the newly identified human corona virus that is responsible for SARS is also able to replicate in monkey kidney cells³⁰.

Propagation of HCoV-NL63 in cell culture

10

20

[0052] A nasopharyngeal aspirate was collected 4 days after the onset of symptoms. The specimen was tested for the presence of adenovirus, RSV, influenza A, influenza B, and parainfluenza type 1, 2 an 3 using the Virus Respiratory Kit (Bartels: Trinity Biotech plc, Wicklow Ireland). In addition, PCR diagnosis for rhinoviruses, meta-pneumovirus and HCoV-OC43 and HCoV-229E were performed^{2, 10}. The original nasopharyngeal aspirate was subsequently inoculated onto a variety of cell cultures including HFL cells, tMK cells and R-HeLa cells. The tubes were kept in a roller drum at 34°C and observed every 3 to 4 days. Maintenance medium was replenished every 3 to 4 days. Two different types of medium were implemented: Optimem 1 (Gibco) without bovine fetal serum was used for the tMK cells and MEM Hanks' /Earle's medium (Gibco) with 3% bovine fetal serum was used for the remaining cell types. On the virus culture direct staining was performed with pools of fluorescent-labeled mouse antibodies against influenzavirus A and B, RSV and adenoviruses (Imagen, DAKO). Indirect staining was performed for parainfluenza virus types 1, 2 or 3 with mouse antibodies (Chemicon, Brunschwig, Amsterdam Netherlands) and subsequent staining with labeled rabbit anti-mouse antibodies (Imagen, DAKO).

Method to detect HCoV-NL63 in nasopharyngeal swabs.

[0053] For the diagnostic RT-PCR, nucleic acids were extracted by the Boom method⁴ 4 from 50 μl virus supernatant or 50 μl suspended nasopharyngeal swab. The reverse transcription was performed as described above with the exception that 10 ng of reverse transcription primer repSZ-RT (Table 7) was used. The entire RT mixture was added to the first PCR mixture containing 100 ng of primer repSZ-1 and 100 ng of primer repSZ-3. The PCR reaction was performed according to the profile 5 min 95 °C; 20 cycles of: 1 min 95°C - 1 min 55°C - 2 min 72°C; 10 min 72 °C. A nested PCR was started using 5 μl of the first PCR with 100 ng of primer repSZ-2 and 100 ng of primer repSZ-4. Twenty-five PCR cycles were performed of the same profile as the first PCR.

[0054] Ten μ I of the first and 10 μ I of the nested PCR was analyzed by agarose gel electrophoresis (Fig. 2). Cloning and sequencing of the fragments was performed essentially as described above.

55 Method of raising polyclonal antibodies

[0055] Appropriate domains within the HCoV-NL63 surface proteins (e.g. S-glycoprotein or HE- glycoprotein) can be selected and amplified with suitable oligonucleotides and RT-PCR. The corresponding purified viral antigens can

be obtained by expression in a suitable host (*e.g. Yarrowia lipolytica* as previously described³⁸). Female NZW rabbits (approx 4 kg) are primed with 0.5 to 5.0 mg of viral protein antigen preparation. The antigen is suspended in 0.5 ml. of phosphate buffered saline (pH 7.3) and emulsified in an equal volume of complete Freund's adjuvant (CFA). Freund's Adjuvant is a well-established adjuvant system that is appropriate for use in these experiments where small amounts of antigen are used, and where immunogenicity of the antigen (although likely) is unknown. Published guidelines for use will be followed, including limiting injection to 0.1 ml at each site, using CFA only for initial immunization dose. This antigen preparation (1 ml total volume) is injected subdermally in the loose skin on the backside of the rabbit's neck. This injection route is immunologically effective and minimizes the possibility of local inflammation associated with unilateral or bilateral flank injection (such ensuing flank inflammation can impair animal mobility). After resting for 3 weeks, one ml of blood will be removed from the ear artery for a test bleed. Antibodies will be boosted if titers of the desirable antibodies are judged to be too low. Rabbits with adequate antibody levels will be boosted subdermally 1.0 mg of antigen contained in CFA. Boosted animals will be bled after two weeks; i.e., 15 ml of blood will be taken from the ear artery using a heat lamp to dilate the blood vessel. The rabbit will be placed in a commercial restraint, tranquillized with xylazine not more than seven times in total after which the rabbit will be exsanguinated by cardiac puncture following anesthesia using xylazine/ketamine.

Method for Vaccine production

15

20

30

35

40

45

50

55

[0056] For the production of a subunit vaccine the S-glycoprotein perhaps combined with the HE, M and N proteins, could be expressed in a suitable eukaryotic host (e.g. Y. *lipolytica* or LLC-MK2 cells) and purified using preferentially two small affinity tags (e.g. His-tag or the StrepII tag). After appropriate purification, the resulting viral proteins can be used as a subunit vaccine.

[0057] Alternatively the HCoV-NL63 virus can be propagated in a suitable cell line as described above and subsequently treated as described by Wu 11 . Briefly the virus is precipitated from culture medium with 20% polyethylene glycol 6000 and purified by ultracentrifugation at $80.000 \times g$ for 4 hours through a discontinuous 40-65% sucrose gradient followed by a linear 5 to 40 % CsCl gradient for 4 hours at $120.000 \times g$. The resulting virus preparation can be inactivated by heating for 30 minutes at 65° C as described by Blondel³.

Analysis of S glycoprotein or any of the HCOV-NL63 viral proteins binding to an immobilized ligand (e.g. antibody) in an optical biosensor.

[0058] Binding reactions were carried out in an IAsys two-channel resonant mirror biosensor at 20°C (Affinity Sensors, Saxon Hill, Cambridge, United Kingdom) with minor modifications. Planar biotin surfaces, with which a signal of 600 arc s corresponds to 1 ng of bound protein/mm2, were derivatized with streptavidin according to the manufacturer's instructions. Controls showed that the viral proteins did not bind to streptavidin-derivatized biotin surfaces (result not shown). Biotinylated antibody was immobilized on planar streptavidin-derivatized surfaces, which were then washed with PBS. The distribution of the immobilized ligand and of the bound S-glycoprotein on the surface of the biosensor cuvette was inspected by the resonance scan, which showed that at all times these molecules were distributed uniformly on the sensor surface and therefore were not micro-aggregated. Binding assays were conducted in a final volume of 30 μ l of PBS at 20 \pm 0.1 °C. The ligate was added at a known concentration in 1 μ l to 5 μ l of PBS to the cuvette to give a final concentration of S-glycoprotein ranging from 14 to 70 nM. To remove residual bound ligate after the dissociation phase, and thus regenerate the immobilized ligand, the cuvette was washed three times with 50 μl of 2 M NaCl-10 mM Na2HPO4, pH 7.2, and three times with 50 μl of 20 mM HCl. Data were pooled from experiments carried out with different amounts of immobilized antibody (0.2, 0.6, and 1.2 ng/mm2). For the calculation of kon, low concentrations of ligate (S-glycoprotein) were used, whereas for the measurement of k_{off}, higher concentrations of ligate were employed $(1~\mu\text{M})$ to avoid any rebinding artefacts. The binding parameters k_{on} and k_{off} were calculated from the association and dissociation phases of the binding reactions, respectively, using the non-linear curve-fitting FastFit software (Affinity Sensors) provided with the instrument. The dissociation constant (K_d) was calculated from the association and dissociation rate constants and from the extent of binding observed near equilibrium.

Example 2

Methods

Virus isolation

[0059] The child, who was living in Amsterdam, was admitted to the hospital with complaints of coryza and conjunctivitis since 3 days. At admission she had shortness of breath and refused to drink. The patient's temperature was 39

°C, the respiratory rate was 50 breaths/min with oxygen saturation of 96% and her pulse was 177 beats/min. Upon auscultation bilateral prolonged expirium and end-expiratory wheezing was found. A chest radiograph showed the typical features of bronchiolitis. The child was treated with salbutamol and ipratropium at the first day, followed by the use of salbutamol only for 5 days. The child was seen daily at the out patient clinic and the symptoms gradually decreased. A nasopharyngeal aspirate was collected 5 days after the onset of symptoms. The specimen was tested for the presence of RSV, adenovirus, influenza A and B virus, and parainfluenza virus type 1, 2 and 3 using the Virus Respiratory Kit (Bartels: Trinity Biotech plc, Wicklow Ireland). In addition, PCR tests for rhinoviruses, enterovirus, metapneumovirus and HCoV-OC43 and HCoV-229E were performed (2, 10). The original nasopharyngeal aspirate was inoculated onto a variety of cells. The cultures were kept in a roller drum at 34°C and observed every 3 to 4 days. Maintenance medium was replenished every 3 to 4 days. Two different types of medium were implemented: Optimem 1 (InVitrogen, Breda, The Netherlands) without bovine fetal serum was used for the tMK cells and MEM Hanks' /Earle's medium (InVitrogen, Breda, The Netherlands) with 3% bovine fetal serum was used for the remaining cell types. Cell cultures that were infected with the aspirate specimen were stained for the presence of respiratory viruses after one week of incubation. Direct staining was performed with pools of fluorescent-labeled mouse antibodies against RSV and influenza A and B virus (Imagen, DakoCytomation Ltd, Cambridge, UK). Indirect staining was performed for adenoviruses and parainfluenza virus type 1, 2 or 3 with mouse antibodies (Chemicon International, Temecula, California) and subsequent staining with FITC-labeled rabbit anti-mouse antibodies (Imagen, DakoCytomation Ltd, Cambridge, UK).

20 VIDISCA method

10

30

35

40

50

[0060] To remove residual cells and mitochondria, 110 μl of virus culture supernatant was spun down for 10 min at maximum speed in an eppendorf microcentrifuge (13500 rpm). To remove chromosomal DNA and mitochondrial DNA from the lysed cells, 100 µl was transferred to a fresh tube and treated with DNAse I for 45 min at 37°C (Ambion, Huntingdon, UK). Nucleic acids were extracted as described by Boom et al. (4). A reverse transcription reaction was performed with random hexamer primers (Amersham Bioscience, Roosendaal, The Netherlands) and MMLV-RT (In-Vitrogen, Breda The Netherlands) while second strand DNA synthesis was carried out with Sequenase II (Amersham Bioscience, Roosendaal, The Netherlands). A phenol/chloroform extraction was followed by an ethanol precipitation. The cDNA-AFLP was performed essentially as described by Bachem et al (1) with some modifications. The dsDNA was digested with the HinP I and Mse I restriction enzymes (New England Biolabs, Beverly, Massachusetts). Mse Iand HinP I-anchors (see below) were subsequently added with 5U ligase enzyme (InVitrogen, Breda, The Netherlands) in the supplied ligase buffer for 2 hrs at 37°C. The Mse I-and HinP I-anchors were prepared by mixing a top strand oligo (5'-CTCGTAGACTGCGTACC-3' for the Mse I anchor and 5'-GACGATGAGTCCTGAC-3' for the HinP I anchor) with a bottom strand oligo (5'-TAGGTACGCAGTC-3' for the Mse I anchor and 5'- CGGTCAGGACTCAT-3' for the HinP I anchor) in a 1:40 dilution of ligase buffer. A 20 cycle PCR was performed with 10 μl of the ligation mixture, 100 ng HinP I standard primer (5'-GACGATGAGTCCTGACCGC-3') and 100 ng Mse I standard primer (5'-CTCGTAGACT-GCGTACCTAA-3'). Five µl of this PCR product was used as input in the second "selective" amplification step with 100 ng HinPI-N primer and 100 ng Msel-N (the "N" denotes that the standard primers are extended with one nucleotide: G, A, T or C). The selective rounds of amplification were done with a "touch down PCR": 10 cycles of [60 sec 94°C-30 sec 65°C-1 min 72°C] and the annealing temperature was reduced with 1 °C each cycle, followed by 23 cycles: [30 sec 94°C-30 sec 56 °C-1 min 72 °C] and 1 cycle 10 min 72°C. The PCR products were analyzed on 4% Metaphor® agarose gels (Cambrex, Rockland, Maine) and the fragments of interest were cloned and sequenced using BigDye terminator reagents. Electrophoresis and data collection was performed on an ABI 377 instrument.

45 cDNA library construction and full genome sequencing

[0061] The cDNA library was produced as described by Marra et al ¹⁷, with minor modifications. During reverse transcription only random hexamer primers were used and no oligo-dT primer, and the amplified cDNA was cloned into PCR2.1-TOPO TA cloning vector. Colonies were picked and suspended in BHI media. The E.coli suspension was used as input in a PCR amplification using T7 and M13 RP for amplification. The PCR products were subsequently sequenced with the same primers that were used in the PCR-amplification and the BigDye terminator reagent. Electrophoresis and data collection was performed on an ABI 377 instrument. Sequences were assembled using the AutoAssembler DNA sequence Assembly software version 2.0.

55 Diagnostic RT-PCR

[0062] From 492 persons a total of 600 respiratory samples collected between December 2002 and August 2002. The kind of material ranged from oral/nasopharyngeal aspirate, throat swabs, bronchioalveolary lavages and sputum.

The samples were collected for routine virus diagnostic screening of persons suffering from upper and lower respiratory tract disease. One hundred μ I of the sample was used in a Boom extraction (4). The reverse transcription was performed with MMLV-RT (InVitrogen) using 10 ng or reverse transcription primer (repSZ-RT: 5'- CCACTATAAC-3'). The entire RT mixture was added to the first PCR mixture containing 100 ng of primer repSZ-1 (5'-GTGATGCATATTGC3') and 100 ng of primer repSZ-3 (5'-CTCTTGCAGGTATAATCCTA-3'). The PCR reaction was performed according to the profile 5min 95C; 20 cycles of: 1min 95°C-1min 55°C-2min 72°C; 10 min 72 °C. A nested PCR was started using 5 μ I of the first PCR with 100 ng of primer repSZ-2 (5'-TTGGTAAACAAAAGATAACT-3') and 100 ng of primer repSZ-4 (5'-TCAATGCTATAAACAGTCAT-3'). Twenty-five PCR cycles were performed of the same profile as the first PCR. Ten μ I of the PCR products was analyzed by agarose gel electrophoresis. All positive samples were sequenced to confirm the presence of HCoV-NL63 in the sample.

Sequence analysis

[0063] Sequences were compared to all sequences in the Genbank database using the BLAST tool of the NCBI web page: http://www.ncbi.nlm.nih.gov/blast. For phylogenetic analysis the sequences were aligned using the ClustalX software package with the following settings: Gap opening penalties: 10.00; Gap extension penalty 0.20; Delay divergent sequences switch at 30% and transition weight 0.5 (9). Phylogenetic analysis was carried out using the neighborjoining method of the MEGA program (5) using the information of all fragments within one gene. The nucleotide distance matrix was generated either by Kimura's 2 parameter estimation or by the p-distance estimation (6). Bootstrap resampling (500 replicates) was employed to place approximate confidence limits on individual branches.

Results

10

15

20

25

30

35

40

45

50

55

Virus isolation from a child with acute respiratory disease

[0064] In January 2003 a 7-month-old child appeared in the hospital with coryza, conjunctivitis and fever. Chest radiography showed typical features of bronchiolitis and a nasopharyngeal aspirate specimen was collected five days after the onset of disease (sample NL63). Diagnostic tests for respiratory syncytial virus (RSV), adenovirus, influenza A and B virus, parainfluenza virus type 1, 2 and 3, rhinovirus, enterovirus, HCoV-229E and HCoV-OC43 remained negative. The clinical sample was subsequently inoculated onto human fetal lung fibroblasts (HFL), tertiary monkey kidney cells (tMK; Cynomolgus monkey) and HeLa cells. CPE was detected exclusively on tMK cells and first noted at eight days post-inoculation. The CPE was diffuse with a refractive appearance in the affected cells followed by cell detachment after 7 days. More pronounced CPE was observed upon passage onto the monkey kidney cell line LLC-MK2 with overall cell rounding and moderate cell enlargement (Fig. 1). Additional subcultures on HFL, rhabdomy-osarcoma cells and Vero cells remained negative for CPE. Immunofluorescent assays to detect RSV, adenovirus, influenza A and B virus, or parainfluenza virus type 1, 2 and 3 in the culture remained negative. Acid lability and chloroform sensitivity tests demonstrated that the virus is most likely enveloped and not a member of the picornavirus group²⁴.

Virus discovery by the VIDISCA method

[0065] Identification of unknown pathogens by molecular biology tools encounters the problem that the target sequence is not known and that genome specific PCR-primers cannot be designed. To overcome this problem we developed the VIDISCA method that is based on the cDNA-AFLP technique⁴. The advantage of VIDISCA is that prior knowledge of the sequence is not required as the presence of restriction enzyme sites is sufficient to guarantee amplification. The input sample can be either blood plasma/serum or culture supernatant. Whereas cDNA-AFLP starts with isolated mRNA, the VIDISCA technique begins with a treatment to selectively enrich for viral nucleic acid, which includes a centrifugation step to remove residual cells and mitochondria. In addition, a DNAse treatment is used to remove interfering chromosomal DNA and mitochondrial DNA from degraded cells, whereas viral nucleic acid is protected within the viral particle. Finally, by choosing frequently cutting restriction enzymes, the method is fine-tuned such that most viruses will be amplified. Using VIDISCA we were able to amplify viral nucleic acids from EDTA-plasma of a person with hepatitis B virus infection and a person with an acute parvovirus B19 infection. The technique can also detect HIV-1 in cell culture, demonstrating its capacity to identify both RNA and DNA viruses.

[0066] The supernatant of the CPE-positive culture NL63 was analyzed by VIDISCA. We used the supernatant of uninfected cells as a control. After the second PCR amplification step, unique and prominent DNA fragments were present in the test sample but not in the control. These fragments were cloned and sequenced. Twelve out of 16 fragments showed sequence similarity to members of the family of coronaviruses, but significant sequence divergence was apparent in all fragments. These results indicate that we identified a novel coronavirus (HCoV-NL63).

Detection of HCoV-NL63 in patient specimens

[0067] To demonstrate that HCoV-NL63 originated from the nasopharyngeal aspirate of the child, we designed a diagnostic RT-PCR that specifically detects HCoV-NL63. This test, based on unique sequences within the 1b gene, confirmed the presence of HCoV-NL63 in the clinical sample. The sequence of this PCR product was identical to that of the virus identified upon in vitro passage in LLC-MK2 cells (results not shown).

[0068] Having confirmed that the cultured coronavirus originated from the child, the question remains whether this is an isolated clinical case or whether HCoV-NL63 is circulating in humans. To address this question, we examined respiratory specimens of hospitalized persons and individuals visiting the outpatient clinic between December 2002 and August 2003 for the presence of HCoV-NL63. We identified 7 additional persons that carried HCoV-NL63 . Sequence analysis of the PCR products indicated the presence of a few characteristic (and reproducible) point mutations in several samples, suggesting that several subgroups of NL63 may co-circulate. At least 5 of the HCoV-NL63-positive individuals suffered from a respiratory tract illness, the clinical data of 2 persons were not available. Including the index case, five patients were children less than 1 year old and 3 patients were adults. Two adults are likely to be immunosuppressed, as one of them is a bone marrow transplant recipient, and the other is an HIV positive patient suffering from AIDS with very low CD4 cell counts. No clinical data of the third adult was available. Only 1 patient had a coinfection with RSV (nr 72), and the HIV-infected patient (nr 466) carried *Pneumocystis carinii*. No other respiratory agent was found in the other HCoV-NL63-positive patients, suggesting that the respiratory symptoms were caused by HCoV-NL63. All HCoV-NL63 positive samples were collected during the last winter season, with a detection frequency of 7% in January 2003. None of the 306 samples collected in the spring and summer of 2003 contained the virus (*P* < 0.01, 2-tailed t-test).

Complete genome analysis of HCoV-NL63

20

30

35

45

50

[0069] The genomes of coronaviruses have a characteristic, genome organization. The 5' half contains the large 1a and 1b genes, encoding the non-structural polyproteins, followed by the genes coding for four structural proteins: spike (S), membrane (M), envelope (E) and the nucleocapsid (N) protein. Additional non-structural proteins are encoded either between 1b and the S gene, between the S and E gene, between the M and N gene or downstream of the N gene. [0070] To determine whether the HCoV-NL63 genome organization shares these characteristics, we constructed a cDNA library with a purified virus stock as input material. A total of 475 genome fragments were analyzed, with an average coverage of 7 sequences per nucleotide. Specific PCRs were designed to fill in gaps and to sequence regions with low quality sequence data. Combined with 5'RACE (Rapid Amplification of cDNA Ends) and 3'RACE experiments the complete HCoV-NL63 genome sequence was resolved.

[0071] The genome of HCoV-NL63 is a 27,553-nucleotide RNA with a poly A tail. With a G-C content of 34% it has the lowest G-C content among the *coronaviridae*, which range from 37%-42%²⁵. ZCurve software was used to identify ORFs²⁶ and the genome configuration is portrayed using the similarity with known coronaviruses (Fig. 6). The 1a and 1b genes encode the RNA polymerase and proteases that are essential for virus replication. A potential pseudoknot structure is present at position 12439, which may provide the -1 frameshift signal to translate the 1b polyprotein. Genes predicted to encode the S, E, M and N proteins are found in the 3' part of the genome. Short untranslated regions (UTRs) of 286 and 287 nucleotides are present at the 5' and 3' termini, respectively. The hemagglutinin-esterase gene, which is present in some group 2 and group 3 coronaviruses, was not present. ORF 3 between the S and E gene probably encodes a single accessory non-structural protein.

[0072] The 1a and 1ab polyproteins are translated from the genomic RNA, but the remaining viral proteins are translated from subgenomic mRNAs (sg mRNA), each with a common 5' end derived from the 5' part of the genome (the 5' leader sequence) and 3' coterminal parts. The sg mRNA are made by discontinuous transcription during negative strand synthesis²⁷. Discontinuous transcription requires base-pairing between *cis*-acting transcription regulatory sequences (TRSs), one located near the 5' part of the genome (the leader TRS) and others located upstream of the respective ORFs (the body TRSs)²⁸. The cDNA bank that we used for sequencing contained copies of sg mRNA of the N protein, thus providing the opportunity to exactly map the leader sequence that is fused to all sg mRNAs. A leader of 72 nucleotides was identified at the 5' UTR. The leader TRS (5'-UCUCAACUAAAC-3') showed 11/12-nucleotide similarity with the body TRS upstream of the N gene. A putative TRS was also identified upstream of the S, ORF 3, E and M gene.

[0073] The sequence of HCoV-NL63 was aligned with the complete genomes of other coronaviruses. The percentage nucleotide identity was determined for each gene. For all genes except the M gene, the percentage identity was the highest with HCoV-229E. To confirm that HCoV-NL63 is a new member of the group 1 coronaviruses, phylogenetic analysis was performed using the nucleotide sequence of the 1A, 1B, S, M and N gene. For each gene analyzed, HCoV-NL63 clustered with the group 1 coronaviruses. The bootstrap values of the subgroup HCoV-NL63/HCoV-229E were 100 for the 1a, 1b and S gene. However, for the M and N gene the bootstrap values of this subcluster decreased

(to 78 and 41 respectively) and a subcluster containing HCoV-229E, HCoV-NL63 and PEDV becomes apparent. A phylogenetic analysis could not be performed for the ORF 3 and E gene because the region varied too much between the different coronavirus groups or because the region was too small for analysis, respectively. Bootscan analysis by the Simplot software version 2.5 ²⁹ found no signs of recombination (results not shown)..

[0074] The presence of a single non-structural protein gene between the S and E gene is noteworthy since almost all coronaviruses have 2 or more ORFs in this region, with the exception of PEDV and OC43 ^{30,31}. Perhaps most remarkable is a large insert of 537 nucleotides in the 5'part of the S gene when compared to HCoV-229E. A Blast search found no similarity of this additional 179-amino acid domain of the spike protein to any coronavirus sequence or any other sequences deposited in GenBank.

Tables

[0075]

15

Table 1: cDNA- AFLP oligonucleotides for virus discovery

20	Oligo	Sequence
	Top strand MSE adaptor	CTCGTAGACTGCGTACC
25	Top strand for HinP1 adaptor	GACGATGAGTCCTGAC
	Bottom strand oligo for MSE adaptor	TAGGTACGCAGTC
	Bottom strand oligo for HinP1 adaptor	CGGTCAGGACTCAT
	HinPI standard primer	GACGATGAGTCCTGACCGC
30	MseI standard primer	CTCGTAGACTGCGTACCTAA

35

Table 2: Oligonucleotide for PALM extension of the HCOV-NL63 Sequence

40

Oligonucleotide name, Application, Sequence 5'- 3'

JZH2R 1st PCR GCTATCACAATGGACNNNNNG

45

50

Table 3. Nucleotide- and corresponding deduced amino acid sequences

Fragment	Sequence
163-2	GTATTGTTTTTGTTGCTTGTGCCCATGCTGCTGTTGATTCCTTATGTGCAAAAGCTATGA CTGTTTATAGCATTGATAAGTGTACTAGGATTATACCTGCAAGAGCTCGGGTTGAGTGTT ATAGTGGCT
163-2 Translation	Replicase polyprotein 1a IVFVACAHAAVDSLCAKAMTVYSIDKCTRIIPARARVECYSG
163-4	ATGGGTCTAGATATGGCTTGCAAAACTTACTACAGTTACCTAACTTTTATTATGTTAGTA ATGGTGGTAACAATTGCACTACGGCCGTTATGACCTATTCTAATTTTGGTATTTGTGCTG ATGGTTCTTTGATTCCTGTTCGTCC
163-4 Translation	Spike protein GSRYGLQNLLQLPNFYYVSNGGNNCTTAVMTYSNFGICADGSLIPVR
163-9 (3'-UTR)	ATGATAAGGGTTTAGTCTTACACACAATGGTAGGCCAGTGATAGTAAAGTGTAAGTAA
163-10	ATGTCAGTGATGCATATGCTAATTTGGTTCCATATTACCAACTTATTGGTAAACAAAAGA TAACTACAATACAGGGTCCTCCTGGTAGTGGTAAGTCACATTGTTCCATTGGACTTGGAT TGTACTACCCAGGT
163-10 Translation	Replicase polyprotein 1ab VSDAYANLVPYYQLIGKQKITTIQGPPGSGKSHCSIGLGLYYPG
163-11	ATCTAAACTAAACAAAATGGCTAGTGTAAATTGGGCCGATGACAGAGCTGCTAGGAAGAA ATTTCCTCCTCCTTCATTTTACATGCCTCTTTTGGTTAGTTCTGATAAGGCACCATATAG GGTCATTCCCAGGAATCTTGTCCCTATTGGTAAGGGTAATAAAGATGAGCAGATTGGTTA TTGGAATGTTCAAGAGCGTTGGCGTAT
163-11 Translation	Nucleocapsid protein SKLNKMASVNWADDRAARKKFPPPSFYMPLLVSSDKAPYRVIPRNLVPIGKGNKDEQIGY WNVQERWR
163-14	ACAAAATTTGAATGAGGGTGTTCTTGAATCTTTTTCTGTTACACTTCTTGATAATCAAG AAGATAAGTTTTGGTGTAAGATTTTTATGCTAGTATGTAT
163-14 Translation	Replicase polyprotein 1ab KNLNEGVLESFSVTLLDNQEDKFWCEDFYASMYENSTILQAAGLCVVCGSQTVLRCGDCI RKPMLCTK
163-15	AGGGGGCAACGTGTTGATTTGCCTCCTAAAGTTCATTTTTATTACCTAGGTACTGGACCT CATAAGGACCT

163-15 Nucleocapsid protein RGQRVDLPPKVHFYYLGTGPHKD Translation 163-18 Replicase polyprotein 1ab SSCVTRCNIGGAVCSKHANLYQKYVEAYNTFTQAG 163-18 Translation

15

5

10

Table 4:

20

25

30

Identific	Identification of cDNA-AFLP fragments						
Fragme	nt Identification best Blast hit						
163-2	replicase polyprotein 1ab [Human coronavirus 229E]						
163-4	spike protein [Human coronavirus 229E]						
163-9	3'UTR Human coronavirus 229E						
163-10	replicase polyprotein 1ab [Human coronavirus 229E]						
163-11	replicase polyprotein 1ab [Human coronavirus 229E]						
163- 14	replicase polyprotein 1ab [Human coronavirus 229E]						
163-15	nucleocapsid protein [Human coronavirus 229E]						
163-18	replicase polyprotein 1ab [Human coronavirus 229E]						

Table 5:

35	Pairwise nucleotide sequence homologies between the virus of the present invention and different corona (like) viruses in percentages sequence identity (%)							
	Fragment	BcoV	MHV	HcoV	PEDV	TGE	SARS	IBV
	Replicase 1AB 163-2	59.6	61.2	76.7	70.5	64.3	65.8	64.3
40	Spike gene 163-4	31.7	26.5	64.6	48.9	45.4	33.7	25.9
	3'UTR 163-9	29.5	34	81.9	53.6	50	31.5	38
45	Replicase 1AB 163-10	55.2	57.4	82	73.8	69.4	64.1	65.1
45	Nucleocapsid 163-11	25.5	23.8	54.9	51.5	44.6	23.3	27.6
	Replicase 1AB 163-14	52.1	52.1	78.7	72.9	76.3	52.6	58.4
50	Nucleocapsid 163-15	29.5	35.2	71.8	63.3	60.5	25.3	45
	Replicase 1AB 163-18	67.2	65.4	72.8	65.4	61.6	68.2	57

Table 6:

Fragment	BCoV	MHV	HcoV	PEDV	TGE	SARS	IBV
Replicase 1AB 163-2	55.8	53.4	88.3	79	60.4	67.4	55.8
Spike gene 163-4	ND	ND	56.2	ND	ND	ND	ND
Replicase 1AB 163-10	51.1	53.3	93.3	86.6	80	57.7	55.5
Nucleocapsid 163-11	ND	ND	48.4	ND	ND	ND	ND
Replicase 1AB 163-14	50.7	50.7	86.9	78.2	78.2	46.3	47.8
Nucleocapsid 163-15	ND	ND	82.6	ND	ND	ND	ND
Nucleocapsid 163-18	63.8	63.8	77.7	69.4	69.4	58.3	55.5

Table 7: Oligos for specific detection of HcoV-163

25		
20	Primer	Sequence
	repSZ-RT	CCACTATAAC
30	repSZ-1	GTGATGCATATGCTAATTTG
30	repSZ-2	TTGGTAAACAAAAGATAACT
	repSZ-3	CTCTTGCAGGTATAATCCTA
35	repSZ-4	TCAATGCTATAAACAGTCAT

Table 8:

		Tak	ne o.	
М	olecule Features			
	Start	End	Name	Description
	287	12439	1a	ORF-1a
	4081	4459		Pfam 01661
	9104	10012		3CI protease
	12433	12439		Ribosome slippery site
	12439	20475	1b	ORF-1b
	14166	14490		Pfam 00680
	16162	16965		COG1112, Super family DNA and RNA helicase
	16237	16914		Pfam 01443 Viral helicase
	20472	24542	2	ORF-2 S(pike)-gene
	21099	22619		S1 Pfam 01601
	22625	24539		S2 Pfam 01601

Table 8: (continued)

Molecule Features			
Start	End	Name	Description
24542	25219	3	ORF-3
24551	25174		NS3b Pfam 03053
25200	25433	4	ORF-4 Pfam 05780, Coronavirus NS4 E (envelope) protein
25442	26122	5	ORF-5
25442	26119		Matrix glycoprotein Pfam 01635 M-gene
26133	27266	6	ORF-6
26184	27256		Nucleocapsid Pfam 00937 N-gene

Via a -1 frame shift at the ribosome slippery site the 1a ORF is extended to protein of 6729 amino acid residues referred to as 1ab. ORF 1a and 1ab encode two polyproteins that are proteolytically converted to 16 largely uncharacterized enzymes that are involved in RNA replication (for review see Snijder, E. J., P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya. 2003. Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. J. Mol. Biol. **331**:991-1004).

Table 9:

Proteins from HcoV-NL63 ORFs								
ORF	ORF Number of AA M _w prediction							
1a	4060	451364	Polyprotein					
1ab	6729	752822	Polyprotein					
2	1356	149841	Spike					
3	225	25658						
4	77	9177	Envelope					
5	226	25927	Matrix					
6	377	42252	Nucleocapsid					

[0076] The $M_{\rm w}$ prediction does not take into account post-translational modification like glycosylation or cleavage of a signal sequence.

Table 10: Amplification oligonucleotides for HCoV-NL65 S, M and N encoding regions

Primer	Sequence				
S1	ACAAGTTTGTACAAAAAAGCAGGCTTCAAACTTTTCTTGATTTTGCTTGTTTTGCCCC				
S2	ACCACTTTGTACAAGAAAGCTGGGTCTTGAACGTGGACCTTTTCAAATTCG				
M1	ACAAGTTTGTACAAAAAGCAGGCTTCTCTAATAGTAGTGTGCCTCTTTTAGAGG				
M2	ACCACTTTGTACAAGAAAGCTGGGTCGATTAAATGAAGCAACTTCTC				
N1	ACAAGTTTGTACAAAAAAGCAGGCTTCGCTAGTGTAAATTGGGCCGATG				
N2	ACCACTTTGTACAAGAAAGCTGGGTCATGCAAAACCTCGTTGACAATTTCTATAATGGC				

[0077] The S, M and N complementary sequences are indicated in bold print. The remainder of the PCR primers is composed of either in-frame attB1 or attB2 sites

Table 11:

	Overall full length genome DNA sequence identity							
	BCV	HC229 E	IBV	SARS	TGV	HCoV- NL63	HCoV- OC43	
BCV	100	46	43	54	40	43	95	
HC229 E		100	50	48	53	65	46	
IBV			100	43	46	48	43	
SARS				100	40	43	53	
TGV					100	55	40	
HCoV-NL63						100	43	
OC43							100	

[0078] Overall DNA sequence identity percentages of HCoV-NL63 compared to other coronaviruses. From the Sim-Plot graph (Fig. 7), comparing HCoV-NL63 (query) with SARS associated coronavirus and HCoV-229E, can be deduced that local sequence identity never exceeds 85%

Table 12:

Overall DNA sequence identity Spike encoding region								
	OC43 NL63 229E SARS							
OC43	100	46	40	44				
NL63		100	59	38				
229E			100	41				
SARS				100				

Table 13:

Overall DNA sequence identity in 5'UTR				
	OC43	NL63	229E	SARS
OC43	100	36	34	48
NL63		100	74	33
229E			100	34
SARS				100

Brief description of the drawings

[0079]

5 Figure 1

cDNA-AFLP allows amplification of nucleic acids without any prior sequence information.

Culture supernatants from CPE-positive and uninfected cells are subjected to the cDNA-AFLP procedure. Amplification products derived from the CPE-positive culture which are not present in the uninfected control sample are cloned and sequenced.

Figure 2

LLC-MK2 cells infected with HCoV-NL163.

Panel A and B are unstained cells while panel C and D are stained with haematoxilin eosin. The typical CPE of HCoV-NL163 is shown in panel A and C. The control uninfected LLC-MK cells are shown in panel B and D.

Figure 3

VD-cDNA-AFLP PCR products visualized by Metaphor® agarose gel electrophoreses.

The PCR products of 1 (HinP I-G and Mse I-A) of 16 primer pair combinations used during the selective amplification step. Lanes 1 and 2: duplicate PCR product of virus culture NL163; lanes 5 and 6 control supernatant of LLC-MK2 cells and in lane 7 and 8 the negative PCR control. Lanes M: 25bp molecular weight marker (InVitrogen). The arrow indicates a new coronavirus fragment that was excised out of gel and sequenced.

Phylogenetic analysis of the HCoV-163 sequences.

G1, G2 and G3 denote the group 1, group 2 and group 3 coronavirus clusters.

The Genbank accession number of the used sequences are: MHV (mouse hepatitis virus): AF201929; HCoV-229E: AF304460; PEDV (porcine epidemic diarrhea virus): AF353511; TGEV (transmissible gastroenteritis virus): AJ271965; SARS-CoV: AY278554; IBV (avian infectious bronchitis virus): NC_001451; BCoV (bovine coronavirus): NC_003045; FCoV (feline coronavirus): Y13921 and X80799; CCoV (canine coronavirus): AB105373 and A22732; PRCoV (porcine respiratory coronavirus): M94097; FIPV (feline infectious peritonitis virus): D32044. Position of the HCoV-163 fragments compared to HCoV-229E (AF304460): Replicase 1AB gene: 15155-15361, 16049-16182, 16190-16315, 18444-18550, Spike gene: 22124-22266; Nucleocapsid gene: 25667-25882 and 25887-25957; 3'UTR: 27052-27123. Branch lengths indicate the number of substitutions per sequence.

Figure 5

Schematic representation of Coronavirus and the location of the 163-fragments listed in table 3.

Restriction map of HCoV-NL63'

Complete 27553 nt cDNA derivative of the ssRNA genome. Open reading frames (ORF) are depicted as numbered black arrows and the identified (PFAM) domains within these ORFs are indicated as gray boxes.

Figure 7

Simplot analysis HcoV NL63 and other human Coronaviruses

45 The gap in the comparison of HCoV NL63 to SARS, HCoV-OC43 and HCoV-229E is cause by a unique 537 inframe insertion in the Spike protein encoding ORF (see elsewhere herein). Sigmaplot analysis is described in Lole, K. S., R. C. Bollinger, R. S. Paranjape, D. Gadkari, S. S. Kulkarni, N. G. Novak, R. Ingersoll, H. W. Sheppard, and S. C. Ray. 1999. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 73:152-160.

Figure 8

Expression constructs for HCoV-NL63 Spike and Matrix protein

Expression of a His and StrepII tagged Spike fusion protein can be induced by addition of IPTG to the bacterial growth medium. Through attB1/B2-mediated recombination, the S gene insert can be transferred to other commercially available expression vectors, facilitating protein production in other hosts.

Through an identical cloning procedure as for pGP7S, a Gateway compatible expression vector for HCoV-NL63 M-gene can be constructed. The plasmid directs IPTG inducible production of N and C-terminally affinity tagged Matrix fusion protein, allowing selective recovery of full-length fusion protein.

24

10

15

20

25

30

35

40

50

Figure 9

Recombination site NL63-229E

NL63-derived sequences are in underlined bold black print and the 229E derived sequences are in gray bold print.

5 Figure 10

Restriction map cDNA Clone NL63/229E hybrid

The NL63 derived part is indicated as gray boxes and the 229E-derived region is indicated as a line. The junction between the two genomes is indicated by the succession of the two black arrows marked 1b' and 'ORF-1b indicating the hybrid 1b ORF.

A second chimeric genome was generated by a reciprocal recombination fusing nucleotide 19653 of HCoV-NL63 to nucleotide 20682 of HCoV-OC43 again creating a hybrid ORF 1b giving rise to a hybrid 1ab replicase polyprotein. Recombination occurred within the conserved sequence AATTATGG

Figure 11

Recombination site NL63/OC43 hybrid.

Again, NL63-derived region is in bold black underlined print and the OC43 derived sequences are in gray bold print. The resulting cDNA restriction map is depicted in Figure 12

Figure 12

20 Restriction map recombinant NL63/OC43 genome.

The NL63-derived part is indicated as gray boxes and the recombination site is depicted as the between the black arrows 1b' and '1b.

Figure 13

25 Similarity plot deduced protein alignments of ORF1b from HCoV-NL63,

HCoV-229E, HCoV-OC43 and the two hybrids NL63/229E and NL63/OC43.

Figure 14

Green fluorescent protein expressing HcoV-NL63 derivative.

Functional equivalent NL63/4GFP carries an in-frame C-terminal fusion of the E protein (ORF4) with a human codon optimised Green Fluorescent Protein (EGFP, Stratagene). Infected cells appear fluorescent after excitation of the 4-EGFP fusion protein. HCoV-NL63 can be used to elucidate the process of viral; infection and the translation of the polycistronic sub-genomic messengers.

Figure 15

40

45

50

55

Restriction map of functional derivative NL63D2052021011.

This deletion derivative of NL63 lacks most of the insertion at the N-terminal end of the Spike protein. By deleting nucleotides 20520-21011 the unique domain is removed while retaining the predicted secretory signal sequence (Nielsen, H., J. Engelbrecht, S. Brunak, and G. Von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1-6).

Figure 16

Sequence variation in HCoV-NL63 from additional patient samples

Direct sequencing of both strands of RT-PCR products from 6 patient samples revealed the presence of polymorphisms in the ORF 1a region.

Figure 17

HCoV-NL63 specific and generic human Coronavirus detection probes. Coronavirus polymerases generate several sub-genomic RNAs. The frequency of S, E, M and N protein encoding cDNA clones in the sequencing library of HCoV-NL63 and SARS (Snijder, E. J., P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya. 2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331:991-1004). Northern blot data demonstrate a high abundance of these sub-genomic RNAs in infected cells. Consequently, these genes are attractive targets for diagnostic tests.

Since the genomic and sub-genomic RNAs possess identical 3'ends, probes containing the N gene would hybridise to all of them (Table 8).

Through alignment of the full-length sequences of all human Coronaviruses a conserved region in ORF1b was identified, allowing their detection with a nested RT-PCR assay.

Figure 18

Generic Coronavirus detection primers

Figure 19

5 Nucleotide sequence an HcoV_NL63

Figure 20

ORF 1a, replicase enzyme complex of an HcoV_NL63

10 Figure 21

15

20

25

35

40

50

55

ORF 1ab replicase polyprotein of an HcoV_NL63

Figure 22

The spike protein (ORF3) contains an N-terminal secretory signal sequence of 16 AA (indicated on the first line of the continuous sequence listed below). (Nielsen, H., J. Engelbrecht, S. Brunak, and G. Von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1-6)

Figure 23

ORF-4 Coronavirus_NS4, Coronavirus non-structural protein 4. This family consists of several non-structural protein 4 (NS4) sequences or small membrane protein.

ORF-5. This family consists of various coronavirus matrix proteins that are transmembrane glycoproteins. The M protein or E1 glycoprotein is implicated in virus assembly. The E1 viral membrane protein is required for formation of the viral envelope and is transported via the Golgi complex. The matrix protein is predicted to contain an N-terminal secretory signal sequence (indicated in the first part of the continuous sequence) (Nielsen, H., J. Engelbrecht, S. Brunak, and G. Von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1-6.)

ORF-6 Pfam 00937, Coronavirus nucleocapsid protein. Structural protein forming complexes with the genomic RNA

30 Reference List

[0080]

- 1. Bachem, C.W., R.S. van der Hoeven, S.M. de Bruijn, D. Vreugdenhil, M. Zabeau, and R.G. Visser. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9:745-753.
- 2. Bestebroer, T.M., A.I.M. Bartelds, A.M. van Loon, H. Boswijk, K. Bijlsma, E.C.J. Claas, J.A.F.W. Kleijne, C. Verweij, M.W. Verweij-Uijterwaal, A.G. Wermenbol, and J. de Jong,. Virological NIVEL/RIVM-surveillance of respiratory virus infection in the season 1994/95. 245607002, 1-38. 1995. Bilthoven, RIVM. Virologische NIVEL/RIVM-surveillance van respiratoire virusinfecties in het seizoen 1994/95 RIVM.

Ref Type: Report

- 3. Blondel, B., O. Akacem, R. Crainic, P. Couillin, and F. Horodniceanu. 1983. Detection by monoclonal antibodies of an antigenic determinant critical for poliovirus neutralization present on VP1 and on heat-inactivated virions. Virology 126:707-710.
- 4. Boom, R., C. J. Sol, M. M. Salimans, C. L. Jansen, P. M. Wertheim-van Dillen, and van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495-503.
 - 5. Kamur, S., Tamura, K., and Wei, M. Molecular Evolutionary Genetics Analysis (MEGA 2.0). 1993. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park. Ref Type: Computer Program 6. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
 - 7. Kunkel, F. and G. Herrler. 1993. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology 195:195-202.
 - 8. Mounir, S., P. Labonte, and P. J. Talbot. 1993. Characterization of the nonstructural and spike proteins of the human respiratory coronavirus OC43: comparison with bovine enteric coronavirus. Adv. Exp. Med. Biol. 342:61-67.
 - 9. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.
 - 10. Van Den Hoogen, B. G., J. C. de Jong, J. Groen, T. Kuiken, R. de Groot, R. A. Fouchier, and A. D. Osterhaus.

- 2001. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 7:719-724.
- 11. Wu, C. N., Y. C. Lin, C. Fann, N. S. Liao, S. R. Shih, and M. S. Ho. 2001. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20:895-904.
- 13. Almeida, J.D. and D.A. Tyrrell, The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol 1, 175-178 (1967).
- 14. Thiel, V., J.Herold, , B. Schelle, and S.G. Siddell, Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82, 1273-1281 (2001).
- 15. Hendley, J.O., H.B. Fishburne, and J.M. Gwaltney, Jr. Coronavirus infections in working adults. Eight-year study with 229 E and OC 43. Am Rev. Respir. Dis. 105, 805-811 (1972).

5

15

30

40

- 16. Mounir, S., P. Labonte, and P.J. Talbot, Characterization of the nonstructural and spike proteins of the human respiratory coronavirus OC43: comparison with bovine enteric coronavirus. Adv. Exp Med Biol 342, 61-67 (1993).
- 17. Kunkel, F. and G. Herrler, Structural and functional analysis of the surface protein of human coronavirus OC43. Virol. 195, 195-202 (1993).
- 18. Tyrrell, D.A.J. and M.L. Bynoe, Cultivation of novel type of common-cold virus in organ cultures. Br. Med J 1, 1467-1470 (1965).
- 19. Bradburne, A.F., M.L. Bynoe, and D.A. Tyrrell, Effects of a "new" human respiratory virus in volunteers. Br. Med J 3, 767-769 (1967).
- 20. Kapikian, A.Z. et al. Isolation from man of "avian infectious bronchitis virus-like" viruses (coronaviruses) similar to 229E virus, with some epidemiological observations. J Infect. Dis. 119, 282-290 (1969).
 - 21. Ksiazek, T.G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003. May 15.;348. (20):1953. -66. 348, 1953-1966 (2003).
 - 22. Stohlman, S.A. and D.R. Hinton, Viral induced demyelination. Brain Pathol. 11, 92-106 (2001).
- 23. Jubelt, B. and J.R. Berger, Does viral disease underlie ALS? Lessons from the AIDS pandemic. Neurology 57, 945-946 (2001).
 - 24. Shingadia, D., A. Bose, and R. Booy, Could a herpesvirus be the cause of Kawasaki disease? Lancet Infect. Dis. 2, 310-313 (2002).
 - 25. Bachem, C.W. et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9, 745-753 (1996).
 - 26. Hamparian, V.V. Diagnostic procedures for viral, rickettsial and chlamydial infection. Lennette, E.H. & Schmidt, N.J. (eds.), pp. 562 (American Public Health Association, Washington, DC, 1979).
 - 27. Marra, M.A. et al. The Genome sequence of the SARS-associated coronavirus. Science 2003. May 30.;300. (5624.):1399. -404. 300, 1399-1404 (2003).
- 28. McIntosh, K. et al. Coronavirus infection in acute lower respiratory tract disease of infants. J Infect. Dis. 130, 502-507 (1974).
 - 29. Boivin, G. et al. Human metapneumovirus infections in hospitalized children. Emerg. Infect. Dis. 9, 634-640 (2003).
 - 30. Rota, P.A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399 (2003).
 - 31. Bestebroer, T.M. et al. Virological NIVEL/RIVM-surveillance of respiratory virus infection in the season 1994/95. 245607002, 1-38. 1995. Ref Type: Report
 - 32. van den Hoogen,B.G. et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med 7, 719-724 (2001).
- 34. Earley, E. M. and K. M. Johnson. 1988. The lineage of Vero, Vero 76 and its clone C1008 in the United States., p. 26-29. In B. Simizu and T. Terasima (eds.), Vero cells: origin, properties and biomedical applications. Chiba Univ, Tokyo.
 - 35. Kamur, S., K. Tamura, and M. Wei, Molecular Evolutionary Genetics Analysis (MEGA). (2.0). 1993. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park. Ref Type: Computer Program 36. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16, 111-120 (1980).
 - 37 .Fouchier, R. A., T. M. Bestebroer, S. Herfst, K. L. Van Der, G. F. Rimmelzwaan, and A. D. Osterhaus. 2000. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J. Clin. Microbiol. 38:4096-4101.
- ⁵⁵ 38. Nicaud, J. M., C. Madzak, B. P. van den, C. Gysler, P. Duboc, P. Niederberger, and C. Gaillardin. 2002. Protein expression and secretion in the yeast Yarrowia lipolytica. FEM. Yeast Res. 2:371-379.
 - 39. Guy, J.S., Breslin, J.J., Breuhaus, B., Vivrette, S. & Smith, L.G. Characterization of a coronavirus isolated from a diarrheic foal. J Clin Microbiol. 38, 4523-4526 (2000).

- 40. Holmes,K.V. & Lai,M.M.C. Fields Virology. Fields,B.N., Knipe,D.M., Howley,P.M. & et al (eds.), pp. 1075-1093 (Lippincott-Raven Publishers, Philadelphia,1996).
- 41. Hamre, D. & Procknow, J.J. A new virus isolated from the human respiratory tract. proc. soc. exp. biol. med. 121, 190-193 (1966).
- ⁵ 42. McIntosh,K., Dees,J.H., Becker,W.B., Kapikian,A.Z. & Chanock,R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl.Acad.Sci. U.S.A. 57, 933-940 (1967).
 - 43. Peiris, J.S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. lancet 361, 1767-1772 (2003).
 - 44. Snijder, E.J. et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991-1004 (2003).
 - 45. de Haan, C.A., Masters, P.S., Shen, X., Weiss, S. & Rottier, P.J. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virol. 296, 177-189 (2002).
 - 46. Lai, M.M. & Cavanagh, D. The molecular biology of coronaviruses. Adv. Virus Res 48, 1-100 (1997).

10

20

25

35

45

50

55

- 47. Sawicki,S.G. & Sawicki,D.L. Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv. Exp Med Biol 380, 499-506 (1995).
 - 48. van Marle, G. et al. Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U.S.A. 96, 12056-12061 (1999).
 - 49. Chen,L.L., Ou,H.Y., Zhang,R. & Zhang,C.T. ZCURVE_CoV: a new system to recognize protein coding genes in coronavirus genomes, and its applications in analyzing SARS-CoV genomes. Biochem Biophys. Res Commun. 307, 382-388 (2003).
 - 50. Liu, D.X. & Inglis, S.C. Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J Virol 66, 6143-6154 (1992).
 - 51. Thiel,V. & Siddell,S.G. Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75 (Pt 11), 3041-3046 (1994).
 - 52. Lole, K.S. et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152-160 (1999).
 - 53. Vaughn, E.M., Halbur, P.G. & Paul, P.S. Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes. J Virol 69, 3176-3184 (1995).
- 54. Koren, G., S. King, S. Knowles, and E. Phillips. 2003. Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ. 168:1289-1292
 - 55. Cinatl, J., B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau, and H. W. Doerr. 2003. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045-2046.
 - 56. Anand, K., J. Ziebuhr, P. Wadhwani, J. R. Mesters, and R. Hilgenfeld. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763-1767.
 - 57. Cinatl, J., B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau, and H. W. Doerr. 2003. Treatment of SARS with human interferons. Lancet 362:293-294.
 - 58. von Grotthuss, M., L. S. Wyrwicz, and L. Rychlewski. 2003. mRNA cap-1 methyltransferase in the SARS genome. Cell 113:701-702
- 59 Boivin, G., G. De Serres, S. Cote, R. Gilca, Y. Abed, L. Rochette, M. G. Bergeron, and P. Dery. 2003. Human metapneumovirus infections in hospitalized children. Emerg. Infect. Dis. 9:634-640.

SEQUENCE LISTING

```
5
         <110> PrimaGen Holding B.V.
         <120> Coronavirus, nucleic acid, protein and methods for the generation of
         vaccine, medicaments and diagnostics
         <130> P65647EP10
10
         <140> EP 04075050.7
<141> 2004-01-07
         <160> 67
15
         <170> PatentIn version 3.1
         <210> 1
         <211> 6
         <212> PRT
20
         <213> Artificial Sequence
         <220>
          <223> Hexapeptide
          <400> 1
         Val Asn Ser Thr Leu Gln
          <210> 2
30
          <211> 6
          <212> PRT
          <213> Artificial Sequence
          <220>
          <223> Hexapeptide
35
          <400> 2
          Tyr Asn Ser Thr Leu Gln
             5
40
          <210> 3
<211> 17
          <212> DNA
          <213> Artificial Sequence
45
          <220>
          <223> Top strand oligo for MSE adaptor
          <400> 3
          ctcgtagact gcgtacc
                                                                                17
50
          <210> 4
```

5	<211> <212> <213>		
	<220>	Top strand oligo for HinPl adaptor	
10	<400>		16
70	gacgat	tgagt cctgac	10
	<210>	5	
	<211>		
	<212>		
15		Artificial Sequence	
	<220>		
	<223>	Bottom strand oligo for MSE adaptor	
20	<400>	5	
20	taggta	acgca gtc	13
	<210>		
	<211>		
25	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Bottom strand oligo for HinP1 adaptor	
30	<400>	6	
	cggtca	aggac tcat	14
	-010		
	<210> <211>		
35	<211>		
33		Artificial Sequence	
	<220>		
	-	HinPl standard primer	
40	<400>	7	
		tgagt cctgaccgc	19
	<210>		
	<211>		
45	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	MseI standard primer	
50	<400>		
	ctcqta	agact gcgtacctaa	20

5			
	<210>		
	<211>		
	<212>	DNA	
•	<213>	Artificial Sequence	
		•	
10	<220>		
		Primer repSZ-RT	
	1225	I I I I I I I I I I I I I I I I I I I	
	<400>	q	
	ccacta		10
	CCacca	cuac	
15			
70	<210>	10	
	<211>		
	<212>		
	<213>	Artificial Sequence	
00			
20	<220>		
	<223>	Primer repSZ-1	
	<400>		
	gtgatg	cata tgctaatttg	20
25			
	<210>	11	
	<211>	20	
	<212>	DNA	
	<213>	Artificial Sequence	
		•	
30	<220>		
	<223>	Primer repSZ-3	
		•	
	<400>	11	
		cagg tataatccta	20
35			
	<210>	12	
	<211>		
	<212>		
		Artificial Sequence	
	12137	Mitiliar pedrone	
40	<220>		
		Drimon rong7-2	
	~2237	Primer repSZ-2	
	<400>	12	
		naaca aaagataact	20
	LLGGLA	idada adayataact	20
45			
	20105	12	
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
50			
50	<220>		
	<223>	Primer repSZ-4	

5	<400> 13	3	
5	tcaatgcta	at aaacagtcat	20
	<210> 14		
	<211> 12		
10	<212> RN	AI AI	
10	<213> Ar	tificial Sequence	
		•	
	<220>		
		eader TRS	
15	<400> 14		
10	ucucaacua		12
	204044044		12
	<210> 15		
	<211> 24		
00			
20			
	(213) AI	tificial Sequence	
	<220>		
		in and and in a resident	
	<223> 01	igonucleotide JZH2R	
0.5	*000		
25	<220>		
		.sc_feature	
	<222> (1		
	<223> "n	n" stands for any nucleic acid	
••			
30	<400> 15		
	gctatcatc	ca caatggacnn nnng	24
	<210> 16		
	<211> 12		
35	<212> DN		
	<213> Hu	man Coronavirus 229E	
	<400> 16		
	gtattgttt	t tgttgcttgt gcccatgctg ctgttgattc cttatgtgca aaagctatga	60
40			
40	ctgtttata	ag cattgataag tgtactagga ttatacctgc aagagctcgg gttgagtgtt	120
	atagtggct		129
45	<210> 17		
45	<211> 42		
	<212> PF		
	<213> Hu	ıman Coronavirus 229E	
	<400> 17		
50			
50		Phe Val Ala Cys Ala His Ala Ala Val Asp Ser Leu Cys Ala	
	1	5 10 15	

5	Lys Ala Met Thr Val Tyr Ser Ile Asp Lys Cys Thr Arg Ile Ile Pro 20 25 30	
10	Ala Arg Ala Arg Val Glu Cys Tyr Ser Gly 35 40	
15	<210> 18 <211> 145 <212> DNA <213> Human Coronavirus 229E <400> 18	
	atgggtctag atatggcttg caaaacttac tacagttacc taacttttat tatgttagta	60
20	atggtggtaa caattgcact acggccgtta tgacctattc taattttggt atttgtgctg atggttcttt gattcctgtt cgtcc	120 145
	atygetette gatteetget egtee	143
25	<210> 19 <211> 47 <212> PRT <213> Human Coronavirus 229E	
	<400> 19	
30	Gly Ser Arg Tyr Gly Leu Gln Asn Leu Leu Gln Leu Pro Asn Phe Tyr 1 5 10 15	
	Tyr Val Ser Asn Gly Gly Asn Asn Cys Thr Thr Ala Val Met Thr Tyr 20 25 30	
35	Ser Asn Phe Gly Ile Cys Ala Asp Gly Ser Leu Ile Pro Val Arg 35 40 45	
40	<210> 20 <211> 71 <212> DNA <213> Human Coronavirus 229E	
45	<400> 20 atgataaggg titagtotta cacacaatgg taggocagtg atagtaaagt gtaagtaatt	60
	tgctatcata t	71
50	<210> 21 <211> 134 <212> DNA <213> Human Coronavirus 229E	

5	<400> 21 atgtcagtga tgcatatgct aatttggttc catattacca acttattggt aaacaaaaga	60
	taactacaat acagggteet eetggtagtg gtaagteaca ttgtteeatt ggaettggat	120
10	tgtactaccc aggt	134
15	<210> 22 <211> 44 <212> PRT <213> Human Coronavirus 229E	
15	<400> 22	
	Val Ser Asp Ala Tyr Ala Asn Leu Val Pro Tyr Tyr Gln Leu Ile Gly 1 5 10 15	
20	Lys Gln Lys Ile Thr Thr Ile Gln Gly Pro Pro Gly Ser Gly Lys Ser 20 25 30	
25	His Cys Ser Ile Gly Leu Gly Leu Tyr Tyr Pro Gly 35 40	
30	<210> 23 <211> 207 <212> DNA <213> Human Coronavirus 229E	
	<400> 23 atctaaacta aacaaaatgg ctagtgtaaa ttgggccgat gacagagctg ctaggaagaa	60
35	atttcctcct ccttcatttt acatgcctct tttggttagt tctgataagg caccatatag	120
	ggtcattccc aggaatcttg tccctattgg taagggtaat aaagatgagc agattggtta	180
	ttggaatgtt caagagcgtt ggcgtat	207
40	<210> 24 <211> 68 <212> PRT <213> Human Coronavirus 229E	
45	<400> 24	
70	Ser Lys Leu Asn Lys Met Ala Ser Val Asn Trp Ala Asp Asp Arg Ala 1 5 10 15	
50	Ala Arg Lys Lys Phe Pro Pro Pro Ser Phe Tyr Met Pro Leu Leu Val 20 25 30	

5	Ser Ser Asp Lys Ala Pro Tyr Arg Val Ile Pro Arg Asn Leu Val Pro 35 40 45
	Ile Gly Lys Gly Asn Lys Asp Glu Gln Ile Gly Tyr Trp Asn Val Gln 50 55 60
10	Glu Arg Trp Arg 65
15	<210> 25 <211> 207 <212> DNA <213> Human Coronavirus 229E
20	<400> 25 acaaaaattt gaatgagggt gttcttgaat ctttttctgt tacacttctt gataatcaag 60
	aagataagtt ttggtgtgaa gatttttatg ctagtatgta tgaaaattct acaatattgc 120
	aagctgctgg tttatgtgtt gtttgtggtt cacaaactgt acttcgttgt ggtgattgtc 180
25	tgcgtaagcc tatgttgtgc actaaat 207
30	<210> 26 <211> 68 <212> PRT <213> Human Coronavirus 229E
	<400> 26
35	Lys Asn Leu Asn Glu Gly Val Leu Glu Ser Phe Ser Val Thr Leu Leu 1 5 10 15
	Asp Asn Glu Asp Lys Phe Trp Cys Glu Asp Phe Tyr Ala Ser Met 20 25 30
40	Tyr Glu Asn Ser Thr Ile Leu Gln Ala Ala Gly Leu Cys Val Val Cys 35 40 45
45	Gly Ser Gln Thr Val Leu Arg Cys Gly Asp Cys Leu Arg Lys Pro Met 50 55 60
	Leu Cys Thr Lys 65
50	<210> 27 <211> 71

5	<212> DNA <213> Human Coronavirus 229E
	<400> 27 agggggcaac gtgttgattt gcctcctaaa gttcattttt attacctagg tactggacct 60
10	cataaggacc t 71
15	<210> 28 <211> 23 <212> PRT <213> Human Coronavirus 229E <400> 28
	Arg Gly Gln Arg Val Asp Leu Pro Pro Lys Val His Phe Tyr Tyr Leu
20	1 5 10 15 Gly Thr Gly Pro His Lys Asp 20
25	<210> 29 <211> 107 <212> DNA <213> Human Coronavirus 229E
30	<400> 29 tagtagttgt gttactcgtt gtaatatagg tggtgctgtt tgttcaaaac atgcaaattt 60 gtatcaaaaa tacgttgagg catataatac atttacacag gcaggtt 107
35	<210> 30 <211> 35 <212> PRT <213> Human Coronavirus 229E
	<400> 30
40	Ser Ser Cys Val Thr Arg Cys Asn Ile Gly Gly Ala Val Cys Ser Lys 1 10 15
	His Ala Asn Leu Tyr Gln Lys Tyr Val Glu Ala Tyr Asn Thr Phe Thr 20 25 30
45	Gln Ala Gly 35
50	<210> 31 <211> 58 <212> DNA

	<213>	Artificial Sequence	
5	<220>		
		Primer S1	
	<400>	31 :ttgt acaaaaaagc aggetteaaa ettttettga ttttgettgt tttgeece	58
	acaage	reign dodddddyd dygonoddd chenedyd chengolega chengolog	30
10			
	<210>	32	
	<211>		
	<212>		
	<213>	Artificial Sequence	
15	<220>		
	<223>	Primer S2	
	<400>	32	
		ttgt acaagaaagc tgggtcttga acgtggacct tttcaaattc g	51
20	40045	song c doddyddago cygysoccyd dogegyddol celoddaeth y	-
20			
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
25	<220>		
		Primer M1	
	<400>	33	
	acaagt	ttgt acaaaaagc aggettetet aatagtagtg tgeetetttt agagg	55
30			
	<210>	34	
	<211>		
	<212>		
		Artificial Sequence	
35		•	
	<220>		
	<223>	Primer M2	
	<400>	34	
		ttgt acaagaaagc tgggtcgatt aaatgaagca acttctc	47
40	20020	sery acadgaaage cygycogatt aaatgaagea actice	
	.010		
	<210>		
	<211>		
	<212> <213>		
45	\2132	viciliciai peddeuce	
	<220>		
	<223>	Primer N1	
	4400:	25	
	<400>		40
50	acaagt	tttgt acaaaaagc aggcttcgct agtgtaaatt gggccgatg	49

5	<210> <211> <212> <213>	59	
	<220> <223>	Primer N2	
10	<400> accacti	36 Etgt acaagaaagc tgggtcatgc aaaacctcgt tgacaatttc tataatggc	59
15	<210> <211>		
	<212> <213>	DNA Artificial Sequence	
20	<220> <223>	Conserved sequence	
20	<400> aattat	37 gg	8
25	<210> <211>		
	<212>		
30	<220> <223>	Recombination site NL63-229E	
30	<400> tcatcc	38 taat tgttgtgact gttatgatga tatgtgtgtt atacattgtt caaattttaa	60
	cacact	ctt	69
35	<210> <211>		
	<212> <213>	DNA Artificial Sequence	
40	<220> <223>	Recombination site NL63/OC43 hybrid	
		39 atgt gtttggaacc ttgtaattta tataattatg ggaagccagt tactttgcct	60
45	<210>	40	
	<211> <212>	466	
50	<220>		
	<223>	Sequence REF	

5	<400> 40 taataatgct gtctatgatg gtgctcgttt attttcttca gatttgtcta ctttagctgt	60
	tacagctatt gttgtagtag gtggttgtgt aacatctaat gttccaacaa ttgttagtga	120
	gaaaatttct gttatggata aacttgatac tggtgcacaa aaatttttcc aatttggtga	180
10	ttttgttatg aataacattg ttctgttttt aacttggttg cttagtatgt ttagtctttt	240
	acgtacttct attatgaagc atgatattaa agttattgcc aaggctccta aacgtacagg	300
	tgttattttg acacgtagtt ttaagtataa cattagatct gctttgtttg ttataaagca	360
15	gaagtggtgt gttattgtta ctttgtttaa gttcttatta ttattatatg ctatttatgc	420
	acttgttttt atgattgtgc aatttagtcc ttttaatagt ctttta	466
20	<210> 41 <211> 466 <212> DNA <213> Artificial Sequence	
25	<220> <223> Sequence 223B	
	<400> 41 taataatgct gtctatgatg gtgctcgttt atctgcttca gatttgtcta ctttagctgt	60
30	tacagctatt gttgtagtag gtggttgtgt aacatctaat gttccaccaa ttgttagtga	120
	gaaaatttot gttatggata aacttgatac tggtgcacaa aaatttttoc aatttggtga	180
	ttttgttatg aataacattg ttctgttttt aacttggttg cttagtatgt ttagtctttt	240
35	acgtacttct attatgaagc atgatattaa agttattgcc aaggeteeta aacgtacagg	300
	tgttattttg acacgtagtt ttaagtataa cattagatct gctttgtttg ttgtaaagca	360
	gaagtggtgt gttattgtta ctttgtttaa gttcttattg ttattatatg ctatttatgc	420
40	acttgttttt atgattgtgc aatttagtcc ttttaatagt ctttta	466
45	<210> 42 <211> 466 <212> DNA <213> Artificial Sequence	
	<220> <223> Sequence 246B	
50	<400> 42 taataatgot gtotatgatg gtgotogttt attttottoa gatttgtota otttagotgt	60
50	tacagctatt gttgtagtag gtggttgtgt aacatctaat gttccaccaa ttgttagtga	120

5	gaaaatttot gttatggata aacttgatac tggtgcacaa aaatttttoc aatttggtga	180
5	ttttgttatg aataacattg ttctgttttt aacttggttg cttagtatgt ttagtctttt	240
	acgtacttct attatgaagc atgatattaa agttattgcc aaggctccta aacgtacagg	300
10	tgttattttg acacgtagtt ttaagtataa cattagatct gctttgtttg ttataaagca	360
	gaagtggtgt gttattgtta ctttgtttaa gttcttattg ttattatatg ctatttatgc	420
	acttgttttt atgattgtgc aatttagtcc ttttaatagt ctttta	466
15	<210> 43 <211> 466 <212> DNA <213> Artificial Sequence	
20	<220> <223> Sequence 248B	
	<400> 43 taataatgct gtctatgatg gtgctcgttt atttgcttca gatttgtcta ctttagctgt	60
25	tacagctatt gttgtagtag gtggttgtgt aacatctaat gttccaccaa ttgttagtga	120
	gaaaatttct gttatggata aacttgatac tggtgcacaa aaatttttcc aatttggtga	180
	ttttgttatg aataacattg ttctgttttt aacttggttg cttagtatgt ttagtctttt	240
30	acgtacttct attatgaagc atgatattaa agttattgcc aaggctccta aacgtacagg	300
	tgttattttg acacgtagtt ttaagtataa cattagatct gctttgtttg ttgtaaagca	360
	gaagtggtgt gttattgtta ctttgtttaa gttcttattg ttattatatg ctatttatgc	420
35	acttgttttt atgattgtgc aatttagtcc ttttaatagt ctttta	466
40	<210> 44 <211> 466 <212> DNA <213> Artificial Sequence	
	<220> <223> Sequence 251B	
45	<400> 44 taataatgct gtctatgatg gtgctcgttt attttcttca gatttgtcta ctttagctgt	60
	tacagetatt gttgtagtag gtggttgtgt aacatetaat gttecaceaa ttgttagtga	120
	gaaaatttot gttatggata aacttgatac tggtgcacaa aaatttttoc aatttggtga	180
50	ttttgttatg aataacattg ttctgttttt aacttggttg cttagtatgt ttagtctttt	240
		~

	acgtacttct	attatgaagc	atgatattaa	agttattgcc	aaggctccta	aacgtacagg	300
	tgttattttg	acacgtagtt	ttaagtataa	cattagatct	gctttgtttg	ttataaagca	360
5	gaagtggtgt	gttattgtta	ctttgtttaa	gttcttatta	ttattatatg	ctatttatgc	420
	acttgttttt	atgattgtgc	aatttagtcc	ttttaatagt	ctttta		466
10	<210> 45 <211> 466 <212> DNA <213> Arti	ificial Sequ	uence				
15	<220> <223> Sequ	uence 466B					
	<400> 45 taataatgct	gtctatgatg	gtgctcgttt	attttcttca	gatttgtcta	ctttagctgt	60
20	tacagctatt	gttgtagtag	gtggttgtgt	aacatctaat	gttccaacaa	ttgttagtga	120
	gaaaatttct	gttatggata	aacttgatac	tggtgcacaa	aaatttttcc	aatttggtga	180
	ttttgttatg	aataacattg	ttctgttttt	aacttggttg	cttagtatgt	ttagtctttt	240
25	acgtacttct	attatgaagc	atgatattaa	agttattgcc	aaggctccta	aacgtacagg	300
	tgttattttg	acacgtagtt	ttaagtataa	cattagatct	gctttgtttg	ttataaagca	360
	gaagtggtgt	gttattgtta	ctttgtttaa	gttcttatta	ttattatatg	ctatttatgc	420
30	acttgttttt	atgattgtgc	aatttagtcc	ttttaatagt	ctttta		466
35	<210> 46 <211> 466 <212> DNA <213> Art		uence				
	<220> <223> Seq	uence 496B					
40	<400> 46 taataatgct	gtctatgatg	gtgctcgttt	atttgcttca	gatttgtcta	ctttagctgt	60
	tacagctatt	gttgtagtag	gtggttgtgt	aacatctaat	gttccatcaa	ttgttagtga	120
45	gaaaatttct	gttatggata	aacttgatac	tggtgcacaa	aaatttttcc	aatttggtga	180
	ttttgttatg	aataacattg	ttctgttttt	aacttggttg	cttagtatgt	ttagtctttt	240
	acgtacttct	attatgaagc	atgatattaa	agttattgcc	aaggctccta	aacgtacagg	300
50	tgttattttg	acacgtagtt	ttaagtataa	cattagatct	gctttgtttg	ttataaagca	360
	gaagtggtgt	gttattgtta	ctttgtttaa	gttcttattg	ttattatatg	ctatttatgc	420

	acttgt	tttt atgattgtgc aatttagtcc ttttaatagt ctttta	466
5	401.05	42	
	<210>	47	
	<211> <212>	22	
		Artificial Sequence	
	\213/	Artificial Sequence	
10	<220>		
	<223>	Oligo NL63NF1	
	<400>		
	gctagt	gtaa attgggccga tg	22
15			
	<210>	48	
	<211>		
	<212>		
		Artificial Sequence	
20			
	<220>		
	<223>	Oligo NL63NR1	
	<400>	48	
		acga ggtttcttca actg	24
25	CCCCCa	acya yyetteetea acty	
	<210>	49	
	<211>	24	
	<212>	DNA	
30	<213>	Artificial Sequence	
30			
	<220>	01 () 17 (2)170	
	<223>	Oligo NL63NF2	
	<400>	49	
35		tect teattttaca tgee	24
30		•	
	<210>	50	
		25	
40	<212>	DNA Antificial Seguence	
40	<213>	Artificial Sequence	
	<220>		
	<223>	Oligo NL63NR2	
		-	
	<400>	50	
45	aactca	acaa cagagagctc tggag	25
	/2105	51	
	<210> <211>	51 26	
	<211>		
50		Artificial Sequence	
		•	

	<220> <223>	Oligo COR1F	
5	<220>		
		misc_feature	
	<2222>	(18)(18) "n" stands for "i"	
	12237	n Scands For 1	
10			
	<400>		
	atgggwi	tggg aytatccnaa rtgtga	26
	<210>		
15	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
20	<223>	Oligo COR1R	
20	<400>	52	
		arca raaytortgw ggtoo	25
	27 - 21-2		
	<210>	53	
25	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
30		Oligo COR2F	
	2000 5		
	<220>	misc_feature	
		(18)(18)	
		"n" stands for "i"	
35			
	<400>	53	
		aarc cwggtggnac	20
40	<210>	54	
	<211>	24	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
45		Oligo COR2R	
	<220>	al an Anahuun	
	<221>	misc_feature (7)(7)	
		"n" stands for unkown nucleic acid	
50			

	<400> 54	
5	catraanacr yyattytgrt aata	24
10	<210> 55 <211> 27553 <212> DNA <213> Human coronavirus NL63	
	<400> 55	
	cttaaagaat ttttctatct atagatagag aattttctta tttagacttt gtgtctactc	60
	ttctcaacta aacgaaattt ttctagtgct gtcatttgtt atggcagtcc tagtgtaatt	120
15	gaaatttcgt caagtttgta aactggttag gcaagtgttg tattttctgt gtctaagcac	180
	tggtgattct gttcactagt gcatacattg atatttaagt ggtgttccgt cactgcttat	240
20	tgtggaagca acgttctgtc gttgtggaaa ccaataactg ctaaccatgt tttacaatca	300
20	agtgacactt gctgttgcaa gtgattcgga aatttcaggt tttggttttg ccattccttc	360
	tgtagccgtt cgcacctata gcgaagccgc tgcacaaggt tttcaggcat gccgttttgt	420
25	tgettttgge ttacaggatt gtgtaaccgg tattaatgat gatgattatg tcattgcatt	480
20	gactggtact aatcagetet gtgccaaaat tttacetttt tetgatagae ecettaattt	540
	gcgaggttgg ctcattttt ctaacagcaa ttatgttctt caggactttg atgttgtttt	600
30	tggccatggt gcaggaagtg tggtttttgt ggataagtac atgtgtggtt ttgatggtaa	660
30	acctgtgtta cctaaaaaca tgtgggaatt tagggattac tttaataata atactgatag	720
	tattgttatt ggtggtgtca cttatcaact agcatgggat gttatacgta aagacctttc	780
35	ttatgaacag caaaatgttt tagccattga gagcattcat taccttggta ctacaggtca	840
	tactttgaag tetggttgca aacttactaa tgetaageeg eetaaatatt ettetaaggt	900
	tgttttgagt ggtgaatgga atgctgtgta tagggcgttt ggttcaccat ttattacaaa	960
40	tggtatgtca ttgctagata taattgttaa accagttttc tttaatgctt ttgttaaatg	1020
	caattgtggt tctgagagtt ggagtgttgg tgcatgggat ggttacttat cttcttgttg	1080
	tggcacacct gctaagaaac tttgtgttgt tcctggtaat gtcgttcctg gtgatgtgat	1140
45	catcacctca actagtgctg gttgtggtgt taaatactat gctggcttag ttgttaaaca	1200
	tattactaac attactggtg tgtctttatg gcgtgttaca gctgttcatt ctgatggaat	1260
	gtttgtggca tcatcttctt atgatgcact cttgcataga aattcattag accctttttg	1320
50	ctttgatgtt aacactttac tttctaatca attacgtcta gcttttcttg gtgcttctgt	1380
	tacagaagat gttaaatttg ctgctagcac tggtgttatt gacattagtg ctggtatgtt	1440

5	tggtctttac	gatgacatat	tgacaaacaa	taaaccttgg	tttgtacgca	aagcttctgg	1500
	gctttttgat	gcaatctggg	atgcttttgt	tgccgctatt	aagcttgtac	caactactac	1560
	tggtgttttg	gttaggtttg	ttaagtctat	tgcttcaact	gttttaactg	tctctaatgg	1620
10	tgttattatt	atgtgtgcag	atgttccaga	tgcttttcaa	tcagtttatc	gcacatttac	1680
	acaagctatt	tgtgctgcat	ttgatttttc	tttagatgta	tttaaaattg	gtgatgttaa	1740
	atttaaacga	cttggtgatt	atgttcttac	tgaaaacgct	cttgttcgtt	tgactactga	1800
15	agttgttcgt	ggtgttcgtg	atgctcgcat	aaagaaagcc	atgtttacta	aagtagttgt	1860
	aggtcctaca	actgaagtta	agttttctgt	tattgaactt	gccactgtta	atttgcgtct	1920
	tgttgattgt	gcacctgtag	tttgccctaa	aggtaagatt	gttgttattg	ctggacaagc	1980
20	ttttttctat	agtggtggtt	tttatcgttt	tatggttgat	cctacaactg	tattaaatga	2040
	tcctgttttt	actggtgatt	tattctacac	tattaagttt	agtggtttta	agcttgatgg	2100
	ttttaaccat	cagtttgtta	ctgctagttc	tgctacagat	gccattattg	ctgttgagct	2160
25	gttgttattg	gattttaaaa	ctgcagtttt	tgtgtacaca	tgtgtggttg	atggctgtag	2220
	tgtcattgtt	agacgtgatg	ctacattcgc	tacacatgtg	tgttttaagg	actgttataa	2280
	tgtttgggag	caattctgca	ttgataattg	tggtgagcca	tggtttttga	ctgattataa	2340
30	tgctatcttg	cagagtaata	accctcaatg	tgctattgtt	caagcatcag	agtctaaagt	2400
	tttgcttgag	aggtttttac	ctaagtgtcc	tgaaatactg	ttgagtattg	atgatggcca	2460
	tttatggaat	ctttttgttg	aaaagtttaa	ttttgttaca	gattggttaa	aaactcttaa	2520
35	gcttacactt	acttctaatg	gtcttttagg	taattgtgcc	aaacgtttta	gacgtgtttt	2580
	ggtaaaattg	cttgatgtct	ataatggttt	tcttgaaact	gtctgtagtg	tcgcatacac	2640
	tgctggtgtt	tgcatcaaat	attatgctgt	taatgttcca	tatgtagtta	ttagtggttt	2700
40	tgtaagtcgt	gtaattcgta	gagaaaggtg	tgacatgact	tttccttgtg	ttagttgtgt	2760
	cacctttttc	tatgaatttt	tagacacttg	ttttggtgtt	agtaaaccta	atgccattga	2820
	tgttgaacat	ttagagctta	aagaaactgt	ttttgttgaa	cctaaggatg	gtggtcaatt	2880
45	ttttgtttct	ggtgattatc	tttggtatgt	tgtagatgac	atttattatc	cagcttcatg	2940
	taatggtgta	ttgcctgttg	cttttacaaa	attagctggt	ggtaaaatat	ctttttctga	3000
	tgatgttata	gttcatgatg	ttgaacctac	ccataaagtc	aagctcatat	ttgagtttga	3060
50	agatgatgtt	gttaccagtc	tttgtaagaa	gagttttggt	aagtccatta	tttatacagg	3120

	tgattgggaa	ggtctacatg	aagttcttac	atctgcaatg	aatgtcattg	ggcaacatat	3180
5	taagttgcca	caattttata	tttatgatga	agagggtggt	tatgatgttt	ctaaaccagt	3240
	tatgatttca	caatggccta	ttagtaatga	tagtaatggt	tgtgttgttg	aagcgagcac	3300
	tgattttcat	caattagaat	gtattgttga	tgactctgtt	agagaagagg	ttgatataat	3360
10	tgaacaacct	tttgaagaag	ttgaacatgt	gctctcaatt	aagcaacctt	tttctttttc	3420
	ttttagagat	gaattgggtg	ttcgtgtttt	agatcaatct	gataataatt	gttggattag	3480
	taccacactt	gtacagttgc	aacttacaaa	gcttttggat	gattctattg	agatgcaatt	3540
15	gtttaaagtt	ggtaaagttg	attcaattgt	ccaaaagtgt	tatgagttgt	ctcatttaat	3600
	tagtggttca	cttggtgata	gtggtaaact	tcttagtgaa	cttcttaaag	aaaaatatac	3660
20	atgttctata	acttttgaga	tgtcttgtga	ttgtggtaaa	aagtttgatg	atcaggttgg	3720
20	ttgtttgttt	tggattatgc	cttacacaaa	actttttcaa	aaaggtgagt	gttgtatttg	3780
	tcataaaatg	cagacttata	agcttgttag	tatgaaaggt	actggtgtgt	ttgtacagga	3840
25	tccagcacct	attgacattg	atgctttccc	tgtgaaacct	atatgttcat	ctgtatattt	3900
20	aggtgttaag	ggttctggtc	attatcaaac	aaatttatac	agttttaaca	aagctattga	3960
	tggttttggt	gtctttgaca	ttaaaaatag	tagtgttaat	actgtttgtt	ttgttgatgt	4020
30	tgattttcat	agtgtagaaa	tagaagctgg	tgaagttaaa	ccttttgctg	tatataaaaa	4080
	tgttaaattt	tatttaggtg	atatttcaca	ccttgtaaac	tgtgtttctt	ttgactttgt	4140
	tgtcaatgct	gctaatgaaa	atctcttgca	tggaggcggt	gttgcacgtg	ctattgatat	4200
35	tttgactgaa	ggtcaacttc	agtcactatc	taaagattac	attagtagta	atggtccact	4260
	taaggttgga	gcaggtgtta	tgttggagtg	tgaaaaattc	aacgtattta	atgttgttgg	4320
	tccgcgaact	ggtaaacatg	agcattcatt	acttgttgaa	gcttataatt	ctattttatt	4380
40	tgaaaatggt	attccactta	tgcctcttct	tagttgtggt	atttttggtg	taaggattga	4440
	aaattctctt	aaagctttgt	ttagttgtga	cattaataaa	ccattgcaag	tttttgttta	4500
	ttcttcaaat	gaagaacaag	ctgttcttaa	gtttttagat	ggtttagatt	taacaccagt	4560
45	cattgatgat	gttgatgttg	ttaaaccttt	tagagttgaa	ggtaattttt	cattctttga	4620
	ttgtggtgtc	aatgccttgg	atggtgatat	ttacttatta	tttactaact	ctattttaat	4680
	gttggataaa	caaggacaat	tattggacac	aaaacttaat	ggtattttgc	aacaggcagc	4740
50	tcttgattat	cttgctacag	ttaaaactgt	accagctggt	aatttggtta	aactttttgt	4800
	tgagagttgt	accatttata	tgtgtgttgt	accatcgata	aatgatcttt	cttttgataa	4860

	aaatcttggt	cgttgtgtgc	gtaaacttaa	tagattgaaa	acttgtgtta	ttgccaatgt	4920
5	tcctgctatt	gatgttttga	aaaagcttct	ttcaagtttg	actttaactg	ttaaatttgt	4980
	tgtagagagt	aatgttatgg	atgttaacga	ctgttttaag	aatgataatg	tagttttgaa	5040
10	aattactgaa	gatggtatta	atgttaaaga	tgttgttgtt	gagtcttcta	agtcacttgg	5100
10	taaacaattg	ggtgttgtga	gtgatggtgt	tgactctttt	gaaggtgttt	tacctattaa	5160
	tactgatact	gtcttatctg	tagctccaga	agttgactgg	gttgcttttt	acggttttga	5220
15	aaaggcagca	ctttttgctt	ctttggatgt	aaagccatat	ggttacccta	atgattttgt	5280
	tggtggtttt	agagttcttg	ggaccaccga	caataattgt	tgggttaatg	caacttgtat	5340
	aattttacag	tatcttaagc	ctacttttaa	atctaagggt	ttaaatgttc	tttggaacaa	5400
20	atttgttaca	ggtgatgttg	gaccttttgt	tagttttatt	tattttataa	ctatgtcttc	5460
	aaagggtcaa	aagggtgatg	ctgaagaggc	attatctaaa	ttgtcagagt	atttgattag	5520
	tgattctatt	gttactcttg	aacaatattc	aacttgtgac	atttgtaaaa	gtactgtagt	5580
25	tgaagttaaa	agtgctattg	tctgtgctag	tgtgcttaaa	gatggttgtg	atgttggttt	5640
	ttgtccacac	agacataaat	tgcgttcacg	tgttaagttt	gttaatggac	gtgttgttat	5700
	taccaatgtt	ggtgaaccta	taatttcaca	accttctaag	ttgcttaatg	gtattgctta	5760
30	tacaacattt	tcaggttctt	ttgataacgg	tcactatgta	gtttatgatg	ctgctaataa	5820
	tgctgtctat	gatggtgctc	gtttattttc	ttcagatttg	tctactttag	ctgttacagc	5880
	tattgttgta	gtaggtggtt	gtgtaacatc	taatgttcca	acaattgtta	gtgagaaaat	5940
35	ttctgttatg	gataaacttg	atactggtgc	acaaaaattt	ttccaatttg	gtgattttgt	6000
	tatgaataac	attgttctgt	ttttaacttg	gttgcttagt	atgtttagtc	ttttacgtac	6060
	ttctattatg	aagcatgata	ttaaagttat	tgccaaggct	cctaaacgta	caggtgttat	6120
40	tttgacacgt	agttttaagt	ataacattag	atctgctttg	tttgttataa	agcagaagtg	6180
	gtgtgttatt	gttactttgt	ttaagttctt	attattatta	tatgctattt	atgcacttgt	6240
	ttttatgatt	gtgcaattta	gtccttttaa	tagtctttta	tgtggtgaca	ttgtaagtgg	6300
45	ttatgaaaaa	tccactttta	ataaggatat	ttattgtggt	aattctatgg	tttgtaagat	6360
	gtgtttgttc	agttatcaag	agtttaatga	tttggatcat	actagtcttg	tttggaagca	6420
50	cattcgtgat	cctatattaa	tcagtttaca	accatttgtt	atacttgtta	ttttgttaat	6480
50	ttttggtaat	atgtatttgc	gttttggact	tttatattt	gttgcacaat	ttattagtac	6540

	ttttggttct	ttcttaggct	ttcatcagaa	acagtggttt	ttacattttg	tgccgtttga	6600
5	tgttttatgt	aatgagtttt	tagctacatt	tattgtctgc	aaaatcgttt	tatttgttag	6660
	acatattatt	gttggctgta	ataatgctga	ctgtgtagct	tgttctaaaa	gtgctagact	6720
	taaacgtgta	ccacttcaaa	ctattattaa	tggtatgcat	aaatcattct	atgttaatgc	6780
10	taatggtggt	acttgtttct	gtaataaaca	taacttcttt	tgtgttaatt	gtgattcttt	6840
	tgggcctggt	aatactttta	ttaatggtga	tattgcaaga	gagcttggta	atgttgttaa	6900
	aacagctgtt	caacccacag	ctcctgcata	tgttattatt	gataaggtag	attttgttaa	6960
15	tggattttat	cgtctttata	gtggtgacac	tttttggcgg	tatgactttg	acattactga	7020
	atctaagtat	agttgtaaag	aggttctgaa	gaattgtaat	gttttagaaa	attttattgt	7080
	ttacaataat	agtggtagta	acattacaca	gattaaaaat	gcttgtgttt	atttttctca	7140
20	attgttgtgt	gaacctataa	agttggtaaa	ttcagagttg	ttgtcaactt	tatctgttga	7200
	ttttaatggt	gttttgcata	aggcatatgt	tgatgttttg	tgtaatagtt	tttttaagga	7260
	gttaactgct	aacatgtcca	tggctgaatg	taaagctaca	cttggtttga	ctgtttctga	7320
25	tgatgatttt	gtttcagctg	ttgccaatgc	acataggtat	gacgttttgc	tttcagattt	7380
	gtcatttaat	aatttttta	tttcttatgc	taaacctgaa	gataagttgt	ccgtttatga	7440
20	cattgcttgt	tgtatgcgtg	ccggttctaa	ggttgttaac	cataatgttt	taattaaaga	7500
30	gtcaatacct	attgtttggg	gtgtcaagga	ctttaatact	ctttctcaag	aaggtaagaa	7560
	gtaccttgtt	aaaacaacta	aagcaaaggg	tttgactttt	ttattaactt	ttaatgataa	7620
35	ccaagcaatt	acacaagttc	ctgctactag	tatagttgca	aaacagggtg	ctggttttaa	7680
	acgtacttat	aattttctgt	ggtatgtatg	tttatttgtt	gttgcattgt	ttattggtgt	7740
	ctcatttatt	gattatacaa	ccactgtaac	tagctttcat	ggttatgatt	ttaagtacat	7800
40	tgagaatggt	cagttgaagg	tgtttgaagc	acctttacac	tgtgttcgta	atgtttttga	7860
	taattttaat	caatggcatg	aggctaagtt	tggtgttgtt	actactaata	gtgataaatg	7920
	tcctatagtt	gttggtgttt	cagagcgtat	taatgttgtt	cctggtgttc	caacaaatgt	7980
45	atatttggta	ggaaagactc	ttgtttttac	attacaggct	gcttttggaa	acacaggtgt	8040
	ttgttatgac	tttgatggtg	ttaccactag	tgataagtgt	atttttaatt	ctgcttgtac	8100
	taggttggaa	ggtttgggtg	gtgacaatgt	ttattgttac	aacactgatc	ttattgaagg	8160
50	ttctaaacct	tatagtactt	tacageceaa	tgcgtattat	aagtatgatg	ctaaaaatta	8220
	tgtacgtttt	ccagaaattt	tagctagagg	ttttggctta	cgtactatta	gaactttggc	8280

_	tacacgttat	tgtagagttg	gtgaatgccg	tgactcacat	aaaggtgttt	gttttggttt	8340
5	tgataaatgg	tatgttaatg	atggacgtgt	tgatgacggt	tacatttgtg	gtgatggtct	8400
	tatagacctt	cttgttaatg	tactctcaat	ctttagttca	tcttttagcg	ttgtggctat	8460
10	gtctggacat	atgttgttta	attttctttt	tgcagcattt	attacatttt	tgtgcttttt	8520
	agttactaaa	tttaaacgtg	tttttggtga	tctttcttat	ggtgtttta	ctgttgtttg	8580
	tgcaactttg	attaataaca	tttcttatgt	tgttactcaa	aatttattt	ttatgttgct	8640
15	ttatgctatt	ttgtattttg	tttttactag	gacagtgcgt	tatgcttgga	tttggcatat	8700
	tgcatacatt	gttgcatact	tcttgttaat	accatggtgg	cttctcacat	ggtttagttt	8760
	tgctgcattt	ttagagcttt	tacctaatgt	ttttaagtta	aaaatctcta	ctcaattgtt	8820
20	tgaaggtgat	aagtttatag	gtacttttga	gagtgctgct	gcaggtacat	ttgttcttga	8880
	catgcgttct	tatgaaaggc	tgataaatac	tatttcacct	gagaaactta	agaattatgc	8940
	tgcaagttat	aataaatata	aatattatag	tggtagtgct	agtgaggctg	attatcgttg	9000
25	tgcttgttat	gctcatttag	ccaaggctat	gttagattat	gcaaaagatc	ataatgacat	9060
	gttatattct	ccacctacta	ttagctacaa	ttccacctta	caatctggtc	ttaagaagat	9120
	ggcacaacca	tctggttgtg	ttgagagatg	tgtggttcgc	gtctgttatg	gtagtactgt	9180
30	gcttaatgga	gtttggttag	gtgacactgt	tacttgtcct	agacatgtca	tagcaccatc	9240
	aaccactgtt	cttattgatt	atgatcatgc	atatagtact	atgcgtttgc	ataattttc	9300
	agtgtctcat	aatggtgtct	tcttgggagt	tgtcggtgtt	acaatgcatg	gttctgtgtt	9360
35	gcgtattaag	gtttcacaat	ctaatgtaca	tacacctaaa	catgttttta	aaacgttgaa	9420
	acctggtgat	tcttttaata	ttttagcatg	ttatgaaggt	attgcatctg	gtgtttttgg	9480
	tgttaattta	cgtacaaact	ttactattaa	aggttctttt	ataaatggag	cttgtggttc	9540
40	tcctggttat	aatgttagaa	atgatggtac	tgttgagttt	tgttatttac	accaaattga	9600
	gttaggtagt	ggtgctcatg	ttggttctga	ttttactggt	agtgtttatg	gtaattttga	9660
	tgaccaacct	agtttgcaag	ttgagagtgc	caaccttatg	ctatcagata	atgttgttgc	9720
45	ctttttgtat	gctgctttgt	tgaatggttg	taggtggtgg	ttgtgttcaa	ctagagttaa	9780
	tgttgatggt	tttaatgaat	gggctatggc	taatggttat	acaagtgttt	ctagtgttga	9840
	gtgctattct	attttggcag	caaaaactgg	tgttagtgtt	gaacaattgt	tagcttccat	9900
50	tcaacatctt	catgaaggtt	ttggtggtaa	aaacatactt	ggttattcta	gtttatgtga	9960

	tgagttcaca	ctagctgaag	ttgtgaagca	gatgtatggt	gttaacttgc	aaagtggtaa	10020
5	ggttattttt	ggtttaaaaa	caatgttttt	atttagcgtt	ttcttcacaa	tgttttgggc	10080
	agaactcttt	atttatacaa	acactatatg	gataaaccct	gtgatactta	cacctatatt	10140
	ttgtctactt	ttgtttttgt	cattagtttt	aactatgttt	cttaaacata	agtttttgtt	10200
10	tttgcaagta	tttttattac	ctactgttat	tgcaactgct	ttatataatt	gtgttttgga	10260
	ttattacata	gtaaaatttt	tggctgacca	ttttaactat	aatgtttcag	tattacaaat	10320
	ggatgttcag	ggtttagtta	atgttttggt	ctgtttattt	gttgtatttt	tacacacatg	10380
15	gcgcttttct	aaagaacgtt	ttacacattg	gtttacatat	gtgtgttctc	ttatagcagt	10440
	tgcttacact	tatttttata	gtggtgactt	tttgagtttg	cttgttatgt	ttttatgtgc	10500
	tatatctagt	gattggtaca	ttggtgccat	tgtttttagg	ttgtcacgtt	tgattgtatt	10560
20	tttttcacct	gaaagtgtat	ttagtgtttt	tggtgatgtg	aaacttactt	tagttgttta	10620
	tttaatttgt	ggttatttag	tttgtactta	ttggggcatt	ttgtattggt	tcaataggtt	10680
	ttttaaatgt	actatgggtg	tttatgattt	taaggtgagt	gctgctgaat	ttaaatacat	10740
25	ggttgctaat	ggacttcatg	caccacatgg	accttttgat	gcactttggt	tatcattcaa	10800
	actacttggt	attggtggtg	accgttgtat	aaaaatttca	actgtccaat	ccaaactgac	10860
	tgatttgaag	tgtactaatg	ttgtgttatt	gggttgtttg	tctagtatga	acattgcagc	10920
30	taattctagt	gaatgggctt	attgtgttga	tttacacaat	aagattaatc	tttgtgatga	10980
	ccctgaaaaa	gctcaaagta	tgttgttagc	actccttgcg	ttctttctaa	gtaaacatag	11040
35	tgattttggt	cttgatggcc	ttattgattc	ttattttgat	aatagtagca	cccttcagag	11100
30	tgttgcttca	tcatttgtta	gtatgccatc	atatattgct	tatgaaaatg	ctagacaagc	11160
	ttatgaggat	gctattgcta	atggatcttc	ttctcaactt	attaaacaat	tgaagcgtgc	11220
40	catgaatatc	gcaaagtctg	aatttgatca	tgagatatct	gttcagaaga	aaattaatag	11280
	aatggctgaa	caagctgcta	ctcagatgta	taaagaagca	cgctctgtta	atagaaaatc	11340
	taaagttatt	agtgctatgc	actctttact	ttttggaatg	ttaagacgtt	tggatatgtc	11400
45	tagtgttgaa	actgttttga	atttagcacg	tgatggtgtt	gtgccattgt	cagttatacc	11460
	tgcaacttca	gcttctaaac	taactattgt	tagtccagat	cttgaatctt	attctaagat	11520
	tgtttgtgat	ggttctgttc	attatgctgg	agttgtttgg	acacttaatg	atgttaaaga	11580
50	caatgatggt	agacctgttc	atgttaaaga	gattacaaag	gaaaatgttg	aaactttgac	11640
	atggcctctt	atccttaatt	gtgaacgtgt	tgttaaactt	caaaataatg	aaattatgcc	11700

5	tggtaaactt	aagcaaaaac	ctatgaaagc	tgagggtgat	ggtggtgttt	taggtgatgg	11760
3	taatgccttg	tataatactg	agggtggtaa	aacttttatg	tacgcttata	tttctaataa	11820
	agctgacctt	aaatttgtta	agtgggagta	tgagggtggt	tgcaacacaa	tcgagttaga	11880
10	ctctccttgt	cgatttatgg	tcgaaacacc	taatggtcct	caagtgaagt	atttgtattt	11940
	tgttaaaaat	ttaaatacct	tacgtagagg	tgccgttctt	ggttttatag	gtgccacaat	12000
	tcgtctacaa	gctggtaaac	aaactgaatt	ggctgttaat	tctggacttt	taactgcttg	12060
15	tgctttttct	gttgatccag	caactactta	cttggaagct	gttaaacatg	gtgcaaaacc	12120
	tgtaagtaat	tgtattaaga	tgttatctaa	tggtgctggt	aatggtcaag	ctataacaac	12180
	tagtgtagat	gctaacacca	atcaagattc	ttatggtgga	gcgtctattt	gtttgtattg	12240
20	tcgggcccac	gttcctcacc	ctagtatgga	tggttactgt	aagtttaagg	gtaaatgtgt	12300
	tcaggttcct	attggttgtt	tggatcctat	taggttttgt	ttagaaaata	atgtgtgtaa	12360
	tgtttgtggt	tgttggttgg	gacacgggtg	tgcttgtgac	cgtacaacta	ttcaaagtgt	12420
25	tgacatttct	tatttaaacg	agcaaggggt	tctagtgcag	ctcgactaga	accctgcaat	12480
	ggcacggaca	tcgataagtg	tgttcgtgct	tttgacattt	ataataaaaa	tgtttcattc	12540
	ttgggtaagt	gtttgaagat	gaactgtgtt	cgttttaaaa	atgctgatct	taaggatggt	12600
30	tattttgtta	taaagaggtg	tactaagtcg	gttatggaac	acgagcaatc	catgtataac	12660
	ctacttaact	tttctggtgc	tttggctgag	catgatttct	ttacttggaa	agatggcaga	12720
	gtcatttatg	gtaatgttag	tagacataat	cttactaaat	atactatgat	ggacttggtc	12780
35	tatgctatgc	gtaactttga	tgaacaaaat	tgtgatgttc	taaaagaagt	attagtttta	12840
	actggttgtt	gtgacaattc	ttattttgat	agtaagggtt	ggtatgaccc	agttgaaaat	12900
	gaagatatac	atagagttta	tgcatctctt	ggcaaaattg	tagctagagc	tatgcttaaa	12960
40	tgcgttgctc	tatgcgatgc	gatggttgct	aaaggtgttg	ttggtgtttt	aacattagat	13020
	aaccaagatc	ttaatggtaa	cttttatgat	tttggtgatt	ttgttgttag	cttacctaat	13080
	atgggtgttc	cctgttgtac	atcatattat	tcttatatga	tgcctattat	gggtttaact	13140
45	aattgtttag	ctagtgagtg	ttttgtcaag	agtgatattt	ttggtagtga	ttttaaaact	13200
	tttgatttgc	ttaagtatga	tttcactgaa	cataaagaaa	atttattcaa	taagtacttt	13260
50	aagcattgga	gttttgatta	tcatcctaat	tgttgtgact	gttatgatga	tatgtgtgtt	13320
50	atacattgtg	ctaattttaa	tacactattt	gccacaacta	taccaggtac	tgcttttggt	13380

	ccactatgtc	gtaaagtttt	tatagatggt	gttccacttg	ttacaactgc	tggttatcat	13440
5	tttaagcaat	taggtttggt	ttggaataaa	gatgttaaca	cacactcagt	taggttgaca	13500
	attactgaac	ttttgcaatt	tgtcaccgac	ccttccttga	taatagcttc	ttccccagca	13560
	ctcgttgatc	aacgcactat	ttgtttttct	gttgcagcat	tgagtactgg	tttgacaaat	13620
10	caagttgtta	agccaggtca	ttttaatgaa	gagttttata	actttcttcg	tttaagaggt	13680
	ttctttgatg	aaggttctga	acttacatta	aaacatttct	tcttcgcaca	gaatggtgat	13740
	gctgctgtta	aagattttga	cttttaccgt	tataataagc	ctaccatttt	agatatttgt	13800
15	caagctagag	ttacatataa	gatagtctct	cgttattttg	acatttatga	aggtggctgt	13860
	attaaggcat	gtgaagttgt	tgtaacaaat	cttaataaga	gtgctggttg	gccattaaat	13920
	aagtttggta	aagctagttt	gtattatgaa	tctatatctt	atgaagaaca	ggatgctttg	13980
20	tttgctttga	caaagcgtaa	tgtcctccct	actatgacac	agctgaatct	taagtatgct	14040
	attagtggta	aagaacgtgc	tagaactgtt	ggtggtgttt	ctctgttgtc	tacaatgacc	14100
	acaagacaat	accatcaaaa	acatcttaaa	tccattgtta	atacacgcaa	tgccactgtt	14160
25	gttattggta	ctaccaaatt	ttatggtggt	tggaataata	tgttgcgtac	tttaattgat	14220
	ggtgttgaaa	accctatgct	tatgggttgg	gattatccca	aatgtgatag	agctttgcct	14280
20	aacatgatac	gtatgatttc	agccatggtg	ttgggctcta	agcatgttaa	ttgttgtact	14340
30	gcaacagata	ggttttatag	gcttggtaat	gagttggcac	aagttttaac	agaagttgtt	14400
	tattctaatg	gtggttttta	ttttaagcca	ggtggtacga	cttctggtga	cgctagtaca	14460
35	gcttatgcta	attctatttt	taacattttt	caagccgtga	gttctaacat	taacaggttg	14520
	cttagtgtcc	catcagattc	atgtaataat	gttaatgtta	gggatctaca	acgacgtctg	14580
	tatgataatt	gttataggtt	aactagtgtt	gaagagtcat	tcattgaaga	ttattatggt	14640
40	tatcttagga	aacatttttc	aatgatgatt	ctctctgatg	acggtgttgt	ctgttataac	14700
	aaggattatg	ctgagttagg	ttatatagca	gacattagtg	cttttaaagc	cactttgtat	14760
	taccagaata	atgtctttat	gagtacttct	aaatgttggg	ttgaagaaga	tttaactaag	14820
45	ggaccacatg	agttttgttc	ccagcatact	atgcaaatag	ttgacaaaga	tggtacctat	14880
	tatttgcctt	acccagatcc	tagtaggatc	ttgtcagctg	gtgtttttgt	tgatgatgtt	14940
	gttaagacag	atgctgttgt	tttgttagaa	cgttatgtgt	ctttagctat	tgatgcatac	15000
50	cctctttcaa	aacaccctaa	ttccgaatat	cgtaaggttt	tttacgtatt	acttgattgg	15060
	gttaagcatc	ttaacaaaaa	tttgaatgag	ggtgttcttg	aatcttttc	tgttacactt	15120

	at+aataata	220220112	at+++==+	~~~~++++	-+	atataaaaa	15100
					atgctagtat		15180
5	tctacaatat	tgcaagctgc	tggtttatgt	gttgtttgtg	gttcacaaac	tgtacttcgt	15240
	tgtggtgatt	gtctgcgtaa	gcctatgttg	tgcactaaat	gcgcatatga	tcatgtattt	15300
	ggtaccgacc	acaagtttat	tttggctata	acaccgtatg	tatgtaatgc	atcaggttgt	15360
10	ggtgttagtg	atgtcaaaaa	attgtatctt	ggtggtttga	attactattg	tacaaatcat	15420
	aaaccacagt	tgtcttttcc	attatgttca	gctggtaata	tatttggttt	atataaaaat	15480
	tcagcaactg	gttccttaga	tgttgaagtt	tttaataggc	ttgcaacgtc	tgattggact	15540
15	gatgttaggg	actataaact	tgctaatgat	gttaaagata	cacttagact	ctttgcggct	15600
	gaaactatta	aagctaaaga	agagagtgtt	aagtcttctt	atgcttttgc	aactcttaaa	15660
	gaggttgttg	gacctaaaga	attgcttctt	agttgggaaa	gtggtaaagt	taaaccacct	15720
20	ttgaatcgta	attctgtttt	cacttgtttt	caaataagta	aggactcaaa	attccaaata	15780
	ggtgagttca	tctttgagaa	ggttgaatat	ggttctgata	ctgttacgta	taagtctact	15840
25	gtaactacta	agttagttcc	tggtatgatt	tttgtcttaa	catctcacaa	tgtccaacct	15900
	ttacgtgcac	caactattgc	aaaccaagag	aagtattcta	gcatttataa	attgcaccct	15960
	gcttttaatg	tcagtgatgc	atatgctaat	ttggttccat	attaccaact	tattggtaaa	16020
30	caaaagataa	ctacaataca	gggtcctcct	ggtagtggta	agtcacattg	ttccattgga	16080
	cttggattgt	actacccagg	tgcgcgtatt	gtttttgttg	cttgtgccca	tgctgctgtt	16140
	gattccttat	gtgcaaaagc	tatgactgtt	tatagcattg	ataagtgtac	taggattata	16200
35	cctgcaagag	ctcgggttga	gtgttatagt	ggctttaaac	caaataacac	tagtgcacaa	16260
	tacatattta	gcactgttaa	cgcattacct	gagtgtaatg	ctgatatcgt	tgttgtagat	16320
	gaagtttcaa	tgtgtacaaa	ttatgacctt	tctgttatta	accagcgttt	atcatataaa	16380
40	catattgttt	atgttggtga	tccacaacaa	cttcctgcac	ctagagtaat	gattactaaa	16440
	ggtgttatgg	agcctgttga	ttataacgtt	gttactcaac	gtatgtgtgc	tataggccct	16500
45	gatgtttttc	ttcataaatg	ttatagatgt	cctgctgaaa	tagtaataca	gtttctgaac	16560
	ttgtttatga	gaacaagttt	gtccctgtta	aacctgctag	taaacagtgt	tttaaagtct	16620
	tttttaaggg	taatgtacaa	ggttgacaat	ggttctagta	ttaacagaaa	gcagcttgaa	16680
	atagttaagc	tgtttttagt	taaaaatcca	agttggagta	aggctgtgtt	tatttctcct	16740
50	tataatagtc	agaattatgt	tgctagtaga	tttttaggac	ttcaaattca	aactgttgat	16800

	tcttctcaag	gtagtgagta	tgattatgta	atctatgcac	aaacttctga	cactgcacat	16860
5	gcttgcaatg	taaaccgttt	taatgttgct	ataacacgtg	ctaagaaggg	tatattttgt	16920
	gtaatgtgtg	ataaaacttt	gtttgattca	cttaagtttt	ttgagattaa	acatgcagat	16980
	ttacactcta	gccaggtttg	tggcttgttt	aaaaattgta	cacgcactcc	tcttaattta	17040
10	ccaccaactc	atgcacacac	tttcttgtcg	ttgtcagatc	agtttaagac	tacaggtgat	17100
	ttagctgttc	aaataggttc	aaataacgtt	tgtacttatg	aacatgttat	atcatttatg	17160
	ggttttaggt	ttgatattag	tattcctggt	agtcatagtt	tgttttgtac	acgtgacttt	17220
15	gctattcgta	atgtgcgtgg	ttggttgggt	atggatgttg	aaagtgctca	tgtttgtggc	17280
	gataacatag	gtactaatgt	tcctttacag	gttggttttt	caaatggtgt	taattttgtt	17340
	gtgcaaactg	aaggttgtgt	gtctaccaat	tttggtgatg	ttattaaacc	tgtttgtgca	17400
20	aaatctccac	caggtgaaca	atttagacac	cttattcctc	ttttacgtaa	aggacaacct	17460
	tggttaattg	ttcgtagacg	cattgtgcaa	atgatatctg	attatttgtc	caatttgtct	17520
	gacattcttg	tctttgtttt	gtgggcaggt	agtttggaat	taactacaat	gcgttacttt	17580
25	gtaaaaatag	ggccaattaa	atattgttat	tgtggtaatt	ttgccacttg	ttataattca	17640
	gttagtaatg	aatattgttg	ttttaaacat	gcattgggtt	gtgattatgt	ttacaatccg	17700
00	tatgcttttg	atatacaaca	gtggggttat	gttggttcct	tgagccaaaa	ccaccacaca	17760
30	ttctgtaaca	ttcatagaaa	cgagcatgat	gcctctggtg	atgctgttat	gacacgttgt	17820
	ttggcagtac	atgattgttt	tgtcaaaaat	gttgattgga	ctgtaacgta	cccctttatt	17880
35	gcaaatgaga	aatttatcaa	tggctgtggg	cgtaatgtcc	agggacatgt	tgttcgtgca	17940
00	gccttgaaat	tgtataaacc	tagtgttatt	catgacattg	gtaatcctaa	aggtgtacgt	18000
	tgtgctgtta	ctgatgccaa	atggtactgt	tatgacaagc	aacctgttaa	tagtaatgtc	18060
40	aagttgttgg	attatgatta	tgcaacccat	ggtcaacttg	atggtctttg	tttattctgg	18120
	aattgtaatg	ttgatatgta	tccagaattt	tcaattgtgt	gtcgttttga	cacacgtact	18180
	cgttctgttt	ttaatttaga	aggtgttaat	ggtggttctc	tttatgttaa	caaacatgcg	18240
45	tttcatacac	cagcatatga	taaacgtgct	tttgttaaat	taaaacctat	gcccttttt	18300
	tactttgatg	acagtgattg	tgatgttgtg	caagaacaag	ttaattatgt	accccttcgc	18360
	gctagtagtt	gtgttactcg	ttgtaatata	ggtggtgctg	tttgttcaaa	acatgcaaat	18420
50	ttgtatcaaa	aatatgttga	ggcatataat	acatttacac	aggcaggttt	taacatttgg	18480
	gtaccacata	gttttgatgt	ttataatttg	tggcaaattt	ttattgaaac	taatttacaa	18540

	agtcttgaaa	atatagcatt	taatgttgta	aaaaaagggt	gttttactgg	tgttgatggt	18600
5	gagttacctg	ttgcagttgt	taacgacaaa	gtttttgttc	gctatggcga	tgttgacaac	18660
	ttggttttta	caaataaaac	aacattgcct	actaatgttg	cttttgaatt	gtttgcaaaa	18720
40	cgaaaaatgg	gtttaacacc	accattgtct	attctcaaaa	atctcggtgt	tgttgctaca	18780
10	tataaatttg	ttttatggga	ttatgaagct	gaaagacctt	ttacctcata	tactaagagt	18840
	gtatgtaaat	acactgattt	taatgaggat	gtttgtgttt	gttttgacaa	tagtattcag	18900
15	ggttcgtatg	agcgttttac	gcttactacg	aacgctgttt	tattttctac	tgttgtcatt	18960
, ,	aaaaatttaa	cacctataaa	gttgaatttt	ggtatgttga	atggtatgcc	agtttcttct	19020
	attaagggtg	ataaaggtgt	tgaaaaatta	gttaattggt	acatatatgt	tcgtaaaaat	19080
20	ggtcaatttc	aagatcacta	tgatggtttt	tacactcaag	gtaggaattt	atcagacttt	19140
	acaccaagaa	gtgatatgga	gtatgatttt	cttaacatgg	atatgggtgt	ttttattaat	19200
	aaatatggtc	ttgaggattt	taattttgaa	catgttgtat	atggtgatgt	ttcaaaaact	19260
25	acattaggag	gtcttcattt	gttgatatca	cagtttaggc	ttagtaaaat	gggtgttttg	19320
	aaagctgatg	attttgtcac	tgcttctgac	acaactttga	ggtgctgtac	tgttacttat	19380
	cttaatgaac	ttagttcaaa	agttgtttgt	acttatatgg	atttgttgtt	ggacgacttt	19440
30	gttactatac	taaagagttt	agatcttggt	gtaatatcta	aagttcatga	agttattata	19500
	gataataaac	cttataggtg	gatgttgtgg	tgtaaagata	accacttgtc	cactttttat	19560
	ccacagttgc	agtctgctga	atggaagtgt	ggttatgcta	tgccacaaat	ttataagctt	19620
35	caacgtatgt	gtttggaacc	ttgtaattta	tataattatg	gtgctggtat	taagttgcct	19680
	agtggtataa	tgttaaatgt	tgttaaatac	actcagcttt	gtcaatacct	aaatagcact	19740
	acaatgtgcg	tacctcataa	tatgcgtgtt	ttgcactatg	gtgctggttc	tgacaaaggt	19800
40	gtggcacctg	gtacaactgt	tttaaaacgt	tggctaccac	ccgatgcaat	aatcattgat	19860
	aatgatatca	atgattatgt	tagtgatgca	gattttagca	ttacaggtga	ttgtgctact	19920
	gtttatcttg	aagataagtt	tgacttactt	atttctgata	tgtatgatgg	tagaattaaa	19980
45	ttttgtgatg	gtgaaaatgt	ctctaaagat	gggttttta	cttatcttaa	tggtgttatt	20040
	agagaaaaat	tagctattgg	tggtagtgtt	gccattaaga	ttacagaata	tagttggaat	20100
50	aagtatcttt	atgaattaat	acaaagattt	gctttttgga	ctttgttttg	cacgtctgtt	20160
50	aatacatcct	cttcagaagc	ttttcttatt	ggtattaatt	atttaggtga	ctttattcaa	20220

	ggtcctttta	tagctggtaa	cactgttcat	gctaattata	tattttggcg	taattctact	20280
5	attatgtctt	tgtcatacaa	ttcagtttta	gatttaagta	agtttgaatg	taaacataaa	20340
	gccactgttg	ttgttacact	taaagatagt	gatgtaaatg	atatggtttt	gagtttgatt	20400
	aagagtggta	ggttgttgtt	acgcaataat	ggtcgttttg	gtggttttag	taatcattta	20460
10	gtctcaacta	aatgaaactt	ttcttgattt	tgcttgtttt	gcccctggcc	tcttgctttt	20520
	tcacatgtaa	tagtaatgct	aatctctcta	tgttacaatt	aggtgttcct	gacaattctt	20580
	caactattgt	tacgggttta	ttgccaactc	attggttttg	tgctaatcag	agtacatctg	20640
15	tttactcagc	caatggtttc	ttttatattg	atgttggtaa	tcaccgtagt	gcttttgcgc	20700
	tccatactgg	ttattatgat	gctaatcagt	attatattta	tgttactaat	gaaataggct	20760
	taaatgcttc	tgttactctt	aagatttgta	agtttagtag	aaacactact	tttgattttt	20820
20	taagtaatgc	ttctagttct	tttgactgta	tagttaattt	gttatttaca	gaacagttag	20880
	gtgcgccttt	gggcataact	atatctggtg	aaactgtgcg	tctgcattta	tataatgtaa	20940
	ctcgtacttt	ttatgtgcca	gcagcttata	aacttactaa	acttagtgtt	aaatgttact	21000
25	ttaactattc	ctgtgttttt	agtgttgtca	acgccaccgt	tactgtgaat	gtcaccacac	21060
	ataatggccg	tgtagttaac	tacactgttt	gtgatgattg	taatggttat	actgataaca	21120
30	tattttctgt	tcaacaggat	ggccgcattc	ctaatggttt	cccttttaat	aattggtttt	21180
30	tgttaactaa	tggttccaca	ctagtggacg	gggtctctag	actttatcaa	ccactccgtt	21240
	taacttgttt	atggcctgta	cctggtctta	aatcttcaac	tggttttgtt	tattttaatg	21300
35	ccactggttc	tgatgttaat	tgtaacggct	atcaacataa	ttctgttgtt	gatgttatgc	21360
	gttacaatct	taacttcagt	gctaattctt	tggacaatct	caagagtggt	gttatagttt	21420
	ttaaaacttt	acagtacgat	gttttgttt	attgtagtaa	ttcttcctca	ggtgttcttg	21480
40	acaccacaat	accttttggc	ccgtcctctc	aaccttatta	ctgttttata	aacagcacta	21540
	tcaacactac	tcatgttagc	acttttgtgg	gtattttacc	acccactgtg	cgtgaaattg	21600
	ttgttgctag	aactggccag	ttttatatta	atggttttaa	gtatttcgat	ttgggtttca	21660
45	tagaagctgt	caattttaat	gtcacgactg	ctagcgccac	agatttttgg	acggttgcat	21720
	ttgctacttt	tgttgatgtt	ttggttaatg	ttagtgcaac	taacattcaa	aacttacttt	21780
	attgcgattc	tccatttgaa	aagttgcagt	gtgagcactt	gcagtttgga	ttgcaggatg	21840
50	gtttttattc	tgcaaatttt	cttgatgata	atgttttgcc	tgagacttat	gttgcactcc	21900
	ccatttatta	tcaacacacg	gacataaatt	ttactgcaac	tgcatctttt	ggtggttctt	21960

	gttatgtttg	taaaccacac	caggttaata	tatctcttaa	tggtaacact	tcagtgtgtg	22020
5	ttagaacatc	tcatttttca	attaggtata	tttataaccg	cgttaagagt	ggttcaccag	22080
	gtgactcttc	atggcacatt	tatttaaaga	gtggcacttg	tccattttct	ttttctaagt	22140
	taaataattt	tcaaaagttc	aagactattt	gtttctcaac	cgtcgaagtg	cctggtagtt	22200
10	gtaattttcc	gcttgaagcc	acctggcatt	acacttctta	tactattgtt	ggtgctttgt	22260
	atgttacttg	gtctgaaggt	aattctatta	ctggtgtacc	ttatcctgtc	tctggtattc	22320
	gtgagtttag	taatttagtt	ttaaataatt	gtaccaaata	taatatttat	gattatgttg	22380
15	gtactggaat	tatacgttct	tcaaaccagt	cacttgctgg	tggtattaca	tatgtttcta	22440
	actctggtaa	tttacttggt	tttaaaaatg	tttccactgg	taacattttt	attgtgacac	22500
20	catgtaacca	accagaccaa	gtagctgttt	atcaacaaag	cattattggt	gccatgaccg	22560
	ctgttaatga,	gtctagatat	ggcttgcaaa	acttactaca	gttacctaac	ttttattatg	22620
	ttagtaatgg	tggtaacaat	tgcactacgg	ccgttatgac	ttattctaat	tttggtattt	22680
25	gtgctgatgg	ttctttgatt	cctgttcgtc	cgcgtaattc	tagtgataat	ggtatttcag	22740
	ccataatcac	tgctaattta	tccattcctt	ctaactggac	tacttcagtt	caagttgagt	22800
	acctccaaat	tactagtact	ccaatagttg	ttgattgtgc	tacttatgtg	tgtaatggta	22860
30	accetegetg	taagaatcta	cttaagcagt	atacttctgc	ttgtaaaact	attgaagatg	22920
	ccttacgact	tagtgctcat	ttggaaacta	atgatgttag	tagtatgcta	actttcgata	22980
	gcaatgcttt	tagtttggct	aatgttacta	gttttggaga	ttataacctt	tctagtgttt	23040
35	tacctcagag	aaacattcgt	tcaagccgta	tagcaggacg	tagtgctttg	gaagatttgt	23100
	tgtttagcaa	agttgttaca	tctggtttgg	gtactgttga	tgttgactat	aagtcttgta	23160
	ctaaaggtct	ttctattgct	gaccttgctt	gtgctcagta	ctacaatggc	ataatggttt	23220
40	tgccaggtgt	tgctgatgct	gaacgtatgg	ccatgtacac	aggttctctt	ataggtggca	23280
	tggtgctcgg	aggtcttaca	tcagcagccg	ccataccttt	ttctttggca	ctgcaagcac	23340
	gacttaacta	tgttgcttta	caaactgatg	tgcttcaaga	aaatcagaaa	attttggctg	23400
45	catcatttaa	taaggctatt	aataatattg	ttgcttcttt	tagtagcgtt	aatgatgcta	23460
	ttacacaaac	tgcagaggct	atacatactg	ttactattgc	acttaataag	attcaggatg	23520
50	ttgttaatca	acagggtagt	gctcttaacc	atctcacttc	acaattgaga	cataattttc	23580
50	aggccatttc	taattcaatt	caggctattt	atgaccggct	tgattcaatt	caagccgatc	23640

	aacaagttga	cagattaatt	actggacggc	ttgcagcttt	gaatgcattt	gtttcccaag	23700
E	ttttgaataa	atatactgaa	gttcgtggtt	caagacgctt	agcacagcag	aagattaatg	23760
5	aatgtgtcaa	gtcacaatct	aatagatatg	gtttttgtgg	caatggcact	cacatctttt	23820
	caatcgtcaa	ctctgctcca	gatggtttgc	tttttcttca	tactgttttg	ctgccaactg	23880
10	attacaagaa	tgtaaaggcg	tggtctggta	tctgtgttga	tggcatttat	ggctatgttc	23940
	tgcgtcaacc	taacttggtt	ctttattctg	ataatggtgt	ctttcgtgta	acttccaggg	24000
	tcatgtttca	acctcgctta	cctgttttgt	ctgattttgt	gcaaatatat	aattgtaatg	24060
15	ttacttttgt	taacatatct	cgtgttgagt	tacatactgt	catacctgac	tacgttgatg	24120
	ttaataaaac	attacaagag	tttgcacaaa	acttaccaaa	gtatgttaag	cctaattttg	24180
	acttgactcc	ttttaattta	acatatctta	atttgagttc	tgagttgaag	caactcgaag	24240
20	ctaaaactgc	tagtcttttt	caaactactg	ttgaattaca	aggtcttatt	gatcagatta	24300
	acagtacata	tgttgatttg	aagttgctta	ataggtttga	aaattatatc	aaatggcctt	24360
	ggtgggtttg	gctcattatt	tctgttgttt	ttgttgtatt	gttgagtctt	cttgtgtttt	24420
25	gttgtctttc	tacaggttgt	tgtggttgtt	gcaattgttt	aacttcatca	atgcgaggct	24480
	gttgtgattg	tggttcaact	aaacttcctt	attacgaatt	tgaaaaggtc	cacgttcaat	24540
	aatgcctttt	ggtggcctat	ttcaacttac	tcttgaaagt	actattaata	agagtgtggc	24600
30	taatctcaaa	ttaccacctc	atgatgttac	tgtcttgcgt	gacaatctta	aacctgttac	24660
	tacacttagt	actattactg	cttatttgtt	agttagtttg	tttgtcactt	actttgcttt	24720
0.5	attcaaacct	cttactgcta	gaggtcgtgt	tgcttgtttt	gttttaaaac	tattgacact	24780
35	atttgtctat	gtgcctttat	tggttctttt	tggtatgtat	cttgacagtt	ttataatttt	24840
	ttctacgctg	ttgtttcgat	tcatacatgt	tggctattat	gcctatctct	ataaaaattt	24900
40	ttcatttgtt	ttgttcaatg	ttactaaact	atgcttcgtt	tcaggcaagt	gttggtatct	24960
	tgaacaatca	ttttatgaaa	atcgttttgc	tgctatttat	ggtggtgacc	actatgtcgt	25020
	tttaggtggt	gaaactatta	cttttgtttc	ttttgatgac	ctttatgttg	ctattagagg	25080
45	ttcttgtgaa	aagaacctac	aacttatgcg	taaggttgac	ttgtataatg	gtgctgtcat	25140
	ttacattttt	gccgaagagc	ctgttgttgg	tatagtctac	tcttctcaac	tatacgaaga	25200
	tgttccttcg	attaattgat	gacaatggta	ttgtcctcaa	ttccatttta	tggctccttg	25260
50	ttatgatatt	tttctttgtg	ttggcaatga	cctttattaa	actgattcaa	ttgtgtttta	25320
	cttgtcatta	tttttttagt	aggacattat	atcaaccagt	ttataaaatt	tttcttgctt	25380

	accaagatta	tatgcaaata	geacetgite	cagctgaagt	actaaatgtc	taaactaaac	25440
5	gatgtctaat	agtagtgtgc	ctcttttaga	ggtttatgtc	catttacgta	actggaactt	25500
	tagttggaat	ttaattctaa	cgctttttat	agttgtgttg	cagtatgggc	attataagta	25560
	tagcagactt	ctttatggtt	taaagatgtc	tgttttatgg	tgtttatggc	cacttgttct	25620
10	agctttgtct	atttttgact	gttttgtcaa	ttttaatgtg	gactgggtct	tttttggttt	25680
	tagtattctt	atgtctatta	ttacactttg	tttatgggtt	atgtattttg	ttaatagttt	25740
	cagactttgg	cgccgtgtta	aaactttttg	ggcttttaat	cctgaaacta	atgcaatcat	25800
15	ctctctccag	gtttacggac	ataattatta	cttaccggtg	atggctgcac	ctacaggtgt	25860
	tacattaaca	cttcttagtg	gtgtacttct	tgttgatggc	cataagattg	ctactcgtgt	25920
20	tcaagtgggt	cagttgccta	aatatgtaat	agttgctacg	cctagtacca	caattgtttg	25980
20	tgaccgtgtt	ggtcgctctg	ttaatgaaac	aagccagact	ggttgggcat	tctacgtccg	26040
	tgctaaacat	ggtgattttt	ctggtgttgc	ctctcaggag	ggtgttttgt	cagaaagaga	26100
25	gaagttgctt	catttaatct	aaactaaaca	aaatggctag	tgtaaattgg	gccgatgaca	26160
	gagctgctag	gaagaaattt	cctcctcctt	cattttacat	gcctcttttg	gttagttctg	26220
	ataaggcacc	atatagggtc	attcccagga	atcttgtccc	tattggtaag	ggtaataaag	26280
30	atgagcagat	tggttattgg	aatgttcaag	agcgttggcg	tatgcgcagg	gggcaacgtg	26340
	ttgatttgcc	tcctaaagtt	catttttatt	acctaggtac	tggacctcat	aaggacctta	26400
	aattcagaca	acgttctgat	ggtgttgttt	gggttgctaa	ggaaggtgct	aaaactgtta	26460
35	ataccagtct	tggtaatcgc	aaacgtaatc	agaaaccttt	ggaaccaaag	ttctctattg	26520
	ctttgcctcc	agagetetet	gttgttgagt	ttgaggatcg	ctctaataac	tcatctcgtg	26580
	ctagcagtcg	ttcttcaact	cgtaacaact	cacgagactc	ttctcgtagc	acttcaagac	26640
40	aacagtctcg	cactcgttct	gattctaacc	agtcttcttc	agatcttgtt	gctgctgtta	26700
	ctttggcctt	aaagaactta	ggttttgata	accagtcgaa	gtcacctagt	tcttctggta	26760
	cttccactcc	taagaaacct	aataagcctc	tttctcaacc	cagggctgat	aagccttctc	26820
45	agttgaagaa	acctcgttgg	aagcgtgttc	ctaccagaga	ggaaaatgtt	attcagtgct	26880
	ttggtcctcg	tgattttaat	cacaatatgg	gggattcaga	tcttgttcag	aatggtgttg	26940
50	atgccaaagg	ttttccacag	cttgctgaat	tgattcctaa	tcaggctgcg	ttattctttg	27000
	atagtgaggt	tagcactgat	gaagtgggtg	ataatgttca	gattacctac	acctacaaaa	27060

	tgcttgtagc taaggataat aagaacette etaagtteat tgageagatt agtgetttta	27120
5	ctaaacccag ttctatcaaa gaaatgcagt cacaatcatc tcatgttgct cagaacacag	27180
O .	tacttaatgc ttctattcca gaatctaaac cattggctga tgatgattca gccattatag	27240
	aaattgtcaa cgaggttttg cattaaattg ttttgtaatt ccagttgaat gtttattatt	27300
10	attagttgca accccatgcg tttagcgcat gataagggtt tagtcttaca cacaatggta	27360
	ggccagtgat agtaaagtgt aagtaatttg ctatcatatt aacatgtcta gaggaaagtc	27420
	agaacttttt ctgtttgtgt tgttggagta cttaaagatc gcataggcgc gccaacaatg	27480
15	gaagagccaa caacatatct aaaaatgttt tgtctggtac ttgttaatga tattgttttt	27540
	gatatggata cac	27553
20	<210> 56 <211> 4060 <212> PRT <213> Human coronavirus	
	<220>	
25	<221> MISC_FEATURE <222> (1)(4060) <223> ORF la, replicase enzyme complex	
	<400> 56	
30	Met Phe Tyr Asn Gln Val Thr Leu Ala Val Ala Ser Asp Ser Glu Ile 1 5 10 15	
	Ser Gly Phe Gly Phe Ala Ile Pro Ser Val Ala Val Arg Thr Tyr Ser	
35	20 25 30	
	Glu Ala Ala Ala Gln Gly Phe Gln Ala Cys Arg Phe Val Ala Phe Gly	
40	35 40 45	
	Leu Gln Asp Cys Val Thr Gly Ile Asn Asp Asp Asp Tyr Val Ile Ala 50 55 60	
45	Leu Thr Gly Thr Asn Gln Leu Cys Ala Lys Ile Leu Pro Phe Ser Asp 65 70 75 80	
50	Arg Pro Leu Asn Leu Arg Gly Trp Leu Ile Phe Ser Asn Ser Asn Tyr 85 90 95	
50	Val Leu Gln Asp Phe Asp Val Val Phe Gly His Gly Ala Gly Ser Val	

		100		105	110
5		al Asp Lys 15	Tyr Met Cys 120	Gly Phe Asp Gly L	ys Pro Val Leu 25
10	Pro Lys A	sn Met Trp	Glu Phe Arg 135	Asp Tyr Phe Asn A	sn Asn Thr Asp
15	Ser Ile V 145	al Ile Gly	Gly Val Thr 150	Tyr Gln Leu Ala T 155	rp Asp Val Ile 160
	Arg Lys A	sp Leu Ser 165	Tyr Glu Gln	Gln Asn Val Leu A 170	la Ile Glu Ser 175
20	Ile His T	yr Leu Gly 180	Thr Thr Gly	His Thr Leu Lys S 185	er Gly Cys Lys 190
25		sn Ala Lys 95	Pro Pro Lys 200	Tyr Ser Ser Lys V 2	al Val Leu Ser 05
	Gly Glu 7 210	rp Asn Ala	Val Tyr Arg 215	Ala Phe Gly Ser P 220	ro Phe Ile Thr
30	Asn Gly M 225	et Ser Leu	Leu Asp Ile 230	Ile Val Lys Pro V 235	al Phe Phe Asn 240
35	Ala Phe V	al Lys Cys 245	Asn Cys Gly	Ser Glu Ser Trp S 250	er Val Gly Ala 255
40	Trp Asp (ly Tyr Leu 260	Ser Ser Cys	Cys Gly Thr Pro A 265	la Lys Lys Leu 270
40		al Pro Gly 75	Asn Val Val 280	Pro Gly Asp Val I 2	le Ile Thr Ser 85
45	Thr Ser A	la Gly Cys	Gly Val Lys 295	Tyr Tyr Ala Gly I 300	eu Val Val Lys
50	His Ile 3	hr Asn Ile	Thr Gly Val	Ser Leu Trp Arg V 315	al Thr Ala Val
	His Ser A	sp Gly Met 325		Ser Ser Ser Tyr A	sp Ala Leu Leu 335
55					

5	His	Arg	Asn	Ser 340	Leu	Asp	Pro	Phe	Cys 345	Phe	Asp	Val	Asn	Thr 350	Leu	Leu
10	Ser	Asn	Gln 355	Leu	Arg	Leu	Ala	Phe 360	Leu	Gly	Ala	Ser	Val 365	Thr	Glu	Asp
	Val	Lys 370	Phe	Ala	Ala	Ser	Thr 375	Gly	Val	Ile	Asp	Ile 380	Ser	Ala	Gly	Met
15	Phe 385	Gly	Leu	Tyr	Asp	Asp 390	Ile	Leu	Thr	Asn	Asn 395	Lys	Pro	Trp	Phe	Val 400
20	Arg	Lys	Ala	Ser	Gly 405	Leu	Phe	Asp	Ala	Ile 410	Trp	Asp	Ala	Phe	Val 415	Ala
	Ala	Ile	Lys	Leu 420	Val	Pro	Thr	Thr	Thr 425	Gly	Val	Leu	Val	Arg 430	Phe	Val
25	Lys	Ser	Ile 435	Ala	Ser	Thr	Val	Leu 440	Thr	Val	Ser	Asn	Gly 445	Val	Ile	Ile
30	Met	Cys 450	Ala	Asp	Val	Pro	Asp 455	Ala	Phe	Gln	Ser	Val 460	Tyr	Arg	Thr	Phe
	Thr 465	Gln	Ala	Ile	Cys	Ala 470	Ala	Phe	Asp	Phe	Ser 475	Leu	Asp	Val	Phe	Lys 480
35	Ile	Gly	Asp	Val	Lys 485	Phe	Lys	Arg	Leu	Gly 490	Asp	Tyr	Val	Leu	Thr 495	Glu
40	Asn	Ala	Leu	Val 500	Arg	Leu	Thr	Thr	Glu 505	Val	Val	Arg	Gly	Val 510	Arg	Asp
45	Ala	Arg	Ile 515	Lys	Lys	Ala	Met	Phe 520	Thr	Lys	Val	Val	Val 525	Gly	Pro	Thr
	Thr	Glu 530	Val	Lys	Phe	Ser	Val 535	Ile	Glu	Leu	Ala	Thr 540	Val	Asn	Leu	Arg
50	Leu 545	Val	Asp	Cys	Ala	Pro 550	Val	Val	Cys	Pro	Lys 555	Gly	Lys	Ile	Val	Val 560

5	Ile	Ala	Gly	Gln	Ala 565	Phe	Phe	Tyr	Ser	Gly 570	Gly	Phe	Tyr	Arg	Phe 575	Met
	Val	Asp	Pro	Thr 580	Thr	Val	Leu	Asn	Asp 585	Pro	Val	Phe	Thr	Gly 590	Asp	Leu
10	Phe	Tyr	Thr 595	Ile	Lys	Phe	Ser	Gly 600	Phe	Lys	Leu	Asp	Gly 605	Phe	Asn	His
15	Gln	Phe 610	Val	Thr	Ala	Ser	Ser 615	Ala	Thr	Asp	Ala	Ile 620	Ile	Ala	Val	Glu
20	Leu 625	Leu	Leu	Leu	Asp	Phe 630	Lys	Thr	Ala	Val	Phe 635	Val	Tyr	Thr	Cys	Val 640
	Val	Asp	Gly	Cys	Ser 645	Val	Ile	Val	Arg	Arg 650	Asp	Ala	Thr	Phe	Ala 655	Thr
25	His	Val	Cys	Phe 660	Lys	Asp	Cys	Tyr	Asn 665	Val	Trp	Glu	Gln	Phe 670	Cys	Ile
30	Asp	Asn	Cys 675	Gly	Glu	Pro	Trp	Phe 680	Leu	Thr	Asp	Tyr	Asn 685	Ala	Ile	Leu
	Gln	Ser 690	Asn	Asn	Pro	Gln	Cys 695	Ala	Ile	Val	Gln	Ala 700	Ser	Glu	Ser	Lys
35	Val 705	Leu	Leu	Glu	Arg	Phe 710	Leu	Pro	Lys	Cys	Pro 715	Glu	Ile	Leu	Leu	Ser 720
40	Ile	Asp	Asp	Gly	His 725	Leu	Trp	Asn	Leu	Phe 730	Val	Glu	Lys	Phe	Asn 735	Phe
	Val	Thr	Asp	Trp 740	Leu	Lys	Thr	Leu	Lys 745	Leu	Thr	Leu	Thr	Ser 750	Asn	Gly
45	Leu	Leu	Gly 755	Asn	Cys	Ala	Lys	Arg 760	Phe	Arg	Arg	Val	Leu 765	Val	Lys	Leu
50	Leu	Asp 770	Val	Tyr	Asn	Gly	Phe 775	Leu	Glu	Thr	Val	Cys 780	Ser	Val	Ala	Tyr

5	785	Ala	Gly	Val	Cys	11e 790	Lys	Tyr	Tyr	Ala	Val 795	Asn	Val	Pro	Tyr	Val 800
5	Val	Ile	Ser	Gly	Phe 805	Val	Ser	Arg	Val	Ile 810	Arg	Arg	Glu	Arg	Cys 815	Asp
10	Met	Thr	Phe	Pro 820	Cys	Val	Ser	Cys	Val 825	Thr	Phe	Phe	Tyr	Glu 830	Phe	Leu
15	Asp	Thr	Cys 835	Phe	Gly	Val	Ser	Lys 840	Pro	Asn	Ala	Ile	Asp 845	Val	Glu	His
	Leu	Glu 850	Leu	Lys	Glu	Thr	Val 855	Phe	Val	Glu	Pro	Lys 860	Asp	Gly	Gly	Gln
20	Phe 865	Phe	Val	Ser	Gly	Asp 870	Tyr	Leu	Trp	Tyr	Val 875	Val	Asp	Asp	Ile	Tyr 880
25	Tyr	Pro	Ala	Ser	Cys 885	Asn	Gly	Val	Leu	Pro 890	Val	Ala	Phe	Thr	Lys 895	Leu
	Ala	Gly	Gly	Lys 900	Ile	Ser	Phe	Ser	Asp 905	Asp	Val	Ile	Val	His 910	Asp	Val
30	Glu	Pro	Thr 915	His	Lys	Val	Lys	Leu 920	Ile	Phe	Glu	Phe	Glu 925	Asp	Asp	Val
35	Val	Thr 930	Ser	Leu	Cys	Lys	Lys 935	Ser	Phe	Gly	Lys	Ser 940	Ile	Ile	Tyr	Thr
40	Gly 945	Asp	Trp	Glu	Gly	Leu 950	His	Glu	Val	Leu	Thr 955	Ser	Ala	Met	Asn	Val 960
	Ile	Gly	Gln	His	Ile 965	_	Leu	Pro	Gln	Phe 970	Tyr	Ile	Tyr	Asp	Glu 975	Glu
45	Gly	Gly	Tyr	Asp 980	Val	Ser	Lys	Pro	Val 985	Met	Ile	Ser	Gln	Trp 990	Pro	Ile
50	Ser	Asn	Asp 995	Ser	Asn	Gly	Cys	Val 100	_	l G1	u Al	a Se	r Th 10		sp P	he His
	Gln	Leu	Gl	u Cy	s Il	e Va	l As	p A	sp S	er V	al A	rg G	lu -	Glu '	Val 2	Asp

		1010					1015					1020			
5	Ile	Ile 1025	Glu	Gln	Pro	Phe	Glu 1030	Glu	Val	Glu	His	Val 1035	Leu	Ser	Ile
10	Lys	Gln 1040	Pro	Phe	Ser	Phe	Ser 1045	Phe	Arg	Asp	Glu	Leu 1050	Gly	Val	Arg
15	Val	Leu 1055	Asp	Gln	Ser	Asp	Asn 1060	Asn	Cys	Trp	Ile	Ser 1065	Thr	Thr	Leu
	Val	Gln 1070	Leu	Gln	Leu	Thr	Lys 1075	Leu	Leu	Asp	Asp	Ser 1080	Ile	Glu	Met
20	Gln	Leu 1085	Phe	Lys	Val	Gly	Lys 1090	Val	Asp	Ser	Ile	Val 1095	Gln	Lys	Cys
25	Tyr	Glu 1100	Leu	Ser	His	Leu	Ile 1105	Ser	Gly	Ser	Leu	Gly 1110	Asp	Ser	Gly
	Lys	Leu 1115		Ser	Glu	Leu	Leu 1120	-	Glu	Lys	Tyr	Thr 1125	Cys	Ser	Ile
30	Thr	Phe 1130	Glu	Met	Ser	Cys	Asp 1135		Gly	Lys	Lys	Phe 1140	Asp	Asp	Gln
35	Val	Gly 1145	_	Leu	Phe	Trp	Ile 1150	Met	Pro	Tyr	Thr	Lys 1155	Leu	Phe	Gln
40	Lys	Gly 1160		Cys	Cys	Ile	Cys 1165	His	Lys	Met	Gln	Thr 1170	Tyr	Lys	Leu
40	Val	Ser 1175		Lys	Gly	Thr	Gly 1180	Val	Phe	Val	Gln	Asp 1185	Pro	Ala	Pro
45	Ile	Asp 1190		Asp	Ala	Phe	Pro 1195	Val	Lys	Pro	Ile	Cys 1200	Ser	Ser	Val
50	Tyr	Leu 1205	-	Val	Lys	Gly	Ser 1210	-	His	Tyr	Gln	Thr 1215		Leu	Tyr
	Ser	Phe 1220		Lys	Ala	Ile	Asp 1225	Gly	Phe	Gly	Val	Phe 1230	Asp	Ile	Lys

5	Asn	Ser 1235	Ser	Val	Asn	Thr	Val 1240	Cys	Phe	Val	Asp	Val 1245	Asp	Phe	His
10	Ser	Val 1250	Glu	Ile	Glu	Ala	Gly 1255	Glu	Val	Lys	Pro	Phe 1260	Ala	Val	Tyr
	Lys	Asn 1265	Val	Lys	Phe	Tyr	Leu 1270	Gly	Asp	Ile	Ser	His 1275	Leu	Val	Asn
15	Cys	Val 1280	Ser	Phe	Asp	Phe	Val 1285	Val	Asn	Ala	Ala	Asn 1290	Glu	Asn	Leu
20	Leu	His 1295	-	Gly	Gly	Val	Ala 1300	Arg	Ala	Ile	Asp	Ile 1305	Leu	Thr	Glu
25	Gly	Gln 1310	Leu	Gln	Ser	Leu	Ser 1315	Lys	Asp	Tyr	Ile	Ser 1320	Ser	Asn	Gly
	Pro	Leu 1325	Lys	Val	Gly	Ala	Gly 1330	Val	Met	Leu	Glu	Cys 1335	Glu	Lys	Phe
30	Asn	Val 1340	Phe	Asn	Val	Val	Gly 1345	Pro	Arg	Thr	Gly	Lys 1350	His	Glu	His
35	Ser	Leu 1355	Leu	Val	Glu	Ala	Tyr 1360	Asn	Ser	Ile	Leu	Phe 1365	Glu	Asn	Gly
	Ile	Pro 1370	Leu	Met	Pro	Leu	Leu 1375	Ser	Cys	Gly	Ile	Phe 1380	Gly	Val	Arg
40	Ile	Glu 1385	Asn	Ser	Leu	Lys	Ala 1390	Leu	Phe	Ser	Cys	Asp 1395	Ile	Asn	Lys
45	Pro	Leu 1400	Gln	Val	Phe	Val	Tyr 1405		Ser	Asn	Glu	Glu 1410		Ala	Val
	Leu	Lys 1415		Leu	Asp	Gly	Leu 1420	•	Leu	Thr	Pro	Val 1425	Ile	Asp	Asp
50	Val	Asp 1430		Val	Lys	Pro	Phe 1435		Val	Glu	Gly	Asn 1440		Ser	Phe

5	Phe	Asp 1445	Cys	Gly	Val	Asn	Ala 1450	Leu	Asp	Gly	Asp	Ile 1455	Tyr	Leu	Leu
10	Phe	Thr 1460	Asn	Ser	Ile	Leu	Met 1465	Leu	Asp	Lys	Gln	Gly 1470	Gln	Leu	Leu
10	Asp	Thr 1475	Lys	Leu	Asn	Gly	Ile 1480	Leu	Gln	Gln	Ala	Ala 1485	Leu	Asp	Tyr
15	Leu	Ala 1490	Thr	Val	Lys	Thr	Val 1495	Pro	Ala	Gly	Asn	Leu 1500	Val	Lys	Leu
20	Phe	Val 1505		Ser	Cys	Thr	Ile 1510		Met	Суѕ	Val	Val 1515	Pro	Ser	Ile
	Asn	Asp 1520		Ser	Phe	Asp	Lys 1525	Asn	Leu	Gly	Arg	Cys 1530	Val	Arg	Lys
25	Leu	Asn 1535		Leu	Lys	Thr	Cys 1540	Val	Ile	Ala	Asn	Val 1545	Pro	Ala	Ile
30	Asp	Val 1550		Lys	Lys	Leu	Leu 1555		Ser	Leu	Thr	Leu 1560	Thr	Val	Lys
	Phe	Val 1565		Glu	Ser	Asn	Val 1570	Met	Asp	Val	Asn	Asp 1575	Cys	Phe	Lys
35	Asn	Asp 1580		Val	Val	Leu	Lys 1585		Thr	Glu	Asp	Gly 1590	Ile	Asn	Val
40	Lys	Asp 1595		Val	Val	Glu	Ser 1600	Ser	Lys	Ser	Leu	Gly 1605	Lys	Gln	Leu
45	Gly	Val 1610		Ser	Asp	Gly	Val 1615	-	Ser	Phe	Glu	Gly 1620		Leu	Pro
45	Ile	Asn 1625		Asp	Thr	Val	Leu 1630		Val	Ala	Pro	Glu 1635		Asp	Trp
50	Val	Ala 1640		Туr	Gly	Phe	Glu 1645		Ala	Ala	Leu	Phe 1650		Ser	Leu

5	Asp	Val 1655	Lys	Pro	Tyr	Gly	Tyr 1660	Pro	Asn	Asp	Phe	Val 1665	Gly	Gly	Phe
	Arg	Val 1670	Leu	Gly	Thr	Thr	Asp 1675	Asn	Asn	Cys	Trp	Val 1680	Asn	Ala	Thr
10	Cys	Ile 1685	Ile	Leu	Gln	Tyr	Leu 1690	Lys	Pro	Thr	Phe	Lys 1695	Ser	Lys	Gly
15	Leu	Asn 1700	Val	Leu	Trp	Asn	Lys 1705	Phe	Val	Thr	Gly	Asp 1710	Val	Gly	Pro
	Phe	Val 1715	Ser	Phe	Ile	Tyr	Phe 1720	Ile	Thr	Met	Ser	Ser 1725	Lys	Gly	Gln
20	Lys	Gly 1730	Asp	Ala	Glu	Glu	Ala 1735	Leu	Ser	Lys	Leu	Ser 1740	Glu	Tyr	Leu
25	Ile	Ser 1745	Asp	Ser	Ile	Val	Thr 1750	Leu	Glu	Gln	Tyr	Ser 1755	Thr	Cys	Asp
20	Ile	Cys 1760	Lys	Ser	Thr	Val	Val 1765	Glu	Val	Lys	Ser	Ala 1770	Ile	Val	Cys
30	Ala	Ser 1775	Val	Leu	Lys	Asp	Gly 1780	Cys	Asp	Val	Gly	Phe 1785	Cys	Pro	His
35	Arg	His 1790		Leu	Arg	Ser	Arg 1795	Val	Lys	Phe	Val	Asn 1800	Gly	Arg	Val
40	Val	Ile 1805	Thr	Asn	Val	Gly	Glu 1810	Pro	Ile	Ile	Ser	Gln 1815	Pro	Ser	Lys
	Leu	Leu 1820		Gly	Ile	Ala	Tyr 1825	Thr	Thr	Phe	Ser	Gly 1830		Phe	Asp
45	Asn	Gly 1835		Tyr	Val	Val	Tyr 1840	Asp	Ala	Ala	Asn	Asn 1845		Val	Tyr
50	Asp	Gly 1850	Ala	Arg	Leu	Phe	Ser 1855	Ser	Asp	Leu	Ser	Thr 1860	Leu	Ala	Val
	Thr	Ala	Ile	Val	Val	Val	Gly	Gly	Cys	Val	Thr	Ser	Asn	Val	Pro

		1865					1870					1875			
5	Thr	Ile 1880	Val	Ser	Glu	Lys	Ile 1885	Ser	Val	Met	Asp	Lys 1890	Leu	Asp	Thr
10	Gly	Ala 1895	Gln	Lys	Phe	Phe	Gln 1900	Phe	Gly	Asp	Phe	Val 1905	Met	Asn	Asn
15	Ile	Val 1910	Leu	Phe	Leu	Thr	Trp 1915	Leu	Leu	Ser	Met	Phe 1920	Ser	Leu	Leu
	Arg	Thr 1925	Ser	Ile	Met	Lys	His 1930	Asp	Ile	Lys	Val	Ile 1935	Ala	Lys	Ala
20	Pro	L ys 1940	_	Thr	Gly	Val	Ile 1945	Leu	Thr	Arg	Ser	Phe 1950	Lys	Tyr	Asn
25	Ile	Arg 1955		Ala	Leu	Phe	Val 1960	Ile	Lys	Gln	Lys	Trp 1965	Cys	Val	Ile
	Val	Thr. 1970	Leu	Phe	Lys	Phe	Leu 1975	Leu	Leu	Leu	Tyr	Ala 1980		Tyr	Ala
30	Leu	Val 1985	Phe	Met	Ile	Val	Gln 1990	Phe	Ser	Pro	Phe	Asn 1995	Ser	Leu	Leu
35	Cys	Gly 2000	Asp	Ile	Val	Ser	Gly 2005	_	Glu	Lys	Ser	Thr 2010	Phe	Asn	Lys
	Asp	Ile 2015		Суѕ	Gly	Asn	Ser 2020	Met	Val	Cys	Lys	Met 2025	Cys	Leu	Phe
40	Ser	Tyr 2030		Glu	Phe	Asn	Asp 2035		Asp	His	Thr	Ser 2040	Leu	Val	Trp
45	Lys	His 2045		Arg	Asp	Pro	Ile 2050	Leu	Ile	Ser	Leu	Gln 2055	Pro	Phe	Val
50	Ile	Leu 2060	Val	Ile	Leu	Leu	Ile 2065	Phe	Gly	Asn	Met	Tyr 2070	Leu	Arg	Phe
	Gly	Leu 2075		Tyr	Phe	Val	Ala 2080	Gln	Phe	Ile	Ser	Thr 2085		Gly	Ser

5	Phe	Leu 2090	Gly	Phe	His	Gln	Lys 2095		Trp	Phe	Leu	His 2100	Phe	Val	Pro
10	Phe	Asp 2105	Val	Leu	Cys	Asn	Glu 2110	Phe	Leu	Ala	Thr	Phe 2115	Ile	Val	Cys
	Lys	Ile 2120	Val	Leu	Phe	Val	Arg 2125	His	Ile	Ile	Val	Gly 2130	Суѕ	Asn	Asn
15	Ala	Asp 2135	Cys	Val	Ala	Cys	Ser 2140	Lys	Ser	Ala	Arg	Leu 2145	Lys	Arg	Val
20	Pro	Leu 2150	Gln	Thr	Ile	Ile	Asn 2155	Gly	Met	His	Lys	Ser 2160	Phe	Tyr	Val
25	Asn	Ala 2165	Asn	Gly	Gly	Thr	Cys 2170	Phe	Cys	Asn	Lys	His 2175	Asn	Phe	Phe
25	Cys	Val 2180	Asn	Суѕ	Asp	Ser	Phe 2185	Gly	Pro	Gly	Asn	Thr 2190	Phe	Ile	Asn
30	Gly	Asp 2195	Ile	Ala	Arg	Glu	Leu 2200	Gly	Asn	Val	Val	Lys 2205	Thr	Ala	Val
35	Gln	Pro 2210	Thr	Ala	Pro	Ala	Tyr 2215	Val	Ile	Ile	Asp	Lys 2220	Val	Asp	Phe
	Val	Asn 2225	Gly	Phe	Tyr	Arg	Leu 2230	Tyr	Ser	Gly	Asp	Thr 2235	Phe	Trp	Arg
40	Tyr	Asp 2240	Phe	qsA	Ile	Thr	Glu 2245	Ser	Lys	Tyr	Ser	Cys 2250	Lys	Glu	Val
45	Leu	Lys 2255	Asn	Cys	Asn	Val	Leu 2260	Glu	Asn	Phe	Ile	Val 2265	Tyr	Asn	Asn
	Ser	Gly 2270	Ser	Asn	Ile	Thr	Gln 2275	Ile	Lys	Asn	Ala	Cys 2280	Val	Tyr	Phe
50	Ser	Gln 2285	Leu	Leu	Cys	Glu	Pro 2290	Ile	Lys	Leu	Val	Asn 2295	Ser	Glu	Leu

5	Leu	Ser 2300	Thr	Leu	Ser	Val	Asp 2305	Phe	Asn	Gly	Val	Leu 2310	His	Lys	Ala
10	Tyr	Val 2315	Asp	Val	Leu	Cys	Asn 2320	Ser	Phe	Phe	Lys	Glu 2325	Leu	Thr	Ala
	Asn	Met 2330	Ser	Met	Ala	Glu	Cys 2335	Lys	Ala	Thr	Leu	Gly 2340	Leu	Thr	Val
15	Ser	Asp 2345	_	Asp	Phe	Val	Ser 2350	Ala	Val	Ala	Asn	Ala 2355	His	Arg	Tyr
20	Asp	Val 2360	Leu	Leu	Ser	Asp	Leu 2365	Ser	Phe	Asn	Asn	Phe 2370	Phe	Ile	Ser
	Tyr	Ala 2375		Pro	Glu	Asp	Lys 2380	Leu	Ser	Val	Tyr	Asp 2385	Ile	Ala	Cys
25	Cys	Met 2390	Arg	Ala	Gly	Ser	Lys 2395	Val	Val	Asn	His	Asn 2400	Val	Leu	Ile
30	Lys	Glu 2405		Ile	Pro	Ile	Val 2410		Gly	Val	Lys	Asp 2415		Asn	Thr
	Leu	Ser 2420		Glu	Gly	Lys	Lys 2425	-	Leu	Val	Lys	Thr 2430		Lys	Ala
35	Lys	Gly 2435		Thr	Phe	Leu	Leu 2440		Phe	Asn	Asp	Asn 2445		Ala	Ile
40	Thr	Gln 2450		Pro	Ala	Thr	Ser 2455	Ile	Val	Ala	Lys	Gln 2460		Ala	Gly
45	Phe	Lys 2465	-	Thr	Tyr	Asn	Phe 2470		Trp	Tyr	Val	Cys 2475		Phe	Val
40	Val	Ala 2480		Phe	Ile	Gly	Val 2485		Phe	Ile	Asp	Tyr 2490		Thr	Thr
50	Val	Thr 2495		Phe	His	Gly	Tyr 2500		Phe	Lys	Tyr	11e 2505		Asn	Gly

5	Gln	Leu 2510	_	Val	Phe	Glu	Ala 2515	Pro	Leu	His	Cys	Val 2520	Arg	Asn	Val
	Phe	Asp 2525	Asn	Phe	Asn	Gln	Trp 2530	His	Glu	Ala	Lys	Phe 2535	Gly	Val	Val
10	Thr	Thr 2540	Asn	Ser	Asp	Lys	Cys 2545	Pro	Ile	Val	Val	Gly 2550	Val	Ser	Glu
15	Arg	Ile 2555	Asn	Val	Val	Pro	Gly 2560	Val	Pro	Thr	Asn	Val 2565	Tyr	Leu	Val
	Gly	Lys 2570	Thr	Leu	Val	Phe	Thr 2575	Leu	Gln	Ala	Ala	Phe 2580	Gly	Asn	Thr
20	Gly	Val 2585	Cys	Tyr	Asp	Phe	Asp 2590		Val	Thr	Thr	Ser 2595	Asp	Lys	Cys
25	Ile	Phe 2600	Asn	Ser	Ala	Cys	Thr 2605	Arg	Leu	Glu	Gly	Leu 2610	Gly	Gly	Asp
30	Asn	Val 2615	Tyr	Суѕ	Tyr	Asn	Thr 2620	Asp	Leu	Ile	Glu	Gly 2625	Ser	Lys	Pro
	Tyr	Ser 2630	Thr	Leu	Gln	Pro	Asn 2635	Ala	Tyr	Tyr	Lys	Tyr 2640	Asp	Ala	Lys
35	Asn	Tyr 2645	Val	Arg	Phe	Pro	Glu 2650	Ile	Leu	Ala	Arg	Gly 2655	Phe	Gly	Leu
40	Arg	Thr 2660	Ile	Arg	Thr	Leu	Ala 2665	Thr	Arg	Tyr	Cys	Arg 2670	Val	Gly	Glu
	Cys	Arg 2675	Asp	Ser	His	Lys	Gly 2680	Val	Cys	Phe	Gly	Phe 2685	Asp	Lys	Trp
45	Tyr	Val 2690	Asn	Asp	Gly	Arg	Val 2695	Asp	Asp	Gly	Tyr	Ile 2700	Cys	Gly	Asp
50	Gly	Leu 2705	Ile	Asp	Leu	Leu	Val 2710	Asn	Val	Leu	Ser	Ile 2715	Phe	Ser	Ser
	Ser	Phe	Ser	Val	Val	Ala	Met	Ser	Gly	His	Met	Leu	Phe	Asn	Phe

		2720					2725					2730			
5	Leu	Phe 2735	Ala	Ala	Phe	Ile	Thr 2740	Phe	Leu	Cys	Phe	Leu 2745	Val	Thr	Lys
10	Phe	Lys 2750	Arg	Val	Phe	Gly	Asp 2755	Leu	Ser	Tyr	Gly	Val 2760	Phe	Thr	Val
	Val	Cys 2765	Ala	Thr	Leu	Ile	Asn 2770	Asn	Ile	Ser	Tyr	Val 2775	Val	Thr	Gln
15	Asn	Leu 2780	Phe	Phe	Met	Leu	Leu 2785	Tyr	Ala	Ile	Leu	Tyr 2790	Phe	Val	Phe
20	Thr	Arg 2795		Val	Arg	Tyr	Ala 2800		Ile	Trp	His	Ile 2805	Ala	Tyr	Ile
25	Val	Ala 2810	-	Phe	Leu	Leu	Ile 2815	Pro	Trp	Trp	Leu	Leu 2820	Thr	Trp	Phe
	Ser	Phe 2825		Ala	Phe	Leu	Glu 2830		Leu	Pro	Asn	Val 2835	Phe	Lys	Leu
30	Lys	Ile 2840		Thr	Gln	Leu	Phe 2845		Gly	Asp	Lys	Phe 2850	Ile	Gly	Thr
35	Phe	Glu 2855		Ala	Ala	Ala	Gly 2860		Phe	Val	Leu	Asp 2865	Met	Arg	Ser
	Tyr	Glu 2870	_	Leu	Ile	Asn	Thr 2875	Ile	Ser	Pro	Glu	Lys 2880	Leu	Lys	Asn
40	Tyr	Ala 2885		Ser	Tyr	Asn	Lys 2890		Lys	Tyr	Tyr	Ser 2895	Gly	Ser	Ala
45	Ser	Glu 2900		Asp	Tyr	Arg	Cys 2905	Ala	Cys	Tyr	Ala	His 2910	Leu	Ala	Lys
	Ala	Met 2915		Asp	Tyr	Ala	Lys 2920	-	His	Asn	Asp	Met 2925	Leu	Tyr	Ser
50	Pro	Pro 2930		Ile	Ser	Tyr	Asn 2935		Thr	Leu	Gln	Ser 2940	Gly	Leu	Lys

5	Lys	Met 2945	Ala	Gln	Pro	Ser	Gly 2950		Val	Glu	Arg	Cys 2955	Val	Val	Arg
10	Val	Cys 2960	Tyr	Gly	Ser	Thr	Val 2965	Leu	Asn	Gly	Val	Trp 2970	Leu	Gly	Asp
	Thr	Val 2975	Thr	Cys	Pro	Arg	His 2980	Val	Ile	Ala	Pro	Ser 2985	Thr	Thr	Val
15	Leu	Ile 2990	Asp	Tyr	Asp	His	Ala 2995	Tyr	Ser	Thr	Met	Arg 3000	Leu	His	Asn
20	Phe	Ser 3005	Val	Ser	His	Asn	Gly 3010	Val	Phe	Leu	Gly	Val 3015	Val	Gly	Val
	Thr	Met 3020	His	Gly	Ser	Val	Leu 3025	Arg	Ile	Lys	Val	Ser 3030	Gln	Ser	Asn
25	Val	His 3035	Thr	Pro	Lys	His	Val 3040	Phe	Lys	Thr	Leu	Lys 3045	Pro	Gly	Asp
30	Ser	Phe 3050	Asn	Ile	Leu	Ala	Cys 3055	Tyr	Glu	Gly	Ile	Ala 3060	Ser	Gly	Val
35	Phe	Gly 3065	Val	Asn	Leu	Arg	Thr 3070	Asn	Phe	Thr	Ile	Lys 3075	Gly	Ser	Phe
	Ile	Asn 3080	Gly	Ala	Cys	Gly	Ser 3085	Pro	Gly	Tyr	Asn	Val 3090	Arg	Asn	Asp
40	Gly	Thr 3095	Val	Glu	Phe	Cys	Tyr 3100	Leu	His	Gln	Ile	Glu 3105	Leu	Gly	Ser
45	Gly	Ala 3110		Val	Gly	Ser	Asp 3115	Phe	Thr	Gly	Ser	Val 3120		Gly	Asn
	Phe	Asp 3125	Asp	Gln	Pro	Ser	Leu 3130	Gln	Val	Glu	Ser	Ala 3135	Asn	Leu	Met
50	Leu	Ser 3140	Asp	Asn	Val	Val	Ala 3145		Leu	Tyr	Ala	Ala 3150	Leu	Leu	Asn

5		s Arg 155	Trp	Trp	Leu	Cys 3160	Ser	Thr	Arg	Val	Asn 3165	Val	Asp	Gly
10		sn Glu 170	Trp	Ala	Met	Ala 3175	Asn	Gly	Tyr	Thr	Ser 3180	Val	Ser	Ser
		lu Cys 185	Tyr	Ser	Ile	Leu 3190	Ala	Ala	Lys	Thr	Gly 3195	Val	Ser	Val
15		ln Leu 200	Leu	Ala	Ser	Ile 3205	Gln	His	Leu	His	Glu 3210	Gly	Phe	Gly
20		ys Asn 215	Ile	Leu	Gly	Tyr 3220	Ser	Ser	Leu	Cys	Asp 3225	Glu	Phe	Thr
		la Glu 230	Val	Val	Lys	Gln 3235	Met	Tyr	Gly	Val	Asn 3240	Leu	Gln	Ser
25		ys Val 245	Ile	Phe	Gly	Leu 3250	_	Thr	Met	Phe	Leu 3255	Phe	Ser	Val
30		ne Thr 260	Met	Phe	Trp	Ala 3265	Glu	Leu	Phe	Ile	Tyr 3270	Thr	Asn	Thr
		rp Ile 275	Asn	Pro	Val	Ile 3280	Leu	Thr	Pro	Ile	Phe 3285	Cys	Leu	Leu
35		he Leu 290	Ser	Leu	Val	Leu 3295	Thr	Met	Phe	Leu	Lys 3300	His	Lys	Phe
40		he Leu 305	Gln	Val	Phe	Leu 3310	Leu	Pro	Thr	Val	Ile 3315	Ala	Thr	Ala
		yr Asn 320	Cys	Val	Leu	Asp 3325	Tyr	Tyr	Ile	Val	Lys 3330	Phe	Leu	Ala
45	Asp H:	is Phe 335	Asn	Tyr	Asn	Val 3340	Ser	Val	Leu	Gln	Met 3345	Asp	Val	Gln
50		eu Val 350	Asn	Val	Leu	Val 3355	_	Leu	Phe	Val	Val 3360	Phe	Leu	His

5	Thr	Trp 3365		Phe	Ser	Lys	Glu 3370	Arg	Phe	Thr	His	Trp 3375	Phe	Thr	Tyr
J	Val	Cys 3380	Ser	Leu	Ile	Ala	Val 3385	Ala	Tyr	Thr	Tyr	Phe 3390	Tyr	Ser	Gly
10	Asp	Phe 3395		Ser	Leu	Leu	Val 3400	Met	Phe	Leu	Cys	Ala 3405	Ile	Ser	Ser
15	Asp	Trp 3410	Tyr	Ile	Gly	Ala	Ile 3415	Val	Phe	Arg	Leu	Ser 3420	Arg	Leu	Ile
	Val	Phe 3425	Phe	Ser	Pro	Glu	Ser 3430	Val	Phe	Ser	Val	Phe 3435	Gly	Asp	Val
20	Lys	Leu 3440	Thr	Leu	Val	Val	Tyr 3445	Leu	Ile	Cys	Gly	Tyr 3450	Leu	Val	Cys
25	Thr	Tyr 3455		Gly	Ile	Leu	Tyr 3460	_	Phe	Asn	Arg	Phe 3465	Phe	Lys	Cys
	Thr	Met 3470	Gly	Val	Tyr	Asp	Phe 3475	Lys	Val	Ser	Ala	Ala 3480	Glu	Phe	Lys
30	Tyr	Met 3485	Val	Ala	Asn	Gly	Leu 3490	His	Ala	Pro	His	Gly 3495	Pro	Phe	Asp
35	Ala	Leu 3500	Trp	Leu	Ser	Phe	Lys 3505	Leu	Leu	Gly	Ile	Gly 3510	Gly	Asp	Arg
40	Cys	Ile 3515	Lys	Ile	Ser	Thr	Val 3520	Gln	Ser	Lys	Leu	Thr 3525	Asp	Leu	Lys
	Cys	Thr 3530	Asn	Val	Val	Leu	Leu 3535	Gly	Cys	Leu	Ser	Ser 3540	Met	Asn	Ile
45	Ala	Ala 3545		Ser	Ser	Glu	Trp 3550	Ala	Tyr	Cys	Val	Asp 3555	Leu	His	Asn
50	Lys	Ile 3560	Asn	Leu	Cys	Asp	Asp 3565	Pro	Glu	Lys	Ala	Gln 3570	Ser	Met	Leu
	Leu	Ala	Leu	Leu	Ala	Phe	Phe	Leu	Ser	Lys	His	Ser	Asp	Phe	Gly

5		3575					3580					3585			
10	Leu	Asp 3590	Gly	Leu	Ile	Asp	Ser 3595	Tyr	Phe	Asp	Asn	Ser 3600	Ser	Thr	Leu
	Gln	Ser 3605	Val	Ala	Ser	Ser	Phe 3610	Val	Ser	Met	Pro	Ser 3615	Tyr	Ile	Ala
15	Tyr	Glu 3620	Asn	Ala	Arg	Gln	Ala 3625		Glu	Asp	Ala	Ile 3630	Ala	Asn	Gly
20	Ser	Ser 3635	Ser	Gln	Leu	Ile	Lys 3640	Gln	Leu	Lys	Arg	Ala 3645	Met	Asn	Ile
20	Ala	Lys 3650		Glu	Phe	Asp	His 3655	Glu	Ile	Ser	Val	Gln 3660	Lys	Lys	Ile
25	Asn	Arg 3665	Met	Ala	Glu	Gln	Ala 3670	Ala	Thr	Gln	Met	Tyr 3675	Lys	Glu	Ala
20	Arg	Ser 3680	Val	Asn	Arg	Lys	Ser 3685		Val	Ile	Ser	Ala 3690	Met	His	Ser
30	Leu	Leu 3695		Gly	Met	Leu	Arg 3700	_	Leu	Asp	Met	Ser 3705	Ser	Val	Glu
35	Thr	Val 3710		Asn	Leu	Ala	Arg 3715	Asp	Gly	Val	Val	Pro 3720	Leu	Ser	Val
	Ile	Pro 3725		Thr	Ser	Ala	Ser 3730	-	Leu	Thr	Ile	Val 3735	Ser	Pro	Asp
40	Leu	Glu 3740					Ile 3745		-	_	_	Ser 3750	Val	His	Tyr
45	Ala	Gly 3755		Val	Trp	Thr	Leu 3760		Asp	Val	Lys	Asp 3765		Asp	Gly
	Arg	Pro 3770		His	Val	Lys	Glu 3775	Ile	Thr	Lys	Glu	Asn 3780	Val	Glu	Thr
50	Leu	Thr 3785		Pro	Leu	Ile	Leu 3790	Asn	Cys	Glu	Arg	Val 3795	Val	Lys	Leu

5															
	Gln	Asn 3800	Asn	Glu	Ile	Met	Pro 3805	Gly	Lys	Leu	Lys	Gln 3810	Lys	Pro	Met
10	Lys	Ala 3815	Glu	Gly	Asp	Gly	Gly 3820	Val	Leu	Gly	Asp	Gly 3825	Asn	Ala	Leu
15	Tyr	Asn 3830	Thr	Glu	Gly	Gly	Lys 3835	Thr	Phe	Met	Tyr	Ala 3840	Tyr	Ile	Ser
	Asn	Lys 3845	Ala	Asp	Leu	Lys	Phe 3850	Val	Lys	Trp	Glu	Tyr 3855	Glu	Gly	Gly
20	Cys	Asn 3860	Thr	Ile	Glu	Leu	Asp 3865	Ser	Pro	Cys	Arg	Phe 3870	Met	Val	Glu
25	Thr	Pro 3875	Asn	Gly	Pro	Gln	Val 3880	Lys	Tyr	Leu	Tyr	Phe 3885	Val	Lys	Asn
	Leu	Asn 3890	Thr	Leu	Arg	Arg	Gly 3895	Ala	Val	Leu	Gly	Phe 3900	Ile	Gly	Ala
30	Thr	Ile 3905	Arg	Leu	Gln	Ala	Gly 3910	Lys	Gln	Thr	Glu	Leu 3915	Ala	Val	Asn
35	Ser	Gly 3920	Leu	Leu	Thr	Ala	Cys 3925	Ala	Phe	Ser	Val	Asp 3930	Pro	Ala	Thr
	Thr	Tyr 3935	Leu	Glu	Ala	Val	Lys 3940	His	Gly	Ala	Lys	Pro 3945	Val	Ser	Asn
40	Cys	Ile 3950	Lys	Met	Leu	Ser	Asn 3955	Gly	Ala	Gly	Asn	Gly 3960	Gln	Ala	Ile
45	Thr	Thr 3965	Ser	Val	Asp	Ala	Asn 3970		Asn	Gln	Asp	Ser 3975		Gly	Gly
	Ala	Ser 3980	Ile	Cys	Leu	Tyr	Cys 3985	Arg	Ala	His	Val	Pro 3990	His	Pro	Ser
50	Met	Asp 3995	Gly	Tyr	Cys	Lys	Phe 4000	Lys	Gly	Lys	Cys	Val 4005		Val	Pro

5	Ile	Gly 4010		Leu	Asp	Pro	Ile 401		g Ph	ie Cy	s Le		u 1 20	Asn .	Asn	Val
10	Cys	Asn 4025		Cys	Gly	Cys	Trp 403		u Gl	y Hi	s Gl		s <i>1</i> 35	Ala	Суѕ	Asp
15		4040)			Ser	404	5	Il qa	e Se	т Ту		u 1 50	Asn	G1u	Gln
99	<210	4055	•	, vai	GII	Leu	406									
20		?> F }> H		cor	onav	rirus	:									
25	<221 <222	> M ?> (IISC (1) ORF 1	(673	(8)	.case	pol	ypro	oteir	ı						
30)> 5 Phe		Asn	Gln	Val	Thr	Leu	Ala	Val	Ala	Ser	Asp	Ser	Glu	ı Ile
	1 Ser	Glv	Phe	Glv	5 Phe	Ala	Ile	Pro	Ser	10 Val	Ala	Val	Ara	Thr	15 Tvi	s Ser
35				20					25					30		
	GIU	Ald	35	Ald	GIn	GIY	rne	40	Ala	cys	Arg	rne	45	Ald	Pne	e Gly
40	Leu	Gln 50	Asp	Cys	Val	Thr	Gly 55	Ile	Asn	Asp	Asp	Asp 60	Tyr	Val	. Ile	e Ala
45	Leu 65	Thr	Gly	Thr	Asn	Gln 70	Leu	Cys	Ala	Lys	Ile 75	Leu	Pro	Phe	Ser	Asp 80
	Arg	Pro	Leu	Asn	Leu 85	Arg	Gly	Trp	Leu	Ile 90	Phe	Ser	Asn	Ser	95	n Tyr
50	Val	Leu	Gln	Asp 100	Phe	Asp	Val	Val	Phe 105	Gly	His	Gly	Ala	Gly 110		r Val

5																
	Val	Phe	Val 115	Asp	Lys	Tyr	Met	Cys 120	Gly	Phe	Asp	Gly	Lys 125	Pro	Val	Leu
10	Pro	Lys 130	Asn	Met	Trp	Glu	Phe 135	Arg	Asp	Tyr	Phe	Asn 140	Asn	Asn	Thr	Asp
15	Ser 145	Ile	Val	Ile	Gly	Gly 150	Val	Thr	Tyr	Gln	Leu 155	Ala	Trp	Asp	Val	Ile 160
	Arg	Lys	Asp	Leu	Ser 165	Tyr	Glu	Gln	Gln	Asn 170	Val	Leu	Ala	Ile	Glu 175	Ser
20	Ile	His	Tyr	Leu 180	Gly	Thr	Thr	Gly	His 185	Thr	Leu	Lys	Ser	Gly 190	Cys	Lys
25	Leu	Thr	Asn 195	Ala	Lys	Pro	Pro	Lys 200	Tyr	Ser	Ser	Lys	Val 205	Val	Leu	Ser
	Gly	Glu 210	Trp	Asn	Ala	Val	Tyr 215	Arg	Ala	Phe	Gly	Ser 220	Pro	Phe	Ile	Thr
30	Asn 225	Gly	Met	Ser	Leu	Leu 230	Asp	Ile	Ile	Val	Lys 235	Pro	Val	Phe	Phe	Asn 240
	Ala	Phe	Val	Lys	Cys 245	Asn	Cys	Gly	Ser	Glu 250	Ser	Trp	Ser	Val	Gly 255	Ala
35	Trp	Asp	Gly	Tyr 260	Leu	Ser	Ser	Cys	Cys 265	Gly	Thr	Pro	Ala	Lys 270	Lys	Leu
40	Cys	Val	Val 275	Pro	Gly	Asn	Val	Val 280	Pro	Gly	Asp	Val	Ile 285	Ile	Thr	Ser
	Thr	Ser 290	Ala	Gly	Cys	Gly	Val 295	Lys	Tyr	Tyr	Ala	Gly 300	Leu	Val	Val	Lys
45	His 305	Ile	Thr	Asn	Ile	Thr 310	Gly	Val	Ser	Leu	Trp 315	Arg	Val	Thr	Ala	Val 320
50	His	Ser	Asp	Gly	Met 325	Phe	Val	Ala	Ser	Ser 330	Ser	Tyr	Asp	Ala	Leu 335	Leu

5	His	Arg	Asn	Ser 340	Leu	Asp	Pro	Phe	Cys 345	Phe	Asp	Val	Asn	Thr 350	Leu	Leu
10	Ser	Asn	Gln 355	Leu	Arg	Leu	Ala	Phe 360	Leu	Gly	Ala	Ser	Val 365	Thr	Glu	Asp
	Val	Lys 370	Phe	Ala	Ala	Ser	Thr 375	Gly	Val	Ile	Asp	Ile 380	Ser	Ala	Gly	Met
15	Phe 385	Gly	Leu	Tyr	Asp	Asp 390	Ile	Leu	Thr	Asn	Asn 395	Lys	Pro	Trp	Phe	Val 400
20	Arg	Lys	Ala	Ser	Gly 405	Leu	Phe	Asp	Ala	Ile 410	Trp	Asp	Ala	Phe	Val 415	Ala
	Ala	Ile	Lys	Leu 420	Val	Pro	Thr	Thr	Thr 425	Gly	Val	Leu	Val	Arg 430	Phe	Val
25	Lys	Ser	Ile 435	Ala	Ser	Thr	Val	Leu 440	Thr	Val	Ser	Asn	Gly 445	Val	Ile	Ile
30	Met	Cys 450	Ala	Asp	Val	Pro	Asp 455	Ala	Phe	Gln	Ser	Val 460	Tyr	Arg	Thr	Phe
	Thr 465	Gln	Ala	Ile	Cys	Ala 470	Ala	Phe	Asp	Phe	Ser 475	Leu	Asp	Val	Phe	Lys 480
35	Ile	Gly	Asp	Val	Lys 485	Phe	Lys	Arg	Leu	Gly 490	Asp	Tyr	Val	Leu	Thr 495	Glu
40	Asn	Ala	Leu	Val 500	Arg	Leu	Thr	Thr	Glu 505	Val	Val	Arg	Gly	Val 510	Arg	Asp
	Ala	Arg	Ile 515	-	Lys		Met	Phe 520		•	Val		Val 525	Gly	Pro	Thr
45	Thr	Glu 530	Val	Lys	Phe	Ser	Val 535		Glu	Leu	Ala	Thr 540	Val	Asn	Leu	Arg
50	Leu 545	Val	Asp	Cys	Ala	Pro 550	Val	Val	Cys	Pro	Lys 555	Gly	Lys	Ile	Val	Val 560
	Ile	Ala	Gly	Gln	Ala	Phe	Phe	Tyr	Ser	Gly	Gly	Phe	Tyr	Arg	Phe	Met

5																
					565					570					575	
10	Val	Asp	Pro	Thr 580	Thr	Val	Leu	Asn	Asp 585	Pro	Val	Phe	Thr	Gly 590	Asp	Leu
	Phe	Tyr	Thr 595	Ile	Lys	Phe	Ser	Gly 600	Phe	Lys	Leu	Asp	Gly 605	Phe	Asn	His
15	Gln	Phe 610	Val	Thr	Ala	Ser	Ser 615	Ala	Thr	Asp	Ala	Ile 620	Ile	Ala	Val	Glu
20	Leu 625	Leu	Leu	Leu	Asp	Phe 630	Lys	Thr	Ala	Val	Phe 635	Val	Tyr	Thr	Cys	Val 640
	Val	Asp	Gly	Cys	Ser 645	Val	Ile	Val	Arg	Arg 650	Asp	Ala	Thr	Phe	Ala 655	Thr
25	His	Val	Cys	Phe 660	Lys	Asp	Cys	Tyr	Asn 665	Val	Trp	Glu	Gln	Phe 670	Cys	Ile
30	Asp	Asn	Cys 675	Gly	Glu	Pro	Trp	Phe 680	Leu	Thr	Asp	Tyr	Asn 685	Ala	Ile	Leu
	Gln	Ser 690	Asn	Asn	Pro	Gln	Cys 695	Ala	Ile	Val	Gln	Ala 700	Ser	Glu	Ser	Lys
35	Val 705	Leu	Leu	Glu	Arg	Phe 710	Leu	Pro	Lys	Cys	Pro 715	Glu	Ile	Leu	Leu	Ser 720
	Ile	Asp	Asp	Gly	His 725	Leu	Trp	Asn	Leu	Phe 730	Val	Glu	Lys	Phe	Asn 735	Ph∈
40	Val	Thr	Asp	Trp 740	Leu	Lys	Thr	Leu	Lys 745	Leu	Thr	Leu	Thr	Ser 750	Asn	Glγ
45	Leu	Leu	Gly 755	Asn	Cys	Ala	Lys	Arg 760	Phe	Arg	Arg	Val	Leu 765	Val	Lys	Leu
	Leu	Asp 770	Val	Tyr	Asn	Gly	Phe 775	Leu	Glu	Thr	Val	Cys 780	Ser	Val	Ala	Туг
50	Thr 785		Gly	Val	Cys	Ile 790	Lys	Tyr	Tyr	Ala	Val 795	Asn	Val	Pro	Tyr	Val 800

5																
10	Val	Ile	Ser	Gly	Phe 805	Val	Ser	Arg	Val	Ile 810	Arg	Arg	Glu	Arg	Cys 815	Asp
	Met	Thr	Phe	Pro 820	Cys	Val	Ser	Cys	Val 825	Thr	Phe	Phe	Tyr	Glu 830	Phe	Leu
15	Asp	Thr	Cys 835	Phe	Gly	Val	Ser	Lys 840	Pro	Asn	Ala	Ile	Asp 845	Val	Glu	His
20	Leu	Glu 850	Leu	Lys	Glu	Thr	Val 855	Phe	Val	Glu	Pro	Lys 860	Asp	Gly	Gly	Gln
	Phe 865	Phe	Val	Ser	Gly	Asp 870	Tyr	Leu	Trp	Tyr	Val 875	Val	Asp	Asp	Ile	Tyr 880
25	Tyr	Pro	Ala	Ser	Cys 885	Asn	Gly	Val	Leu	Pro 890	Val	Ala	Phe	Thr	Lys 895	Leu
00	Ala	Gly	Gly	Lys 900	Ile	Ser	Phe	Ser	Asp 905	Asp	Val	Ile	Val	His 910	Asp	Val
30	Glu	Pro	Thr 915	His	Lys	Val	Lys	Leu 920	Ile	Phe	Glu	Phe	Glu 925	Asp	Asp	Val
35	Val	Thr 930	Ser	Leu	Cys	Lys	Lys 935	Ser	Phe	Gly	Lys	Ser 940	Ile	Ile	Tyr	Thr
	Gly 945	Asp	Trp	Glu	Gly	Leu 950	His	Glu	Val	Leu	Thr 955	Ser	Ala	Met	Asn	Val 960
40	Ile	Gly	Gln	His	Ile 965	Lys	Leu	Pro	Gln	Phe 970	Tyr	Ile	Tyr	Asp	Glu 975	Glu
45	Gly	Gly	Tyr	Asp 980	Val	Ser	Lys	Pro	Val 985	Met	Ile	Ser	Gln	Trp 990	Pro	Ile
	Ser	Asn	Asp 995	Ser	Asn	Gly	Суз	Val 100		1 Gl	u Al	a Se	r Th 10		sp P	he His
50	Gln	Leu 101		и Су	s Il	e Va	l As 10		sp S	er V	al A		lu 020	Glu	Val .	Asp

5															
	Ile	Ile 1025	Glu	Gln	Pro	Phe	Glu 1030	Glu	Val	Glu	His	Val 1035	Leu	Ser	Ile
10	Lys	Gln 1040		Phe	Ser	Phe	Ser 1045	Phe	Arg	Asp	Glu	Leu 1050	Gly	Val	Arg
15	Val	Leu 1055	Asp	Gln	Ser	Asp	Asn 1060	Asn	Cys	Trp	Ile	Ser 1065	Thr	Thr	Leu
	Val	Gln 1070	Leu	Gln	Leu	Thr	Lys 1075	Leu	Leu	Asp	Asp	Ser 1080	Ile	Glu	Met
20	Gln	Leu 1085	Phe	Lys	Val	Gly	Lys 1090	Val	Asp	Ser	Ile	Val 1095	Gln	Lys	Cys
25	Tyr	Glu 1100		Ser	His	Leu	Ile 1105		Gly	Ser	Leu	Gly 1110	Asp	Ser	Gly
	Lys	Leu 1115		Ser	Glu	Leu	Leu 1120	Lys	Glu	Lys	Tyr	Thr 1125	_	Ser	Ile
30	Thr	Phe 1130		Met	Ser	Суѕ	Asp 1135	_	Gly	Lys	Lys	Phe 1140	_	Asp	Gln
35	Val	Gly 1145	-	Leu	Phe	Trp	Ile 1150			Tyr	Thr	Lys 1155		Phe	Glr
	Lys	Gly 1160	Glu	Cys	Cys	Ile	Cys 1165	His	Lys	Met	Gln	Thr 1170	Tyr	Lys	Leu
40	Val	Ser 1175	Met	Lys	Gly	Thr	Gly 1180		Phe	Val	Gln	Asp 1185	Pro	Ala	Pro
	Ile	Asp 1190		Asp	Ala	Phe	Pro 1195		Lys	Pro	Ile	Cys 1200		Ser	Val
45	Tyr	Leu 1205	-	Val	Lys	Gly	Ser 1210	-	His	Tyr	Gln	Thr 1215		Leu	Туг
50	Ser	Phe 1220		Lys	Ala	Ile	Asp 1225	-	Phe	Gly	Val	Phe 1230	_	Ile	Lys

5	Asn	Ser 1235	Ser	Val	Asn	Thr	Val 1240	Cys	Phe	Val	Asp	Val 1245	Asp	Phe	His
10	Ser	Val 1250	Glu	Ile	Glu	Ala	Gly 1255	Glu	Val	Lys	Pro	Phe 1260	Ala	Val	Tyr
	Lys	Asn 1265	Val	Lys	Phe	Tyr	Leu 1270	Gly	Asp	Ile	Ser	His 1275	Leu	Val	Asn
15	Cys	Val 1280	Ser	Phe	Asp	Phe	Val 1285	Val	Asn	Ala	Ala	Asn 1290	Glu	Asn	Leu
20	Leu	His 1295	Gly	Gly	Gly	Val	Ala 1300	Arg	Ala	Ile	Asp	Ile 1305	Leu	Thr	Glu
	Gly	Gln 1310	Leu	Gln	Ser	Leu	Ser 1315	Lys	Asp	Tyr	Ile	Ser 1320	Ser	Asn	Gly
25	Pro	Leu 1325		Val	Gly	Ala	Gly 1330	Val	Met	Leu	Glu	Cys 1335	Glu	Lys	Phe
30	Asn	Val 1340	Phe	Asn	Val	Val	Gly 1345	Pro	Arg	Thr	Gly	Lys 1350	His	Glu	His
	Ser	Leu 1355		Val	Glu	Ala	Tyr 1360		Ser	Ile	Leu	Phe 1365	Glu	Asn	Gly
35	Ile	Pro 1370	Leu	Met	Pro	Leu	Leu 1375		Cys	Gly	Ile	Phe 1380	Gly	Val	Arg
40	Ile	Glu 1385		Ser	Leu	Lys	Ala 1390		Phe	Ser	Cys	Asp 1395	Ile	Asn	Lys
	Pro	Leu 1400	Gln	Val	Phe	Val	Tyr 1405	Ser	Ser	Asn	Glu	Glu 1410	Gln	Ala	Val
45	Leu	Lys 1415		Leu	Asp	Gly	Leu 1420		Leu	Thr	Pro	Val 1425	Ile	Asp	Asp
50	Val	Asp 1430		Val	Lys	Pro	Phe 1435	-	Val	Glu	Gly	Asn 1440		Ser	Phe
	Phe	Asp	Cys	Gly	Val	Asn	Ala	Leu	Asp	Gly	Asp	Ile	Tyr	Leu	Leu

5	144	5				1450					1455			
40	Phe Th		Ser	Ile	Leu	Met 1465	Leu	Asp	Lys	Gln	Gly 1470	Gln	Leu	Leu
10	Asp Th:		Leu	Asn	Gly	Ile 1480	Leu	Gln	Gln	Ala	Ala 1485	Leu	Asp	Tyr
15	Leu Ala		Val	Lys	Thr	Val 1495	Pro	Ala	Gly	Asn	Leu 1500	Val	Lys	Leu
	Phe Val		Ser	Cys	Thr	Ile 1510	Tyr	Met	Cys	Val	Val 1515	Pro	Ser	Ile
20	Asn Ası 15		Ser	Phe	Asp	Lys 1525		Leu	Gly	Arg	Cys 1530	Val	Arg	Lys
25	Leu As:		Leu	Lys	Thr	Cys 1540		Ile	Ala	Asn	Val 1545	Pro	Ala	Ile
	Asp Va 15		Lys	Lys	Leu	Leu 1555	Ser	Ser	Leu	Thr	Leu 1560	Thr	Val	Lys
30	Phe Va 15		Glu	Ser	Asn	Val 1570		Asp	Val	Asn	Asp 1575	Cys	Phe	Lys
35	Asn As		n Val	Val	Leu	Lys 1585		Thr	Glu	Asp	Gly 1590		Asn	Val
	Lys As		. Val	Val	Glu	Ser 1600		Lys	Ser	Leu	Gly 1605		Gln	Leu
40	Gly Va 16		Ser	Asp	Gly	Val 1615		Ser	Phe	Glu	Gly 1620		Leu	Pro
45	Ile As		: Asp	Thr	Val	Leu 1630		Val	Ala	Pro	Glu 1635		Asp	Trp
	Val Al 16	a Pho	e Tyr	Gly	Phe	Glu 1645		Ala	Ala	Leu	Phe 1650		Ser	Leu
50	Asp Va	1 Ly: 55	s Pro	Tyr	Gly	Tyr 1660		Asn	Asp	Phe	Val 1665		Gly	Phe

5															
	Arg	Val 1670	Leu	Gly	Thr	Thr	Asp 1675	Asn	Asn	Cys	Trp	Val 1680	Asn	Ala	Thr
10	Cys	Ile 1685	Ile	Leu	Gln	Tyr	Leu 1690	Lys	Pro	Thr	Phe	Lys 1695	Ser	Lys	Gly
15	Leu	Asn 1700	Val	Leu	Trp	Asn	Lys 1705	Phe	Val	Thr	Gly	Asp 1710	Val	Gly	Pro
	Phe	Val 1715	Ser	Phe	Ile	Tyr	Phe 1720	Ile	Thr	Met	Ser	Ser 1725	Lys	Gly	Gln
20	Lys	Gly 1730	Asp	Ala	Glu	Glu	Ala 1735	Leu	Ser	Lys	Leu	Ser 1740	Glu	Tyr	Leu
25	Ile	Ser 1745	Asp	Ser	Ile	Val	Thr 1750	Leu	Glu	Gln	Tyr	Ser 1755	Thr	Cys	Asp
	Ile	Cys 1760	Lys	Ser	Thr	Val	Val 1765	Glu	Val	Lys	Ser	Ala 1770	Ile	Val	Cys
30	Ala	Ser 1775	Val	Leu	Lys	Asp	Gly 1780	Cys	Asp	Val	Gly	Phe 1785	Cys	Pro	His
35	Arg	His 1790		Leu	Arg	Ser	Arg 1795		Lys	Phe	Val	Asn 1800	Gly	Arg	Val
	Val	Ile 1805	Thr	Asn	Val	Gly	Glu 1810	Pro	Ile	Ile	Ser	Gln 1815		Ser	Lys
40	Leu	Leu 1820	Asn	Gly	Ile	Ala	Tyr 1825	Thr	Thr	Phe	Ser	Gly 1830		Phe	Asp
45	Asn	Gly 1835		Tyr	Val	Val	Tyr 1840	_	Ala	Ala	Asn	Asn 1845		Val	Туг
	Asp	Gly 1850		Arg	Leu	Phe	Ser 1855		Asp	Leu	Ser	Thr 1860		Ala	Val
50	Thr	Ala 1865		Val	Val	Val	Gly 1870	-	Cys	Val	Thr	Ser 1875		Val	Pro

5															
	Thr	Ile 1880	Val	Ser	Glu	Lys	Ile 1885	Ser	Val	Met	Asp	Lys 1890	Leu	Asp	Thr
10	Gly	Ala 1895	Gln	Lys	Phe	Phe	Gln 1900	Phe	Gly	Asp	Phe	Val 1905	Met	Asn	Asn
15	Ile	Val 1910	Leu	Phe	Leu	Thr	Trp 1915		Leu	Ser	Met	Phe 1920	Ser	Leu	Leu
	Arg	Thr 1925	Ser	Ile	Met	Lys	His 1930	Asp	Ile	Lys	Val	Ile 1935	Ala	Lys	Ala
20	Pro	Lys 1940		Thr	Gly	Val	Ile 1945	Leu	Thr	Arg	Ser	Phe 1950	Lys	Tyr	Asn
25	Ile	Arg 1955		Ala	Leu	Phe	Val 1960		Lys	Gln	Lys	Trp 1965		Val	Ile
	Val	Thr 1970		Phe	Lys	Phe	Leu 1975		Leu	Leu	Tyr	Ala 1980		Tyr	Ala
30	Leu	Val 1985		Met	Ile	Val	Gln 1990		Ser	Pro	Phe	Asn 1995		Leu	Leu
35	Cys	Gly 2000		Ile	Val	Ser	Gly 2005		Glu	Lys	Ser	Thr 2010		Asn	Lys
33	Asp	Ile 2015	_	Cys	Gly	Asn	Ser 2020		Val	Cys	Lys	Met 2025		Leu	Phe
40	Ser	Tyr 2030		Glu	Phe	Asn	Asp 2035		Asp	His	Thr	Ser 2040		Val	Trp
	Lys	His 2045		Arg	Asp	Pro	11e 2050		Ile	Ser	Leu	Gln 2055		Phe	Va.
45	Ile	Leu 2060		Ile	Leu	Leu	Ile 2065		Gly	Asn	Met	Tyr 2070		Arg	Phe
50	Gly	Leu 2075		Tyr	Phe	Val	Ala 2080		. Phe	Ile	Ser	Thr 2085		Gly	Sei

5	Phe	Leu 2090	Gly	Phe	His	Gln	Lys 2095	Gln	Trp	P'ne	Leu	His 2100	Phe	Val	Pro
10	Phe	Asp 2105	Val	Leu	Cys	Asn	Glu 2110	Phe	Leu	Ala	Thr	Phe 2115	Ile	Val	Cys
	Lys	Ile 2120	Val	Leu	Phe	Val	Arg 2125	His	Ile	Ile	Val	Gly 2130	Cys	Asn	Asn
15	Ala	Asp 2135	_	Val	Ala	Cys	Ser 2140	Lys	Ser	Ala	Arg	Leu 2145	Lys	Arg	Val
20	Pro	Leu 2150	Gln	Thr	Ile	Ile	Asn 2155	Gly	Met	His	Lys	Ser 2160	Phe	Tyr	Val
	Asn	Ala 2165	Asn	Gly	Gly	Thr	Cys 2170	Phe	Cys	Asn	Lys	His 2175	Asn	Phe	Phe
25	Cys	Val 2180		Cys	Asp	Ser	Phe 2185	_	Pro	Gly	Asn	Thr 2190	Phe	Ile	Asn
30	Gly	Asp 2195		Ala	Arg	Glu	Leu 2200	Gly	Asn	Val	Val	Lys 2205	Thr	Ala	Val
	Gln	Pro 2210		Ala	Pro	Ala	Tyr 2215	Val	Ile	Ile	Asp	Lys 2220	Val	Asp	Phe
35	Val	Asn 2225	_	Phe	Tyr	Arg	Leu 2230	-	Ser	Gly	Asp	Thr 2235	Phe	Trp	Arg
40	Tyr	Asp 2240		Asp	Ile	Thr	Glu 2245		Lys	Tyr	Ser	Cys 2250	Lys	Glu	Val
	Leu	Lys 2255	Asn	Cys	Asn	Val	Leu 2260	Glu	Asn	Phe	Ile	Val 2265	Tyr	Asn	Asn
45	Ser	Gly 2270		Asn	Ile	Thr	Gln 2275		Lys	Asn	Ala	Cys 2280	Val	Tyr	Phe
50	Ser	Gln 2285		Leu	Cys	Glu	Pro 2290		Lys	Leu	Val	Asn 2295	Ser	Glu	Leu
	Leu	Ser	Thr	Leu	Ser	Val	Asp	Phe	Asn	Gly	Val	Leu	His	Lys	Ala

5		2300					2305					2310			
10	Tyr	Val 2315	Asp	Val	Leu	Cys	Asn 2320	Ser	Phe	Phe	Lys	Glu 2325	Leu	Thr	Ala
	Asn	Met 2330	Ser	Met	Ala	Glu	Cys 2335	Lys	Ala	Thr	Leu	Gly 2340	Leu	Thr	Val
15	Ser	Asp 2345	Asp	Asp	Phe	Val	Ser 2350	Ala	Val	Ala	Asn	Ala 2355	His	Arg	Tyr
20	Asp	Val 2360	Leu	Leu	Ser	Asp	Leu 2365	Ser	Phe	Asn	Asn	Phe 2370	Phe	Ile	Ser
	Tyr	Ala 2375		Pro	Glu	Asp	Lys 2380	Leu	Ser	Val	Tyr	Asp 2385	Ile	Ala	Cys
25	Cys	Met 2390	Arg	Ala	Gly	Ser	Lys 2395	Val	Val	Asn	His	Asn 2400	Val	Leu	Ile
20	Lys	Glu 2405	Ser	Ile	Pro	Ile	Val 2410	_	Gly	Val	Lys	Asp 2415	Phe	Asn	Thr
30	Leu	Ser 2420	Gln	Glu	Gly	Lys	Lys 2425		Leu	Val	Lys	Thr 2430	Thr	Lys	Ala
35	Lys	Gly 2435		Thr	Phe	Leu	Leu 2440		Phe	Asn	Asp	Asn 2445	Gln	Ala	Ile
	Thr	Gln 2450		Pro	Ala	Thr	Ser 2455		Val	Ala	Lys	Gln 2460	Gly	Ala	Gly
40		Lys 2465					Phe 2470						Leu	Phe	Val
45	Val	Ala 2480		Phe	Ile	Gly	Val 2485		Phe	Ile	Asp	Tyr 2490	Thr	Thr	Thr
	Val	Thr 2495		Phe	His	Gly	Tyr 2500		Phe	Lys	Tyr	Ile 2505	Glu	Asn	Gly
50	Gln	Leu 2510		Val	Phe	Glu	Ala 2515		Leu	His	Cys	Val 2520		Asn	Val

5															
	Phe	Asp 2525	Asn	Phe	Asn		Trp 2530	His	Glu	Ala	Lys	Phe 2535	Gly	Val	Val
10	Thr	Thr 2540	Asn	Ser	Asp	Lys	Cys 25 4 5	Pro	Ile	Val	Val	Gly 2550	Val	Ser	Glu
15	Arg	Ile 2555	Asn	Val	Val	Pro	Gly 2560	Val	Pro	Thr	Asn	Val 2565	Tyr	Leu	Val
	Gly	Lys 2570	Thr	Leu	Val	Phe	Thr 2575	Leu	Gln	Ala	Ala	Phe 2580	Gly	Asn	Thr
20	Gly	Val 2585	Cys	Tyr	Asp	Phe	Asp 2590	Gly	Val	Thr	Thr	Ser 2595	Asp	Lys	Cys
25	Ile	Phe 2600	Asn	Ser	Ala	Cys	Thr 2605	Arg	Leu	Glu	Gly	Leu 2610	_	Gly	Asp
	Asn	Val 2615		Cys	Tyr	Asn	Thr 2620		Leu	Ile	Glu	Gly 2625		Lys	Pro
30	Tyr	Ser 2630		Leu	Gln	Pro	Asn 2635	Ala	Tyr	Tyr	Lys	Tyr 2640		Ala	Lys
35	Asn	Tyr 2645		Arg	Phe	Pro	Glu 2650	Ile	Leu	Ala	Arg	Gly 2655		Gly	Leu
	Arg	Thr 2660		Arg	Thr	Leu	Ala 2665		Arg	Tyr	Cys	Arg 2670		Gly	Glu
40	Cys	Arg 2675		Ser	His	Lys	Gly 2680		Cys	Phe	Gly	Phe 2685		Lys	Trp
45	Tyr	Val 2690		Asp	Gly	Arg	Val 2695		Asp	G1y	Tyr	Ile 2700		Gly	Asp
	Gly	Leu 2705		Asp	Leu	Leu	Val 2710		Val	Leu	Ser	Ile 2715		Ser	Ser
50	Ser	Phe 2720		Val	. Val	Ala	Met 2725		Gly	His	Met	Leu 2730		e Asn	Phe

5															
	Leu	Phe 2735	Ala	Ala	Phe	Ile	Thr 2740	Phe	Leu	Cys	Phe	Leu 2745	Val	Thr	Lys
10	Phe	Lys 2750	Arg	Val	Phe	Gly	Asp 2755	Leu	Ser	Tyr	Gly	Val 2760	Phe	Thr	Val
15	Val	Cys 2765	Ala	Thr	Leu	Ile	Asn 2770	Asn	Ile	Ser	Tyr	Val 2775	Val	Thr	Gln
	Asn	Leu 2780	Phe	Phe	Met	Leu	Leu 2785		Ala	Ile	Leu	Tyr 2790	Phe	Val	Phe
20	Thr	Arg 2795	Thr	Val	Arg	Tyr	Ala 2800		Ile	Trp	His	Ile 2805	Ala	Tyr	Ile
25	Val	Ala 2810	_	Phe	Leu	Leu	Ile 2815		Trp	Trp	Leu	Leu 2820	Thr	Trp	Phe
	Ser	Phe 2825	Ala	Ala	Phe	Leu	Glu 2830	Leu	Leu	Pro	Asn	Val 2835	Phe	Lys	Leu
30	Lys	Ile 2840	Ser	Thr	Gln	Leu	Phe 2845	Glu	Gly	Asp	Lys	Phe 2850	Ile	Gly	Thr
35	Phe	Glu 2855	Ser	Ala	Ala	Ala	Gly 2860		Phe	Val	Leu	Asp 2865	Met	Arg	Ser
	Tyr	Glu 2870	Arg	Leu	Ile	Asn	Thr 2875	Ile	Ser	Pro	Glu	Lys 2880	Leu	Lys	Asr
40	Tyr	Ala 2885	Ala	Ser	Tyr	Asn	Lys 2890	_	Lys	Tyr	Tyr	Ser 2895	Gly	Ser	Ala
	Ser	Glu 2900	Ala	Asp	Tyr	Arg	Cys 2905		Cys	Tyr	Ala	His 2910		Ala	Lys
45	Ala	Met 2915	Leu	Asp	Tyr	Ala	Lys 2920	•	His	Asn	Asp	Met 2925		Tyr	Ser
50	Pro	Pro 2930	Thr	Ile	Ser	Tyr	Asn 2935		Thr	Leu	Gln	Ser 2940	Gly	Leu	Lys

5															
	Lys	Met 2945	Ala	Gln	Pro	Ser	Gly 2950	Cys	Val	Glu	Arg	Cys 2955	Val	Val	Arg
10	Val	Cys 2960	Tyr	Gly	Ser	Thr	Val 2965	Leu	Asn	Gly	Val	Trp 2970	Leu	Gly	Asp
15	Thr	Val 2975	Thr	Cys	Pro	Arg	His 2980	Val	Ile	Ala	Pro	Ser 2985	Thr	Thr	Val
	Leu	Ile 2990	Asp	Tyr	Asp	His	Ala 2995	Tyr	Ser	Thr	Met	Arg 3000	Leu	His	Asn
20	Phe	Ser 3005	Val	Ser	His	Asn	Gly 3010	Val	Phe	Leu	Gly	Val 3015	Val	Gly	Val
	Thr	Met 3020	His	Gly	Ser	Val	Leu 3025	Arg	Ile	Lys	Val	Ser 3030	Gln	Ser	Asn
25	Val	His 3035	Thr	Pro	Lys	His	Val 3040		Lys	Thr	Leu	Lys 3045	Pro	Gly	Asp
30	Ser	Phe 3050	Asn	Ile	Leu	Ala	Cys 3055	-	Glu	Gly	Ile	Ala 3060	Ser	Gly	Val
	Phe	Gly 3065	Val	Asn	Leu	Arg	Thr 3070	Asn	Phe	Thr	Ile	Lys 3075	Gly	Ser	Phe
35	Ile	Asn 3080	Gly	Ala	Cys	Gly	Ser 3085	Pro	Gly	Tyr	Asn	Val 3090	Arg	Asn	Asp
40	Gly	Thr 3095	Val	Glu	Phe	Cys	Tyr 3100	Leu	His	Gln	Ile	Glu 3105	Leu	Gly	Ser
	Gly	Ala 3110		Val	Gly		Asp 3115		Thr			Val 3120		Gly	Asr
45	Phe	Asp 3125	-	Gln	Pro	Ser	Leu 3130		Val	Glu	Ser	Ala 3135	Asn	Leu	Met
50	Leu	Ser 3140	Asp	Asn	Val	Val	Ala 3145		Leu	Tyr	Ala	Ala 3150	Leu	Leu	Ası
50	Gly	Cys	Arg	Trp	Trp	Leu	Суѕ	Ser	Thr	Arg	Val	Asn	Val	Asp	Gly

5															
		3155					3160					3165			
10	Phe	Asn 3170	Glu	Trp	Ala	Met	Ala 3175	Asn	Gly	Tyr	Thr	Ser 3180	Val	Ser	Ser
	Val	Glu 3185		Tyr	Ser	Ile	Leu 3190	Ala	Ala	Lys	Thr	Gly 3195	Val	Ser	Val
15	Glu	Gln 3200		Leu	Ala	Ser	Ile 3205	Gln	His	Leu	His	Glu 3210	Gly	Phe	Gly
20	Gly	Lys 3215		Ile	Leu		Tyr 3220		Ser	Leu		Asp 3225	Glu	Phe	Thr
	Leu	Ala 3230		Val	Val	Lys	Gln 3235	Met	Tyr	Gly	Val	Asn 3240	Leu	Gln	Ser
25	Gly	Lys 3245		Ile	Phe	G1 y	Leu 3250		Thr	Met	Phe	Leu 3 2 55	Phe	Ser	Val
30	Phe	Phe 3260	Thr	Met	Phe	_	Ala 3265	Glu	Leu	Phe	Ile	Tyr 3270	Thr	Asn	Thr
	Ile	Trp 3275		Asn	Pro	Val	Ile 3280	Leu	Thr	Pro	Ile	Phe 3285	Cys	Leu	Leu
35	Leu	Phe 3290		Ser	Leu	Val	Leu 3295	Thr	Met	Phe	Leu	Lys 3300	His	Lys	Phe
40	Leu	Phe 3305		Gln	Val	Phe	Leu 3310	Leu	Pro	Thr	Val	Ile 3315	Ala	Thr	Ala
40	Leu	Tyr 3320		Cys	Val	Leu	Asp 3325		Tyr	Ile	Val	Lys 3330	Phe	Leu	Ala
45	Asp	His 3335		Asn	Tyr	Asn	Val 3340	Ser	Val	Leu	Gln	Met 3345	Asp	Val	Gln
	Gly	Leu 3350	Val	Asn	Val	Leu	Val 3355	_	Leu	Phe	Val	Val 3360	Phe	Leu	His
50	Thr	Trp 3365		Phe	Ser	Lys	Glu 3370	-	Phe	Thr	His	Trp 3375	Phe	Thr	Tyr
55	ŧ														

5															
10	Val	Cys 3380	Ser	Leu	Ile	Ala	Val 3385	Ala	Tyr	Thr	Tyr	Phe 3390	Tyr	Ser	Gly
10	Asp	Phe 3395	Leu	Ser	Leu	Leu	Val 3400	Met	Phe	Leu	Cys	Ala 3405	Ile	Ser	Ser
15	Asp	Trp 3410	Tyr	Ile	Gly	Ala	Ile 3415	Val	Phe	Arg	Leu	Ser 3420	Arg	Leu	Ile
	Val	Phe 3425	Phe	Ser	Pro	Glu	Ser 3430	Val	Phe	Ser	Val	Phe 3435	Gly	Asp	Val
20	Lys	Leu 3440	Thr	Leu	Val	Val	Tyr 3445	Leu	Ile	Cys	Gly	Tyr 3450	Leu	Val	Cys
25	Thr	Tyr 3455		Gly	Ile	Leu	Tyr 3460		Phe	Asn	Arg	Phe 3465	Phe	Lys	Cys
	Thr	Met 3470	Gly	Val	Tyr	Asp	Phe 3475		Val	Ser	Ala	Ala 3480	Glu	Phe	Lys
30	Tyr	Met 3485	Val	Ala	Asn	Gly	Leu 3490	His	Ala	Pro	His	Gly 3495	Pro	Phe	Asp
35	Ala	Leu 3500		Leu	Ser	Phe	Lys 3505		Leu	Gly	Ile	Gly 3510	Gly	Asp	Arg
	Cys	Ile 3515		Ile	Ser	Thr	Val 3520		Ser	Lys	Leu	Thr 3525		Leu	Lys
40	Cys	Thr 3530		Val	Val	Leu	Leu 3535	_	Cys	Leu	Ser	Ser 3540		Asn	Ile
45	Ala	Ala 3545		Ser	Ser	Glu	Trp 3550		Tyr	Cys	Val	Asp 3555		His	Asn
	Lys	Ile 3560		Leu	Cys	Asp	Asp 3565		Glu	Lys	Ala	Gln 3570		Met	Leu
50	Leu	Ala 3575		Leu	Ala	Phe	Phe 3580		Ser	Lys	. His	Ser 3585		Phe	Gly

5															
	Leu	Asp 3590	Gly	Leu	Ile	Asp	Ser 3595	Tyr	Phe	qaA	Asn	Ser 3600	Ser	Thr	Leu
10	Gln	Ser 3605	Val	Ala	Ser	Ser	Phe 3610	Val	Ser	Met	Pro	Ser 3615	Tyr	Ile	Ala
15	Tyr	Glu 3620	Asn	Ala	Arg	Gln	Ala 3625	Tyr	Glu	Asp	Ala	Ile 3630	Ala	Asn	Gly
	Ser	Ser 3635	Ser	Gln	Leu	Ile	Lys 3640	Gln	Leu	Lys	Arg	Ala 3645	Met	Asn	Ιle
20	Ala	Lys 3650	Ser	Glu	Phe	Asp	His 3655	Glu	Ile	Ser	Val	Gln 3660	Lys	Lys	Il€
25	Asn	Arg 3665	Met	Ala	Glu	Gln	Ala 3670	Ala	Thr	Gln	Met	Tyr 3675	Lys	Glu	Ala
	Arg	Ser 3680	Val	Asn	Arg	Lys	Ser 3685	Lys	Val	Ile	Ser	Ala 3690	Met	His	Sei
30	Leu	Leu 3695		Gly	Met	Leu	Arg 3700	Arg	Leu	Asp	Met	Ser 3705	Ser	Val	Glı
35	Thr	Val 3710		Asn	Leu	Ala	Arg 3715	_	Gly	Val	Val	Pro 3720	Leu	Ser	Va.
	Ile	Pro 3725		Thr	Ser	Ala	Ser 3730	-	Leu	Thr	Ile	Val 3735		Pro	Ası
40	Leu	Glu 3740		Tyr	Ser	Lys	Ile 3745		Cys	Asp	-	Ser 3750		His	Ту
	Ala	Gly 3755		Val	Trp	Thr	Leu 3760		Asp	Val	Lys	Asp 3765		Asp	Gl
45	Arg	Pro 3770		His	Val	Lys	Glu 3775		Thr	Lys	Glu	Asn 3780		Glu	Th
50	Leu	Thr 3785	-	Pro	Leu	Ile	Leu 3790		Cys	Glu	Arg	Val 3795		Lys	Le

Gln	Asn 3800	Asn	Glu	Ile		Pro 3805	Gly	Lys	Leu	Lys	Gln 3810	Lys	Pro	Met
Lys	Ala 3815	Glu	Gly	Asp	Gly	Gly 3820	Val	Leu	Gly	Asp	Gly 3825	Asn	Ala	Leu
Tyr	Asn 3830	Thr	Glu	Gly	Gly	Lys 3835	Thr	Phe	Met	Tyr	Ala 3840	Tyr	Ile	Ser
Asn	Lys 3845	Ala	Asp	Leu	_	Phe 3850	Val	Lys	Trp	Glu	Tyr 3855	Glu	Gly	Gly
Cys	Asn 3860	Thr	Ile	Glu	Leu	Asp 3865	Ser	Pro	Cys	Arg	Phe 3870	Met	Val	Glu
Thr	Pro 3875	Asn	Gly	Pro	Gln	Val 3880	Lys	Tyr	Leu	Tyr	Phe 3885	Val	Lys	Asn
Leu	Asn 3890	Thr	Leu	Arg	Arg	Gly 3895	Ala	Val	Leu	Gly	Phe 3900	Ile	Gly	Ala
Thr	Ile 3905	Arg	Leu	Gln	Ala	Gly 3910	Lys	Gln	Thr	Glu	Leu 3915	Ala	Val	Asn
Ser	Gly 3920	Leu	Leu	Thr	Ala	Cys 3925	Ala	Phe	Ser	Val	Asp 3930	Pro	Ala	Thr
Thr	Tyr 3935	Leu	Glu	Ala	Val	Lys 3940	His	Gly	Ala	Lys	Pro 3945	Val	Ser	Asn
Cys	Ile 3950	Lys	Met	Leu	Ser	Asn 3955	Gly	Ala	Gly	Asn	Gly 3960	Gln	Ala	Ile
Thr	Thr 3965	Ser	Val	Asp				Asn	Gln	Asp	Ser 3975	Tyr	Gly	Gly
Ala	Ser 3980	Ile	Cys	Leu	Tyr	Cys 3985		Ala	His	Val	Pro 3990	His	Pro	Ser
Met	Asp 3995	Gly	Tyr	Cys	Lys	Phe 4000	Lys	Gly	Lys	Cys	Val 4005	Gln	Val	Pro
Ile	Gly	Cys	Leu	Asp	Pro	Ile	Arg	Phe	Cys	Leu	Glu	Asn	Asn	Val
	Lys Tyr Asn Cys Thr Leu Thr Cys Thr Met	3800 Lys Ala 3815 Tyr Asn 3830 Asn Lys 3845 Cys Asn 3860 Thr Pro 3875 Leu Asn 3890 Thr Ile 3905 Ser Gly 3920 Thr Tyr 3935 Cys Ile 3950 Thr Thr 3965 Ala Ser 3980 Met Asp 3995	Asn Lys Ala 3845 Tyr Asn Thr 3830 Asn Lys Ala 3845 Cys Asn Thr 3875 Leu Asn Thr 3875 Leu Asn Thr 3890 Thr Ile Arg 3905 Ser Gly Leu 3920 Thr Tyr Leu 3935 Cys Ile Lys 3950 Thr Thr Ser 3965 Ala Ser Ile 3980 Met Asp Gly 3995	Lys Ala Glu Gly 3815 Glu Gly 3830 Thr Glu 3830 Thr Glu 3830 Thr Ile 3860 Thr Ile 3875 Asn Gly 3875 Asn Gly 3875 Asn Gly 3875 Thr Leu 3890 Thr Leu 3920 Leu Leu 3920 Thr Tyr Leu Glu 3935 Leu Glu 3935 Cys Ile Lys Met 3950 Thr Thr Ser Val 3965 Asn Gly Tyr 3995 Gly Tyr 3995	Lys Ala Glu Gly Asp 3815 Tyr Asn Thr Glu Gly Asn 3830 Asn Lys Ala Asp Leu 3845 Cys Asn Thr Ile Glu 3860 Thr Pro Asn Gly Pro 3875 Leu Asn Thr Leu Arg 3890 Thr Ile Arg Leu Gln 3905 Ser Gly Leu Leu Thr 3920 Thr Tyr Leu Glu Ala 3935 Cys Ile Lys Met Leu Thr 3950 Thr Thr Ser Val Asp 3965 Ala Ser Ile Cys Leu Met Asp 3995 Met Asp Gly Tyr Cys 3995	Lys Ala Glu Gly Asp Gly 3815 Tyr Asn Thr Glu Gly Gly Asp Sly 3830 Asn Lys Ala Asp Leu Lys 3845 Cys Asn Thr Ile Glu Leu 3860 Thr Pro Asn Gly Pro Gln 3875 Leu Asn Thr Leu Arg Arg 3890 Thr Ile Arg Leu Gln Ala 3905 Ser Gly Leu Leu Thr Ala 3920 Thr Tyr Leu Glu Ala Val 3935 Cys Ile Lys Met Leu Ser 3950 Thr Thr Ser Val Asp Ala 3965 Ala Ser Ile Cys Leu Tyr 3980 Met Asp Gly Tyr Cys Lys 3995	Lys Ala 3815 Glu Gly Asp Gly Gly 3820 Tyr Asn 3830 Thr Glu Gly Gly 1ys 3835 Asn Lys 3835 Ala Asp Leu Lys Phe 3850 Cys Asn Thr Ile Glu Leu Asp 3865 Thr Pro 3860 Asn Gly Pro Gln Val 3880 Leu Asn Thr Leu Arg Arg Gly 3895 Thr Ile Arg Leu Gln Ala Gly 3910 Ser Gly Leu Leu Thr Ala Cys 3925 Thr Tyr Leu Glu Ala Val Lys 3925 Thr Tyr Leu Glu Ala Val Lys 3940 Cys Ile Lys Met Leu Ser Asn 3955 Thr Thr Ser Val Asp Ala Asn 3970 Ala Ser Ile Cys Leu Tyr Cys 3985 Met Asp 3995 Gly Tyr Cys Lys Phe 4000	1800 3805 1805 3805 1806 1806 1807 1806 1808 1807 1809	Lys Ala 3815 Glu Gly Asp Gly Gly 3820 Val Leu 3825 Tyr Asn 3830 Thr Glu Gly Gly Lys 3835 Thr Phe 3835 Asn Lys 3845 Ala Asp Leu Lys Phe 3850 Val Lys 3850 Cys Asn Thr Ile Glu Leu Asp 3865 Ser Pro 3866 Thr Pro 3875 Asn Gly Pro Gln Val Lys Tyr 3880 Leu Asn 3890 Thr Leu Arg Arg Gly 3895 Ala Val 3895 Thr Ile 3905 Arg Leu Gln Ala Gly 3910 Lys Gln 3910 Ser Gly Leu Leu Thr Ala Cys Ala Phe 3925 Ala Phe 3925 Thr Tyr Leu Glu Ala Val Lys His Gly 3940 His Gly 3940 Cys Ile Lys Met Leu Ser Asn Gly Ala 3955 Gly Ala 3950 Thr Thr Ser Val Asp Ala Asn Thr Asn 3965 Ser Val Asp Ala Asn Thr Asn 3965 Ala Ser Ile Cys Leu Tyr Cys Arg Ala 3985 Arg Ala 3980 Met Asp Gly Tyr Cys Lys Phe Lys Gly 4000	Lys Ala 3815 Glu Gly Asp Gly Gly 3820 Val Leu Gly 3820 Tyr Asn 3830 Thr Glu Gly Gly Lys 3835 Thr Phe Met 3835 Asn Lys 3845 Ala Asp Leu Lys Phe 3850 Val Lys Trp Cys Asn Thr Ile Glu Leu Asp 3865 Ser Pro Cys Thr Pro Glu Val Lys Tyr Leu Leu Asn Gly Pro Gln Val Lys Tyr Leu Leu Asn Gly Pro Gln Val Lys Tyr Leu Thr Ile Arg Arg Ala Val Leu Ser Gly Ala Cys Ala Phe Ser Thr Tyr Leu Gly Ala Ala	Lys Ala 3815 Glu Gly Asp Gly Gly 3820 Val Leu Gly Asp Tyr Asn 3815 Thr Glu Gly Gly Lys 3835 Thr Phe Met Tyr Asn Lys 3830 Thr Glu Gly Lys 3835 Thr Phe Met Tyr Glu Asn Lys 3845 Ala Asp Leu Lys 3850 Val Lys Trp Glu Cys Asn 3860 Thr Ile Glu Leu Asp Ser Pro Cys Arg Thr Pro Asn Gly Pro Gln Val Lys Tyr Leu Tyr Leu Asn Gly Pro Gln Val Lys Gln Thr Gly Ala Val Leu Gly Ala Val Leu Gly Ala Phe Ser Val Ser Gly Leu Glu Ala Val Lys Ala Gly Ala Lys Ala Gly Ala	3800 3805 3810 Lys Ala Glu Gly Asp Gly Gly Val Leu Gly Asp Gly 3825 Tyr Asn 3830 Thr Glu Gly Gly Lys Thr Phe Met Tyr Ala 3830 Asn Lys Ala Asp Leu Lys Phe 3850 Cys Asn Thr Ile Glu Leu Asp Ser Pro Cys Arg Phe 3875 Thr Pro 3875 Asn Gly Pro Gln Val Ser Tyr Leu Tyr Phe 3885 Leu Asn 3890 Thr Leu Arg Arg Gly Ala Val Leu Gly Phe 3890 Thr Ile Arg Leu Gln Ala Gly Lys Gln Thr Glu Leu 3915 Ser Gly Ser Glu Ala Val Lys Gln Thr Glu Leu 3935 Thr Tyr Jeu Glu Ala Val Lys Gln Ala Lys Pro 3935 Cys Ile Lys Met Leu Ser Asn Gly Ala Gly Asn Gly 3950 Thr Thr Ser Val Asp Ala Asn Thr Asn Gln Asp Ser 3950 Met Asp Gly Tyr Cys Lys Phe Lys Gly Lys Cys Val 4005	3800 3805	Lys Ala 3815 Glu Gly Asp Gly Gly 3820 Val Leu Gly Asp Gly 3825 Asn Ala 3815 Thr Glu Gly Gly Lys Thr Phe Met Tyr Ala Tyr Ile 3830 Thr Glu Gly Gly Lys Thr Phe Met Tyr Ala Tyr Ile 3840 Tyr Ile 3845 Asn Ala 3835 Val Lys Trp Glu Tyr Glu Gly 3855 Glu Gly 3855 Ser Pro Cys Arg Phe Met Val 3860 Thr Ile Glu Leu Asp 3865 Ser Pro Cys Arg Phe Met Val 3870 Asn Gly Pro Gln Val Lys Tyr Leu Tyr Phe Val Lys 3885 Thr Leu Arg Arg Gly 3885 Ala Val Leu Gly Phe Je Gly 3885 Thr Ile Gly 3895 Ala Val Leu Gly Phe Je Gly 3900 Thr Ile Arg Leu Gln Ala Gly Jeys Gln Thr Glu Leu Asp 3915 Ala Val Ser 3920 Leu Leu Thr Ala Cys Ala Phe Ser Val Asp Pro Ala 3930 Thr Tyr Leu Glu Ala Val Lys 3945 Wal Gly Ala Lys Pro Ser Je Lys Met Leu Ser Asn 3950 Gly Ala Gly Asn Gly Gln Ala Thr Thr Ser Val Asp Ala Asn Thr Asn Gln Asp Ser Tyr Gly 3960 Thr Thr Ser Val Asp Ala Asn Thr Asn Gln Asp Ser Tyr Gly 3960 The Asp Gly Tyr Cys Lys Phe Lys Gly Lys Cys Val Gln Val

5		4010					4015					4020			
10	Cys	Asn 4025	Val	Cys	Gly	Cys	Trp 4030	Leu	GЉ	His	Gly	Cys 4035	Ala	Cys	qsA
	Arg	Thr 4040	Thr	Ile	Gln	Ser	Val 4045	Asp	Ile	Ser	Tyr	Leu 4050	Asn	Glu	Gln
15	Gly	Val 4055	Leu	Val	Gln	Leu	Asp 4060	Arg	Ala	Arg	Gly	Ser 4065	Ser	Ala	Ala
20	Arg	Leu 4070	Glu	Pro	Cys	Asn	Gly 4075	Thr	Asp	Ile	Asp	Lys 4080	Cys	Val	Arg
	Ala	Phe 4085		Ile	Tyr	Asn	Lys 4090	Asn	Val	Ser	Phe	Leu 4095	Gly	Lys	Cys
25	Leu	Lys 4100	Met	Asn	Cys	Val	Arg 4105	Phe	Lys	Asn	Ala	Asp 4110	Leu	Lys	Asp
30	Gly	Tyr 4115	Phe	Val	Ile	Lys	Arg 4120	Cys	Thr	Lys	Ser	Val 4125	Met	Glu	His
	Glu	Gln 4130	Ser	Met	Tyr	Asn	Leu 4135	Leu	Asn	Phe	Ser	Gly 4140	Ala	Leu	Ala
35	Glu	His 4145		Phe	Phe	Thr	Trp 4150		Asp	Gly	Arg	Val 4155	Ile	Tyr	Gly
40	Asn	Val 4160		Arg	His	Asn	Leu 4165	Thr	Lys	Tyr	Thr	Met 4170	Met	Asp	Leu
40	Val	Tyr 4175		Met	Arg	Asn	Phe 4180		Glu	Gln	Asn	Cys 4185	Asp	Val	Leu
45	Lys	Glu 4190		Leu	Val	Leu	Thr 4195		Cys	Суѕ	Asp	Asn 4200		Tyr	Phe
	Asp	Ser 4205		Gly	Trp	Tyr	Asp 4210		Val	Glu	Asn	Glu 4215		Ile	His
50	Arg	Val 4220		Ala	Ser	Leu	Gly 4225		Ile	Val	Ala	Arg 4230		Met	Leu

5															
	Lys	Cys 4235	Val	Ala	Leu	Cys	Asp 4240	Ala	Met	Val	Ala	Lys 4245	Gly	Val	Val
10	Gly	Val 4250	Leu	Thr	Leu	Asp	Asn 4255	Gln	Asp	Leu	Asn	Gly 4260	Asn	Phe	Tyr
15	Asp	Phe 4265	Gly	Asp	Phe	Val	Val 4270	Ser	Leu	Pro	Asn	Met 4275	Gly	Val	Pro
	Cys	Cys 4280	Thr	Ser	Tyr	Tyr	Ser 4285	_	Met	Met	Pro	Ile 4290	Met	Gly	Leu
20	Thr	Asn 4295	Cys	Leu	Ala	Ser	Glu 4300	Cys	Phe	Val	Lys	Ser 4305	Asp	Ile	Phe
25	Gly	Ser 4310	Asp	Phe	Lys	Thr	Phe 4315		Leu	Leu	Lys	Tyr 4320	qzA	Phe	Thr
	Glu	His 4325	Lys	Glu	Asn	Leu	Phe 4330	Asn	Lys	Tyr	Phe	Lys 4335	His	Trp	Ser
30	Phe	Asp 4340	-	His	Pro	Asn	Cys 4345	_	Asp	Cys	Tyr	Asp 4350	Asp	Met	Суз
35	Val	Ile 4355	His	Cys	Ala	Asn	Phe 4360	Asn	Thr	Leu	Phe	Ala 4365	Thr	Thr	Ile
	Pro	Gly 4370	Thr	Ala	Phe	Gly	Pro 4375		Cys	Arg	Lys	Val 4380		Ile	Asp
40	Gly	Val 4385	Pro	Leu	Val	Thr	Thr 4390		Gly	Tyr	His	Phe 4395	-	Gln	Leu
45	Gly	Leu 4400	Val	Trp	Asn	Lys	Asp 4405		Asn	Thr	His	Ser 4410	Val	Arg	Leu
	Thr	Ile 4415		Glu	Leu	Leu	Gln 4420		Val	Thr	Asp	Pro 4425		Leu	Ile
50	Ile	Ala 4430	Ser	Ser	Pro	Ala	Leu 4435		Asp	Gln	Arg	Thr 4440		Cys	Phe

5	Ser	Val 4445	Ala	Ala	Leu	Ser	Thr 4450	Gly	Leu	Thr	Asn	Gln 4455	Val	Val	Lys
10	Pro	Gly 4460	His	Phe	Asn	Glu	Glu 4465	Phe	Tyr	Asn	Phe	Leu 4470	Arg	Leu	Arg
15	Gly	Phe 4475	Phe	Asp	Glu	Gly	Ser 4480	Glu	Leu	Thr	Leu	Lys 4485	His	Phe	Phe
13	Phe	Ala 4490	Gln	Asn	Gly	Asp	Ala 4495	Ala	Val	Lys	Asp	Phe 4500	Asp	Phe	Tyr
20	Arg	Tyr 4505	Asn	Lys	Pro	Thr	Ile 4510	Leu	Asp	Ile	Cys	Gln 4515	Ala	Arg	Val
25	Thr	Tyr 4520	Lys	Ile	Val	Ser	Arg 4525		Phe	Asp	Ile	Tyr 4530	Glu	Gly	Gly
	Cys	Ile 4535	Lys	Ala	Cys	Glu	Val 4540	Val	Val	Thr	Asn	Leu 4545	Asn	Lys	Ser
30	Ala	Gly 4550	Trp	Pro	Leu	Asn	Lys 4555		Gly	Lys	Ala	Ser 4560	Leu	Tyr	Tyr
35	Glu	Ser 4565	Ile	Ser	Tyr	Glu	Glu 4570	Gln	Asp	Ala	Leu	Phe 4575	Ala	Leu	Thr
	•	Arg 4580					4585					4590			-
40		Ile 4595					4600		•			4605			
45	Leu	Leu 4610	Ser	Thr	Met	Thr	Thr 4615	-	Gln	Tyr	His	Gln 4620	Lys	His	Leu
		Ser 4625					4630					4635			
50	Thr	Lys 4640		Tyr	Gly	Gly	Trp 4645		Asn	Met	Leu	Arg 4650	Thr	Leu	Ile

5	Asp	Gly 4655	Val	Glu	Asn	Pro	Met 4660	Leu	Met	Gly	Trp	Asp 4665	Tyr	Pro	Lys
10	Cys	Asp 4670	Arg	Ala	Leu	Pro	Asn 4675	Met	Ile	Arg	Met	Ile 4680	Ser	Ala	Met
	Val	Leu 4685	Gly	Ser	Lys	His	Val 4690	Asn	Cys	Cys	Thr	Ala 4695	Thr	Asp	Arg
15	Phe	Tyr 4700	Arg	Leu	Gly	Asn	Glu 4705	Leu	Ala	Gln	Val	Leu 4710	Thr	Glu	Val
20	Val	Tyr 4715	Ser	Asn	Gly	Gly	Phe 4720	Tyr	Phe	Lys	Pro	Gly 4725	Gly	Thr	Thr
	Ser	Gly 4730	Asp	Ala	Ser	Thr	Ala 4735	Tyr	Ala	Asn	Ser	Ile 4740	Phe	Asn	Ile
25	Phe	Gln 4745	Ala	Val	Ser	Ser	Asn 4750	Ile	Asn	Arg	Leu	Leu 4755	Ser	Val	Pro
30	Ser	Asp 4760		Cys	Asn	Asn	Val 4765	Asn	Val	Arg	Asp	Leu 4770	Gln	Arg	Arg
	Leu	Tyr 4775		Asn	Cys	Tyr	Arg 4780	Leu	Thr	Ser	Val	Glu 4785	Glu	Ser	Phe
35	Ile	Glu 4790		Tyr	Tyr	Gly	Tyr 4795	Leu	Arg	Lys	His	Phe 4800	Ser	Met	Met
40	Ile	Leu 4805	Ser	Asp	Asp	Gly	Val 4810	Val	Cys	Tyr	Asn	Lys 4815	Asp	Tyr	Ala
	Glu	Leu 4820	Gly	Tyr	Ile	Ala	Asp 4825	Ile	Ser	Ala	Phe	Lys 4830	Ala	Thr	Leu
45	Tyr	Tyr 4835		Asn	Asn	Val	Phe 4840		Ser	Thr	Ser	Lys 4845	Cys	Trp	Val
50	Glu	Glu 4850	-	Leu	Thr	Lys	Gly 4855	Pro	His	Glu	Phe	Cys 4860	Ser	Gln	His
	Thr	Met	Gln	Ile	Val	Asp	Lys	Asp	Gly	Thr	Tyr	Tyr	Leu	Pro	Tyr

5		4865					4870					4875			
	Pro	Asp 4880	Pro	Ser	Arg	Ile	Leu 4885	Ser	Ala	Gly	Val	Phe 4890	Val	Asp	Asp
10	Val	Val 4895	Lys	Thr	Asp	Ala	Val 4900	Val	Leu	Leu	Glu	Arg 4905	Tyr	Val	Ser
15	Leu	Ala 4910	Ile	Asp	Ala	Tyr	Pro 4915	Leu	Ser	Lys	His	Pro 4920	Asn	Ser	Glu
	Tyr	Arg 4925		Val	Phe	Tyr	Val 4930	Leu	Leu	Asp	Trp	Val 4935	Lys	His	Leu
20	Asn	Lys 4940	Asn	Leu	Asn	Glu	Gly 49 4 5	Val	Leu	Glu	Ser	Phe 4950	Ser	Val	Thr
25	Leu	Leu 4955	Asp	Asn	Gln	Glu	Asp 4960	Lys	Phe	Trp	Cys	Glu 4965	Asp	Phe	Tyr
	Ala	Ser 4970	Met	Tyr	Glu	Asn	Ser 4975	Thr	Ile	Leu	Gln	Ala 4980	Ala	Gly	Leu
30	Cys	Val 4985		Cys	Gly	Ser	Gln 4990		Val	Leu	Arg	Cys 4995	Gly	Asp	Суѕ
35	Leu	Arg 5000	-	Pro	Met	Leu	Cys 5005		Lys	Cys	Ala	Tyr 5010	Asp	His	Val
	Phe	Gly 5015	Thr	Asp	His	Lys	Phe 5020	Ile	Leu	Ala	Ile	Thr 5025	Pro	Tyr	Val
40		Asn 5030		Ser			Gly 5035							Leu	Tyr
45	Leu	Gly 5045		Leu	Asn	Туr	Tyr 5050		Thr	Asn	His	Lys 5055	Pro	Gln	Leu
	Ser	Phe 5060	Pro	Leu	Cys	Ser	Ala 5065	_	Asn	Ile	Phe	Gly 5070	Leu	Tyr	Lys
50	Asn	Ser 5075	Ala	Thr	Gly	Ser	Leu 5080		Val	Glu	Val	Phe 5085		Arg	Leu

5	Ala	Thr 5090	Ser	Asp	Trp	Thr	Asp 5095	Val	Arg	Asp	Tyr	Lys 5100	Leu	Ala	Asn
10	Asp	Val 5105	Lys	Asp	Thr	Leu	Arg 5110	Leu	Phe	Ala	Ala	Glu 5115	Thr	Ile	Lys
15	Ala	Lys 5120	Glu	Glu	Ser	Val	Lys 5125	Ser	Ser	Tyr	Ala	Phe 5130	Ala	Thr	Leu
	Lys	Glu 5135	Val	Val	Glγ	Pro	Lys 5140	Glu	Leu	Leu	Leu	Ser 5145	Trp	Glu	Ser
20	Gly	Lys 5150	Val	Lys	Pro	Pro	Leu 5155	Asn	Arg	Asn	Ser	Val 5160	Phe	Thr	Cys
25	Phe	Gln 5165	Ile	Ser	Lys	Asp	Ser 5170	Lys	Phe	Gln	Ile	Gly 5175	Glu	Phe	Ile
	Phe	Glu 5180	Lys	Val	Glu	Tyr	Gly 5185	Ser	Asp	Thr	Val	Thr 5190	Tyr	Lys	Ser
30	Thr	Val 5195	Thr	Thr	Lys	Leu	Val 5200	Pro	Gly	Met	Ile	Phe 5205	Val	Leu	Thr
35	Ser	His 5210	Asn	Val	Gln	Pro	Leu 5215	Arg	Ala	Pro	Thr	Ile 5220	Ala	Asn	Gln
	Glu	Lys 5225		Ser	Ser	Ile	Tyr 5230	Lys	Leu	His	Pro	Ala 5235	Phe	Asn	Val
40	Ser	Asp 5240	Ala	Tyr	Ala	Asn	Leu 5245	Val	Pro	Tyr	Tyr	Gln 5250	Leu	Ile	Gly
45	Lys	Gln 5255	Lys	Ile	Thr	Thr	Ile 5260	Gln	Gly	Pro	Pro	Gly 5265	Ser	Gly	Lys
	Ser	His 5270	Cys	Ser	Ile	Gly	Leu 5275		Leu	Tyr	Tyr	Pro 5280	Gly	Ala	Arg
50	Ile	Val 5285	Phe	Val	Ala	Cys	Ala 5290	His	Ala	Ala	Val	Asp 5295	Ser	Leu	Cys

5	Ala	Lys 5300		Met	Thr	Val	Tyr 5305		Ile	Asp	Lys	Cys 5310	Thr	Arg	Ile
10	Ile	Pro 5315	Ala	Arg	Ala	Arg	Val 5320	Glu	Cys	Tyr	Ser	Gly 5325	Phe	Lys	Pro
	Asn	Asn 5330	Thr	Ser	Ala	Gln	Tyr 5335	Ile	Phe	Ser	Thr	Val 5340	Asn	Ala	Leu
15	Pro	Glu 5345		Asn	Ala	Asp	Ile 5350		Val	Val	Asp	Glu 5355	Val	Ser	Met
20	Cys	Thr 5360	Asn	Tyr	Asp	Leu	Ser 5365	Val	Ile	Asn	Gln	Arg 5370	Leu	Ser	Tyr
	Lys	His 5375		Val	Tyr	Val	Gly 5380	_	Pro	Gln	Gln	Leu 5385	Pro	Ala	Pro
25	Arg	Val 5390		Ile	Thr	Lys	Gly 5395	Val	Met	G1u	Pro	Val 5400	Asp	Tyr	Asn
30	Val	Val 5405	Thr	Gln	Arg	Met	Cys 5410	Ala	Ile	Gly	Pro	Asp 5415	Val	Phe	Leu
	His	Lys 5420	-	Tyr	Arg	Cys	Pro 5425		Glu	Ile	Val	Ile 5430	Gln	Phe	Leu
35	Asn	Leu 5435		Met	Arg	Thr	Ser 5440		Ser	Leu	Leu	Asn 5445	Leu	Leu	Val
40	Asn	Ser 5450		Leu	Lys	Ser	Phe 5455		Arg	Val	Met	Tyr 5460	•	Val	Asp
	Asn	Gly 5465		Ser	Ile	Asn	Arg 5470		Gln	Leu	Glu	Ile 5475		Lys	Leu
45	Phe	Leu 5480	Val	Lys	Asn	Pro	Ser 5485		Ser	Lys	Ala	Val 5490	Phe	Ile	Ser
50	Pro	Tyr 5495		Ser	Gln	Asn	Tyr 5500		Ala	Ser	Arg	Phe 5505		Gly	Leu

5	Gln	Ile 5510	Gln	Thr	Val	Asp	Ser 5515	Ser	Gln	Gly	Ser	Glu 5520	Tyr	Asp	Tyr
10	Val	Ile 5525	Tyr	Ala	Gln	Thr	Ser 5530	Asp	Thr	Ala	His	Ala 5535	Cys	Asn	Val
	Asn	Arg 5540	Phe	Asn	Val	Ala	Ile 5545	Thr	Arg	Ala	Lys	Lys 5550	Gly	Ile	Phe
15	Cys	Val 5555		Cys	Asp	Lys	Thr 5560	Leu	Phe	Asp	Ser	Leu 5565	Lys	Phe	Phe
20	Glu	Ile 5570	_	His	Ala	Asp	Leu 5575	His	Ser	Ser	Gln	Val 5580	Cys	Gly	Leu
	Phe	Lys 5585	Asn	Cys	Thr	Arg	Thr 5590	Pro	Leu	Asn	Leu	Pro 5595	Pro	Thr	His
25	Ala	His 5600		Phe	Leu	Ser	Leu 5605		Asp	Gln	Phe	Lys 5610	Thr	Thr	Gly
30	Asp	Leu 5615		Val	Gln	Ile	Gly 5620	Ser	Asn	Asn	Val	Cys 5625	Thr	Tyr	Glu
	His	Val 5630	Ile	Ser	Phe	Met	Gly 5635	Phe	Arg	Phe	Asp	Ile 5640	Ser	Ile	Pro
35	Gly	Ser 5645		Ser	Leu	Phe	Cys 5650		Arg	Asp	Phe	Ala 5655	Ile	Arg	Asn
40	Val	Arg 5660	_	Trp	Leu	Gly	Met 5665		Val	Glu	Ser	Ala 5670	His	Val	Cys
	Gly	Asp 5675	Asn	Ile	Gly	Thr	Asn 5680		Pro	Leu	Gln	Val 5685	Gly	Phe	Ser
45	Asn	Gly 5690		Asn	Phe	Val	Val 5695		Thr	Glu	Gly	Cys 5700		Ser	Thr
50	Asn	Phe 5705	-	Asp	Val	Ile	Lys 5710		Val	Cys	Ala	Lys 5715		Pro	Pro
	Gly	Glu	Gln	Phe	Arg	His	Leu	Ile	Pro	Leu	Leu	Arg	Lys	Gly	Gln

5		5720					5725					5730			
	Pro	Trp 5735	Leu	Ile	Val	Arg	Arg 5740	Arg	Ile	Val	Gln	Met 5745	Ile	Ser	Asp
10	Tyr	Leu 5750	Ser	Asn	Leu	Ser	Asp 5755	Ile	Leu	Val	Phe	Val 5760	Leu	Trp	Ala
15	Gly	Ser 5765	Leu	Glu	Leu	Thr	Thr 5770	Met	Arg	Tyr	Phe	Val 5775	Lys	Ile	Gly
	Pro	Ile 5780	Lys	Tyr	Cys	Tyr	Cys 5785	Gly	Asn	Phe	Ala	Thr 5790	Cys	Tyr	Asn
20	Ser	Val 5795	Ser	Asn	Glu	Tyr	Cys 5800	Cys	Phe	Lys	His	Ala 5805	Leu	Gly	Cys
25	Asp	Tyr 5810	Val	Tyr	Asn	Pro	Tyr 5815	Ala	Phe	Asp	Ile	Gln 5820	Gln	Trp	Gly
	Tyr	Val 5825	Gly	Ser	Leu	Ser	Gln 5830	Asn	His	His	Thr	Phe 5835	Суѕ	Asn	Ile
30	His	Arg 5840	Asn	Glu	His	Asp	Ala 5845	Ser	Gly	Asp	Ala	Val 5850	Met	Thr	Arg
35	Cys	Leu 5855	Ala	Val	His	Asp	Cys 5860	Phe	Val	Lys	Asn	Val 58 6 5	Asp	Trp	Thr
	Val	Thr 5870	Tyr	Pro	Phe	Ile	Ala 5875	Asn	Glu	Lys	Phe	Ile 5880	Asn	Gly	Cys
40	Gly	Arg 5885		Val		-				-		Ala 5895		Lys	Leu
45	Tyr	Lys 5900	Pro	Ser	Val	Ile	His 5905	Asp	Ile	Gly	Asn	Pro 5910	Lys	Gly	Val
	Arg	Cys 5915	Ala	Val	Thr	Asp	Ala 5920	Lys	Trp	Tyr	Cys	Tyr 5925	Asp	Lys	Gln
50	Pro	Val 5930	Asn	Ser	Asn	Val	Lys 5935	Leu	Leu	Asp	Tyr	Asp 5940	Tyr	Ala	Thr
55															

5															
	His	Gly 5945	Gln	Leu	Asp	Gly	Leu 5950	Cys	Leu	Phe	Trp	Asn 5955	Cys	Asn	Val
10	Asp	Met 5960	Tyr	Pro	Glu	Phe	Ser 5965	Ile	Val	Cys	Arg	Phe 5970	Asp	Thr	Arg
15	Thr	Arg 5975	Ser	Val	Phe	Asn	Leu 5980		Gly	Val	Asn	Gly 5985	Gly	Ser	Leu
	Tyr	Val 5990	Asn	Lys	His	Ala	Pĥe 5995	His	Thr	Pro	Ala	Tyr 6000	Asp	Lys	Arg
20	Ala	Phe 6005		Lys	Leu	Lys	Pro 6010	Met	Pro	Phe	Phe	Tyr 6015	Phe	Asp	Asp
25	Ser	Asp 6020	Cys	Asp	Val	Val	Gln 6025	Glu	Gln	Val	Asn	Tyr 6030	Val	Pro	Leu
	Arg	Ala 6035	Ser	Ser	Cys	Val	Thr 6040	Arg	Cys	Asn	Ile	Gly 6045	Gly	Ala	Val
30	Cys	Ser 6050	_	His	Ala	Asn	Leu 6055	Tyr	Gln	Lys	Tyr	Val 6060	Glu	Ala	Tyr
35	Asn	Thr 6065	Phe	Thr	Gln	Ala	Gly 6070	Phe	Asn	Ile	Trp	Val 6075	Pro	His	Ser
	Phe	Asp 6080		Tyr	Asn	Leu	Trp 6085	Gln	Ile	Phe	Ile	Glu 6090	Thr	Asn	Leu
40	Gln	Ser 6095	Leu	Glu	Asn	Ile	Ala 6100	Phe	Asn	Val	Val	Lys 6105	Lys	Gly	Cys
45	Phe	Thr 6110		Val	Asp	Gly	Glu 6115		Pro	Val	Ala	Val 6120		Asn	Asp
	Lys	Val 6125		Val	Arg	Tyr	Gly 6130	-	Val	Asp	Asn	Leu 6135	Val	Phe	Thr
50	Asn	Lys 6140		Thr	Leu	Pro	Thr 6145	Asn	Val	Ala	Phe	Glu 6150	Leu	Phe	Ala

5	Lys	Arg 6155	_	Met	Gly	Leu	Thr 6160	Pro	Pro	Leu	Ser	Ile 6165	Leu	Lys	Asn
10	Leu	Gly 6170	Val	Val	Ala	Thr	Tyr 6175	Lys	Phe	Val	Leu	Trp 6180	Asp	Tyr	Glu
	Ala	Glu 6185		Pro	Phe	Thr	Ser 6190		Thr	Lys	Ser	Val 6195	Cys	Lys	Tyr
15	Thr	Asp 6200		Asn	Glu	Asp	Val 6205		Val	Cys	Phe	Asp 6210	Asn	Ser	Ile
20	Gln	Gly 6215	Ser	Tyr	Glu	Arg	Phe 6220	Thr	Leu	Thr	Thr	Asn 6225	Ala	Val	Leu
	Phe	Ser 6230		Val	Val	Ile	Lys 6235	Asn	Leu	Thr	Pro	Ile 6240	Lys	Leu	Asn
25	Phe	Gly 6245		Leu	Asn	Gly	Met 6250	Pro	Val	Ser	Ser	Ile 6255	Lys	Gly	Asp
30	Lys	Gly 6260		Glu	Lys	Leu	Val 6265	Asn	Trp	Tyr	Ile	Tyr 6270	Val	Arg	Lys
	Asn	Gly 6275		Phe	Gln	Asp	His 6280		Asp	Gly	Phe	Tyr 6285	Thr	Gln	Gly
35	Arg	Asn 6290		Ser	Asp	Phe	Thr 6295	Pro	Arg	Ser	Asp	Met 6300	Glu	Tyr	Asp
40	Phe	Leu 6305		Met	Asp	Met	Gly 6310	Val	Phe	Ile	Asn	Lys 6315	Tyr	Gly	Leu
	Glu	Asp 6320		Asn	Phe	Glu	His 6325		Val	Tyr	Gly	Asp 6330		Ser	Lys
45	Thr	Thr 6335		Gly	Gly	Leu	His 6340	Leu	Leu	Ile	Ser	Gln 6345	Phe	Arg	Leu
50	Ser	Lys 6350		Gly	Val	Leu	Lys 6355		Asp	Asp	Phe	Val 6360	Thr	Ala	Ser

5	Asp	Thr 6365	Thr	Leu	Arg	Cys	Cys 6370	Thr	Val	Thr	Tyr	Leu 6375	Asn	Glu	Leu
10	Ser	Ser 6380	Lys	Val	Val	Cys	Thr 6385	-	Met	Asp	Leu	Leu 6390	Leu	Asp	Asp
	Phe	Val 6395	Thr	Ile	Leu	Lys	Ser 6400	Leu	Asp	Leu	Gly	Val 6405	Ile	Ser	Lys
15	Val	His 6410	Glu	Val	Ile	Ile	Asp 6415	Asn	Lys	Pro	Tyr	Arg 6420	Trp	Met	Leu
20	Trp	Cys 6425	Lys	Asp	Asn	His	Leu 6430	Ser	Thr	Phe	Tyr	Pro 6435	Gln	Leu	Gln
	Ser	Ala 6440		Trp	Lys	Cys	Gly 6445	-	Ala	Met	Pro	Gln 6450	Ile	Tyr	Lys
25	Leu	Gln 6455	Arg	Met	Cys	Leu	Glu 6460	Pro	Суѕ	Asn	Leu	Tyr 6465	Asn	Tyr	Glγ
30	Ala	Gly 6470		Lys	Leu	Pro	Ser 6475	_	Ile	Met	Leu	Asn 6480	Val	Val	Lys
	Tyr	Thr 6485		Leu	Cys	Gln	Tyr 6490		Asn	Ser	Thr	Thr 6495	Met	Cys	Val
35	Pro	His 6500		Met	Arg	Val	Leu 6505		Tyr	Gly	Ala	Gly 6510	Ser	Asp	Lys
40	Gly	Val 6515		Pro	Gly	Thr	Thr 6520		Leu	Lys	Arg	Trp 6525	Leu	Pro	Pro
	Asp	Ala 6530	Ile	Ile	Ile	Asp	Asn 6535	Asp	Ile	Asn	Asp	Tyr 6540	Val	Ser	Asp
45	Ala	Asp 6545		Ser	Ile	Thr	Gly 6550		Cys	Ala	Thr	Val 6555	Tyr	Leu	Glu
50	Asp	Lys 6560		Asp	Leu	Leu	Ile 6565		Asp	Met	Tyr	Asp 6570	Gly	Arg	Ile
	Lys	Phe	Cys	Asp	Gly	Glu	Asn	Val	Ser	Lys	Asp	Gly	Phe	Phe	Thr

5	6575	6580	6585
40	Tyr Leu Asn Gly Val Ile	e Arg Glu Lys Leu Ala	Ile Gly Gly Ser
	6590	6595	6600
10	Val Ala Ile Lys Ile Thr	Glu Tyr Ser Trp Asn	Lys Tyr Leu Tyr
	6605	6610	6615
15	Glu Leu Ile Gln Arg Phe	Ala Phe Trp Thr Leu	Phe Cys Thr Ser
	6620	6625	6630
	Val Asn Thr Ser Ser Ser	Glu Ala Phe Leu Ile	Gly Ile Asn Tyr
	6635	6640	6645
20	Leu Gly Asp Phe Ile Glr	Gly Pro Phe Ile Ala	Gly Asn Thr Val
	6650	6655	6660
25	His Ala Asn Tyr Ile Phe	e Trp Arg Asn Ser Thr	Ile Met Ser Leu
	6665	6670	6675
	Ser Tyr Asn Ser Val Leu	Asp Leu Ser Lys Phe	Glu Cys Lys His
	6680	6685	6690
30	Lys Ala Thr Val Val Val 6695	. Thr Leu Lys Asp Ser 6700	Asp Val Asn Asp 6705
35	Met Val Leu Ser Leu Ile	Lys Ser Gly Arg Leu	Leu Leu Arg Asn
	6710	6715	6720
	Asn Gly Arg Phe Gly Gly	Phe Ser Asn His Leu	Val Ser Thr Lys
	6725	6730	6735
40	<210> 58 <211> 2250 <212> PRT <213> Human coronavirus	3	
45	<220> <221> MISC_FEATURE <222> (1)(2250) <223> Adenosine diphosp	ohate-ribose 1'-phospha	atase
50	<400> 58		
	Ser Asn Asn Pro Gln Cys	Ala Ile Val Gln Ala Se	er Glu Ser Lys Val

5	1				5					10					15	
	Leu	Leu	Glu	Arg 20	Phe	Leu	Pro	Lys	Cys 25	Pro	Glu	Ile	Leu	Leu 30	Ser	Ile
10	Asp	Asp	Gly 35	His	Leu	Trp	Asn	Leu 40	Phe	Val	Glu	Lys	Phe 45	Asn	Phe	Val
15	Thr	Asp 50	Trp	Leu	Lys	Thr	Leu 55	Lys	Leu	Thr	Leu	Thr 60	Ser	Asn	Gly	Leu
	Leu 65	Gly	Asn	Сув	Ala	Lys 70	Arg	Phe	Arg	Arg	Val 75	Leu	Val	Lys	Leu	Leu 80
20	Asp	Val	Tyr	Asn	Gly 85	Phe	Leu	Glu	Thr	Val 90	Cys	Ser	Val	Ala	Tyr 95	Thr
25	Ala	Gly	Val	Cys 100	Ile	Lys	Tyr	Tyr	Ala 105	Val	Asn	Val	Pro	Tyr 110	Val	Val
20	Ile	: Ser	Gly 115	Phe	Val	Ser	Arg	Val 120	Ile	Arg	Arg	Glu	Arg 125	Cys	Asp	Met
30	Thr	Phe 130		Cys	Val	Ser	Cys 135	Val	Thr	Phe	Phe	Tyr 140	Glu	Phe	Leu	Asp
35	Thr 145	Cys	Phe	Gly	Val	Ser 150	Lys	Pro	Asn	Ala	Ile 155	Asp	Val	Glu	His	Leu 160
40	Glu	ı Leu	Lys	Glu	Thr 165	Val	Phe	Val	Glu	Pro 170	Lys	Asp	Gly	Gly	Gln 175	Phe
40	Phe	e Val	Ser	Gly 180	Asp	Tyr	Leu	Trp	Tyr 185	Val	Val	Asp	Asp	Ile 190	Tyr	Tyr
45	Pro	Ala	Ser 195	Cys	Asn	Gly	Val	Leu 200		Val	Ala	Phe	Thr 205	_	Leu	Ala
50	Gly	/ Gly 210	-	Ile	Ser	Phe	Ser 215	-	Asp	Val	Ile	Val 220		Asp	Val	Glu
50	Pro 225	Thr	His	Lys	Val	Lys 230		Ile	Phe	Glu	Phe 235		Asp	Asp	Val	Val 240
55																

5																
	Thr	Ser	Leu	Cys	Lys 245	Lys	Ser	Phe	Gly	Lys 250	Ser	Ile	Ile	Tyr	Thr 255	Gly
10	Asp	Trp	Glu	Gly 260	Leu	His	Glu	Val	Leu 265	Thr	Ser	Ala	Met	Asn 270	Val	Ile
15	Gly	Gln	His 275	Ile	Lys	Leu	Pro	Gln 280	Phe	Tyr	Ile	Tyr	Asp 285	Glu	Glu	Gly
	Gly	Tyr 290	Asp	Val	Ser	Lys	Pro 295	Val	Met	Ile	Ser	Gln 300	Trp	Pro	Ile	Ser
20	Asn 305	Asp	Ser	Asn	Gly	Cys 310	Val	Val	Glu	Ala	Ser 315	Thr	Asp	Phe	His	Gln 320
25	Leu	Glu	Cys	Ile	Val 325	Asp	Asp	Ser	Val	Arg 330	Glu	Glu	Val	Asp	Ile 335	Ile
	Glu	Gln	Pro	Phe 340	Glu	Glu	Val	Glu	His 345	Val	Leu	Ser	Ile	Lys 350	Gln	Pro
30	Phe	Ser	Phe 355	Ser	Phe	Arg	Asp	Glu 360	Leu	Gly	Val	Arg	Val 365	Leu	Asp	Gln
35	Ser	Asp 370	Asn	Asn	Cys	Trp	Ile 375	Ser	Thr	Thr	Leu	Val 380	Gln	Leu	Gln	Leu
	Thr 385	Lys	Leu	Leu	Asp	Asp 390	Ser	Ile	Glu	Met	Gln 395	Leu	Phe	Lys	Val	Gly 400
40	Lys	Val	Asp	Ser	Ile 405	Val	Gln	Lys	Cys	Tyr 410	Glu	Leu	Ser	His	Leu 415	Ile
45	Ser	Gly	Ser	Leu 420	Gly	Asp	Ser	Gly	Lys 425	Leu	Leu	Ser	Glu	Leu 430	Leu	Lys
,	Glu	Lys	Tyr 435	Thr	Cys	Ser	Ile	Thr 440	Phe	Glu	Met	Ser	Cys 445	Asp	Cys	Gly
50	Lys	Lys 450	Phe	Asp	Asp	Gln	Val 455	Gly	Cys	Leu	Phe	Trp 460	Ile	Met	Pro	Туr

5	ሞኮሎ	Tue	Lou	Phe	Cln	Ive	Clu	Clu	Cys	Cus	710	Cue	шie	Lve	Mot	Gln
	465	БУЗ	Leu	riie	GIII	470	GIY	Gru	Суз	Cys	475	Cys	nis	БУЗ	nec	480
10	Thr	Tyr	Lys	Leu	Val 485	Ser	Met	Lys	Gly	Thr 490	Gly	Val	Phe	Val	Gln 495	Asp
15	Pro	Ala	Pro	Ile 500	Asp	Ile	Asp	Ala	Phe 505	Pro	Val	Lys	Pro	Ile 510	Cys	Ser
	Ser	Val	Tyr 515	Leu	Gly	Val	Lys	Gly 520	Ser	Gly	His	Tyr	Gln 525	Thr	Asn	Leu
20	Tyr	Ser 530	Phe	Asn	Lys	Ala	Ile 535	Asp	Gly	Phe	Gly	Val 540	Phe	Asp	Ile	Lys
25	Asn 545	Ser	Ser	Val	Asn	Thr 550	Val	Cys	Phe	Val	Asp 555	Val	Asp	Phe	His	Ser 560
	Val	Glu	Ile	Glu	Ala 565	Gly	Glu	Val	Lys	Pro 570	Phe	Ala	Val	Tyr	Lys 575	Asn
30	Val	Lys	Phe	Tyr 580	Leu	Gly	Asp	Ile	Ser 585	His	Leu	Val	Asn	Cys 590	Val	Ser
35	Phe	Asp	Phe 595	Val	Val	Asn	Ala	Ala 600	Asn	Glu	Asn	Leu	Leu 605	His	Gly	Gly
	Gly	Val 610	Ala	Arg	Ala	Ile	Asp 615	Ile	Leu	Thr	Glu	Gly 620	Gln	Leu	Gln	Ser
40	Leu 625	Ser	Lys	Asp	Tyr	Ile 630	Ser	Ser	Asn	Gly	Pro 635	Leu	Lys	Val	Gly	Ala 640
45	Gly	Val	Met	Leu	Glu 645		Glu	Lys	Phe	Asn 650	Val	Phe	Asn	Val	Val 655	Gly
45	Pro	Arg	Thr	Gly 660	Lys	His	Glu	His	Ser 665	Leu	Leu	Val	Glu	Ala 670	-	Asn
50	Ser	Ile	Leu 675		Glu	Asn	Gly	Ile 680	Pro	Leu	Met	Pro	Leu 685	Leu	Ser	Cys

5	Gly	Ile 690	Phe	Gly	Val	Arg	Ile 695	Glu	Asn	Ser	Leu	Lys 700	Ala	Leu	Phe	Ser
10	Cys 705	Asp	Ile	Asn	Lys	Pro 710	Leu	Gln-	Val	Phe	Val 715	Tyr	Ser	Ser	Asn	Glu 720
	Glu	Gln	Ala	Val	Leu 725	Lys	Phe	Leu	Asp	Gly 730	Leu	Asp	Leu	Thr	Pro 735	Val
15	Ile	Asp	Asp	Val 740	Asp	Val	Val	Lys	Pro 745	Phe	Arg	Val	Glu	Gly 750	Asn	Phe
20	Ser	Phe	Phe 755	Asp	Cys	Gly	Val	Asn 760	Ala	Leu	Asp	Gly	Asp 765	Ile	Tyr	Leu
	Leu	Phe 770	Thr	Asn	Ser	Ile	Leu 775	Met	Leu	Asp	Lys	Gln 780	Gly	Gln	Leu	Leu
25	Asp 785	Thr	Lys	Leu	Asn	Gly 790	Ile	Leu	Gln	Gln	Ala 795	Ala	Leu	Asp	Tyr	Leu 800
30	Ala	Thr	Val	Lys	Thr 805	Val	Pro	Ala	Gly	Asn 810	Leu	Val	Lys	Leu	Phe 815	Val
	Glu	Ser	Cys	Thr 820	Ile	Tyr	Met	Суз	Val 825	Val	Pro	Ser	Ile	Asn 830	Asp	Leu
35	Ser	Phe	Asp 835	Lys	Asn	Leu	Gly	Arg 840	Cys	Val	Arg	Lys	Leu 845	Asn	Arg	Leu
40	Lys	Thr 850	_	Val	Ile	Ala	Asn 855	Val	Pro	Ala	Ile	Asp 860	Val	Leu	Lys	Lys
	Leu 865	Leu	Ser	Ser	Leu	Thr 870	Leu	Thr	Val	Lys	Phe 875	Val	Val	Glu	Ser	Asn 880
45	Val	Met	Asp	Val	Asn 885	Asp	Cys	Phe	Lys	Asn 890	Asp	Asn	Val	Val	Leu 895	Lys
50	Ile	Thr	Glu	Asp 900	Gly	Ile	Asn	Val	Lys 905	Asp	Val	Val	Val	Glu 910	Ser	Ser
	Lys	Ser	Leu	Gly	Lys	Gln	Leu	Gly	Val	Val	Ser	Asp	Gly	Val	Asp	Ser

5	915		920	25
	Phe Glu Gly 930	Val Leu Pro Ile 935	Asn Thr Asp Thr Val I	eu Ser Val Ala
10	Pro Glu Val 945	Asp Trp Val Ala 950	Phe Tyr Gly Phe Glu I 955	ys Ala Ala Leu 960
15	Phe Ala Ser	Leu Asp Val Lys 965	Pro Tyr Gly Tyr Pro F	asn Asp Phe Val 975
	Gly Gly Phe	Arg Val Leu Gly 980	Thr Thr Asp Asn Asn C	Cys Trp Val Asn 990
20	Ala Thr Cys 995	Ile Ile Leu Gln	Tyr Leu Lys Pro Thr 1000	Phe Lys Ser Lys 1005
25	Gly Leu Ass 1010	n Val Leu Trp As: 10	n Lys Phe Val Thr Gly 15 102	-
	Pro Phe Va 1025	l Ser Phe Ile Ty 10	r Phe Ile Thr Met Ser 30 103	
30	Gln Lys Gl 1040	y Asp Ala Glu Gl 10	u Ala Leu Ser Lys Leu 45 109	
35	Leu Ile Se 1055	<u>-</u>	l Thr Leu Glu Gln Tyr 60 100	_
	Asp Ile Cy 1070	-	l Val Glu Val Lys Ser 75 108	
40	Cys Ala Se 1085	-	p Gly Cys Asp Val Gl 90 10	-
45	His Arg Hi 1100		r Arg Val Lys Phe Val	
	Val Val Il 1115		y Glu Pro Ile Ile Se 20 11:	
50	Lys Leu Le 1130	-	a Tyr Thr Thr Phe Se:	-

5	Asp		Gly	His	Tyr	Val	Val	Tyr	Asp	Ala	Ala		Asn	Ala	Val
		1145					1150					1155			
10	Tyr	Asp 1160	Gly	Ala	Arg	Leu	Phe 1165	Ser	Ser	Asp	Leu	Ser 1170	Thr	Leu	Ala
15	Val	Thr 1175	Ala	Ile	Val	Val	Val 1180	Gly	Gly	Cys	Val	Thr 1185	Ser	Asn	Val
	Pro	Thr 1190	Ile	Val	Ser	Glu	Lys 1195	Ile	Ser	Val	Met	Asp 1200	Lys	Leu	Asp
20	Thr	Gly 1205	Ala	Gln	Lys	Phe	Phe 1210	Gln	Phe	Gly	Asp	Phe 1215	Val	Met	Asn
25	Asn	Ile 1220	Val	Leu	Phe	Leu	Thr 1225	Trp	Leu	Leu	Ser	Met 1230	Phe	Ser	Leu
	Leu	Arg 1235	Thr	Ser	Ile	Met	Lys 1240		Asp	Ile	Lys	Val 1245	Ile	Ala	Lys
30	Ala	Pro 1250	-	Arg	Thr	Gly	Val 1255	Ile	Leu	Thr	Arg	Ser 1260	Phe	Lys	Tyr
35	Asn	Ile 1265	Arg	Ser	Ala	Leu	Phe 1270	Val	Ile	Lys	Gln	Lys 1275	Trp	Cys	Val
	Ile	Val 1280	Thr	Leu	Phe	Lys	Phe 1285	Leu	Leu	Leu	Leu	Tyr 1290	Ala	Ile	Tyr
40	Ala	Leu 1295	Val	Phe	Met	Ile	Val 1300	Gln	Phe	Ser	Pro	Phe 1305	Asn	Ser	Leu
45	Leu	Cys 1310		Asp	Ile	Val	Ser 1315	Gly	Tyr	Glu	Lys	Ser 1320	Thr	Phe	Asn
	Lys	Asp 1325		Tyr	Cys	Gly	Asn 1330	Ser	Met	Val	Cys	Lys 1335	Met	Cys	Leu
50	Phe	Ser 1340		Gln	Glu	Phe	Asn 1345		Leu	Asp	His	Thr 1350	Ser	Leu	Val

5															
	Trp	Lys 1355	His	Ile	Arg	Asp	Pro 1360	Ile	Leu	Ile	Ser	Leu 1365	Gln	Pro	Phe
10	Val	Ile 1370	Leu	Val	Ile	Leu	Leu 1375	Ile	Phe	Gly	Asn	Met 1380	Tyr	Leu	Arg
15	Phe	Gly 1385	Leu	Leu	Tyr	Phe	Val 1390	Ala	Gln	Phe	Ile	Ser 1395	Thr	Phe	Gly
	Ser	Phe 1400	Leu	Gly	Phe	His	Gln 1405	-	Gln	Trp	Phe	Leu 1410	His	Phe	Val
20	Pro	Phe 1415	Asp	Val	Leu	Суѕ	Asn 1420	Glu	Phe	Leu	Ala	Thr 1425	Phe	Ile	Val
25	Cys	Lys 1430	Ile	Val	Leu	Phe	Val 1435	Arg	His	Ile	Ile	Val 1440	Gly	Cys	Asn
	Asn	Ala 1445	Asp	Cys	Val	Ala	Cys 1450	Ser	Lys	Ser	Ala	Arg 1455	Leu	Lys	Arg
30	Val	Pro 1460	Leu	Gln	Thr	Ile	Ile 1465		Gly	Met	His	Lys 1470	Ser	Phe	Tyr
35	Val	Asn 1475	Ala	Asn	Gly	Gly	Thr 1480	Cys	Phe	Cys	Asn	Lys 1485	His	Asn	Phe
	Phe	Cys 1490	Val	Asn	Cys	Asp	Ser 1495	Phe	Gly	Pro	Gly	Asn 1500	Thr	Phe	Ile
40	Asn	Gly 1505	Asp	Ile	Ala	Arg	Glu 1510	Leu	Gly	Asn	Val	Val 1515	Lys	Thr	Ala
	Val	Gln 1520	Pro	Thr	Ala	Pro	Ala 1525	_	Val	Ile	Ile	Asp 1530	Lys	Val	Asp
45	Phe	Val 1535	Asn	GЉ	Phe	Tyr	Arg 1540		Tyr	Ser	Gly	Asp 1545		Phe	Trp
50	Arg	Tyr 1550	_	Phe	Asp	Ile	Thr 1555		Ser	Lys	Tyr	Ser 1560	-	Lys	Glu

5		Leu 1565	-	Asn	Cys	Asn	Val 1570	Leu	Glu	Asn	Phe	Ile 1575	Val	Tyr	Asn
10		Ser 1580	Gly	Ser	Asn	Ile	Thr 1585	Gln	Ile	Lys	Asn	Ala 1590	Cys	Val	Tyr
		Ser 1595	Gln	Leu	Leu	Cys	Glu 1600	Pro	Ile	Lys	Leu	Val 1605	Asn	Ser	Glu
15	Leu	Leu 1610	Ser	Thr	Leu	Ser	Val 1615	Asp	Phe	Asn	Gly	Val 1620	Leu	His	Lys
20		Tyr 1625	Val	Asp	Val	Leu	Cys 1630	Asn	Ser	Phe	Phe	Lys 1635	Glu	Leu	Thr
	Ala	Asn 1640	Met	Ser	Met	Ala	Glu 1645	Cys	Lys	Ala	Thr	Leu 1650	Gly	Leu	Thr
25	Val	Ser 1655	Asp	Asp	Asp	Phe	Val 1660	Ser	Ala	Val	Ala	Asn 1665	Ala	His	Arg
30	Tyr	Asp 1670	Val	Leu	Leu	Ser	Asp 1675	Leu	Ser	Phe	Asn	Asn 1680		Phe	Ile
	Ser	Tyr 1685	Ala	Lys	Pro	Glu	Asp 1690	Lys	Leu	Ser	Val	Tyr 1695	Asp	Ile	Ala
35	Cys	Cys 1700	Met	Arg	Ala	Gly	Ser 1705	Lys	Val	Val	Asn	His 1710	Asn	Val	Leu
40	Ile	Lys 1715	Glu	Ser	Ile	Pro	Ile 1720	Val	Trp	Gly	Val	Lys 1725	Asp	Phe	Asn
	Thr	Leu 1730	Ser	Gln	Glu	Gly	Lys 1735	Lys	Tyr	Leu	Val	Lys 1740	Thr	Thr	Lys
45	Ala	Lys 1745	Gly	Leu	Thr	Phe	Leu 1750	Leu	Thr	Phe	Asn	Asp 1755	Asn	Gln	Ala
50	Ile	Thr 1760	Gln	Val	Pro	Ala	Thr 1765	Ser	Ile	Val	Ala	Lys 1770	Gln	Gly	Ala
	Gly	Phe	Lys	Arg	Thr	Tyr	Asn	Phe	Leu	Trp	Tyr	Val	Cys	Leu	Phe

5		1775					1780					1785			
10	Val	Val 1790	Ala	Leu	Phe	Ile	Gly 1795	Val	Ser	Phe	Ile	Asp 1800	Tyr	Thr	Thr
	Thr	Val 1805	Thr	Ser	Phe	His	Gly 1810		Asp	Phe	Lys	Tyr 1815	Ile	Glu	Asn
15	Gly	Gln 1820	Leu	Lys	Val	Phe	Glu 1825	Ala	Pro	Leu	His	Cys 1830	Val	Arg	Asn
20	Val	Phe 1835	Asp	Asn	Phe	Asn	Gln 1840	Trp	His	Glu	Ala	Lys 1845	Phe	Gly	Val
	Val	Thr 1850	Thr	Asn	Ser	Asp	Lys 1855	Cys	Pro	Ile	Val	Val 1860	Gly	Val	Ser
25	Glu	Arg 1865		Asn	Val	Val	Pro 1870	_	Val	Pro	Thr	Asn 1875	Val	Tyr	Leu
30	Val	Gly 1880	_	Thr	Leu	Val	Phe 1885	Thr	Leu	Gln	Ala	Ala 1890	Phe	Gly	Asn
	Thr	Gly 1895		Cys	Tyr	Asp	Phe 1900	Asp	Gly	Val	Thr	Thr 1905	Ser	Asp	Lys
35	Cys	Ile 1910		Asn	Ser	Ala	Cys 1915	Thr	Arg	Leu	Glu	Gly 1920	Leu	Gly	Gly
40	Asp	Asn 1925		Tyr	Cys	Tyr	Asn 1930		Asp	Leu	Ile	Glu 1935	Gly	Ser	Lys
	Pro	Tyr 1940		Thr	Leu	Gln	Pro 1945	Asn	Ala	Tyr	Tyr	Lys 1950	Tyr	Asp	Ala
45	Lys	Asn 1955	-	Val	Arg	Phe	Pro 1960		Ile	Leu	Ala	Arg 1965	Gly	Phe	Gly
50	Leu	Arg 1970		Ile	Arg	Thr	Leu 1975		Thr	Arg	Tyr	Cys 1980	Arg	Val	Gly
	Glu	Cys 1985	-	Asp	Ser	His	Lys 1990	-	Val	Cys	Phe	Gly 1995	Phe	Asp	Lys

5															
	Trp	Tyr 2000	Val	Asn	Asp	Gly	Arg 2005	Val	Asp	Asp	Gly	Tyr 2010	Ile	Cys	Gly
10	Asp	Gly 2015	Leu	Ile	Asp	Leu	Leu 2020	Val	Asn	Val	Leu	Ser 2025	Ile	Phe	Ser
15	Ser	Ser 2030	Phe	Ser	Val	Val	Ala 2035	Met	Ser	Gly	His	Met 2040	Leu	Phe	Asn
	Phe	Leu 2045	Phe	Ala	Ala	Phe	Ile 2050	Thr	Phe	Leu	Cys	Phe 2055	Leu	Val	Thr
20	Lys	Phe 2060	Lys	Arg	Val	Phe	Gly 2065	Asp	Leu	Ser	Tyr	Gly 2070	Val	Phe	Thr
25	Val	Val 2075	Суѕ	Ala	Thr	Leu	Ile 2080	Asn	Asn	Ile	Ser	Tyr 2085	Val	Val	Thr
	Gln	Asn 2090	Leu	Phe	Phe	Met	Leu 2095	Leu	Tyr	Ala	Ile	Leu 2100	Tyr	Phe	Val
30	Phe	Thr 2105	Arg	Thr	Val	Arg	Tyr 2110	Ala	Trp	Ile	Trp	His 2115	Ile	Ala	Tyr
35	Ile	Val 2120	Ala	Tyr	Phe	Leu	Leu 2125	Ile	Pro	Trp	Trp	Leu 2130	Leu	Thr	Trp
	Phe	Ser 2135	Phe	Ala	Ala	Phe	Leu 2140	Glu	Leu	Leu	Pro	Asn 2145	Val	Phe	Lys
40	Leu	Lys 2150	Ile	Ser	Thr	Gln	Leu 2155	Phe	Glu	Gly	Asp	Lys 2160	Phe	Ile	Gly
45	Thr	Phe 2165	Glu	Ser	Ala	Ala	Ala 2170	Gly	Thr	Phe	Val	Leu 2175	Asp	Met	Arg
	Ser	Туг 2180	Glu	Arg	Leu	Ile	Asn 2185	Thr	Ile	Ser	Pro	Glu 2190	Lys	Leu	Lys
50	Asn	Tyr 2195	Ala	Ala	Ser	Tyr	Asn 2200	Lys	Tyr	Lys	Tyr	Tyr 2205	Ser	Gly	Ser

5	Ala	Ser 2210		Ala	Asp	Tyr	Arg 221		s Al	а Су	s Ty		a H 20	lis	Leu i	Ala
10	Lys	Ala 2225		Leu	Asp	Tyr	Ala 223	-	s As	p Hi	s As		p N 35	let :	Leu '	Tyr
45	Ser	Pro 2240		Thr	Ile	Ser	Tyr 224		n Se	r Th	r Le		n !50			
15		-		cor	onav	rirus										
20	<220 <221 <222 <223	1> M 2> (1)	FEAT (361 ero C)	ıavir	us p	oolyp	prote	in p	roce	ssir	ng er	ndop	rote	ase
25		D> 5 Gly		Lys	Lys 5	Met	Ala	Gln	Pro	Ser 10	Gly	Cys	Val	Glu	Arg 15	Cys
30	Val	Val	Arg	Val 20	Cys	Tyr	Gly	Ser	Thr 25	Val	Leu	Asn	Gly	Val 30	Trp	Leu
35	Gly	Asp	Thr 35	Val	Thr	Cys	Pro	Arg 40	His	Val	Ile	Ala	Pro 45	Ser	Thr	Thr
	Val	Leu 50	Ile	Asp	Tyr	Asp	His 55	Ala	Tyr	Ser	Thr	Met 60	Arg	Leu	. His	Asn
40	Phe 65	Ser	Val	Ser	His	Asn 70	Gly	Val	Phe	Leu	Gly 75	Val	Val	Gly	Val	Thr 80
45	Met	His	Gly	Ser	Val 85	Leu	Arg	Ile	Lys	Val 90	Ser	Gln	Ser	Asn	Val 95	His
	Thr	Pro	Lys	His 100	Val	Phe	Lys	Thr	Leu 105	Lys	Pro	Gly	Asp	Ser 110		e Asn
50	Ile	Leu	Ala 115	Cys	Tyr	Glu	Gly	Ile 120	Ala	Ser	Gly	Val	Phe 125		, Val	. Asn

5																
	Leu	Arg 130	Thr	Asn	Phe	Thr	Ile 135	Lys	Gly	Ser	Phe	Ile 140	Asn	Gly	Ala	Cys
10	Gly 145	Ser	Pro	Gly	Tyr	Asn 150	Val	Arg	Asn	Asp	Gly 155	Thr	Val	Glu	Phe	Cys 160
	Tyr	Leu	His	Gln	Ile 165	Glu	Leu	Gly	Ser	Gly 170	Ala	His	Val	Gly	Ser 175	Asp
15	Phe	Thr	Gly	Ser 180	Val	Tyr	Gly	Asn	Phe 185	Asp	Asp	Gln	Pro	Ser 190	Leu	Gln
20	Val	Glu	Ser 195	Ala	Asn	Leu	Met	Leu 200	Ser	Asp	Asn	Val	Val 205	Ala	Phe	Leu
	Tyr ·	Ala 210	Ala	Leu	Leu	Asn	Gly 215	Cys	Arg	Trp	Trp	Leu 220	Cys	Ser	Thr	Arg
25	Val 225	Asn	Val	Asp	Gly	Phe 230	Asn	Glu	Trp	Ala	Met 235	Ala	Asn	Gly	Tyr	Thr 240
30	Ser	Val	Ser	Ser	Val 245	Glu	Cys	Tyr	Ser	Ile 250	Leu	Ala	Ala	Lys	Thr 255	Gly
	Val	Ser	Val	Glu 260	Gln	Leu	Leu	Ala	Ser 265	Ile	Gln	His	Leu	His 270	Glu	Gly
35	Phe	Gly	Gly 275	Lys	Asn	Ile	Leu	Gly 280	Tyr	Ser	Ser	Leu	Cys 285	Asp	Glu	Phe
40	Thr	Leu 290	Ala	Glu	Val	Val	Lys 295	Gln	Met	Tyr	Gly	Val 300	Asn	Leu	Gln	Ser
	Gly 305	Lys	Val	Ile	Phe	Gly 310	Leu	Lys	Thr	Met	Phe 315	Leu	Phe	Ser	Val	Phe 320
45	Phe	Thr	Met	Phe	Trp 325	Ala	Glu	Leu	Phe	Ile 330	Tyr	Thr	Asn	Thr	Ile 335	Trp
50	Ile	Asn	Pro	Val 340	Ile	Leu	Thr	Pro	Ile 345	Phe	Cys	Leu	Leu	Leu 350	Phe	Leu

5	Ser 1	Leu	Val 355	Leu	Thr	Met	Phe	Leu 360	Lys							
10	<210: <211: <212: <213:	> 1 > P	0 071 RT umar	n cor	conav	rirus	3									
15	<220: <221: <222: <223:	> M > (1)	FEAT (107 deper	71)	. RNA	A pol	r yme r	ase	(pfa	am006	80)				
	<400	> 6	0													
20	Ala 1	Gly	Lys	Gln	Thr 5	Glu	Leu	Ala	Val	Asn 10	Ser	Gly	Leu	Leu	Thr 15	Ala
_	Cys	Ala	Phe	Ser 20	Val	Asp	Pro	Ala	Thr 25	Thr	Tyr	Leu	Glu	Ala 30	Val	Lys
25	His	Gly	Ala 35	Lys	Pro	Val	Ser	Asn 40	Cys	Ile	Lys	Met	Leu 45	Ser	Asn	Gly
30	Ala	Gly 50	Asn	Gly	Gln	Ala	Ile 55	Thr	Thr	Ser	Val	Asp 60	Ala	Asn	Thr	Asn
05	Gln 65	Asp	Ser	Tyr	Gly	Gly 70	Ala	Ser	Ile	Cys	Leu 75	Tyr	Cys	Arg	Ala	His 80
35	Val	Pro	His	Pro	Ser 85	Met	Asp	Gly	Tyr	Cys 90	Lys	Phe	Lys	.Gly	Lys 95	Cys
40	Val	Gln	Val	Pro 100	Ile	Gly	Cys	Leu	Asp 105	Pro	Ile	Arg	Phe	Cys 110	Leu	Glu
	Asn	Asn	Val 115	Cys	Asn	Val	Cys	Gly 120	Cys	Trp	Leu	Gly	His 125	Gly	Cys	Ala
45	Cys	Asp 130	Arg	Thr	Thr	Ile	Gln 135	Ser	Val	Asp	Ile	Ser 140	Tyr	Leu	Asn	Glu
50	Gln 145	Gly	Val	Leu	Val	Gln 150	Leu	Asp	Arg	Ala	Arg 155	Gly	Ser	Ser	Ala	Ala 160

	5	Arg	Leu	Glu	Pro	Cys 165	Asn	Gly	Thr	Asp	Ile 170	Asp	Lys	Cys	Val	Arg 175	Ala
	10	Phe	Asp	Ile	Tyr 180	Asn	Lys	Asn	Val	Ser 185	Phe	Leu	Gly	Lys	Cys 190	Leu	ГЛ̀з
		Met	Asn	Cys 195	Val	Arg	Phe	Lys	Asn 200	Ala	Asp	Leu	Lys	Asp 205	Gly	Tyr	Phe
	15	Val	Ile 210	Lys	Arg	Cys	Thr	Lys 215	Ser	Val	Met	Glu	His 220	Glu	Gln	Ser	Met
:	20	Tyr 225	Asn	Leu	Leu	Asn	Phe 230	Ser	Gly	Ala	Leu	Ala 235	Glu	His	Asp	Phe	Phe 240
		Thr	Trp	Lys	Asp	Gly 245	Arg	Val	Ile	Tyr	Gly 250	Asn	Val	Ser	Arg	His 2 5 5	Asn
2	25	Leu	Thr	Lys	Tyr 260	Thr	Met	Met	Asp	Leu 265	Val	Tyr	Ala	Met	Arg 270	Asn	Phe
;	30	Asp	Glu	Gln 275	Asn	Суз	Asp	Val	Leu 280	Lys	Glu	Val	Leu	Val 285	Leu	Thr	Gly
		Cys	Cys 290	Asp	Asn	Ser	Tyr	Phe 295	Asp	Ser	Lys	Gly	Trp 300	Tyr	Asp	Pro	Val
;	35	Glu 305	Asn	Glu	Asp	Ile	His 310	Arg	Val	Tyr	Ala	Ser 315	Leu	Gly	Lys	Ile	Val 320
	40	Ala	Arg	Ala	Met	Leu 325	Lys	Cys	Val	Ala	Leu 330	Cys	Asp	Ala	Met	Val 335	Ala
		Lys	Gly	Val	Val 340	Gly	Val	Leu	Thr	Leu 345	Asp	Asn	Gln	Asp	Leu 350	Asn	Gly
•	45	Asn	Phe	Tyr 355	Asp	Phe	Gly	Asp	Phe 360	Val	Val	Ser	Leu	Pro 365	Asn	Met	Gly
,	50	Val	Pro 370		Cys	Thr	Ser	Tyr 375	Tyr	Ser	Туг	Met	Met 380	Pro	Ile	Met	Gly
		Leu	Thr	Asn	Cys	Leu	Ala	Ser	Glu	Cys	Phe	Val	Lys	Ser	Asp	Ile	Phe

5	385					390					395					400
	Gly	Ser	Asp	Phe	Lys 405	Thr	Phe	Asp	Leu	Leu 410	Lys	Tyr	Asp	Phe	Thr 415	Glu
10	His	Lys	Glu	Asn 420	Leu	Phe	Asn	Lys	Tyr 425	Phe	Lys	His	Trp	Ser 430	Phe	Asp
15	Tyr	His	Pro 435	Asn	Cys	Cys	Asp	Cys 440	Tyr	Asp	Asp	Met	Cys 445	Val	Ile	His
	Cys	Ala 450	Asn	Phe	Asn	Thr	Leu 455	Phe	Ala	Thr	Thr	Ile 460	Pro	Gly	Thr	Ala
20	Phe 465	Gly	Pro	Leu	Cys	Arg 470	Lys	Val	Phe	Ile	Asp 475	Gly	Val	Pro	Leu	Val 480
25	Thr	Thr	Ala	Gly	Tyr 485	His	Phe	Lys	Gln	Leu 490	Gly	Leu	Val	Trp	Asn 495	Lys
99	Asp	Val	Asn	Thr 500	His	Ser	Val	Arg	Leu 505	Thr	Ile	Thr	Glu	Leu 510	Leu	Gln
30	Phe	Val	Thr 515	Asp	Pro	Ser	Leu	Ile 520	Ile	Ala	Ser	Ser	Pro 525	Ala	Leu	Val
35	Asp	Gln 530	Arg	Thr	Ile	Cys	Phe 535	Ser	Val	Ala	Ala	Leu 540	Ser	Thr	Gly	Leu
40	Thr 545	Asn	Gln	Val	Val	Lys 550	Pro	Gly	His	Phe	Asn 555	Glu	Glu	Phe	Tyr	Asn 560
40	Phe	Leu	Arg	Leu	-	-		Phe	-		Gly				Thr 575	Leu
45	Lys	His	Phe	Phe 580	Phe	Ala	Gln	Asn	Gly 585		Ala	Ala	Val	Lys 590	Asp	Phe
50	Asp	Phe	Туг 595	Arg	Tyr	Asn	Lys	Pro 600	Thr	Ile	Leu	Asp	Ile 605	Cys	Gln	Ala
	Arg	Val 610	Thr	Tyr	Lys	Ile	Val 615		Arg	Tyr	Phe	Asp 620	Ile	Tyr	Glu	Gly

5	Gly	Cvc	Tla	Tue	7.1.a	Cuc	Clu	Wal	Val	tra 1	Th-	Acn	Lou	Asn	Lvc	802
	625	Cys	116	цуз	ALG	630	Giu	vai	vai	vai	635	ASII	neu	ASII	пуз	640
10	Ala	Gly	Trp	Pro	Leu 645	Asn	Lys	Phe	Gly	Lys 650	Ala	Ser	Leu	Tyr	Tyr 655	Glu
15	Ser	Ile	Ser	Tyr 660	Glu	Glu	Gln	Asp	Ala 665	Leu	Phe	Ala	Leu	Thr 670	Lys	Arg
	Asn	Val	Leu 675	Pro	Thr	Met	Thr	Gln 680	Leu	Asn	Leu	Lys	Tyr 685	Ala	Ile	Ser
20	Gly	Lys 690	Glu	Arg	Ala	Arg	Thr 695	Val	Gly	Gly	Val	Ser 700	Leu	Leu	Ser	Thr
25	Met 705	Thr	Thr	Arg	Gln	Tyr 710	His	Gln	Lys	His	Leu 715	Lys	Ser	Ile	Val	Asn 720
	Thr	Arg	Asn	Ala	Thr 725	Val	Val	Ile	Gly	Thr 730	Thr	Lys	Phe	Tyr	Gly 735	Gly
30	Trp	Asn	Asn	Met 740	Leu	Arg	Thr	Leu	Ile 745	Asp	Gly	Val	Glu	Asn 750	Pro	Met
35	Leu	Met	Gly 755	Trp	Asp	Tyr	Pro	Lys 760	Cys	Asp	Arg	Ala	Leu 765	Pro	Asn	Met
	Ile	Arg 770	Met	Ile	Ser	Ala	Met 775	Val	Leu	Gly	Ser	Lys 780	His	Val	Asn	Cys
40	Cys 785	Thr	Ala	Thr	Asp	Arg 790	Phe	Tyr	Arg	Leu	Gly 795	Asn	Glu	Leu	Ala	G1n 800
45	Val	Leu	Thr	Glu	Val 805	Val	Tyr	Ser	Asn	Gly 810	Gly	Phe	Tyr	Phe	Lys 815	Pro
	Gly	Gly	Thr	Thr 820	Ser	Gly	Asp	Ala	Ser 825	Thr	Ala	Tyr	Ala	Asn 830	Ser	Ile
50	Phe	Asn	Ile 835	Phe	Gln	Ala	Val	Ser 840	Ser	Asn	lle	Asn	Arg 845	Leu	Leu	Ser

5	Val	Pro 850	Ser	Asp	Ser	Cys	Asn 855	Asn	Val	Asn	Val	Arg 860	Asp	Leu	Gln	Arg
10	Arg 865	Leu	Tyr	Asp	Asn	Cys 870	Tyr	Arg	Leu	Thr	Ser 875	Val	Glu	Glu	Ser	Phe 880
15	Ile	Glu	Asp	Tyr	Tyr 885	Gly	Tyr	Leu	Arg	Lys 890	His	Phe	Ser	Met	Met 895	Ile
	Leu	Ser	Asp	Asp 900	Gly	Val	Val	Cys	Tyr 905	Asn	Lys	Asp	Tyr	Ala 910	Glu	Leu
20	Gly	Tyr	Ile 915	Ala	Asp	Ile	Ser	Ala 920	Phe	Lys	Ala	Thr	Leu 925	Tyr	Tyr	Gln
25	Asn	Asn 930	Val	Phe	Met	Ser	Thr 935	Ser	Lys	Cys	Trp	Val 940	Glu	Glu	Asp	Leu
	Thr 945	Lys	Gly	Pro	His	Glu 950	Phe	Cys	Ser	Gln	His 955	Thr	Met	Gln	Ile	Val 960
30	Asp	Lys	Asp	Gly	Thr 965	Tyr	Tyr	Leu	Pro	Tyr 970	Pro	Asp	Pro	Ser	Arg 975	Ile
35	Leu	Ser	Ala	Gly 980	Val	Phe	Val	Asp	Asp 985		Val	Lys	Thr	Asp 990	Ala	Val
	Val	Leu	Leu 995	Glu	Arg	Tyr	Val	Ser 100		u Al	a Il	e As	p Al 10		yr P	ro Leu
40		1010)				10	15	'yr A	·	-	1	020	Tyr `		
45	Leu	Asp 1025		o Vai	l Ly:	s Hi	s Le 10		sn L	ys A	sn L		sn 035	Glu	Gly '	Val
		1040	0				10	45			•	1	050	Glu .	-	-
50	Phe	Trp 105	-	s Gl	u Asj	p Ph	е Ту 10		la S	er M	et T	-	lu 065	Asn	Ser	Thr

5	Ile	Leu 1070	Glr O	1												
10	<210 <211 <212 <213	.> : ?> : ß> :	61 1115 PRT Humar	o coi	ronav	/irus	3									
15	<221 <222 <223	.> 1 ?>	MISC_ (1) ExoN	(11	15)	' Exc	onucl	lease	e and	i hel	Licas	se				
	<400)> (61													
20	Ala 1	Ala	Gly	Leu	Cys 5	Val	Val	Cys	Gly	Ser 10	Gln	Thr	Val	Leu	Arg 15	Cys
	Gly	Asp	Суѕ	Leu 20	Arg	Lys	Pro	Met	Leu 25	Cys	Thr	Lys	Cys	Ala 30	Tyr	Asp
25	His	Val	Phe 35	Gly	Thr	Asp	His	Lys 40	Phe	lle	Leu	Ala	Ile 45	Thr	Pro	Tyr
30	Val	Cys 50	Asn	Ala	Ser	Gly	Cys 55	Gly	Val	Ser	Asp	Val 60	Lys	Lys	Leu	Tyr
	Leu 65	Gly	Gly	Leu	Asn	Tyr 70	Tyr	Cys	Thr	Asn	His 75	Lys	Pro	Gln	Leu	Ser 80
35	Phe	Pro	Leu	Cys	<i>S</i> er 85	Ala	Gly	Asn	Ile	Phe 90	Gly	Leu	Tyr	Lys	Asn 95	Ser
40	Ala	Thr	Gly	Ser 100	Leu	Asp	Val	Glu	Val 105	Phe	Asn	Arg	Leu	Ala 110	Thr	Ser
	Asp	Trp	Thr 115	Asp	Val	Arg	Asp	Tyr 120	Lys	Leu	Ala	Asn	Asp 125	Val	Lys	Asp
45	Thr	Leu 130	Arg	Leu	Phe	Ala	Ala 135	Glu	Thr	Ile	Lys	Ala 140	Lys	Glu	Glu	Ser
50	Val 145	Lys	Ser	Ser	Tyr	Ala 150	Phe	Ala	Thr	Leu	Lys 155	Glu	Val	Val	Gly	Pro 160

5	Lys	Glu	Leu	Leu	Leu 165	Ser	Trp	Glu	Ser	Gly 170	Lys	Val	Lys	Pro	Pro 175	Leu
10	Asn	Arg	Asn	Ser 180	Val	Phe	Thr	Cys	Phe 185	Gln	Ile	Ser	Lys	Asp 190	Ser	Lys
	Phe	Gln	Ile 195	Gly	Glu	Phe	Ile	Phe 200	Glu	Lys	Val	Glu	Tyr 205	Gly	Ser	Asp
15	Thr	Val 210	Thr	Tyr	Lys	Ser	Thr 215	Val	Thr	Thr	Lys	Leu 220	Val	Pro	Gly	Met
20	Ile 225	Phe	Val	Leu	Thr	Ser 230	His	Asn	Val	Gln	Pro 235	Leu	Arg	Ala	Pro	Thr 240
	Ile	Ala	Asn	Gln	Glu 245	Lys	Tyr	Ser	Ser	Ile 250	Tyr	Lys	Leu	His	Pro 255	Ala
25	Phe	Asn	Val	Ser 260	Asp	Ala	Tyr	Ala	Asn 265	Leu	Val	Pro	Tyr	Tyr 270	Gln	Leu
30	Ile	Gly	Lys 275	Gln	Lys	Ile	Thr	Thr 280	Ile	Gln	Gly	Pro	Pro 285	Gly	Ser	Gly
	Lys	Ser 290	His	Cys	Ser	Ile	Gly 295	Leu	Gly	Leu	Tyr	Tyr 300	Pro	Gly	Ala	Arg
35	Ile 305	Val	Phe	Val	Ala	Cys 310	Ala	His	Ala	Ala	Val 315	Asp	Ser	Leu	Cys	Ala 320
40	Lys	Ala	Met	Thr	Val 325	Tyr	Ser	Ile	Asp	Lys 330	Cys	Thr	Arg	Ile	Ile 335	Pro
	Ala	Arg	Ala	Arg 340	Val	Glu	Cys	Tyr	Ser 345	Gly	Phe	Lys	Pro	Asn 350	Asn	Thr
45	Ser	Ala	Gln 355	Tyr	Ile	Phe	Ser	Thr 360	Val	Asn	Ala	Leu	Pro 365	Glu	Cys	Asn
50	Ala	Asp 370	Ile	Val	Val	Val	Asp 375	Glu	Val	Ser	Met	Cys 380	Thr	Asn	Tyr	Asp
	Leu	Ser	Val	Ile	Asn	Gln	Arg	Leu	Ser	Tyr	Lys	His	Ile	Val	Tyr	Val

5	385					390					395					400
	Gly	Asp	Pro	Gln	Gln 405	Leu	Pro	Ala	Pro	Arg 410	Val	Met	Ile	Thr	Lys 415	Gly
10	Val	Met	Glu	Pro 420	Val	Asp	Tyr	Asn	Val 425	Val	Thr	Gln	Arg	Met 430	Cys	Ala
15	Ile	Gly	Pro 435	Asp	Val	Phe	Leu	His 440	Lys	Cys	Tyr	Arg	Cys 445	Pro	Ala	Glu
	Ile	Val 450	Ile	Gln	Phe	Leu	Asn 455	Leu	Phe	Met	Arg	Thr 460	Ser	Leu	Ser	Leu
20	Leu 465	Asn	Leu	Leu	Val	Asn 470	Ser	Val	Leu	Lys	Ser 475	Phe	Leu	Arg	Val	Met 480
25	Tyr	Lys	Val	Asp	Asn 485	Gly	Ser	Ser	Ile	Asn 490	Arg	Lys	Gln	Leu	Glu 495	Ile
	Val	Lys	Leu	Phe 500	Leu	Val	Lys	Asn	Pro 505	Ser	Trp	Ser	Lys	Ala 510	Val	Phe
30	Ile	Ser	Pro 515	Tyr	Asn	Ser	Gln	Asn 520	Tyr	Val	Ala	Ser	Arg 525	Phe	Leu	Gly
35	Leu	Gln 530	Ile	Gln	Thr	Val	Asp 535	Ser	Ser	Gln	Gly	Ser 540	Glu	Tyr	Asp	Tyr
	Val 545	Ile	Tyr	Ala	Gln	Thr 550	Ser	Asp	Thr	Ala	His 555	Ala	Cys	Asn	Val	Asn 560
40	Arg	Phe	Asn	Val	Ala 565	Ile	Thr	Arg	Ala	Lys 570	Lys	Gly	Ile	Phe	Cys 575	Val
45	Met	Cys	Asp	Lys 580	Thr	Leu	Phe	Asp	Ser 585	Leu	Lys	Phe	Phe	Glu 590	Ile	Lys
	His	Ala	Asp 595	Leu	His	Ser	Ser	Gln 600	Val	Cys	Gly	Leu	Phe 605	Lys	Asn	Cys
50	Thr	Arg 610	Thr	Pro	Leu	Asn	Leu 615	Pro	Pro	Thr	His	Ala 620	His	Thr	Phe	Leu

5	Ser 625	Leu	Ser	Asp	Gln	Phe 630	Lys	Thr	Thr	Gly	Asp 635	Leu	Ala	Val	Gln	Ile 640
10	Gly	Ser	Asn	Asn	Val 645	Cys	Thr	Tyr	Glu	His 650	Val	Ile	Ser	Phe	Met 655	Gly
15	Phe	Arg	Phe	Asp 660	Ile	Ser	Ile	Pro	Gly 665	Ser	His	Ser	Leu	Phe 670	Cys	Thr
	Arg	Asp	Phe 675	Ala	Ile	Arg	Asn	Val 680	Arg	Gly	Trp	Leu	Gly 685	Met	Asp	Val
20	Glu	Ser 690	Ala	His	Val	Cys	Gly 695	Asp	Asn	Ile	Gly	Thr 700	Asn	Val	Pro	Leu
25	Gln 705	Val	Gly	Phe	Ser	Asn 710	Gly	Val	Asn	Phe	Val 715	Val	Gln	Thr	Glu	Gly 720
	Cys	Val	Ser	Thr	Asn 725	Phe	Gly	Asp	Val	Ile 730	Lys	Pro	Val	Cys	Ala 735	Lys
30	Ser	Pro	Pro	Gly 740	Glu	Gln	Phe	Arg	His 745	Leu	Ile	Pro	Leu	Leu 750	Arg	Lys
35	Gly	Gln	Pro 755	Trp	Leu	Ile	Val	Arg 760	Arg	Arg	Ile	Val	Gln 765	Met	Ile	Ser
	Asp	Tyr 770	Leu	Ser	Asn	Leu	Ser 775	Asp	Ile	Leu	Val	Phe 780	Val	Leu	Trp	Ala
40	Gly 785		Leu	Glu	Leu	Thr 790	Thr	Met	Arg	Tyr	Phe 795	Val	Lys	Ile	Gly	Pro 800
45	Ile	Lys	Tyr	Cys	Tyr 805	Cys	Gly	Asn	Phe	Ala 810	Thr	Cys	Tyr	Asn	Ser 815	Val
	Ser	Asn	Glu	Tyr 820	Cys	Cys	Phe	Lys	His 825		Leu	Gly	Суѕ	Asp 830	Tyr	Val
50	Tyr	Asn	Pro 835	Tyr	Ala	Phe	Asp	Ile 840	Gln	Gln	Trp	Gly	Tyr 845	Val	Gly	Ser

5	Leu	Ser 850	Gln	Asn	His	His	Thr 855	Phe	Cys	Asn	Ile	His 860	Arg	Asn	Glu	His
10	Asp 865	Ala	Ser	Gly	Asp	Ala 870	Val	Met	Thr	Arg	Cys 875	Leu	Ala	Val	His	Asp 880
	Cys	Phe	Val	Lys	Asn 885	Val	Asp	Trp	Thr	Val 890	Thr	Tyr	Pro	Phe	Ile 895	Ala
15	Asn	Glu	Lys	Phe 900	Ile	Asn	Gly	Cys	Gly 905	Arg	Asn	Val	Gln	Gly 910	His	Val
20	Val	Arg	Ala 915	Ala	Leu	Lys	Leu	Tyr 920	Lys	Pro	Ser	Val	Ile 925	His	Asp	Ile
	Gly	Asn 930	Pro	Lys	Gly	Val	Arg 935	Cys	Ala	Val	Thr	Asp 940	Ala	Lys	Trp	Tyr
25	Cys 945	Tyr	Asp	Lys	Gln	Pro 950	Val	Asn	Ser	Asn	Val 955	Lys	Leu	Leu	Asp	Tyr 960
30	Asp	Tyr	Ala	Thr	His 965	Gly	Gln	Leu	Asp	Gly 970	Leu	Cys	Leu	Phe	Trp 975	Asn
	Cys	Asn	Val	Asp 980	Met	Tyr	Pro	Glu	Phe 985	Ser	Ile	Val	Cys	Arg 990	Phe	Asp
35	Thr	Arg	Thr 995	Arg	Ser	Val	Phe	Asn 100		u Gl	u Gl	y Va	1 As:		ly G	ly Ser
40	Leu	Tyr 1010		l Ası	ı Lys	s His	s Ala 10		he H	is T	hr P		la ' 020	Tyr i	Asp	Lys
45	Arg	Ala 1025		e Vai	l Ly:	s Le	10		ro M	et P	ro P		he '	Tyr	Phe .	Asp
	Asp	Ser 1040		o Су:	s Ası	o Va.	l Va 10		ln G	lu G	ln V		sn 050	Tyr	Val	Pro
50	Leu	Arg 1055		a Se:	r Se:	r Cy:	s Va 10		hr A	rg C	ys A		le 065	Gly	Gly	Ala

Tyr Asn Thr Phe Thr Gln Ala Gly Phe Asn Ile Trp Val Pro His 1085 Ser Phe Asp Val Tyr Asn Leu Trp Gln Ile Phe Ile Glu Thr Asn 1100 Leu Gln 1115 20 211> 344 212> PRT 213> Human coronavirus 220> (221> MISC_FEATURE (222> (1)(344) 223> XendoU (homolog of) polyU-specific endoribonuclease 2400> 62 Ser Leu Glu Asn Ile Ala Phe Asn Val Val Lys Lys Gly Cys Phe Thr 1 5 10 15 Gly Val Asp Gly Glu Leu Pro Val Ala Val Val Asn Asp Lys Val Phe 20 25 Val Arg Tyr Gly Asp Val Asp Asn Leu Val Phe Thr Asn Lys Thr Thr 35 Leu Pro Thr Asn Val Ala Phe Glu Leu Phe Ala Lys Arg Lys Met Gly 50 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
Ser Phe Asp Val Tyr Asn Leu Trp Gln Ile Phe Ile Glu Thr Asn 1100 Leu Gln 1115 20
20
20
25 C221> MISC_FEATURE
Ser Leu Glu Asn Ile Ala Phe Asn Val Val Lys Lys Gly Cys Phe Thr 1 5 Ala Phe Asn Val Val Lys Lys Gly Cys Phe Thr 15 Thr 20 Ala Val Val Asn Asp Lys Val Phe 20 Asn Leu Val Phe Thr Asn Lys Thr Thr 35 Asn Val Ala Phe Glu Leu Phe Ala Lys Arg Lys Met Gly 50 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
30 1 5 10 15 Gly Val Asp Gly Glu Leu Pro Val Ala Val Val Asn Asp Lys Val Phe 20 25 Val Arg Tyr Gly Asp Val Asp Asn Leu Val Phe Thr Asn Lys Thr Thr 35 40 Leu Pro Thr Asn Val Ala Phe Glu Leu Phe Ala Lys Arg Lys Met Gly 50 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
Val Arg Tyr Gly Asp Val Asp Asn Leu Val Phe Thr Asn Lys Thr Thr 35 Leu Pro Thr Asn Val Ala Phe Glu Leu Phe Ala Lys Arg Lys Met Gly 50 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
Val Arg Tyr Gly Asp Val Asp Asn Leu Val Phe Thr Asn Lys Thr Thr 35 Leu Pro Thr Asn Val Ala Phe Glu Leu Phe Ala Lys Arg Lys Met Gly 50 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
40 50 55 60 Leu Thr Pro Pro Leu Ser Ile Leu Lys Asn Leu Gly Val Val Ala Thr
· · · · · · · · · · · · · · · · · · ·
65 70 75 80
Tyr Lys Phe Val Leu Trp Asp Tyr Glu Ala Glu Arg Pro Phe Thr Ser 85 90 95
Tyr Thr Lys Ser Val Cys Lys Tyr Thr Asp Phe Asn Glu Asp Val Cys 100 105 110

5	Val	Cys	Phe 115	Asp	Asn	Ser	Ile	Gln 120	Gly	Ser	Tyr	Glu	Arg 125	Phe	Thr	Leu
10	Thr	Thr 130	Asn	Ala	Val	Leu	Phe 135	Ser	Thr	Val	Val	Ile 140	Lys	Asn	Leu	Thr
10	Pro 145	Ile	Lys	Leu	Asn	Phe 150	Gly	Met	Leu	Asn	Gly 155	Met	Pro	Val	Ser	Ser 160
15	Ile	Lys	Gly	Asp	Lys 165	Gly	Val	Glu	Lys	Leu 170	Val	Asn	Trp	Tyr	Ile 175	Tyr
20	Val	Arg	Lys	Asn 180	Gly	Gln	Phe	Gln	Asp 185	His	Tyr	Asp	Gly	Phe 190	Tyr	Thr
20	Gln	Gly	Arg 195	Asn	Leu	Ser	Asp	Phe 200	Thr	Pro	Arg	Ser	Asp 205	Met	Glu	Tyr
25	Asp	Phe 210	Leu	Asn	Met	Asp	Met 215	Gly	Val	Phe	Ile	Asn 220	Lys	Tyr	Gly	Leu
30	Glu 225	Asp	Phe	Asn	Phe	Glu 230	His	Val	Val	Tyr	Gly 235	Asp	Val	Ser	Lys	Thr 240
	Thr	Leu	Gly	Gly	Leu 245	His	Leu	Leu	Ile	Ser 250	Gln	Phe	Arg	Leu	Ser 255	Lys
35	Met	Gly	Val	Leu 260	Lys	Ala	Asp	Asp	Phe 265	Val	Thr	Ala	Ser	Asp 270	Thr	Thr
40	Leu	Arg	Cys 275	Cys	Thr	Val	Thr	Tyr 280	Leu	Asn	Glu	Leu	Ser 285	Ser	Lys	Val
	Val	Cys 290	Thr	Tyr	Met	Asp	Leu 295	Leu	Leu	Asp	Asp	Phe 300	Val	Thr	Ile	Leu
45	Lys 305	Ser	Leu	Asp	Leu	Gly 310	Val	Ile	Ser	Lys	Val 315	His	Glu	Val	Ile	Ile 320
50	Asp	Asn	Lys	Pro	Tyr 325	Arg	Trp	Met	Leu	Trp 330	Cys	Lys	Asp	Asn	His 335	Leu
	Ser	Thr	Phe	Tyr	Pro	Gln	Leu	Gln								

340 5 <210> 63 <211> 300 <212> PRT <213> Human coronavirus 10 <220> <221> MISC_FEATURE <222> (1)..(300) <223> 2'-O-MT 2: S-adenosylmethionine-dependant ribose 2'-orthomethyl ansferase 15 <400> 63 Ser Ala Glu Trp Lys Cys Gly Tyr Ala Met Pro Gln Ile Tyr Lys Leu 20 Gln Arg Met Cys Leu Glu Pro Cys Asn Leu Tyr Asn Tyr Gly Ala Gly Ile Lys Leu Pro Ser Gly Ile Met Leu Asn Val Val Lys Tyr Thr Gln Leu Cys Gln Tyr Leu Asn Ser Thr Thr Met Cys Val Pro His Asn Met 30 Arg Val Leu His Tyr Gly Ala Gly Ser Asp Lys Gly Val Ala Pro Gly 35 Thr Thr Val Leu Lys Arg Trp Leu Pro Pro Asp Ala Ile Ile Ile Asp Asn Asp Ile Asn Asp Tyr Val Ser Asp Ala Asp Phe Ser Ile Thr Gly Asp Cys Ala Thr Val Tyr Leu Glu Asp Lys Phe Asp Leu Leu Ile Ser 120 45 Asp Met Tyr Asp Gly Arg Ile Lys Phe Cys Asp Gly Glu Asn Val Ser 130 135 140

55

50

Lys Asp Gly Phe Phe Thr Tyr Leu Asn Gly Val Ile Arg Glu Lys Leu

155

5	Ala Ile Gly Gly	y Ser Val Ala Ile 165	Lys Ile Thr Glu 170	Tyr Ser Trp Asn 175
10	Lys Tyr Leu Tyr 180	r Glu Leu Ile Gln O	Arg Phe Ala Phe 185	Trp Thr Leu Phe 190
	Cys Thr Ser Val	l Asn Thr Ser Ser 200	Ser Glu Ala Phe	Leu Ile Gly Ile 205
15	Asn Tyr Leu Gly 210	y Asp Phe Ile Gln 215	Gly Pro Phe Ile 220	Ala Gly Asn Thr
20	Val His Ala Ası 225	n Tyr Ile Phe Trp 230	Arg Asn Ser Thr 235	Ile Met Ser Leu 240
	Ser Tyr Asn Ser	r Val Leu Asp Leu 245	Ser Lys Phe Glu 250	Cys Lys His Lys 255
25	Ala Thr Val Val 260	l Val Thr Leu Lys O	Asp Ser Asp Val 265	Asn Asp Met Val 270
30	Leu Ser Leu Ile 275	e Lys Ser Gly Arg 280	Leu Leu Leu Arg	Asn Asn Gly Arg 285
	Phe Gly Gly Pho 290	e Ser Asn His Leu 295	Val Ser Thr Lys 300	
35	<210> 64 <211> 1356 <212> PRT <213> Human Co	oronavirus		
40	<220> <221> MISC_FE <222> (1)(1 <223> ORF-2 Sp		ne	
45	<400> 64 Met Lys Leu Ph	e Leu Ile Leu Leu	Val Leu Pro Leu	Ala Ser Cys Phe
	1	5	10	15
50	Phe Thr Cys As: 20	n Ser Asn Ala Asn	Leu Ser Met Leu 25	Gln Leu Gly Val 30

5	Pro	Asp	Asn 35	Ser	Ser	Thr	Ile	Val 40	Thr	Gly	Leu	Leu	Pro 45	Thr	His	Trp
	Phe	Cys 50	Ala	Asn	Gln	Ser	Thr 55	Ser	Val	Tyr	Ser	Ala 60	Asn	Gly	Phe	Phe
10	Tyr 65	Ile	Asp	Val	Gly	Asn 70	His	Arg	Ser	Ala	Phe 75	Ala	Leu	His	Thr	Gly 80
15	Tyr	Tyr	Asp	Ala	Asn 85	Gln	Tyr	Tyr	Ile	Tyr 90	Val	Thr	Asn	Glu	Ile 95	Gly
20	Leu	Asn	Ala	Ser 100	Val	Thr	Leu	Lys	Ile 105	Cys	Lys	Phe	Ser	Arg 110	Asn	Thr
	Thr	Phe	Asp 115	Phe	Leu	Ser	Asn	Ala 120	Ser	Ser	Ser	Phe	Asp 125	Cys	Ile	Val
25	Asn	Leu 130	Leu	Phe	Thr	Glu	Gln 135	Leu	Gly	Ala	Pro	Leu 140	Gly	Ile	Thr	Ile
30	Ser 145	Gly	Glu	Thr	Val	Arg 150	Leu	His	Leu	Tyr	Asn 155	Val	Thr	Arg	Thr	Phe 160
	Tyr	Val	Pro	Ala	Ala 165	Tyr	Lys	Leu	Thr	Lys 170	Leu	Ser	Val	Lys	Cys 175	Tyr
35	Phe	Asn	Tyr	Ser 180	Cys	Val	Phe	Ser	Val 185	Val	Asn	Ala	Thr	Val 190	Thr	Val
40	Asn	Val	Thr 195	Thr	His	Asn	Gly	Arg 200	Val	Val	Asn	Tyr	Thr 205	Val	Cys	Asp
	Asp	Cys 210	Asn	Gly	Tyr	Thr	Asp 215	Asn	Ile	Phe	Ser	Val 220	Gln	Gln	Asp	Gly
45	Arg 225	Ile	Pro	Asn	Gly	Phe 230	Pro	Phe	Asn	Asn	Trp 235	Phe	Leu	Leu	Thr	Asn 240
50	Gly	Ser	Thr	Leu	Val 245	Asp	Gly	Val	Ser	Arg 250	Leu	Tyr	Gln	Pro	Leu 255	Arg
	Leu	Thr	Cys	Leu	Trp	Pro	Val	Pro	Gly	Leu	Lys	Ser	Ser	Thr	Gly	Phe

_			260					265					270		
5	Val 1	Tyr Phe 275	Asn	Ala	Thr	Gly	Ser 280	Asp	Val	Asn	Cys	Asn 285	Gly	Tyr	Gln
10		Asn Ser 290	Val	Val	Asp	Val 295	Met	Arg	Tyr	Asn	Leu 300	Asn	Phe	Ser	Ala
15	Asn 8 305	Ser Leu	Asp	Asn	Leu 310	Lys	Ser	Gly	Val	Ile 315	Val	Phe	Lys	Thr	Leu 320
	Gln T	Tyr Asp	Val	Leu 325	Phe	Tyr	Cys	Ser	Asn 330	Ser	Ser	Ser	Gly	Val 335	Leu
20	Asp T	Thr Thr	Ile 340	Pro	Phe	Gly	Pro	Ser 345	Ser	Gln	Pro	Tyr	Tyr 350	Cys	Phe
25	Ile A	Asn Ser 355	Thr	Ile	Asn	Thr	Thr 360	His	Val	Ser	Thr	Phe 365	Val	Gly	Ile
		Pro Pro 370	Thr	Val	Arg	Glu 375	Ile	Val	Val	Ala	Arg 380	Thr	Gly	Gln	Phe
30	Tyr I 385	lle Asn	Gly	Phe	Lys 390	Tyr	Phe	Asp	Leu	Gly 395	Phe	Ile	Glu	Ala	Val 400
35	Asn P	he Asn	Val	Thr 405	Thr	Ala	Ser	Ala	Thr 410	Asp	Phe	Trp	Thr	Val 415	Ala
	Phe A	ala Thr	Phe 420	Val	Asp	Val	Leu	Val 425	Asn	Val	Ser	Ala	Thr 430	Asn	Ile
40	Gln A	Asn Leu 435	Leu	Tyr	Суѕ	Asp	Ser 440	Pro	Phe	Glu	Lys	Leu 445	Gln	Cys	Glu
45		eu Gln 50	Phe	Gly	Leu	Gln 455	Asp	Gly	Phe	Tyr	Ser 460	Ala	Asn	Phe	Leu
	Asp A 465	asp Asn	Val	Leu	Pro 470	Glu	Thr	Tyr	Val	Ala 475	Leu	Pro	Ile	Tyr	Tyr 480
50	Gln H	is Thr	Asp	Ile 485	Asn	Phe	Thr	Ala	Thr 490	Ala	Ser	Phe	Gly	Gly 495	Ser
55															

Cys Tyr Val Cys Lys Pro 500	His Gln Val Asn Ile Ser Leu Asn Gly Asn 505 510
Thr Ser Val Cys Val Arg 10 515	Thr Ser His Phe Ser Ile Arg Tyr Ile Tyr 520 525
530	Ser Pro Gly Asp Ser Ser Trp His Ile Tyr 535 540
Leu Lys Ser Gly Thr Cys 545 550	Pro Phe Ser Phe Ser Lys Leu Asn Asn Phe 555 560
Gln Lys Phe Lys Thr Ile 20 565	Cys Phe Ser Thr Val Glu Val Pro Gly Ser 570 575
Cys Asn Phe Pro Leu Glu	Ala Thr Trp His Tyr Thr Ser Tyr Thr Ile
580	585 590
	Thr Trp Ser Glu Gly Asn Ser Ile Thr Gly 600 605
Val Pro Tyr Pro Val Ser	Gly Ile Arg Glu Phe Ser Asn Leu Val Leu
610	615 620
Asn Asn Cys Thr Lys Tyr	Asn Ile Tyr Asp Tyr Val Gly Thr Gly Ile
625 630	635 640
Ile Arg Ser Ser Asn Gln	Ser Leu Ala Gly Gly Ile Thr Tyr Val Ser
645	650 655
40 Asn Ser Gly Asn Leu Leu	Gly Phe Lys Asn Val Ser Thr Gly Asn Ile
660	665 670
Phe Ile Val Thr Pro Cys	Asn Gln Pro Asp Gln Val Ala Val Tyr Gln
675	680 685
Gln Ser Ile Ile Gly Ala	Met Thr Ala Val Asn Glu Ser Arg Tyr Gly
690	695 700
Leu Gln Asn Leu Leu Gln 705 710	Leu Pro Asn Phe Tyr Tyr Val Ser Asn Gly 715 720

5	Gly	Asn	Asn	Cys	Thr 725	Thr	Ala	Val	Met	Thr 730	Tyr	Ser	Asn	Phe	Gly 735	Ile
10	Cys	Ala	Asp	Gly 740	Ser	Leu	Ile	Pro	Val 745	Arg	Pro	Arg	Asn	Ser 750	Ser	Asp
	Asn	Gly	Ile 755	Ser	Ala	Ile	Ile	Thr 760	Ala	Asn	Leu	Ser	Ile 765	Pro	Ser	Asn
15	Trp	Thr 770	Thr	Ser	Val	Gln	Val 775	Glu	Tyr	Leu	Gln	Ile 780	Thr	Ser	Thr	Pro
20	Ile 785	Val	Val	Asp	Cys	Ala 790	Thr	Tyr	Val	Cys	Asn 795	Gly	Asn	Pro	Arg	Cys 800
	Lys	Asn	Leu	Leu	Lys 805	Gln	Tyr	Thr	Ser	Ala 810	Cys	Lys	Thr	Ile	Glu 815	Asp
25	Ala	Leu	Arg	Leu 820	Ser	Ala	His	Leu	Glu 825	Thr	Asn	Asp	Val	Ser 830	Ser	Met
30	Leu	Thr	Phe 835	Asp	Ser	Asn	Ala	Phe 840	Ser	Leu	Ala	Asn	Val 845	Thr	Ser	Phe
	Gly	Asp 850	Tyr	Asn	Leu	Ser	Ser 855	Val	Leu	Pro	Gln	Arg 860	Asn	Ile	Arg	Ser
35	Ser 865	Arg	Ile	Ala	Gly	Arg 870	Ser	Ala	Leu	Glu	Asp 875	Leu	Leu	Phe	Ser	Lys 880
40	Val	Val	Thr	Ser	Gly 885	Leu	Gly	Thr	Val	Asp 890	Val	Asp	Tyr	Lys	Ser 895	Cys
	Thr	Lys	Gly	Leu 900	Ser	Ile	Ala	Asp	Leu 905	Ala	Cys	Ala	Gln	Tyr 910	Tyr	Asn
45	Gly	Ile	Met 915	Val	Leu	Pro	Gly	Val 920	Ala	Asp	Ala	Glu	Arg 925	Met	Ala	Met
50	Tyr	Thr 930	Gly	Ser	Leu	Ile	Gly 935	Gly	Met	Val	Leu	Gly 940	Gly	Leu	Thr	Ser
																•

5	945	Ald	Ala	11e		950	ser Le	eu Al	a Le	95		.a Arç	ј ње	ı Asn	960
	Val	Ala	Leu	Gln	Thr 965	Asp	Val Le	eu Gl	in Gl 97		sn G]	n Lys	s Il€	975	
10	Ala	Ser	Phe	Asn 980	Lys	Ala	Ile As	sn As 98		e Va	al Al	la Ser	Phe 990		Ser
15	Val	Asn	Asp 995	Ala	Ile	Thr		nr <i>F</i> 000	Ala G	Slu A	Ala]		.s 1	Chr V	al Thr
20	Ile	Ala 1010		ı Asn	. Lys	: Ile	Gln 1015	Asp	Val	Val	Asn	Gln 1020	Gln	Gly	Ser
	Ala	Leu 1025		His	. Leu	Thr	Ser 1030	Gln	Leu	Arg	His	Asn 1035	Phe	Gln	Ala
25		1040)				Ala 1045		-	-	-	1050	•		
30		1055	•				Asp 1060					1065			
		1070)				Ser 1075					1080			
35		1085	,		•	_	Leu 1090					1095			-
40		1100)				Arg 1105					1110			
		1115	S				Asn 1120					1125			
45	Leu	His 1130		· Val	l Leu	ı Leu	Pro 1135		Asp	Tyr	Lys	Asn 1140	Val	Lys	Ala
50		1145	5				Asp 1150					1155			-
	Gln	Pro	Asr	ı Let	ı Val	L Leu	Tyr	Ser	Asp	Asn	Gly	Val	Phe	Arg	Val

5	1	1160					1165					1170			
		Ser 1175	Arg	Val	Met	Phe	Gln 1180	Pro	Arg	Leu	Pro	Val 1185	Leu	Ser	Asp
10		Val 1190	Gln	Ile	Tyr	Asn	Cys 1195	Asn	Val	Thr	Phe	Val 1200	Asn	Ile	Ser
15		Val 1205	Glu	Leu	His	Thr	Val 1210	Ile	Pro	Asp	Tyr	Val 1215	Asp	Val	Asn
		Thr 1220	Leu	Gln	Glu	Phe	Ala 1225	Gln	Asn	Leu	Pro	Lys 1230	Tyr	Val	Lys
20		Asn 1235	Phe	Asp	Leu	Thr	Pro 1240	Phe	Asn	Leu	Thr	Tyr 1245	Leu	Asn	Leu
25		Ser 1250	Glu	Leu	Lys	Gln	Leu 1255	Glu	Ala	Lys	Thr	Ala 1260	Ser	Leu	Phe
		Thr 1265	Thr	Val	Glu	Leu	Gln 1270	Gly	Leu	Ile	Asp	Gln 1275	Ile	Asn	Ser
30		Tyr 1280	Val	Asp	Leu	Lys	Leu 1285	Leu	Asn	Arg	Phe	Glu 1290	Asn	Tyr	Ile
35	_	Trp 1295	Pro	Trp	Trp	Val	Trp 1300	Leu	Ile	Ile	Ser	Val 1305	Val	Phe	Val
		Leu 1310	Leu	Ser	Leu	Leu	Val 1315	Phe	Cys	Cys	Leu	Ser 1320	Thr	Gly	Cys
40	_	Gly 1325	Cys	Cys	Asn	Cys	Leu 1330	Thr	Ser	Ser	Met	Arg 1335	Gly	Cys	Cys
45		Cys 1340		Ser	Thr	Lys	Leu 1345		Tyr	Tyr	Glu	Phe 1350		Lys	Val
		Val 1355	Gln												
50	<210 <211	> 6! > 7													

5	<212 <213		PRT Human	cor	onav	virus	5									
10	<220 <221 <222 <223	L> ! 2>	MISC_ (1) ORF-4	(77)		viru	ıs er	nvelo	ope p	prote	ein/E	E-gen	ie			
	<400)>	65													
15	Met 1	Phe	Leu	Arg	Leu 5	Ile	Asp	Asp	Asn	Gly 10	Ile	Val	Leu	Asn	Ser 15	Ile
	Leu	Trp	Leu	Leu 20	Val	Met	Ile	Phe	Phe 25	Phe	Val	Leu	Ala	Met 30	Thr	Phe
20	Ile	Lys	Leu 35	Ile	Gln	Leu	Суѕ	Phe 40	Thr	Cys	His	Tyr	Phe 45	Phe	Ser	Arg
25	Thr	Leu 50	Tyr	Gln	Pro	Val	Tyr 55	Lys	Ile	Phe	Leu	Ala 60	Tyr	Gln	Asp	Tyr
	Met 65	Gln	Ile	Ala	Pro	Val 70	Pro	Ala	Glu	Val	Leu 75	Asn	Val			
30		1> 2>		n coi	ronav	/irus	5									
35	<222	1 > 2 >	MISC (1). ORF-	. (22	6)	635,	Core	ona_t	1, C	orona	avir	ıs M	mat	rix/	glyc	oproteir
40	<400	0>	66													
	Met 1	Ser	Asn	Ser	Ser 5	Val	Pro	Leu	Leu	Glu 10	Val	Tyr	Val	His	Leu 15	Arg
45	Asn	Trp	Asn	Phe 20	Ser	Trp	Asn	Leu	Ile 25	Leu	Thr	Leu	Phe	Ile 30	Val	Val
50	Leu	Gln	Tyr 35	Gly	His	Tyr	Lys	Tyr 40	Ser	Arg	Leu	Leu	Tyr 45	Gly	Leu	Lys
	Met	Ser	· Val	Leu	Trp	Cys	Leu	Trp	Pro	Leu	Val	Leu	Ala	Leu	Ser	Ile

5	50	55	60
J	Phe Asp Cys Phe Val A	sn Phe Asn Val Asp Trp 0 75	Val Phe Phe Gly Phe 80
10	Ser Ile Leu Met Ser I 85	le Ile Thr Leu Cys Leu 90	Trp Val Met Tyr Phe 95
15	Val Asn Ser Phe Arg L 100	eu Trp Arg Arg Val Lys 105	Thr Phe Trp Ala Phe 110
	Asn Pro Glu Thr Asn A	la Ile Ile Ser Leu Gln 120	Val Tyr Gly His Asn 125
20	Tyr Tyr Leu Pro Val M	et Ala Ala Pro Thr Gly 135	Val Thr Leu Thr Leu 140
25	_	eu Val Asp Gly His Lys 50 155	Ile Ala Thr Arg Val
	Gln Val Gly Gln Leu F 165	ro Lys Tyr Val Ile Val 170	Ala Thr Pro Ser Thr 175
30	Thr Ile Val Cys Asp A	rg Val Gly Arg Ser Val 185	Asn Glu Thr Ser Gln 190
35	Thr Gly Trp Ala Phe T 195	yr Val Arg Ala Lys His 200	Gly Asp Phe Ser Gly 205
	Val Ala Ser Gln Glu G 210	ly Val Leu Ser Glu Arg 215	Glu Lys Leu Leu His 220
40	Leu Ile 225		
45	<210> 67 <211> 377 <212> PRT <213> Human coronavi	rus	
50	<220> <221> MISC_FEATURE <222> (1)(377) <223> ORF-6 Pfam 009	37, Coronavirus nucleo	capsid protein

	<400)> 6	57													
5	Met l	Ala	Ser	Val	Asn 5	Trp	Ala	Asp	Asp	Arg 10	Ala	Ala	Arg	Lys	Lys 15	Phe
10	Pro	Pro	Pro	Ser 20	Phe	Tyr	Met	Pro	Leu 25	Leu	Val	Ser	Ser	Asp 30	Lys	Ala
	Pro	Tyr	Arg 35	Val	Ile	Pro	Arg	Asn 40	Leu	Val	Pro	Ile	Gly 45	Lys	Gly	Asn
15	Lys	Asp 50	Glu	Gln	Ile	Gly	Tyr 55	Trp	Asn	Val	Gln	Glu 60	Arg	Trp	Arg	Met
20	Arg 65	Arg	Gly	Gln	Arg	Val 70	Asp	Leu	Pro	Pro	Lys 75	Val	His	Phe	Tyr	Tyr 80
25	Leu	Gly	Thr	Gly	Pro 85	His	Lys	Asp	Leu	Lys 90	Phe	Arg	Gln	Arg	Ser 95	Asp
	Gly	Val	Val	Trp 100	Val	Ala	Lys	Glu	Gly 105	Ala	Lys	Thr	Val	Asn 110	Thr	Ser
30	Leu	Gly	Asn 115	Arg	Lys	Arg	Asn	Gln 120	Lys	Pro	Leu	Glu	Pro 125	Lys	Phe	Ser
35	Ile	Ala 130	Leu	Pro	Pro	Glu	Leu 135	Ser	Val	Val	Glu	Phe 140	Glu	Asp	Arg	Ser
	Asn 145	Asn	Ser	Ser	Arg	Ala 150	Ser	Ser	Arg	Ser	Ser 155	Thr	Arg	Asn	Asn	Ser 160
40	Arg	Asp	Ser		Arg 165				_	Gln 170		Ser	Arg		Arg 175	
45	Asp	Ser	Asn	Gln 180	Ser	Ser	Ser	Asp	Leu 185	Val	Ala	Ala	Val	Thr 190	Leu	Ala
	Leu	Lys	Asn 195	Leu	Gly	Phe	Asp	Asn 200	Gln	Ser	Lys	Ser	Pro 205	Ser	Ser	Ser
50	Gly	Thr 210	Ser	Thr	Pro	Lys	Lys 215	Pro	Asn	Lys	Pro	Leu 220	Ser	Gln	Pro	Arg

5	Ala 225	Asp	Lys	Pro	Ser	Gln 230	Leu	Lys	Lys	Pro	Arg 235	Trp	Lys	Arg	Val	Pro 240
10	Thr	Arg	Glu	Glu	Asn 245	Val	Ile	Gln	Cys	Phe 250	Gly	Pro	Arg	Asp	Phe 255	Asn
	His	Asn	Met	Gly 260	Asp	Ser	Asp	Leu	Val 265	Gln	Asn	Gly	Val	Asp 270	Ala	Lys
15	Gly	Phe	Pro 275	Gln	Leu	Ala	Glu	Leu 280	Ile	Pro	Asn	Gln	Ala 285	Ala	Leu	Phe
20	Phe	Asp 290	Ser	Glu	Val	Ser	Thr 295	Asp	Glu	Val	Gly	Asp 300	Asn	Val	Gln	Ile
	Thr 305	Tyr	Thr	Tyr	Lys	Met 310	Leu	Val	Ala	Lys	Asp 315	Asn	Lys	Asn	Leu	Pro 320
25	Lys	Phe	Ile	Glu	Gln 325	Ile	Ser	Ala	Phe	Thr 330	Lys	Pro	Ser	Ser	Ile 335	Lys
30	Glu	Met	Gln	Ser 340	Gln	Ser	Ser	His	Val 345	Ala	Gln	Asn	Thr	Val 350	Leu	Asn
	Ala	Ser	Ile 355	Pro	Glu	Ser	Lys	Pro 360	Leu	Ala	Asp	Asp	Asp 365	Ser	Ala	Ile
35	Ile	Glu 370	Ile	Val	Asn	Glu	Val 375	Leu	His							

Claims

40

- **1.** An isolated and/or recombinant nucleic acid comprising a sequence as depicted in figure 19 and/or table 3, or a functional part, derivative and/or analogue thereof.
 - 2. An isolated and/or recombinant nucleic acid that is at least 70% homologous to a nucleic acid according to claim 1.
- **3.** An isolated and/or recombinant nucleic acid comprising that is at least 95% homologous to a nucleic acid according to claim 1.
 - **4.** An isolated and/or recombinant nucleic acid comprising a stretch of 100 consecutive nucleotides of a nucleic acid according to any one of claims 1-3.
 - **5.** An isolated and/or recombinant proteinaceous molecule comprising a sequence as depicted in figure 20, 21 ,22, 23 or table 3, or a functional part, derivative and/or analogue thereof.

- **6.** An isolated and/or recombinant proteinaceous molecule that is at least 70% homologues to a proteinaceous molecule according to claim 5.
- 7. An isolated and/or recombinant proteinaceous molecule that is at least 95% homologues to a proteinaceous molecule according to claim 5.
 - **8.** An isolated and/or recombinant proteinaceous molecule comprising a stretch of at least 30 consecutive amino acids of a proteinaceous molecule according to any one of claims 5-7.
- 9. A nucleic acid encoding a proteinaceous molecule according to any one of claims 5-8.
 - **10.** An isolated or recombinant virus comprising a nucleic acid sequence according to any one of claims 1-4, or 9, or a functional part, derivative and/or analogue thereof.
- **11.** An isolated or recombinant virus comprising a proteinaceous molecule according to any one of claims 5-8, or a functional part, derivative and/or analogue thereof.
 - **12.** An isolated or recombinant virus or a functional part, derivative or analogue according to claim 10 or claim 11 capable of inducing a HCoV-NL63-related disease.
 - **13.** A vector comprising a nucleic acid according to any one of claims 1-4 or 9.

20

25

- **14.** A primer and/or probe, capable of specifically hybridizing to a nucleic acid of a virus or functional part, derivative or analogue according to any one of claims 1-4 or 9.
- **15.** A primer and/or probe according to claim 8 or 9, which is capable of hybridizing to said nucleic acid under stringent conditions.
- **16.** A primer and/or probe according to claim 14 or claim 15, comprising a sequence as depicted in table 3, table 7, table 10 and figures 16 to 18.
 - **17.** An isolated binding molecule capable of specifically binding a proteinaceous molecule according to any one of claims 5-8, and/or an isolated or recombinant virus according to any one of claims 10-12.
- **18.** An isolated binding molecule capable of specifically binding a nucleic acid sequence of a virus or functional part, derivative or analogue according to any one of claims 1-4 or 9.
 - **19.** An isolated binding molecule capable of specifically binding at least part of a nucleic acid sequence as depicted in table 3.
 - 20. An isolated binding molecule according to any one of claims 17-19 which is a proteinaceous molecule.
 - 21. A method for producing a binding molecule according to any one of claims 17-20 comprising
- producing molecules capable of binding a virus or functional part, derivative or analogue according to any one of claims 10-12 or an isolated and/or recombinant proteinaceous molecule according to any one of claims 5-8, and
 - selecting a proteinaceous binding molecule that is specific for said virus and or said proteinaceous molecule.
- 22. An isolated or recombinant virus which is immunoreactive with a molecule according to any one of claims 17-21.
 - 23. Use of a virus or functional part, derivative and/or analogue according to any one of claims 10-12 for detecting a molecule capable of specifically binding said virus in a sample.
- ⁵⁵ **24.** Use of an isolated and/or recombinant proteinaceous molecule according to any one of claims 5-8, for detecting a binding molecule capable of specifically binding a virus according to any one of claims 10-12, or functional part, derivative and/or analogue of said virus in a sample.

- 25. Use according to claim 24, wherein said binding molecule comprises a specific ligand and/or antibody for said virus.
- **26.** Use of a primer and/or probe according to any one of claims 14-16, a binding molecule according to any one of claims 17-20, and/or a nucleic acid or functional part, derivative or analogue according to any one of claims 1-4, or 9 for detecting and/or identifying a HCoV-NL63 coronavirus in a sample.
- 27. Use according to claim 26 wherein said nucleic acid comprises a sequence as depicted in table 3.
- 28. A vaccine comprising a virus or functional part, derivative or analogue according to any one of claims 10-12.
- 29. A vaccine comprising a proteinaceous molecule according to any one of claims 5-8.
- **30.** A vaccine comprising a binding molecule according to any one of claims 17-20.
- 15 **31.** A medicament comprising a binding molecule according to any one of claims 17-20.
 - **32.** Use of a virus or functional part, derivative or analogue according to any one of claims 10-12, for the preparation of a vaccine against a coronaviral genus related disease.
- **33.** Use of a proteinaceous molecule according to any one of claims 5-8, for the preparation of a vaccine against a coronaviral genus related disease.
 - **34.** Use of a binding molecule according to any one of claims 17-20, for the preparation of a vaccine against a coronaviral genus related disease.
 - **35.** A method for detecting a coronavirus in a sample **characterized in that** a binding molecule according to any one of claims 17-20, or a primer and/or probe according to any one of claims 14-17 is used.
 - **36.** A method for detecting a binding molecule for a coronavirus **characterized in that** a virus according to any one of claims 10-12 or proteinaceous molecule according to any one of claims 5-8 is used.
 - 37. A method according to claim 35 or claim 36 for diagnosis of a coronaviral genus related disease.
- **38.** Use according to claim 37 wherein said coronaviral genus related disease comprises an HCoV-NL63 coronavirus related disease.
 - **39.** A method for detecting a virus or functional part, derivative or analogue according to any one of claims 10-12 in a sample, comprising hybridizing and/or amplifying a nucleic acid of said virus or functional part, derivative or analogue with a primer and/or probe according to any one of claims 14-16 and detecting hybridized and/or amplified product.
 - **40.** A diagnostic kit comprising a virus or functional part, derivative or analogue according to any one of claims 10-12, a binding molecule according to any one of claims 17-20, and/or a primer/probe according to any one of claims 14-16.
 - **41.** A method for treating an individual suffering from, or at risk of suffering from, an HCoV-NL63 related disease, comprising administering to said individual a vaccine or medicament according to any one of claims 28-31.
- **42.** A method for determining whether an individual suffers from an HCoV-NL63 related disease, comprising obtaining a sample from said individual and detecting a HCoV-NL63 virus according to any one of claims 10-12 or functional part, derivative or analogue thereof in said sample.
 - **43.** A cell comprising an isolated and/or recombinant virus according to any one of claims 10-12, or a functional part, derivative and/or analogue thereof.
 - **44.** A cell according to claim 43, wherein said cell is a primate cell.
 - **45.** A cell according to claim 43 or 44, wherein said cell is a kidney cell.

55

5

10

25

30

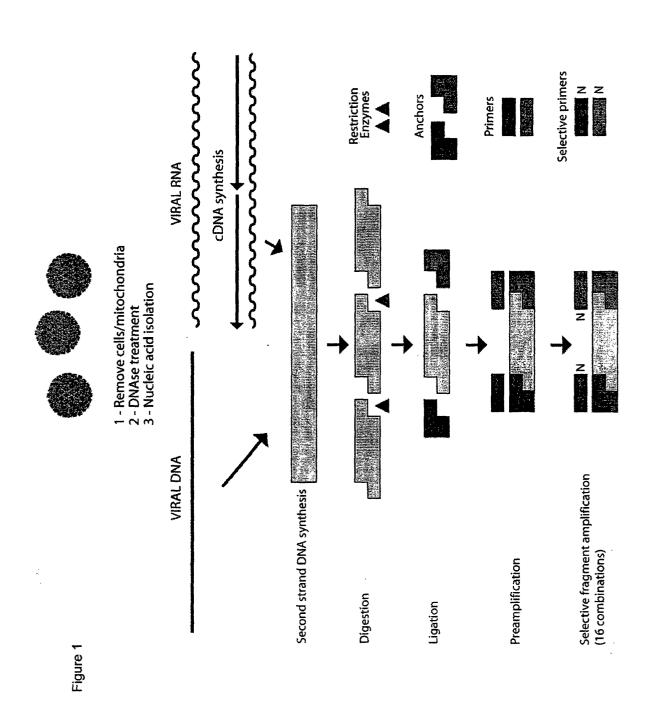
40

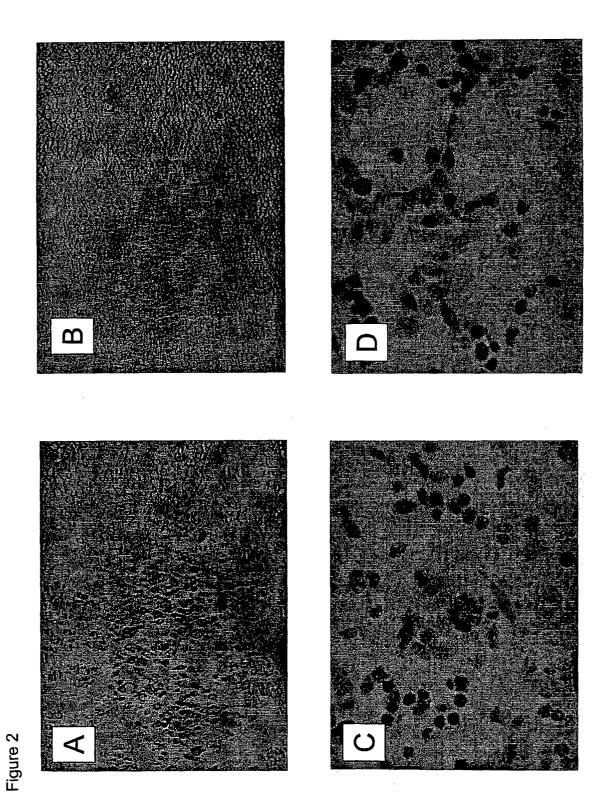
- **46.** A cell according to claim 44 or claim 45, wherein said cell is a monkey cell.
- 47. A proteinaceous molecule according to any one of claims 5-8, encoding a 3CL protease.
- 48. A method for determining whether a compound is capable of at least in part inhibiting a viral protease **characterized** in that said protease is a protease according to claim 47, or a functional part, derivative and/or analogue thereof.
 - 49. A compound capable of at least in part inhibiting a viral protease according to claim 47.
- **50.** A compound according to claim 49, wherein said compound comprises an amino acid sequence YNSTLQ or a functional part, derivative and/or analogue thereof.
 - **51.** A medicament for the treatment of an individual suffering from an coronavirus infection or an individual at risk of suffering there from comprising wherein said coronavirus comprises a nucleic acid sequence according to any one of claims 1-4, or 9, wherein said medicament comprises an amino acid sequence YNSTLQ or a functional part, derivative and/or analogue thereof..
 - **52.** Use of any of the hexapeptides located N-terminally of the putative 3Cl^{pro} cleavage sites for the preparation of a medicament for the treatment of an individual suffering or at risk of suffering from a coronavirus infection wherein said coronavirus comprises a sequence according to any one of claims 1-4, or 9.
 - **53.** A gene delivery vehicle comprising a sequence according to any one of claims 1-4 or 9.
 - **54.** A gene delivery vehicle according to claim 53, wherein said vector is based on a nucleic acid according to any one of claims 1-4, or 9.
 - **55.** An attenuated virus according to any one of claims 10-12.

15

20

25


40


45

50

55

- **56.** A polycistronic messenger RNA comprising ribosome slippery site that comprises a sequence that in the nucleic acid depicted in figure 19 is in position 12433 to 12439.
 - **57.** A vaccine according to claim 29, comprising at least an immunogenic part of the Spike protein having a sequence as depicted in figure 22.
- **58.** A vaccine according to claim 57, wherein said part comprises a sequence from 20472 to 21009 of figure 19, or a functional part, derivative and/or analogue thereof.
 - **59.** A chimearic coronavirus comprising at least 1000 nucleotides of a sequence as depicted in figure 19 and at least 1000 nucleotides of another coronavirus wherein said latter 1000 nucleotides comprise a sequence that is more than 5% sequence divergent with a sequence as depicted in figure 19.

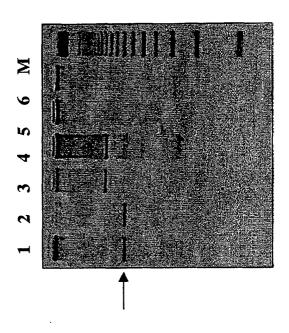
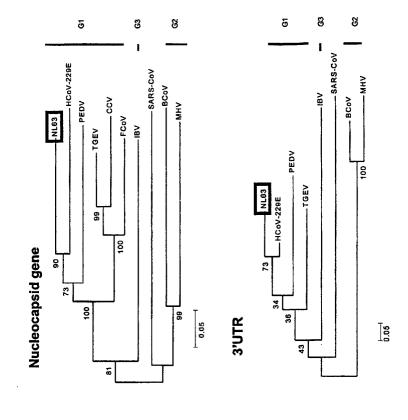



Figure 3

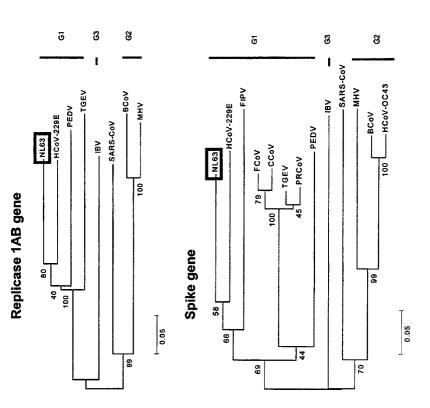
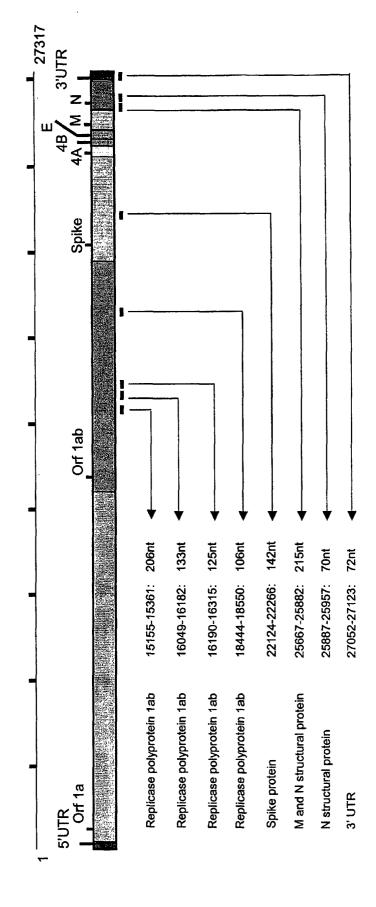
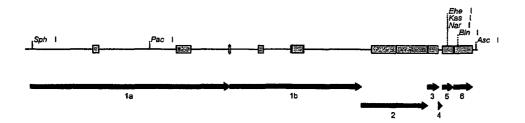




Figure 4

UTR denotes unranslated region, orf: open reading frame, E: envelope protein, M: membrane protein, N: nucleocapsid protein. Figure 5, a schematic representation of the coronavirus genome organization (with HCoV-229E accession number AF304460 as an example). Red lines indicate the genome location of the sequence fragments of the new coronavirus HCoV-SLA163.

Figure 6

HCoV-NL63

Figure 7

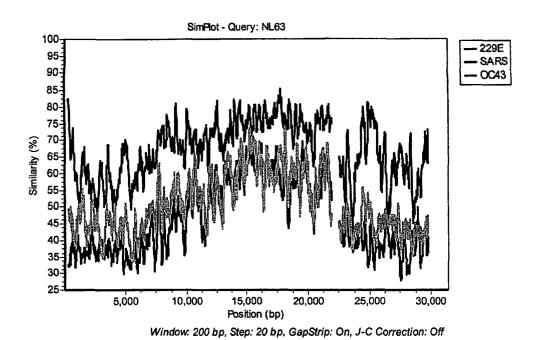
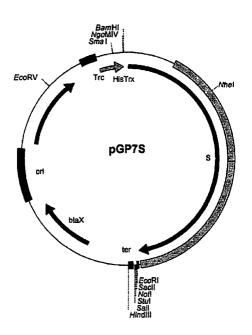



Figure 8

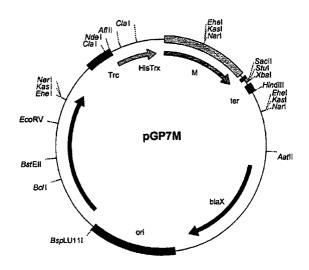
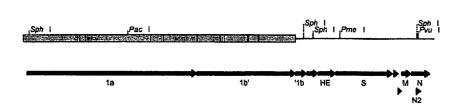


Figure 9

 $\frac{\texttt{TCATCCTAATTGTTGTGACTGTTATGATGATGTTGTTTATA}{\texttt{CATTGTTCAAATTTTAACA}}{\texttt{CACTCTT}}$


Figure 10

Chimera NL63/229E

Figure 11

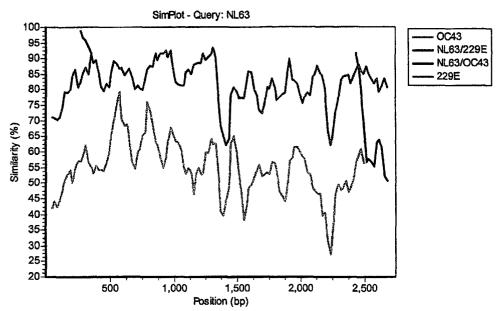

 ${\color{blue} \textbf{CAACGTATGTGTTTGGAACCTTGTAATTTATAT}} \textbf{AATTATGGGAAGCCAGTTACTTTGCCT}$

Figure 12

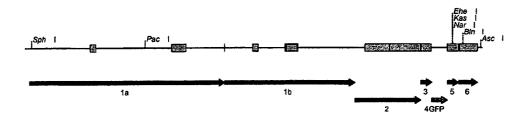

Chimera NL63/OC43

Figure 13

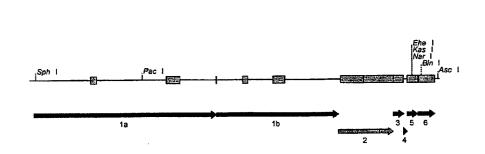

Window: 100 bp, Step: 20 bp, GapStrip: On, J-C Correction: Off

Figure 14

HCoV-NL63/4GFP

Figure 15

NL63_D20520-21011

Figure 16
Sequence variation in HCoV-NL63 from additional patient samples

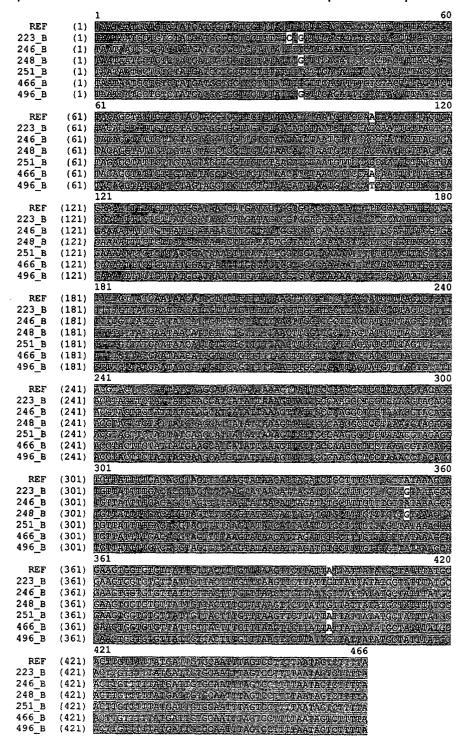


Figure 17
HCoV-NL63 Nucleocapsid (N) specific PCR primers

Oligo	Sequence	T _m	Amplicon
NL63NF1	GCTAGTGTAAATTGGGCCGATG	55.3	708
NL63NR1	CTTCCAACGAGGTTTCTTCAACTG	56.0	7 708
NL63NF2	TCCTCCTCCTTCATTTTACATGCC	57.4	270
NL63NR2	AACTCAACAACAGAGAGCTCTGGAG	55.1	372

Figure 18
Generic Coronavirus detection primers

Oligo	Sequence	T _m	Amplicon
COR1F	ATGGGWTGGGAYTATCCIAARTGTGA	60.6	603
COR1R	GYTGKGARCARAAYTCRTGWGGTCC	60.7	003
COR2F	TATKTTAARCCWGGTGGIAC	46.1	362
COR2R	CATRAANACRYYATTYTGRTAATA	46.7	302

Figure 19

Nucleotide sequence HcoV NL63

CTTAAAGAATTTTTCTATCTATAGATAGAGAATTTTCTTATTTAGACTTTGTGTCTACTC TTCTCAACTAAACGAAATTTTTCTAGTGCTGTCATTTGTTATGGCAGTCCTAGTGTAATT GAAATTTCGTCAAGTTTGTAAACTGGTTAGGCAAGTGTTGTATTTTCTGTGTCTAAGCAC TGGTGATTCTGTTCACTAGTGCATACATTGATATTTAAGTGGTGTTCCGTCACTGCTTAT TGTGGAAGCAACGTTCTGTCGTTGTGGAAACCAATAACTGCTAACCATGTTTTACAATCA AGTGACACTTGCTGTTGCAAGTGATTCGGAAATTTCAGGTTTTGGTTTTTGCCATTCCTTC TGTAGCCGTTCGCACCTATAGCGAAGCCGCTGCACAAGGTTTTCAGGCATGCCGTTTTGT TGCTTTTGGCTTACAGGATTGTTGTAACCGGTATTAATGATGATGATTATGTCATTGCATT GACTGGTACTAATCAGCTCTGTGCCAAAATTTTACCTTTTTCTGATAGACCCCTTAATTT GCGAGGTTGGCTCATTTTTTCTAACAGCAATFATGTTCTTCAGGACTTTGATGTTGTTTT TGGCCATGGTGCAGGAAGTGTGGTTTTTGTGGATAAGTACATGTGTGGTTTTGATGGTAA ACCTGTGTTACCTAAAAACATGTGGGAATTTAGGGATTACTTTAATAATAATACTGATAG TATTGTTATTGGTGGTGTCACTTATCAACTAGCATGGGATGTTATACGTAAAGACCTTTC TACTTTGAAGTCTGGTTGCAAACTTACTAATGCTAAGCCGCCTAAATATTCTTCTAAGGT TGTTTTGAGTGGTGAATGGAATGCTGTTATAGGGCGTTTGGTTCACCATTTATTACAAA TGGTATGTCATTGCTAGATATAATTGTTAAACCAGTTTTCTTTAATGCTTTTGTTAAATG ${\tt CAATTGTGGTTCTGAGAGTTGGAGTGTTGGTGCATGGGATGGTTACTTATCTTCTTGTTG}$ TGGCACACCTGCTAAGAAACTTTGTGTTGTTCCTGGTAATGTCGTTCCTGGTGATGTGAT CATCACCTCAACTAGTGCTGGTTGTGGTGTTAAATACTATGCTGGCTTAGTTGTTAAACA TATTACTAACATTACTGGTGTTGTCTTTATGGCGTGTTACAGCTGTTCATTCTGATGGAAT GTTTGTGGCATCATCTTCTTATGATGCACTCTTGCATAGAAATTCATTAGACCCTTTTTG CTTTGATGTTAACACTTTACTTTCTAATCAATTACGTCTAGCTTTTCTTGGTGCTTCTGT TACAGAAGATGTTAAATTTGCTGCTAGCACTGGTGTTATTGACATTAGTGCTGGTATGTT TGGTCTTTACGATGACATATTGACAAACAATAAACCTTGGTTTGTACGCAAAGCTTCTGG GCTTTTTGATGCAATCTGGGATGCTTTTGTTGCCGCTATTAAGCTTGTACCAACTACTAC $\tt TGGTGTTTTGGTTAGGTTTGTTAAGTCTATTGCTTCAACTGTTTTAACTGTCTCTAATGG$ TGTTATTATTATGTGTGCAGATGTTCCAGATGCTTTTCAATCAGTTTATCGCACATTTAC ACAAGCTATTTGTGCTGCATTTGATTTTTCTTTAGATGTATTTAAAAATTGGTGATGTTAA ATTTAAACGACTTGGTGATTATGTTCTTACTGAAAACGCTCTTGTTCGTTTGACTACTGA AGTTGTTCGTGGTGTTCGTGATGCTCGCATAAAGAAAGCCATGTTTACTAAAGTAGTTGT AGGTCCTACAACTGAAGTTAAGTTTTCTGTTATTGAACTTGCCACTGTTAATTTGCGTCT TGTTGATTGTGCACCTGTAGTTTGCCCTAAAGGTAAGATTGTTGTTATTGCTGGACAAGC TTTTTCTATAGTGGTGGTTTTTATCGTTTTATGGTTGATCCTACAACTGTATTAAATGA TCCTGTTTTTACTGGTGATTTATTCTACACTATTAAGTTTAGTGGTTTTAAGCTTGATGG TTTTAACCATCAGTTTGTTACTGCTAGTTCTGCTACAGATGCCATTATTGCTGTTGAGCT GTTGTTATTGGATTTTAAAACTGCAGTTTTTGTGTACACATGTGTGGTTGATGGCTGTAG TGTCATTGTTAGACGTGATGCTACATTCGCTACACATGTGTGTTTTAAGGACTGTTATAA TGTTTGGGAGCAATTCTGCATTGATAATTGTGGTGAGCCATGGTTTTTGACTGATTATAA TGCTATCTTGCAGAGTAATAACCCTCAATGTGCTATTGTTCAAGCATCAGAGTCTAAAGT TTTGCTTGAGAGGTTTTTACCTAAGTGTCCTGAAATACTGTTGAGTATTGATGATGGCCA TTTATGGAATCTTTTTGTTGAAAAGTTTAATTTTGTTACAGATTGGTTAAAAACTCTTAA GCTTACACTTACTCTAATGGTCTTTTAGGTAATTGTGCCAAACGTTTTAGACGTGTTTT TGCTGGTGTTTGCATCAAATATTATGCTGTTAATGTTCCATATGTAGTTATTAGTGGTTT TGTAAGTCGTGTAATTCGTAGAGAAAGGTGTGACATGACTTTTCCTTGTGTTAGTTGTGT CACCTTTTTCTATGAATTTTTAGACACTTGTTTTGGTGTTAGTAAACCTAATGCCATTGA TGTTGAACATTTAGAGCTTAAAGAAACTGTTTTTGTTGAACCTAAGGATGGTGGTCAATT TTTTGTTTCTGGTGATTATCTTTGGTATGTTGTAGATGACATTTATTATCCAGCTTCATG TAATGGTGTATTGCCTGTTGCTTTTACAAAATTAGCTGGTGGTAAAATATCTTTTTCTGA TGATGTTATAGTTCATGATGTTGAACCTACCCATAAAGTCAAGCTCATATTTGAGTTTGA AGATGATGTTACCAGTCTTTGTAAGAAGAGTTTTGGTAAGTCCATTATTATACAGG

TAAGTTGCCACAATTTTATATTTATGATGAAGAGGGTGGTTATGATGTTTCTAAACCAGT TATGATTCACAATGGCCTATTAGTAATGATAGTAATGGTTGTTGTTGAAGCGAGCAC TGATTTCATCAATTAGAATGTATTGTTGATGACTCTGTTAGAGAAGAGGTTGATAATAAT TGAACAACCTTTTGAAGAAGTTGAACATGTGCTCTCAATTAAGCAACCTTTTTCTTTTTC TTTTAGAGATGAATTGGGTGTTCGTGTTTTAGATCAATCTGATAATAATTGTTGGATTAG TACCACACTTGTACAGTTGCAACTTACAAAGCTTTTGGATGATTCTATTGAGATGCAATT GTTTAAAGTTGGTAAAGTTGATTCAATTGTCCAAAAGTGTTATGAGTTGTCTCATTTAAT TAGTGGTTCACTTGGTGATAGTGGTAAACTTCTTAGTGAACTTCTTAAAGAAAAATATAC ATGTTCTATAACTTTTGAGATGTCTTGTGATTGTGGTAAAAAGTTTGATGATCAGGTTGG TTGTTTGTTTTGGATTATGCCTTACACAAAACTTTTTCAAAAAGGTGAGTGTTGTATTTG TCATAAAATGCAGACTTATAAGCTTGTTAGTATGAAAGGTACTGGTGTTTTGTACAGGA TCCAGCACCTATTGACATTGATGCTTTCCCTGTGAAACCTATATGTTCATCTGTATATTT AGGTGTTAAGGGTTCTGGTCATTATCAAACAAATTTATACAGTTTTAACAAAGCTATTGA TGATTTTCATAGTGTAGAAATAGAAGCTGGTGAAGTTAAACCTTTTGCTGTATATAAAAA TGTTAAATTTTATTTAGGTGATATTTCACACCTTGTAAACTGTGTTTCTTTTGACTTTGT TGTCAATGCTGCTAATGAAAATCTCTTGCATGGAGGCGGTGTTGCACGTGCTATTGATAT TTTGACTGAAGGTCAACTTCAGTCACTATCTAAAGATTACATTAGTAGTAATGGTCCACT TAAGGTTGGAGCAGGTGTTATGTTGGAGTGTGAAAAATTCAACGTATTTAATGTTGTTGG TGAAAATGGTATTCCACTTATGCCTCTTCTTAGTTGTGGTATTTTTTGGTGTAAGGATTGA AAATTCTCTTAAAGCTTTGTTTAGTTGTGACATTAATAAACCATTGCAAGTTTTTGTTTA TTCTTCAAATGAAGAACAAGCTGTTCTTAAGTTTTTAGATGGTTTAGATTTAACACCAGT CATTGATGATGTTGTTGTTAAACCTTTTAGAGTTGAAGGTAATTTTTCATTCTTTGA TTGTGGTGTCAATGCCTTGGATGGTGATATTTACTTATTTACTAACTCTATTTTAAT GTTGGATAAACAAGGACAATTATTGGACACAAAACTTAATGGTATTTTGCAACAGGCAGC TCTTGATTATCTTGCTACAGTTAAAACTGTACCAGCTGGTAATTTGGTTAAACTTTTTGT AAATCTTGGTCGTTGTGCGTAAACTTAATAGATTGAAAACTTGTGTTATTGCCAATGT TCCTGCTATTGATGTTTTGAAAAAGCTTCTTTCAAGTTTGACTTTAACTGTTAAATTTGT TGTAGAGAGTAATGTTATGGATGTTAACGACTGTTTTAAGAATGATAATGTAGTTTTTGAA AATTACTGAAGATGGTATTAATGTTAAAGATGTTGTTGTTGAGTCTTCTAAGTCACTTGG TAAACAATTGGGTGTTGTGAGTGATGGTGTTGACTCTTTTGAAGGTGTTTTACCTATTAA TACTGATACTGTCTTATCTGTAGCTCCAGAAGTTGACTGGGTTGCTTTTTACGGTTTTGA AAAGGCAGCACTTTTTGCTTCTTTGGATGTAAAGCCATATGGTTACCCTAATGATTTTGT TGGTGGTTTTAGAGTTCTTGGGACCACCGACAATAATTGTTGGGTTAATGCAACTTGTAT AATTTTACAGTATCTTAAGCCTACTTTTAAATCTAAGGGTTTAAATGTTCTTTGGAACAA AAAGGGTCAAAAGGGTGATGCTGAAGAGGCATTATCTAAATTGTCAGAGTATTTGATTAG TGATTCTATTGTTACTCTTGAACAATATTCAACTTGTGACATTTGTAAAAGTACTGTAGT TGAAGTTAAAAGTGCTATTGTCTGTGCTAGTGTGCTTAAAGATGGTTGTGATGTTGGTTT TTGTCCACACAGACATAAATTGCGTTCACGTGTTAAGTTTGTTAATGGACGTGTTGTTAT TACCAATGTTGGTGAACCTATAATTTCACAACCTTCTAAGTTGCTTAATGGTATTGCTTA TACAACATTTTCAGGTTCTTTTGATAACGGTCACTATGTAGTTTATGATGCTGCTAATAA TGCTGTCTATGATGGTGCTCGTTTATTTTCTTCAGATTTGTCTACTTTAGCTGTTACAGC TATTGTTGTAGTAGGTGGTTGTGTAACATCTAATGTTCCAACAATTGTTAGTGAGAAAAT TTCTGTTATGGATAAACTTGATACTGGTGCACAAAAATTTTTCCAATTTGGTGATTTTGT TATGAATAACATTGTTCTGTTTTTAACTTGGTTGCTTAGTATGTTTAGTCTTTTACGTAC TTCTATTATGAAGCATGATATTAAAGTTATTGCCAAGGCTCCTAAACGTACAGGTGTTAT GTGTGTTATTGTTACTTTGTTTAAGTTCTTATTATTATTATATGCTATTTATGCACTTGT TTTTATGATTGTGCAATTTAGTCCTTTTAATAGTCTTTTATGTGGTGACATTGTAAGTGG TTATGAAAAATCCACTTTTAATAAGGATATTTATTGTGGTAATTCTATGGTTTGTAAGAT GTGTTTGTTCAGTTATCAAGAGTTTAATGATTTGGATCATACTAGTCTTGTTTGGAAGCA

CATTCGTGATCCTATATTAATCAGTTTACAACCATTTGTTATACTTGTTATTTTTGTTAAT TTTTGGTAATATGTATTTGCGTTTTGGACTTTTATATTTTGTTGCACAATTTATTAGTAC TTTTGGTTCTTTGTGGCCTTTCATCAGAAACAGTGGTTTTTACATTTTGTGCCGTTTGA TGTTTTATGTAATGAGTTTTTTAGCTACATTTATTGTCTGCAAAATCGTTTTATTTGTTAG ACATATTATTGTTGGCTGTAATAATGCTGACTGTGTAGCTTGTTCTAAAAGTGCTAGACT TAAACGTGTACCACTTCAAACTATTATTAATGGTATGCATAAATCATTCTATGTTAATGC TAATGGTGGTACTTGTTTCTGTAATAAACATAACTTCTTTTGTGTTAATTGTGATTCTTT TGGGCCTGGTAATACTTTTATTAATGGTGATATTGCAAGAGAGCTTGGTAATGTTGTTAA AACAGCTGTTCAACCCACAGCTCCTGCATATGTTATTATTGATAAGGTAGATTTTGTTAA TGGATTTTATCGTCTTTATAGTGGTGACACTTTTTGGCGGTATGACTTTGACATTACTGA ATCTAAGTATAGTTGTAAAGAGGTTCTGAAGAATTGTAATGTTTTAGAAAATTTTATTGT ATTGTTGTGTGAACCTATAAAGTTGGTAAATTCAGAGTTGTTGTCAACTTTATCTGTTGA TTTTAATGGTGTTTTGCATAAGGCATATGTTGATGTTTTTTGTGTAATAGTTTTTTTAAGGA GTTAACTGCTAACATGTCCATGGCTGAATGTAAAGCTACACTTGGTTTGACTGTTTCTGA TGATGATTTTGTTTCAGCTGTTGCCAATGCACATAGGTATGACGTTTTGCTTTCAGATTT GTCATTTAATAATTTTTTTTATTTCTTATGCTAAACCTGAAGATAAGTTGTCCGTTTATGA GTCAATACCTATTGTTTGGGGTGTCAAGGACTTTAATACTCTTTCTCAAGAAGGTAAGAA GTACCTTGTTAAAACAACTAAAGCAAAGGGTTTGACTTTTTATTAACTTTTAATGATAA CCAAGCAATTACACAAGTTCCTGCTACTAGTATAGTTGCAAAACAGGGTGCTGGTTTTAA ACGTACTTATAATTTTCTGTGGTATGTATGTTTATTTGTTGTTGCATTGTTTATTGGTGT CTCATTTATTGATTATACAACCACTGTAACTAGCTTTCATGGTTATGATTTTAAGTACAT TGAGAATGGTCAGTTGAAGGTGTTTGAAGCACCTTTACACTGTGTTCGTAATGTTTTTGA TAATTTTAATCAATGGCATGAGGCTAAGTTTGGTGTTGTTACTACTAATAGTGATAAATG TCCTATAGTTGTTGGTGTTTCAGAGCGTATTAATGTTGTTCCTGGTGTTCCAACAAATGT ATATTTGGTAGGAAAGACTCTTGTTTTTACATTACAGGCTGCTTTTTGGAAACACAGGTGT TTGTTATGACTTTGATGGTGTTACCACTAGTGATAAGTGTATTTTTAATTCTGCTTGTAC TAGGTTGGAAGGTTTGGGTGGTGACAATGTTTATTGTTACAACACTGATCTTATTGAAGG TTCTAAACCTTATAGTACTTTACAGCCCAATGCGTATTATAAGTATGATGCTAAAAATTA TGTACGTTTTCCAGAAATTTTAGCTAGAGGTTTTGGCTTACGTACTATTAGAACTTTGGC TGATAAATGGTATGTTAATGATGGACGTGTTGATGACGGTTACATTTGTGGTGATGGTCT TATAGACCTTCTTGTTAATGTACTCTCAATCTTTAGTTCATCTTTTAGCGTTGTGGCTAT GTCTGGACATATGTTGTTAATTTTCTTTTTGCAGCATTTATTACATTTTTGTGCTTTTT AGTTACTAAATTTAAACGTGTTTTTTGGTGATCTTTCTTATGGTGTTTTTTACTGTTGTTTG TTATGCTATTTTGTATTTTTTTTACTAGGACAGTGCGTTATGCTTGGATTTGGCATAT TGCATACATTGTTGCATACTTCTTGTTAATACCATGGTGGCTTCTCACATGGTTTAGTTT TGCTGCATTTTTAGAGCTTTTACCTAATGTTTTTAAGTTAAAAATCTCTACTCAATTGTT TGAAGGTGATAAGTTTATAGGTACTTTTGAGAGTGCTGCTGCAGGTACATTTGTTCTTGA CATGCGTTCTTATGAAAGGCTGATAAATACTATTTCACCTGAGAAACTTAAGAATTATGC TGCAAGTTATAATAAATATAAATATTATAGTGGTAGTGCTAGTGAGGCTGATTATCGTTG TGCTTGTTATGCTCATTTAGCCAAGGCTATGTTAGATTATGCAAAAGATCATAATGACAT GTTATATTCTCCACCTACTATTAGCTACAATTCCACCTTACAATCTGGTCTTAAGAAGAT GGCACAACCATCTGGTTGTTGAGAGATGTGTGGTTCGCGTCTGTTATGGTAGTACTGT GCTTAATGGAGTTTGGTTAGGTGACACTGTTACTTGTCCTAGACATGTCATAGCACCATC AACCACTGTTCTTATTGATTATGATCATGCATATAGTACTATGCGTTTGCATAATTTTTC AGTGTCTCATAATGGTGTCTTCTTGGGAGTTGTCGGTGTTACAATGCATGGTTCTGTGTT GCGTATTAAGGTTTCACAATCTAATGTACATACACCTAAACATGTTTTTAAAACGTTGAA ACCTGGTGATTCTTTTAATATTTTTAGCATGTTATGAAGGTATTGCATCTGGTGTTTTTGG TGTTAATTTACGTACAAACTTTACTATTAAAGGTTCTTTTATAAATGGAGCTTGTGGTTC TCCTGGTTATAATGTTAGAAATGATGGTACTGTTGAGTTTTGTTATTTACACCAAATTGA GTTAGGTAGTGGTGCTCATGTTGGTTCTGATTTTACTGGTAGTGTTTATGGTAATTTTGA TGACCAACCTAGTTTGCAAGTTGAGAGTGCCAACCTTATGCTATCAGATAATGTTGTTGC

CTTTTTGTATGCTGCTTTGTTGAATGGTTGTAGGTGGTGGTTGTTCAACTAGAGTTAA TGTTGATGGTTTTAATGAATGGGCTATGGCTAATGGTTATACAAGTGTTTCTAGTGTTGA GTGCTATTCTATTTTGGCAGCAAAAACTGGTGTTAGTGTTGAACAATTGTTAGCTTCCAT TCAACATCTTCATGAAGGTTTTGGTGGTAAAAACATACTTGGTTATTCTAGTTTATGTGA TGAGTTCACACTAGCTGAAGTTGTGAAGCAGATGTATGGTGTTAACTTGCAAAGTGGTAA GGTTATTTTTGGTTTAAAAACAATGTTTTTATTTAGCGTTTTCTTCACAATGTTTTGGGC AGAACTCTTTATTTATACAAACACTATATGGATAAACCCTGTGATACTTACACCTATATT TTGTCTACTTTTGTTTTTGTCATTAGTTTTAACTATGTTTCTTAAACATAAGTTTTTGTT TTTGCAAGTATTTTTATTACCTACTGTTATTGCAACTGCTTTATATAATTGTGTTTTTGGA TTATTACATAGTAAAATTTTTGGCTGACCATTTTAACTATAATGTTTCAGTATTACAAAT GGATGTTCAGGGTTTAGTTAATGTTTTGGTCTGTTTATTTGTTGTATTTTTACACACATG GCGCTTTTCTAAAGAACGTTTTACACATTGGTTTACATATGTGTGTTCTCTTATAGCAGT TGCTTACACTTATTTTTATAGTGGTGACTTTTTGAGTTTGCTTGTTATGTTTTTATGTGC TATATCTAGTGATTGGTACATTGGTGCCATTGTTTTTAGGTTGTCACGTTTGATTGTATT TTTAATTTGTGGTTATTTAGTTTGTACTTATTGGGGCATTTTGTATTGGTTCAATAGGTT TTTTAAATGTACTATGGGTGTTTATGATTTTAAGGTGAGTGCTGCTGAATTTAAATACAT GGTTGCTAATGGACTTCATGCACCACATGGACCTTTTGATGCACTTTGGTTATCATTCAA ACTACTTGGTATTGGTGGTGACCGTTGTATAAAAATTTCAACTGTCCAATCCAAACTGAC TGATTTGAAGTGTACTAATGTTGTGTTATTGGGTTGTTTTGTCTAGTATGAACATTGCAGC TAATTCTAGTGAATGGGCTTATTGTGTTGATTTACACAATAAGATTAATCTTTGTGATGA TGATTTTGGTCTTGATGGCCTTATTGATTCTTATTTTGATAATAGTAGCACCCTTCAGAG TGTTGCTTCATCATTTGTTAGTATGCCATCATATATTGCTTATGAAAATGCTAGACAAGC TTATGAGGATGCTATTGCTAATGGATCTTCTTCTCAACTTATTAAACAATTGAAGCGTGC CATGAATATCGCAAAGTCTGAATTTGATCATGAGATATCTGTTCAGAAGAAAATTAATAG AATGGCTGAACAAGCTGCTACTCAGATGTATAAAGAAGCACGCTCTGTTAATAGAAAATC TAAAGTTATTAGTGCTATGCACTCTTTACTTTTTGGAATGTTAAGACGTTTGGATATGTC TAGTGTTGAAACTGTTTTGAATTTAGCACGTGATGGTGTTGTGCCATTGTCAGTTATACC TGCAACTTCAGCTTCTAAACTAACTATTGTTAGTCCAGATCTTGAATCTTATTCTAAGAT TGTTTGTGATGGTTCTTTATGCTGGAGTTGTTTGGACACTTAATGATGTTAAAGA CAATGATGGTAGACCTGTTCATGTTAAAGAGATTACAAAGGAAAATGTTGAAACTTTGAC ATGGCCTCTTATCCTTAATTGTGAACGTGTTGTTAAACTTCAAAATAATGAAATTATGCC TGGTAAACTTAAGCAAAAACCTATGAAAGCTGAGGGTGATGGTGTTTTTAGGTGATGG TAATGCCTTGTATAATACTGAGGGTGGTAAAACTTTTATGTACGCTTATATTTCTAATAA CTCTCCTTGTCGATTTATGGTCGAAACACCTAATGGTCCTCAAGTGAAGTATTTGTATTT TGTTAAAAATTTAAATACCTTACGTAGAGGTGCCGTTCTTGGTTTTATAGGTGCCACAAT TCGTCTACAAGCTGGTAAACAAACTGAATTGGCTGTTAATTCTGGACTTTTAACTGCTTG TGCTTTTCTGTTGATCCAGCAACTACTTGGAAGCTGTTAAACATGGTGCAAAACC TGTAAGTAATTGTATTAAGATGTTATCTAATGGTGCTGGTAATGGTCAAGCTATAACAAC TAGTGTAGATGCTAACACCAATCAAGATTCTTATGGTGGAGCGTCTATTTGTTTTGTATTG TCGGGCCCACGTTCCTCACCCTAGTATGGATGGTTACTGTAAGTTTAAGGGTAAATGTGT TCAGGTTCCTATTGGTTGTTTGGATCCTATTAGGTTTTGTTTAGAAAATAATGTGTGTAA TGTTTGTGGTTGGTTGGGACACGGGTGTGCTTGTGACCGTACAACTATTCAAAGTGT TGACATTTCTTATTTAAACGAGCAAGGGGTTCTAGTGCAGCTCGACTAGAACCCTGCAAT GGCACGGACATCGATAAGTGTGTTCGTGCTTTTGACATTTATAATAAAAATGTTTCATTC TTGGGTAAGTGTTTGAAGATGAACTGTGTTCGTTTTAAAAATGCTGATCTTAAGGATGGT TATTTTGTTATAAAGAGGTGTACTAAGTCGGTTATGGAACACGAGCAATCCATGTATAAC CTACTTAACTTTCTGGTGCTTTGGCTGAGCATGATTTCTTTACTTGGAAAGATGGCAGA GTCATTTATGGTAATGTTAGTAGACATAATCTTACTAAATATACTATGATGGACTTGGTC TATGCTATGCGTAACTTTGATGAACAAAATTGTGATGTTCTAAAAGAAGTATTAGTTTTA ACTGGTTGTTGTGACAATTCTTATTTTGATAGTAAGGGTTGGTATGACCCAGTTGAAAAT GAAGATATACATAGAGTTTATGCATCTCTTGGCAAAATTGTAGCTAGAGCTATGCTTAAA TGCGTTGCTCTATGCGATGCGATGGTTGCTAAAGGTGTTGTTGGTGTTTTTAACATTAGAT

AACCAAGATCTTAATGGTAACTTTTATGATTTTGGTGATTTTGTTGTTAGCTTACCTAAT ATGGGTGTTCCCTGTTGTACATCATATTATTCTTATATGATGCCTATTATGGGTTTAACT AATTGTTTAGCTAGTGAGTGTTTTGTCAAGAGTGATATTTTTGGTAGTGATTTTAAAACT TTTGATTTGCTTAAGTATGATTTCACTGAACATAAAGAAAATTTATTCAATAAGTACTTT AAGCATTGGAGTTTTGATTATCATCCTAATTGTTGTGACTGTTATGATGATGTGTGTT ATACATTGTGCTAATTTTAATACACTATTTGCCACAACTATACCAGGTACTGCTTTTGGT CCACTATGTCGTAAAGTTTTTATAGATGGTGTTCCACTTGTTACAACTGCTGGTTATCAT ATTACTGAACTTTTGCAATTTGTCACCGACCCTTCCTTGATAATAGCTTCTTCCCCAGCA CTCGTTGATCAACGCACTATTTGTTTTTCTGTTGCAGCATTGAGTACTGGTTTGACAAAT CAAGTTGTTAAGCCAGGTCATTTTAATGAAGAGTTTTATAACTTTCTTCGTTTAAGAGGT TTCTTTGATGAAGGTTCTGAACTTACATTAAAACATTTCTTCTTCGCACAGAATGGTGAT GCTGCTGTTAAAGATTTTGACTTTTACCGTTATAATAAGCCTACCATTTTAGATATTTGT CAAGCTAGAGTTACATATAAGATAGTCTCTCGTTATTTTGACATTTATGAAGGTGGCTGT ATTAAGGCATGTGAAGTTGTTGTAACAATCTTAATAAGAGTGCTGGTTGGCCATTAAAT AAGTTTGGTAAAGCTAGTTTGTATTATGAATCTATATCTTATGAAGAACAGGATGCTTTG TTTGCTTTGACAAAGCGTAATGTCCTCCCTACTATGACACAGCTGAATCTTAAGTATGCT ATTAGTGGTAAAGAACGTGCTAGAACTGTTGGTGGTGTTTCTCTGTTGTCTACAATGACC ACAAGACAATACCATCAAAAACATCTTAAATCCATTGTTAATACACGCAATGCCACTGTT GTTATTGGTACTACCAAATTTTATGGTGGTTGGAATAATATGTTGCGTACTTTAATTGAT GGTGTTGAAAACCCTATGCTTATGGGTTGGGATTATCCCAAATGTGATAGAGCTTTGCCT AACATGATACGTATGATTTCAGCCATGGTGTTGGGCTCTAAGCATGTTAATTGTTGTACT GCAACAGATAGGTTTTATAGGCTTGGTAATGAGTTGGCACAAGTTTTAACAGAAGTTGTT TATTCTAATGGTGGTTTTTATTTTAAGCCAGGTGGTACGACTTCTGGTGACGCTAGTACA GCTTATGCTAATTCTATTTTTAACATTTTTCAAGCCGTGAGTTCTAACATTAACAGGTTG CTTAGTGTCCCATCAGATTCATGTAATAATGTTAATGTTAGGGATCTACAACGACGTCTG TATCTTAGGAAACATTTTTCAATGATGATCTCTCTGATGACGGTGTTGTCTGTTATAAC AAGGATTATGCTGAGTTAGGTTATATAGCAGACATTAGTGCTTTTAAAGCCACTTTGTAT TACCAGAATAATGTCTTTATGAGTACTTCTAAATGTTGGGTTGAAGAAGATTTAACTAAG GGACCACATGAGTTTTGTTCCCAGCATACTATGCAAATAGTTGACAAAGATGGTACCTAT TATTTGCCTTACCCAGATCCTAGTAGGATCTTGTCAGCTGGTGTTTTTGTTGATGATGTT GTTAAGACAGATGCTGTTGTTTGTTAGAACGTTATGTGTCTTTAGCTATTGATGCATAC CCTCTTTCAAAACACCCTAATTCCGAATATCGTAAGGTTTTTTTACGTATTACTTGATTGG GTTAAGCATCTTAACAAAATTTGAATGAGGGTGTTCTTGAATCTTTTTCTGTTACACTT TCTACAATATTGCAAGCTGCTGGTTTATGTGTTGTTGTGGTTCACAAACTGTACTTCGT TGTGGTGATTGTCTGCGTAAGCCTATGTTGTGCACTAAATGCGCATATGATCATGTATTT GGTGTTAGTGATGTCAAAAAATTGTATCTTGGTGGTTTGAATTACTATTGTACAAATCAT AAACCACAGTTGTCTTTTCCATTATGTTCAGCTGGTAATATTTTGGTTTATATAAAAAT TCAGCAACTGGTTCCTTAGATGTTGAAGTTTTTAATAGGCTTGCAACGTCTGATTGGACT GATGTTAGGGACTATAAACTTGCTAATGATGTTAAAGATACACTTAGACTCTTTGCGGCT GAAACTATTAAAGCTAAAGAAGAGAGTGTTAAGTCTTCTTATGCTTTTGCAACTCTTAAA GAGGTTGTTGGACCTAAAGAATTGCTTCTTAGTTGGGAAAGTGGTAAAGTTAAACCACCT GGTGAGTTCATCTTTGAGAAGGTTGAATATGGTTCTGATACTGTTACGTATAAGTCTACT GTAACTACTAAGTTAGTTCCTGGTATGATTTTTTGTCTTAACATCTCACAATGTCCAACCT TTACGTGCACCAACTATTGCAAACCAAGAGAAGTATTCTAGCATTTATAAATTGCACCCT GCTTTTAATGTCAGTGATGCATATGCTAATTTGGTTCCATATTACCAACTTATTGGTAAA CAAAAGATAACTACAATACAGGGTCCTCCTGGTAGTGGTAAGTCACATTGTTCCATTGGA GATTCCTTATGTGCAAAAGCTATGACTGTTTATAGCATTGATAAGTGTACTAGGATTATA CCTGCAAGAGCTCGGGTTGAGTGTTATAGTGGCTTTAAACCAAATAACACTAGTGCACAA TACATATTTAGCACTGTTAACGCATTACCTGAGTGTAATGCTGATATCGTTGTTGTAGAT

GAAGTTTCAATGTGTACAAATTATGACCTTTCTGTTATTAACCAGCGTTTATCATATAAA CATATTGTTTATGTTGGTGATCCACAACAACTTCCTGCACCTAGAGTAATGATTACTAAA GGTGTTATGGAGCCTGTTGATTATAACGTTGTTACTCAACGTATGTGTGCTATAGGCCCT GATGTTTTCTTCATAAATGTTATAGATGTCCTGCTGAAATAGTAATACAGTTTCTGAAC TTGTTTATGAGAACAAGTTTGTCCCTGTTAAACCTGCTAGTAAACAGTGTTTTAAAGTCT TTTTTAAGGGTAATGTACAAGGTTGACAATGGTTCTAGTATTAACAGAAAGCAGCTTGAA ATAGTTAAGCTGTTTTTAGTTAAAAATCCAAGTTGGAGTAAGGCTGTGTTTATTTCTCCT TATAATAGTCAGAATTATGTTGCTAGTAGATTTTTAGGACTTCAAATTCAAACTGTTGAT TCTTCTCAAGGTAGTGAGTATGATTATGTAATCTATGCACAAACTTCTGACACTGCACAT GCTTGCAATGTAAACCGTTTTAATGTTGCTATAACACGTGCTAAGAAGGGTATATTTTGT GTAATGTGTGATAAAACTTTGTTTGATTCACTTAAGTTTTTTGAGATTAAACATGCAGAT TTACACTCTAGCCAGGTTTGTGGCTTGTTTAAAAATTGTACACGCACTCCTCTTAATTTA CCACCAACTCATGCACACCTTTCTTGTCGTTGTCAGATCAGTTTAAGACTACAGGTGAT TTAGCTGTTCAAATAGGTTCAAATAACGTTTGTACTTATGAACATGTTATATCATTTATG GCTATTCGTAATGTGCGTGGTTGGTTGGGTATGGATGTTGAAAGTGCTCATGTTTGTGGC GATAACATAGGTACTAATGTTCCTTTACAGGTTGGTTTTTCAAATGGTGTTAATTTTGTT GTGCAAACTGAAGGTTGTGTGTCTACCAATTTTGGTGATGTTATTAAACCTGTTTGTGCA AAATCTCCACCAGGTGAACAATTTAGACACCTTATTCCTCTTTTACGTAAAGGACAACCT TGGTTAATTGTTCGTAGACGCATTGTGCAAATGATATCTGATTATTTGTCCAATTTGTCT GACATTCTTGTCTTTGTTTTGTGGGCAGGTAGTTTGGAATTAACTACAATGCGTTACTTT GTAAAAATAGGGCCAATTAAATATTGTTATTGTGGTAATTTTTGCCACTTGTTATAATTCA GTTAGTAATGAATATTGTTGTTTTTAAACATGCATTGGGTTGTGATTATGTTTACAATCCG TATGCTTTTGATATACAACAGTGGGGTTATGTTGGTTCCTTGAGCCAAAACCACCACACA TTCTGTAACATTCATAGAAACGAGCATGATGCCTCTGGTGATGCTGTTATGACACGTTGT TTGGCAGTACATGATTGTTTTGTCAAAAATGTTGATTGGACTGTAACGTACCCCTTTATT GCAAATGAGAAATTTATCAATGGCTGTGGGCGTAATGTCCAGGGACATGTTGTTCGTGCA GCCTTGAAATTGTATAAACCTAGTGTTATTCATGACATTGGTAATCCTAAAGGTGTACGT TGTGCTGTTACTGATGCCAAATGGTACTGTTATGACAAGCAACCTGTTAATAGTAATGTC AAGTTGTTGGATTATGATTATGCAACCCATGGTCAACTTGATGGTCTTTGTTTATTCTGG AATTGTAATGTTGATATGTATCCAGAATTTTCAATTGTGTGTCGTTTTGACACACGTACT TTTCATACACCAGCATATGATAAACGTGCTTTTGTTAAATTAAAACCTATGCCCTTTTTT TACTTTGATGACAGTGATTGTGATGTTGTGCAAGAACAAGTTAATTATGTACCCCTTCGC GTACCACATAGTTTTGATGTTTATAATTTGTGGCAAATTTTTATTGAAACTAATTTACAA AGTCTTGAAAATATAGCATTTAATGTTGTAAAAAAAGGGTGTTTTACTGGTGTTGATGGT GAGTTACCTGTTGCAGTTGTTAACGACAAAGTTTTTGTTCGCTATGGCGATGTTGACAAC TTGGTTTTTACAAATAAAACAACATTGCCTACTAATGTTGCTTTTGAATTGTTTGCAAAA CGAAAAATGGGTTTAACACCACCATTGTCTATTCTCAAAAATCTCGGTGTTGTTGCTACA TATAAATTTGTTTTATGGGATTATGAAGCTGAAAGACCTTTTACCTCATATACTAAGAGT GTATGTAAATACACTGATTTTAATGAGGATGTTTGTGTTTTGTTTTGACAATAGTATTCAG GGTTCGTATGAGCGTTTTACGCTTACTACGAACGCTGTTTTATTTTCTACTGTTGTCATT ${\tt AAAAATTTAACACCTATAAAGTTGAATTTTGGTATGTTGAATGGTATGCCAGTTTCTTCT}$ ATTAAGGGTGATAAAGGTGTTGAAAAATTAGTTAATTGGTACATATATGTTCGTAAAAAT GGTCAATTTCAAGATCACTATGATGGTTTTTACACTCAAGGTAGGAATTTATCAGACTTT ACACCAAGAAGTGATATGGAGTATGATTTTCTTAACATGGATATGGGTGTTTTTATTAAT AAATATGGTCTTGAGGATTTTAATTTTGAACATGTTGTATATGGTGATGTTTCAAAAACT ACATTAGGAGGTCTTCATTTGTTGATATCACAGTTTAGGCTTAGTAAAATGGGTGTTTTG AAAGCTGATGATTTTGTCACTGCTTCTGACACAACTTTGAGGTGCTGTACTGTTACTTAT CTTAATGAACTTAGTTCAAAAGTTGTTTGTACTTATATGGATTTGTTGTTGGACGACTTT GTTACTATACTAAAGAGTTTAGATCTTGGTGTAATATCTAAAGTTCATGAAGTTATTATA GATAATAAACCTTATAGGTGGATGTTGTGGTGTAAAGATAACCACTTGTCCACTTTTTAT CCACAGTTGCAGTCTGCTGAATGGAAGTGTGGTTATGCTATGCCACAAATTTATAAGCTT

CAACGTATGTGTTTGGAACCTTGTAATTTATATATTATGGTGCTGGTATTAAGTTGCCT AGTGGTATAATGTTAAATGTTGTTAAATACACTCAGCTTTGTCAATACCTAAATAGCACT ACAATGTGCGTACCTCATAATATGCGTGTTTTGCACTATGGTGCTGGTTCTGACAAAGGT GTGGCACCTGGTACAACTGTTTTAAAACGTTGGCTACCACCCGATGCAATAATCATTGAT AATGATATCAATGATTATGTTAGTGATGCAGATTTTAGCATTACAGGTGATTGTGCTACT TTTTGTGATGGTGAAAATGTCTCTAAAGATGGGTTTTTTACTTATCTTAATGGTGTTATT AGAGAAAATTAGCTATTGGTGGTAGTGTTGCCATTAAGATTACAGAATATAGTTGGAAT AAGTATCTTTATGAATTAATACAAAGATTTGCTTTTTTGGACTTTGTTTTTGCACGTCTGTT GGTCCTTTTATAGCTGGTAACACTGTTCATGCTAATTATATATTTTGGCGTAATTCTACT GCCACTGTTGTTGTTACACTTAAAGATAGTGATGTAAATGATATGGTTTTGAGTTTGATT AAGAGTGGTAGGTTGTTACGCAATAATGGTCGTTTTTGGTGGTTTTTAGTAATCATTTA GTCTCAACTAAATGAAACTTTTCTTGATTTTTGCTTGTTTTTGCCCCTTGGCTCTTTTT TCACATGTAATAGTAATGCTAATCTCTCTATGTTACAATTAGGTGTTCCTGACAATTCTT CAACTATTGTTACGGGTTTATTGCCAACTCATTGGTTTTGTGCTAATCAGAGTACATCTG TTTACTCAGCCAATGGTTTCTTTTATATTGATGTTGGTAATCACCGTAGTGCTTTTGCGC TCCATACTGGTTATTATGATGCTAATCAGTATTATATTTATGTTACTAATGAAATAGGCT TAAATGCTTCTGTTACTCTTAAGATTTGTAAGTTTAGTAGAAACACTACTTTTGATTTTT TAAGTAATGCTTCTAGTTCTTTTGACTGTATAGTTAATTTGTTATTTACAGAACAGTTAG GTGCGCCTTTGGGCATAACTATATCTGGTGAAACTGTGCGTCTGCATTTATATAATGTAA CTCGTACTTTTATGTGCCAGCAGCTTATAAACTTACTAAACTTAGTGTTAAATGTTACT TTAACTATTCCTGTGTTTTTAGTGTTGTCAACGCCACCGTTACTGTGAATGTCACCACAC ATAATGGCCGTGTAGTTAACTACACTGTTTGTGATGATTGTAATGGTTATACTGATAACA TATTTTCTGTTCAACAGGATGGCCGCATTCCTAATGGTTTCCCCTTTTAATAATTGGTTTT TGTTAACTAATGGTTCCACACTAGTGGACGGGGTCTCTAGACTTTATCAACCACTCCGTT TAACTTGTTTATGGCCTGTACCTGGTCTTAAATCTTCAACTGGTTTTGTTTATTTTAATG CCACTGGTTCTGATGTTAATTGTAACGGCTATCAACATAATTCTGTTGATGTTATGC GTTACAATCTTAACTTCAGTGCTAATTCTTTGGACAATCTCAAGAGTGGTGTTATAGTTT TTAAAACTTTACAGTACGATGTTTTGTTTTATTGTAGTAATTCTTCCTCAGGTGTTCTTG ACACCACAATACCTTTTGGCCCGTCCTCTCAACCTTATTACTGTTTTATAAACAGCACTA TTGTTGCTAGAACTGGCCAGTTTTATATTAATGGTTTTAAGTATTTCGATTTGGGTTTCA TAGAAGCTGTCAATTTTAATGTCACGACTGCTAGCGCCACAGATTTTTGGACGGTTGCAT ATTGCGATTCTCCATTTGAAAAGTTGCAGTGTGAGCACTTGCAGTTTGGATTGCAGGATG GTTTTTATTCTGCAAATTTTCTTGATGATAATGTTTTGCCTGAGACTTATGTTGCACTCC CCATTTATTATCAACACGGACATAAATTTTACTGCAACTGCATCTTTTGGTGGTTCTT GTTATGTTTGTAAACCACACCAGGTTAATATATCTCTTAATGGTAACACTTCAGTGTGTG TTAGAACATCTCATTTTCAATTAGGTATATTTATAACCGCGTTAAGAGTGGTTCACCAG GTGACTCTTCATGGCACATTTATTTAAAGAGTGGCACTTGTCCATTTTCTTTTTCTAAGT TAAATAATTTCAAAAGTTCAAGACTATTTGTTTCTCAACCGTCGAAGTGCCTGGTAGTT GTAATTTTCCGCTTGAAGCCACCTGGCATTACACTTCTTATACTATTGTTGGTGCTTTGT ATGTTACTTGGTCTGAAGGTAATTCTATTACTGGTGTACCTTATCCTGTCTCTGGTATTC GTGAGTTTAGTATTTAGTTTTAAATAATTGTACCAAATATAATATTTATGATTATGTTG GTACTGGAATTATACGTTCTTCAAACCAGTCACTTGCTGGTGGTATTACATATGTTTCTA ACTCTGGTAATTTACTTGGTTTTAAAAATGTTTCCACTGGTAACATTTTTATTGTGACAC CATGTAACCAACCAGACCAAGTAGCTGTTTATCAACAAAGCATTATTGGTGCCATGACCG CTGTTAATGAGTCTAGATATGGCTTGCAAAACTTACTACAGTTACCTAACTTTTATTATG TTAGTAATGGTGGTAACAATTGCACTACGGCCGTTATGACTTATTCTAATTTTGGTATTT GTGCTGATGGTTCTTTGATTCCTGTTCGTCCGCGTAATTCTAGTGATAATGGTATTTCAG CCATAATCACTGCTAATTATCCATTCCTTCTAACTGGACTACTTCAGTTCAAGTTGAGT ACCTCCAAATTACTAGTACTCCAATAGTTGTTGATTGTGCTACTTATGTGTGAATGGTA ACCCTCGCTGTAAGAATCTACTTAAGCAGTATACTTCTGCTTGTAAAACTATTGAAGATG

CCTTACGACTTAGTGCTCATTTGGAAACTAATGATGTTAGTAGTATGCTAACTTTCGATA GCAATGCTTTTAGTTTGGCTAATGTTACTAGTTTTTGGAGATTATAACCTTTCTAGTGTTT TACCTCAGAGAAACATTCGTTCAAGCCGTATAGCAGGACGTAGTGCTTTGGAAGATTTGT TGTTTAGCAAAGTTGTTACATCTGGTTTGGGTACTGTTGATGTTGACTATAAGTCTTGTA CTAAAGGTCTTTCTATTGCTGACCTTGCTTGTGCTCAGTACTACAATGGCATAATGGTTT TGCCAGGTGTTGCTGATGCTGAACGTATGGCCATGTACACAGGTTCTCTTATAGGTGGCA TGGTGCTCGGAGGTCTTACATCAGCAGCCGCCATACCTTTTTCTTTGGCACTGCAAGCAC GACTTAACTATGTTGCTTTACAAACTGATGTGCTTCAAGAAAATCAGAAAATTTTGGCTG CATCATTTAATAAGGCTATTAATAATATTGTTGCTTCTTTTAGTAGCGTTAATGATGCTA TTACACAAACTGCAGAGGCTATACATACTGTTACTATTGCACTTAATAAGATTCAGGATG TTGTTAATCAACAGGGTAGTGCTCTTAACCATCTCACTTCACAATTGAGACATAATTTTC AGGCCATTTCTAATTCAATTCAGGCTATTTATGACCGGCTTGATTCAATTCAAGCCGATC AACAAGTTGACAGATTAATTACTGGACGGCTTGCAGCTTTGAATGCATTTGTTTCCCAAG TTTTGAATAAATATACTGAAGTTCGTGGTTCAAGACGCTTAGCACAGCAGAAGATTAATG AATGTGTCAAGTCACAATCTAATAGATATGGTTTTTTGTGGCAATGGCACTCACATCTTTT CAATCGTCAACTCTGCTCCAGATGGTTTGCTTTTTCTTCATACTGTTTTTGCTGCCAACTG ATTACAAGAATGTAAAGGCGTGGTCTGGTATCTGTGTTGATGGCATTTATGGCTATGTTC TGCGTCAACCTAACTTGGTTCTTTATTCTGATAATGGTGTCTTTCGTGTAACTTCCAGGG TCATGTTTCAACCTCGCTTACCTGTTTTGTCTGATTTTTGTGCAAATATATAATTGTAATG TTACTTTGTTAACATATCTCGTGTTGAGTTACATACTGTCATACCTGACTACGTTGATG TTAATAAAACATTACAAGAGTTTGCACAAAACTTACCAAAGTATGTTAAGCCTAATTTTG ACTTGACTCCTTTTAATTTAACATATCTTAATTTGAGTTCTGAGTTGAAGCAACTCGAAG CTAAAACTGCTAGTCTTTTTCAAACTACTGTTGAATTACAAGGTCTTATTGATCAGATTA ACAGTACATATGTTGATTTGAAGTTGCTTAATAGGTTTGAAAATTATCAAATGGCCTT GGTGGGTTTGGCTCATTATTTCTGTTGTTTTTTGTTGTATTGTTGAGTCTTCTTGTGTTTT GTTGTCTTTCTACAGGTTGTTGTGGTTGTTGCAATTGTTTAACTTCATCAATGCGAGGCT GTTGTGATTGTGGTTCAACTAAACTTCCTTATTACGAATTTGAAAAGGTCCACGTTCAAT AATGCCTTTTGGTGGCCTATTTCAACTTACTCTTGAAAGTACTATTAATAAGAGTGTGGC TAATCTCAAATTACCACCTCATGATGTTACTGTCTTGCGTGACAATCTTAAACCTGTTAC ATTCAAACCTCTTACTGCTAGAGGTCGTGTTGCTTGTTTTGTTTTAAAACTATTGACACT TTCTACGCTGTTGTTTCGATTCATACATGTTGGCTATTATGCCTATCTCTATAAAAATTT TTCATTTGTTTGTTCAATGTTACTAAACTATGCTTCGTTTCAGGCAAGTGTTGGTATCT TGAACAATCATTTTATGAAAATCGTTTTGCTGCTATTTATGGTGGTGACCACTATGTCGT TTTAGGTGGTGAAACTATTACTTTTGTTTCTTTTGATGACCTTTATGTTGCTATTAGAGG TTCTTGTGAAAAGAACCTACAACTTATGCGTAAGGTTGACTTGTATAATGGTGCTGTCAT TTACATTTTTGCCGAAGAGCCTGTTGTTGGTATAGTCTACTCTTCTCAACTATACGAAGA TGTTCCTTCGATTAATTGATGACAATGGTATTGTCCTCAATTCCATTTTATGGCTCCTTG TTATGATATTTTTCTTTGTGTTGGCAATGACCTTTATTAAACTGATTCAATTGTGTTTTA CTTGTCATTATTTTTTTAGTAGGACATTATATCAACCAGTTTATAAAATTTTTCTTGCTT ACCAAGATTATATGCAAATAGCACCTGTTCCAGCTGAAGTACTAAATGTCTAAACTAAAC GATGTCTAATAGTAGTGTGCCTCTTTTAGAGGTTTATGTCCATTTACGTAACTGGAACTT TAGTTGGAATTTAATTCTAACGCTTTTTATAGTTGTGTTGCAGTATGGGCATTATAAGTA TAGCAGACTTCTTTATGGTTTAAAGATGTCTGTTTTATGGTGTTTATGGCCACTTGTTCT AGCTTTGTCTATTTTTGACTGTTTTGTCAATTTTAATGTGGACTGGGTCTTTTTTTGGTTT TAGTATTCTTATGTCTATTATTACACTTTGTTTATGGGTTATGTATTTTGTTAATAGTTT CAGACTTTGGCGCCGTGTTAAAACTTTTTGGGCTTTTAATCCTGAAACTAATGCAATCAT CTCTCTCCAGGTTTACGGACATAATTATTACTTACCGGTGATGGCTGCACCTACAGGTGT TACATTAACACTTCTTAGTGGTGTACTTCTTGTTGATGGCCATAAGATTGCTACTCGTGT TCAAGTGGGTCAGTTGCCTAAATATGTAATAGTTGCTACGCCTAGTACCACAATTGTTTG TGACCGTGTTGGTCGCTCTGTTAATGAAACAAGCCAGACTGGTTGGGCATTCTACGTCCG TGCTAAACATGGTGATTTTCTGGTGTTGCCTCTCAGGAGGGTGTTTTGTCAGAAAGAGA GAAGTTGCTTCATTTAATCTAAACTAAACAAAATGGCTAGTGTAAATTGGGCCGATGACA GAGCTGCTAGGAAGAAATTTCCTCCTCCTTCATTTTACATGCCTCTTTTGGTTAGTTCTG

ATAAGGCACCATATAGGGTCATTCCCAGGAATCTTGTCCCTATTGGTAAGGGTAATAAAG ATGAGCAGATTGGTTATTGGAATGTTCAAGAGCGTTGGCGTATGCGCAGGGGGCAACGTG TTGATTTGCCTCCTAAAGTTCATTTTTATTACCTAGGTACTGGACCTCATAAGGACCTTA ATACCAGTCTTGGTAATCGCAAACGTAATCAGAAACCTTTGGAACCAAAGTTCTCTATTG CTTTGCCTCCAGAGCTCTCTGTTGTTGAGTTTGAGGATCGCTCTAATAACTCATCTCGTG CTAGCAGTCGTTCTTCAACTCGTAACAACTCACGAGACTCTTCTCGTAGCACTTCAAGAC AACAGTCTCGCACTCGTTCTGATTCTAACCAGTCTTCTTCAGATCTTGTTGCTGCTGTTA CTTTGGCCTTAAAGAACTTAGGTTTTGATAACCAGTCGAAGTCACCTAGTTCTTCTGGTA CTTCCACTCCTAAGAAACCTAATAAGCCTCTTTCTCAACCCAGGGCTGATAAGCCTTCTC AGTTGAAGAAACCTCGTTGGAAGCGTGTTCCTACCAGAGAGGAAAATGTTATTCAGTGCT TTGGTCCTCGTGATTTTAATCACAATATGGGGGGATTCAGATCTTGTTCAGAATGGTGTTG ATGCCAAAGGTTTTCCACAGCTTGCTGAATTGATTCCTAATCAGGCTGCGTTATTCTTTG ATAGTGAGGTTAGCACTGATGAAGTGGGTGATAATGTTCAGATTACCTACACAAAA TGCTTGTAGCTAAGGATAATAAGAACCTTCCTAAGTTCATTGAGCAGATTAGTGCTTTTA CTAAACCCAGTTCTATCAAAGAAATGCAGTCACAATCATCTCATGTTGCTCAGAACACAG TACTTAATGCTTCTATTCCAGAATCTAAACCATTGGCTGATGATGATTCAGCCATTATAG **AAATTGTCAACGAGGTTTTGCATTAAATTGTTTTTGTAATTCCAGTTGAATGTTTATTATT** ATTAGTTGCAACCCCATGCGTTTAGCGCATGATAAGGGTTTAGTCTTACACACAATGGTA GGCCAGTGATAGTAAAGTGTAAGTAATTTGCTATCATATTAACATGTCTAGAGGAAAGTC AGAACTTTTTCTGTTTGTGTTGTTGGAGTACTTAAAGATCGCATAGGCGCGCCAACAATG GAAGAGCCAACAACATATCTAAAAATGTTTTGTCTGGTACTTGTTAATGATATTGTTTTT GATATGGATACAC

Figure 20

ORF 1a, replicase enzyme complex

 ${\tt MFYNQVTLAVASDSEISGFGFAIPSVAVRTYSEAAAQGFQACRFVAFGLQDCVTGINDDD}$ YVIALTGTNQLCAKILPFSDRPLNLRGWLIFSNSNYVLQDFDVVFGHGAGSVVFVDKYMC GFDGKPVLPKNMWEFRDYFNNNTDSIVIGGVTYQLAWDVIRKDLSYEQQNVLAIESIHYL GTTGHTLKSGCKLTNAKPPKYSSKVVLSGEWNAVYRAFGSPFITNGMSLLDIIVKPVFFN AFVKCNCGSESWSVGAWDGYLSSCCGTPAKKLCVVPGNVVPGDVIITSTSAGCGVKYYAG LVVKHITNITGVSLWRVTAVHSDGMFVASSSYDALLHRNSLDPFCFDVNTLLSNQLRLAF LGASVTEDVKFAASTGVIDISAGMFGLYDDILTNNKPWFVRKASGLFDAIWDAFVAAIKL VPTTTGVLVRFVKSIASTVLTVSNGVIIMCADVPDAFQSVYRTFTQAICAAFDFSLDVFK IGDVKFKRLGDYVLTENALVRLTTEVVRGVRDARIKKAMFTKVVVGPTTEVKFSVIELAT VNLRLVDCAPVVCPKGKIVVIAGQAFFYSGGFYRFMVDPTTVLNDPVFTGDLFYTIKFSG FKLDGFNHOFVTASSATDAI IAVELLLLDFKTAVFVYTCVVDGCSVIVRRDATFATHVCF KDCYNVWEOFCIDNCGEPWFLTDYNAILQSNNPQCAIVQASESKVLLERFLPKCPEILLS IDDGHLWNLFVEKFNFVTDWLKTLKLTLTSNGLLGNCAKRFRRVLVKLLDVYNGFLETVC SVAYTAGVCIKYYAVNVPYVVISGFVSRVIRRERCDMTFPCVSCVTFFYEFLDTCFGVSK PNAIDVEHLELKETVFVEPKDGGQFFVSGDYLWYVVDDIYYPASCNGVLPVAFTKLAGGK ISFSDDVIVHDVEPTHKVKLIFEFEDDVVTSLCKKSFGKSIIYTGDWEGLHEVLTSAMNV IGQHIKLPQFYIYDEEGGYDVSKPVMISQWPISNDSNGCVVEASTDFHQLECIVDDSVRE EVDIIEQPFEEVEHVLSIKQPFSFSFRDELGVRVLDQSDNNCWISTTLVQLQLTKLLDDS IEMQLFKVGKVDSIVQKCYELSHLISGSLGDSGKLLSELLKEKYTCSITFEMSCDCGKKF DDQVGCLFWIMPYTKLFQKGECCICHKMQTYKLVSMKGTGVFVQDPAPIDIDAFPVKPIC SSVYLGVKGSGHYQTNLYSFNKAIDGFGVFDIKNSSVNTVCFVDVDFHSVEIEAGEVKPF AVYKNVKFYLGDISHLVNCVSFDFVVNAANENLLHGGGVARAIDILTEGQLQSLSKDYIS SNGPLKVGAGVMLECEKFNVFNVVGPRTGKHEHSLLVEAYNSILFENGIPLMPLLSCGIF GVRIENSLKALFSCDINKPLQVFVYSSNEEQAVLKFLDGLDLTPVIDDVDVVKPFRVEGN FSFFDCGVNALDGDIYLLFTNSILMLDKQGQLLDTKLNGILQQAALDYLATVKTVPAGNL VKLFVESCTIYMCVVPSINDLSFDKNLGRCVRKLNRLKTCVIANVPAIDVLKKLLSSLTL TVKFVVESNVMDVNDCFKNDNVVLKITEDGINVKDVVVESSKSLGKQLGVVSDGVDSFEG VLPINTDTVLSVAPEVDWVAFYGFEKAALFASLDVKPYGYPNDFVGGFRVLGTTDNNCWV NATCIILQYLKPTFKSKGLNVLWNKFVTGDVGPFVSFIYFITMSSKGQKGDAEEALSKLS EYLISDSIVTLEQYSTCDICKSTVVEVKSAIVCASVLKDGCDVGFCPHRHKLRSRVKFVN GRVVITNVGEP1ISOPSKLLNGIAYTTFSGSFDNGHYVVYDAANNAVYDGARLFSSDLST LAVTAIVVVGGCVTSNVPTIVSEKISVMDKLDTGAOKFFOFGDFVMNNIVLFLTWLLSMF SLLRTSIMKHDIKVIAKAPKRTGVILTRSFKYNIRSALFVIKOKWCVIVTLFKFLLLLYA IYALVFMIVQFSPFNSLLCGDIVSGYEKSTFNKDIYCGNSMVCKMCLFSYQEFNDLDHTS LVWKHIRDPILISLOPFVILVILLIFGNMYLRFGLLYFVAQFISTFGSFLGFHQKQWFLH FVPFDVLCNEFLATFIVCKIVLFVRHIIVGCNNADCVACSKSARLKRVPLQTIINGMHKS FYVNANGGTCFCNKHNFFCVNCDSFGPGNTFINGDIARELGNVVKTAVQPTAPAYVIIDK VDFVNGFYRLYSGDTFWRYDFDITESKYSCKEVLKNCNVLENFIVYNNSGSNITQIKNAC VYFSQLLCEPIKLVNSELLSTLSVDFNGVLHKAYVDVLCNSFFKELTANMSMAECKATLG LTVSDDDFVSAVANAHRYDVLLSDLSFNNFFISYAKPEDKLSVYDIACCMRAGSKVVNHN VLIKESIPIVWGVKDFNTLSQEGKKYLVKTTKAKGLTFLLTFNDNQAITQVPATSIVAKQ GAGFKRTYNFLWYVCLFVVALFIGVSFIDYTTTVTSFHGYDFKYIENGOLKVFEAPLHCV RNVFDNFNQWHEAKFGVVTTNSDKCPIVVGVSERINVVPGVPTNVYLVGKTLVFTLQAAF GNTGVCYDFDGVTTSDKCIFNSACTRLEGLGGDNVYCYNTDLIEGSKPYSTLOPNAYYKY DAKNYVRFPEILARGFGLRTIRTLATRYCRVGECRDSHKGVCFGFDKWYVNDGRVDDGYI CGDGLIDLLVNVLSIFSSSFSVVAMSGHMLFNFLFAAFITFLCFLVTKFKRVFGDLSYGV FTVVCATLINNISYVVTQNLFFMLLYAILYFVFTRTVRYAWIWHIAYIVAYFLLIPWWLL TWFSFAAFLELLPNVFKLKISTQLFEGDKFIGTFESAAAGTFVLDMRSYERLINTISPEK LKNYAASYNKYKYYSGSASEADYRCACYAHLAKAMLDYAKDHNDMLYSPPTISYNSTLQS GLKKMAQPSGCVERCVVRVCYGSTVLNGVWLGDTVTCPRHVIAPSTTVLIDYDHAYSTMR LHNFSVSHNGVFLGVVGVTMHGSVLRIKVSQSNVHTPKHVFKTLKPGDSFNILACYEGIA SGVFGVNLRTNFTIKGSFINGACGSPGYNVRNDGTVEFCYLHQIELGSGAHVGSDFTGSV

Figure 20 (Cont.)

YGNFDDQPSLQVESANLMLSDNVVAFLYAALLNGCRWWLCSTRVNVDGFNEWAMANGYTS VSSVECYSILAAKTGVSVEQLLASIQHLHEGFGGKNILGYSSLCDEFTLAEVVKQMYGVN LQSGKVIFGLKTMFLFSVFFTMFWAELFIYTNTIWINPVILTPIFCLLLFLSLVLTMFLK HKFLFLQVFLLPTVIATALYNCVLDYYIVKFLADHFNYNVSVLQMDVQGLVNVLVCLFVV FLHTWRFSKERFTHWFTYVCSLIAVAYTYFYSGDFLSLLVMFLCAISSDWYIGAIVFRLS RLIVFFSPESVFSVFGDVKLTLVVYLICGYLVCTYWGILYWFNRFFKCTMGVYDFKVSAA EFKYMVANGLHAPHGPFDALWLSFKLLGIGGDRCIKISTVQSKLTDLKCTNVVLLGCLSS MNIAANSSEWAYCVDLHNKINLCDDPEKAQSMLLALLAFFLSKHSDFGLDGLIDSYFDNS STLQSVASSFVSMPSYIAYENARQAYEDAIANGSSSQLIKQLKRAMNIAKSEFDHEISVQ $\tt KKINRMAEQAATQMYKEARSVNRKSKVISAMHSLLFGMLRRLDMSSVETVLNLARDGVVP$ LSVIPATSASKLTIVSPDLESYSKIVCDGSVHYAGVVWTLNDVKDNDGRPVHVKEITKEN VETLTWPLILNCERVVKLQNNEIMPGKLKQKPMKAEGDGGVLGDGNALYNTEGGKTFMYA YISNKADLKFVKWEYEGGCNTIELDSPCRFMVETPNGPQVKYLYFVKNLNTLRRGAVLGF IGATIRLQAGKQTELAVNSGLLTACAFSVDPATTYLEAVKHGAKPVSNCIKMLSNGAGNG QAITTSVDANTNQDSYGGASICLYCRAHVPHPSMDGYCKFKGKCVQVPIGCLDPIRFCLE NNVCNVCGCWLGHGCACDRTTIQSVDISYLNEQGVLVQLD

Figure 21

ORF 1ab replicase polyprotein

MFYNQVTLAVASDSEISGFGFAIPSVAVRTYSEAAAQGFQACRFVAFGLQDCVTGINDDD YVIALTGTNQLCAKILPFSDRPLNLRGWLIFSNSNYVLQDFDVVFGHGAGSVVFVDKYMC GFDGKPVLPKNMWEFRDYFNNNTDSIVIGGVTYQLAWDVIRKDLSYEQQNVLAIESIHYL GTTGHTLKSGCKLTNAKPPKYSSKVVLSGEWNAVYRAFGSPFITNGMSLLDIIVKPVFFN AFVKCNCGSESWSVGAWDGYLSSCCGTPAKKLCVVPGNVVPGDVIITSTSAGCGVKYYAG LVVKHITNITGVSLWRVTAVHSDGMFVASSSYDALLHRNSLDPFCFDVNTLLSNQLRLAF LGASVTEDVKFAASTGVIDISAGMFGLYDDILTNNKPWFVRKASGLFDAIWDAFVAAIKL VPTTTGVLVRFVKSIASTVLTVSNGVIIMCADVPDAFQSVYRTFTQAICAAFDFSLDVFK IGDVKFKRLGDYVLTENALVRLTTEVVRGVRDARIKKAMFTKVVVGPTTEVKFSVIELAT VNLRLVDCAPVVCPKGKIVVIAGQAFFYSGGFYRFMVDPTTVLNDPVFTGDLFYTIKFSG FKLDGFNHQFVTASSATDAIIAVELLLLDFKTAVFVYTCVVDGCSVIVRRDATFATHVCF KDCYNVWEQFCIDNCGEPWFLTDYNAILQSNNPQCAIVQASESKVLLERFLPKCPEILLS IDDGHLWNLFVEKFNFVTDWLKTLKLTLTSNGLLGNCAKRFRRVLVKLLDVYNGFLETVC SVAYTAGVCIKYYAVNVPYVVISGFVSRVIRRERCDMTFPCVSCVTFFYEFLDTCFGVSK PNAIDVEHLELKETVFVEPKDGGOFFVSGDYLWYVVDDIYYPASCNGVLPVAFTKLAGGK ISFSDDVIVHDVEPTHKVKLIFEFEDDVVTSLCKKSFGKSIIYTGDWEGLHEVLTSAMNV IGOHIKLPOFYIYDEEGGYDVSKPVMISOWPISNDSNGCVVEASTDFHOLECIVDDSVRE EVDI IEOPFEEVEHVLSIKQPFSFSFRDELGVRVLDQSDNNCWISTTLVQLQLTKLLDDS IEMOLFKVGKVDSIVQKCYELSHLISGSLGDSGKLLSELLKEKYTCSITFEMSCDCGKKF DDOVGCLFWIMPYTKLFOKGECCICHKMQTYKLVSMKGTGVFVQDPAPIDIDAFPVKPIC SSVYLGVKGSGHYQTNLYSFNKAIDGFGVFDIKNSSVNTVCFVDVDFHSVEIEAGEVKPF AVYKNVKFYLGDISHLVNCVSFDFVVNAANENLLHGGGVARAIDILTEGOLOSLSKDYIS SNGPLKVGAGVMLECEKFNVFNVVGPRTGKHEHSLLVEAYNSILFENGIPLMPLLSCGIF GVRIENSLKALFSCDINKPLOVFVYSSNEEOAVLKFLDGLDLTPVIDDVDVVKPFRVEGN FSFFDCGVNALDGDIYLLFTNSILMLDKQGQLLDTKLNGILQQAALDYLATVKTVPAGNL VKLFVESCTIYMCVVPSINDLSFDKNLGRCVRKLNRLKTCVIANVPAIDVLKKLLSSLTL TVKFVVESNVMDVNDCFKNDNVVLKITEDGINVKDVVVESSKSLGKQLGVVSDGVDSFEG VLPINTDTVLSVAPEVDWVAFYGFEKAALFASLDVKPYGYPNDFVGGFRVLGTTDNNCWV NATCIILQYLKPTFKSKGLNVLWNKFVTGDVGPFVSFIYFITMSSKGQKGDAEEALSKLS EYLISDSIVTLEQYSTCDICKSTVVEVKSAIVCASVLKDGCDVGFCPHRHKLRSRVKFVN GRVVITNVGEPIISQPSKLLNGIAYTTFSGSFDNGHYVVYDAANNAVYDGARLFSSDLST LAVTAIVVVGGCVTSNVPTIVSEKISVMDKLDTGAQKFFQFGDFVMNNIVLFLTWLLSMF SLLRTSIMKHDIKVIAKAPKRTGVILTRSFKYNIRSALFVIKQKWCVIVTLFKFLLLLYA IYALVFMIVQFSPFNSLLCGDIVSGYEKSTFNKDIYCGNSMVCKMCLFSYQEFNDLDHTS LVWKHIRDPILISLQPFVILVILLIFGNMYLRFGLLYFVAQFISTFGSFLGFHQKQWFLH FVPFDVLCNEFLATFIVCKIVLFVRHIIVGCNNADCVACSKSARLKRVPLOTIINGMHKS FYVNANGGTCFCNKHNFFCVNCDSFGPGNTFINGDIARELGNVVKTAVQPTAPAYVIIDK VDFVNGFYRLYSGDTFWRYDFDITESKYSCKEVLKNCNVLENFIVYNNSGSNITQIKNAC VYFSQLLCEPIKLVNSELLSTLSVDFNGVLHKAYVDVLCNSFFKELTANMSMAECKATLG LTVSDDDFVSAVANAHRYDVLLSDLSFNNFFISYAKPEDKLSVYDIACCMRAGSKVVNHN VLIKESIPIVWGVKDFNTLSQEGKKYLVKTTKAKGLTFLLTFNDNOAITOVPATSIVAKO GAGFKRTYNFLWYVCLFVVALFIGVSFIDYTTTVTSFHGYDFKYIENGOLKVFEAPLHCV RNVFDNFNQWHEAKFGVVTTNSDKCPIVVGVSERINVVPGVPTNVYLVGKTLVFTLOAAF GNTGVCYDFDGVTTSDKCIFNSACTRLEGLGGDNVYCYNTDLIEGSKPYSTLOPNAYYKY DAKNYVRFPEILARGFGLRTIRTLATRYCRVGECRDSHKGVCFGFDKWYVNDGRVDDGYI CGDGLIDLLVNVLSIFSSSFSVVAMSGHMLFNFLFAAFITFLCFLVTKFKRVFGDLSYGV FTVVCATLINNISYVVTQNLFFMLLYAILYFVFTRTVRYAWIWHIAYIVAYFLLIPWWLL TWFSFAAFLELLPNVFKLKISTQLFEGDKFIGTFESAAAGTFVLDMRSYERLINTISPEK LKNYAASYNKYKYYSGSASEADYRCACYAHLAKAMLDYAKDHNDMLYSPPTISYNSTLQS ${\tt GLKKMAQPSGCVERCVVRVCYGSTVLNGVWLGDTVTCPRHVIAPSTTVLIDYDHAYSTMR}$ LHNFSVSHNGVFLGVVGVTMHGSVLRIKVSQSNVHTPKHVFKTLKPGDSFNILACYEGIA SGVFGVNLRTNFTIKGSFINGACGSPGYNVRNDGTVEFCYLHQIELGSGAHVGSDFTGSV

YGNFDDQPSLQVESANLMLSDNVVAFLYAALLNGCRWWLCSTRVNVDGFNEWAMANGYTS VSSVECYSILAAKTGVSVEQLLASIQHLHEGFGGKNILGYSSLCDEFTLAEVVKQMYGVN LQSGKVIFGLKTMFLFSVFFTMFWAELFIYTNTIWINPVILTPIFCLLLFLSLVLTMFLK HKFLFLQVFLLPTVIATALYNCVLDYYIVKFLADHFNYNVSVLQMDVQGLVNVLVCLFVV FLHTWRFSKERFTHWFTYVCSLIAVAYTYFYSGDFLSLLVMFLCAISSDWYIGAIVFRLS RLIVFFSPESVFSVFGDVKLTLVVYLICGYLVCTYWGILYWFNRFFKCTMGVYDFKVSAA EFKYMVANGLHAPHGPFDALWLSFKLLGIGGDRCIKISTVQSKLTDLKCTNVVLLGCLSS MNIAANSSEWAYCVDLHNKINLCDDPEKAQSMLLALLAFFLSKHSDFGLDGLIDSYFDNS STLQSVASSFVSMPSYIAYENARQAYEDAIANGSSSQLIKQLKRAMNIAKSEFDHEISVQ KKINRMAEQAATQMYKEARSVNRKSKVISAMHSLLFGMLRRLDMSSVETVLNLARDGVVP LSVIPATSASKLTIVSPDLESYSKIVCDGSVHYAGVVWTLNDVKDNDGRPVHVKEITKEN VETLTWPLILNCERVVKLQNNEIMPGKLKQKPMKAEGDGGVLGDGNALYNTEGGKTFMYA YISNKADLKFVKWEYEGGCNTIELDSPCRFMVETPNGPQVKYLYFVKNLNTLRRGAVLGF IGATIRLQAGKQTELAVNSGLLTACAFSVDPATTYLEAVKHGAKPVSNCIKMLSNGAGNG OAITTSVDANTNODSYGGASICLYCRAHVPHPSMDGYCKFKGKCVOVPIGCLDPIRFCLE NNVCNVCGCWLGHGCACDRTTIOSVDISYLNEOGVLVOLDRARGSSAARLEPCNGTDIDK CVRAFDIYNKNVSFLGKCLKMNCVRFKNADLKDGYFVIKRCTKSVMEHEOSMYNLLNFSG ALAEHDFFTWKDGRVIYGNVSRHNLTKYTMMDLVYAMRNFDEONCDVLKEVLVLTGCCDN SYFDSKGWYDPVENEDIHRVYASLGKIVARAMLKCVALCDAMVAKGVVGVLTLDNODLNG NFYDFGDFVVSLPNMGVPCCTSYYSYMMPIMGLTNCLASECFVKSDIFGSDFKTFDLLKY DFTEHKENLFNKYFKHWSFDYHPNCCDCYDDMCVIHCANFNTLFATTIPGTAFGPLCRKV FIDGVPLVTTAGYHFKQLGLVWNKDVNTHSVRLTITELLQFVTDPSLIIASSPALVDQRT ICFSVAALSTGLTNQVVKPGHFNEEFYNFLRLRGFFDEGSELTLKHFFFAQNGDAAVKDF DFYRYNKPTILDICQARVTYKIVSRYFDIYEGGCIKACEVVVTNLNKSAGWPLNKFGKAS LYYESISYEEQDALFALTKRNVLPTMTQLNLKYAISGKERARTVGGVSLLSTMTTRQYHQ KHLKSIVNTRNATVVIGTTKFYGGWNNMLRTLIDGVENPMLMGWDYPKCDRALPNMIRMI SAMVLGSKHVNCCTATDRFYRLGNELAQVLTEVVYSNGGFYFKPGGTTSGDASTAYANSI FNIFQAVSSNINRLLSVPSDSCNNVNVRDLQRRLYDNCYRLTSVEESFIEDYYGYLRKHF SMMILSDDGVVCYNKDYAELGYIADISAFKATLYYQNNVFMSTSKCWVEEDLTKGPHEFC SQHTMQIVDKDGTYYLPYPDPSRILSAGVFVDDVVKTDAVVLLERYVSLAIDAYPLSKHP NSEYRKVFYVLLDWVKHLNKNLNEGVLESFSVTLLDNQEDKFWCEDFYASMYENSTILQA AGLCVVCGSQTVLRCGDCLRKPMLCTKCAYDHVFGTDHKFILAITPYVCNASGCGVSDVK KLYLGGLNYYCTNHKPQLSFPLCSAGNIFGLYKNSATGSLDVEVFNRLATSDWTDVRDYK LANDVKDTLRLFAAETIKAKEESVKSSYAFATLKEVVGPKELLLSWESGKVKPPLNRNSV FTCFQISKDSKFQIGEFIFEKVEYGSDTVTYKSTVTTKLVPGMIFVLTSHNVQPLRAPTI ANQEKYSSIYKLHPAFNVSDAYANLVPYYQLIGKQKITTIQGPPGSGKSHCSIGLGLYYP GARIVFVACAHAAVDSLCAKAMTVYSIDKCTRIIPARARVECYSGFKPNNTSAQYIFSTV NALPECNADIVVVDEVSMCTNYDLSVINQRLSYKHIVYVGDPQQLPAPRVMITKGVMEPV DYNVVTQRMCAIGPDVFLHKCYRCPAEIVIQFLNLFMRTSLSLLNLLVNSVLKSFLRVMY KVDNGSSINRKQLEIVKLFLVKNPSWSKAVFISPYNSQNYVASRFLGLQIQTVDSSQGSE YDYVIYAQTSDTAHACNVNRFNVAITRAKKGIFCVMCDKTLFDSLKFFEIKHADLHSSQV CGLFKNCTRTPLNLPPTHAHTFLSLSDOFKTTGDLAVOIGSNNVCTYEHVISFMGFRFDI SIPGSHSLFCTRDFAIRNVRGWLGMDVESAHVCGDNIGTNVPLOVGFSNGVNFVVOTEGC VSTNFGDVIKPVCAKSPPGEOFRHLIPLLRKGOPWLIVRRRIVOMISDYLSNLSDILVFV LWAGSLELTTMRYFVKIGPIKYCYCGNFATCYNSVSNEYCCFKHALGCDYVYNPYAFDIO QWGYVGSLSQNHHTFCNIHRNEHDASGDAVMTRCLAVHDCFVKNVDWTVTYPFIANEKFI NGCGRNVQGHVVRAALKLYKPSVIHDIGNPKGVRCAVTDAKWYCYDKOPVNSNVKLLDYD YATHGQLDGLCLFWNCNVDMYPEFSIVCRFDTRTRSVFNLEGVNGGSLYVNKHAFHTPAY DKRAFVKLKPMPFFYFDDSDCDVVQEQVNYVPLRASSCVTRCNIGGAVCSKHANLYOKYV EAYNTFTQAGFNIWVPHSFDVYNLWQIFIETNLQSLENIAFNVVKKGCFTGVDGELPVAV VNDKVFVRYGDVDNLVFTNKTTLPTNVAFELFAKRKMGLTPPLSILKNLGVVATYKFVLW DYEAERPFTSYTKSVCKYTDFNEDVCVCFDNSIQGSYERFTLTTNAVLFSTVVIKNLTPI KLNFGMLNGMPVSSIKGDKGVEKLVNWYIYVRKNGQFQDHYDGFYTQGRNLSDFTPRSDM EYDFLNMDMGVFINKYGLEDFNFEHVVYGDVSKTTLGGLHLLISQFRLSKMGVLKADDFV

TASDTTLRCCTVTYLNELSSKVVCTYMDLLLDDFVTILKSLDLGVISKVHEVIIDNKPYR WMLWCKDNHLSTFYPQLQSAEWKCGYAMPQIYKLQRMCLEPCNLYNYGAGIKLPSGIMLN VVKYTQLCQYLNSTTMCVPHNMRVLHYGAGSDKGVAPGTTVLKRWLPPDAIIIDNDINDY VSDADFSITGDCATVYLEDKFDLLISDMYDGRIKFCDGENVSKDGFFTYLNGVIREKLAI GGSVAIKITEYSWNKYLYELIQRFAFWTLFCTSVNTSSSEAFLIGINYLGDFIQGPFIAG NTVHANYIFWRNSTIMSLSYNSVLDLSKFECKHKATVVVTLKDSDVNDMVLSLIKSGRLL LRNNGRFGGFSNHLVSTK

Like the ORF 1a gene product, this polyprotein is proteolytically cleaved at sites corresponding to the consensus LQJ(S, G or A)¹ by action of the 3Cl^{pro} protease. Potential proteolytic cleavage sites are indicated in bold print in grey background. The 3Cl^{pro}-encoding domain is boldly underlined and is also shown as separate protein below. The remaining proteolysis products perform functions in the replication and processing of the viral RNA. Normal blast searches are not sensitive enough to detect this kind of dispersed homology. However, using PFAM (Protein Family) domains tentative functions can be attributed to the proteolysis products.

MFYNQVTLAVASDSEISGFGFAIPSVAVRTYSEAAAQGFQACRFVAFGLQDCVTGINDDDYV IALTGTNQLCAKILPFSDRPLNLRGWLIFSNSNYVLQDFDVVFGHGAGSVVFVDKYMCGFDG KPVLPKNMWEFRDYFNNNTDSIVIGGVTYQLAWDVIRKDLSYEQQNVLAIESIHYLGTTGHTL KSGCKLTNAKPPKYSSKVVLSGEWNAVYRAFGSPFITNGMSLLDIIVKPVFFNAFVKCNCGS ESWSVGAWDGYLSSCCGTPAKKLCVVPGNVVPGDVIITSTSAGCGVKYYAGLVVKHITNITG VSLWRVTAVHSDGMFVASSSYDALLHRNSLDPFCFDVNTLLSNQLRLAFLGASVTEDVKFA ASTGVIDISAGMFGLYDDILTNNKPWFVRKASGLFDAIWDAFVAAIKLVPTTTGVLVRFVKSIA STVLTVSNGVIIMCADVPDAFQSVYRTFTQAICAAFDFSLDVFKIGDVKFKRLGDYVLTENAL VRLTTEVVRGVRDARIKKAMFTKVVVGPTTEVKFSVIELATVNLRLVDCAPVVCPKGKIVVIA GQAFFYSGGFYRFMVDPTTVLNDPVFTGDLFYTIKFSGFKLDGFNHQFVTASSATDAIIAVEL LLLDFKTAVFVYTCVVDGCSVIVRRDATFATHVCFKDCYNVWEQFCIDNCGEPWFLTDYNAI **EXECUTION OF THE PROPERTY OF** NGLLGNCAKRFRRVLVKLLDVYNGFLETVCSVAYTAGVCIKYYAVNVPYVVISGFVSRVIRRE RCDMTFPCVSCVTFFYEFLDTCFGVSKPNAIDVEHLELKETVFVEPKDGGQFFVSGDYLWY VVDDIYYPASCNGVLPVAFTKLAGGKISFSDDVIVHDVEPTHKVKLIFEFEDDVVTSLCKKSF GKSIIYTGDWEGLHEVLTSAMNVIGQHIKLPQFYIYDEEGGYDVSKPVMISQWPISNDSNGC VVEASTDFHQLECIVDDSVREEVDIIEQPFEEVEHVLSIKQPFSFSFRDELGVRVLDQSDNNC WISTTLVOLQLTKLLDDSIEMQLFKVGKVDSIVQKCYELSHLISGSLGDSGKLLSELLKEKYTC SITFEMSCDCGKKFDDQVGCLFWIMPYTKLFQKGECCICHKMQTYKLVSMKGTGVFVQDPA PIDIDAFPVKPICSSVYLGVKGSGHYQTNLYSFNKAIDGFGVFDIKNSSVNTVCFVDVDFHSV EIEAGEVKPFAVYKNVKFYLGDISHLVNCVSFDF<u>VVNAAN</u>EN<u>LLHGGGV</u>AR<u>AI</u>DILTEGQ **SLSKDYISSNGPLKVGAGVMLECEKFNVFNVVGPRTGKHEHSLLVEAYNSILF<u>ENGI</u>PLMPL** LSCGIFGVRIENSLKALFSCDINKPLQVFVYSSNEEQAVLKFLDGLDLTPVIDDVDVVKPFRVE GNFSFFDCGVNALDGDIYLLFTNSILMLDKQGQLLDTKLNGILQQAALDYLATVKTVPAGNLV KLFVESCTIYMCVVPSINDLSFDKNLGRCVRKLNRLKTCVIANVPAIDVLKKLLSSLTLTVKFV VESNVMDVNDCFKNDNVVLKITEDGINVKDVVVESSKSLGKQLGVVSDGVDSFEGVLPINTD TVLSVAPEVDWVAFYGFEKAALFASLDVKPYGYPNDFVGGFRVLGTTDNNCWVNATCIILQ YLKPTFKSKGLNVLWNKFVTGDVGPFVSFIYFITMSSKGQKGDAEEALSKLSEYLISDSIVTLE QYSTCDICKSTVVEVKSAIVCASVLKDGCDVGFCPHRHKLRSRVKFVNGRVVITNVGEPIISQ PSKLLNGIAYTTFSGSFDNGHYVVYDAANNAVYDGARLFSSDLSTLAVTAIVVVGGCVTSNV PTIVSEKISVMDKLDTGAQKFFQFGDFVMNNIVLFLTWLLSMFSLLRTSIMKHDIKVIAKAPKR TGVILTRSFKYNIRSALFVIKQKWCVIVTLFKFLLLLYAIYALVFMIVQFSPFNSLLCGDIVSGYE KSTFNKDIYCGNSMVCKMCLFSYQEFNDLDHTSLVWKHIRDPILISLQPFVILVILLIFGNMYL RFGLLYFVAQFISTFGSFLGFHQKQWFLHFVPFDVLCNEFLATFIVCKIVLFVRHIIVGCNNAD CVACSKSARLKRVPLQTIINGMHKSFYVNANGGTCFCNKHNFFCVNCDSFGPGNTFINGDIA RELGNVVKTAVQPTAPAYVIIDKVDFVNGFYRLYSGDTFWRYDFDITESKYSCKEVLKNCNV LENFIVYNNSGSNITQIKNACVYFSQLLCEPIKLVNSELLSTLSVDFNGVLHKAYVDVLCNSF

KELTANMSMAECKATLGLTVSDDDFVSAVANAHRYDVLLSDLSFNNFFISYAKPEDKLSVYD IACCMRAGSKVVNHNVLIKESIPIVWGVKDFNTLSQEGKKYLVKTTKAKGLTFLLTFNDNQAI TQVPATSIVAKQGAGFKRTYNFLWYVCLFVVALFIGVSFIDYTTTVTSFHGYDFKYIENGQLK VFEAP

 $\texttt{L} \texttt{HCVRNVFDNFNQWHEAKFGVVTTNSDKCPIVVGVSERINVVPGVPTNVYLVGKTLVFT} \textbf{\textbf{CA}} \textbf{\textbf{A}} \textbf{\textbf{FGNTG}}$ VCYDFDGVTTSDKCIFNSACTRLEGLGGDNVYCYNTDLIEGSKPYSTLQPNAYYKYDAKNYVRFPEIL ARGFGLRTIRTLATRYCRVGECRDSHKGVCFGFDKWYVNDGRVDDGYICGDGLIDLLVNVLSIFSSSF SVVAMSGHMLFNFLFAAFITFLCFLVTKFKRVFGDLSYGVFTVVCATLINNISYVVTQNLFFMLLYAI LYFVFTRTVRYAWIWHIAYIVAYFLLIPWWLLTWFSFAAFLELLPNVFKLKISTQLFEGDKFIGTFES AAAGTFVLDMRSYERLINTISPEKLKNYAASYNKYKYYSGSASEADYRCACYAHLAKAMLDYAKDHND MLYSPPTISYNSTEOSGLKKMAQPSGCVERCVVRVCYGSTVLNGVWLGDTVTCPRHVIAPSTTVLIDY DHAYSTMRLHNFSVSHNGVFLGVVGVTMHGSVLRIKVSQSNVHTPKHVFKTLKPGDSFNILACYEGIA SGVFGVNLRTNFTIKGSFINGACGSPGYNVRNDGTVEFCYLHQIELGSGAHVGSDFTGSVYGNFDDQP SLQVESANIMLSDNVVAFLYAALLNGCRWWLCSTRVNVDGFNEWAMANGYTSVSSVECYSILAAKTGV SVEQLLASIQHLHEGFGGKNILGYSSLCDEFTLAEVVKQMYGVNEQSGKVIFGLKTMFLFSVFFTMFW AELFIYTNTIWINPVILTPIFCLLLFLSLVLTMFLKHKFLFLQVFLLPTVIATALYNCVLDYYIVKFL ADHFNYNVSVLQMDVQGLVNVLVCLFVVFLHTWRFSKERFTHWFTYVCSLIAVAYTYFYSGDFLSLLV MFLCAISSDWYIGAIVFRLSRLIVFFSPESVFSVFGDVKLTLVVYLICGYLVCTYWGILYWFNRFFKC TMGVYDFKVSAAEFKYMVANGLHAPHGPFDALWLSFKLLGIGGDRCIKISTVQSKLTDLKCTNVVLLG CLSSMNIAANSSEWAYCVDLHNKINLCDDPEKAQSMLLALLAFFLSKHSDFGLDGLIDSYFDNSST SVASS FVSMPSYIAYENARQAYEDAIANGSSSQLIKQLKRAMNIAKSEFDHEISVQKKINRMAEQAAT QMYKEARSVNRKSKVISAMHSLLFGMLRRLDMSSVETVLNLARDGVVPLSVIPATSASKLTIVSPDLE SYSKIVCDGSVHYAGVVWTLNDVKDNDGRPVHVKEITKENVETLTWPLILNCERVVKLONNEIMPGKL KOKPMKAEGDGGVLGDGNALYNTEGGKTFMYAYISNKADLKFVKWEYEGGCNTIELDSPCRFMVETPN GPQVKYLYFVKNLNTLRRGAVLGFIGATIRIOAGKQTELAVNSGLLTACAFSVDPATTYLEAVKHGAK PVSNCIKMLSNGAGNGOAITTSVDANTNODSYGGASICLYCRAHVPHPSMDGYCKFKGKCVOVPIGCL DPIRFCLENNVCNVCGCWLGHGCACDRTTIOSVDISYLNEOGVLVOLDRARGSSAARLEPCNGTDIDK CVRAFDIYNKNVSFLGKCLKMNCVRFKNADLKDGYFVIKRCTKSVMEHEOSMYNLLNFSGALAEHDFF TWKDGRVIYGNVSRHNLTKYTMMDLVYAMRNFDEONCDVLKEVLVLTGCCDNSYFDSKGWYDPVENED IHRVYASLGKIVARAMLKCVALCDAMVAKGVVGVLTLDNQDLNGNFYDFGDFVVSLPNMGVPCCTSYY SYMMPIMGLTNCLASECFVKSDIFGSDFKTFDLLKYDFTEHKENLFNKYFKHWSFDYHPNCCDCYDDM CVIHCANFNTLFATTIPGTAFGPLCRKVFIDGVPLVTTAGYHFKOLGLVWNKDVNTHSVRLTITELLO FVTDPSLIIASSPALVDORTICFSVAALSTGLTNOVVKPGHFNEEFYNFLRLRGFFDEGSELTLKHFF FAQNGDAAVKDFDFYRYNKPTILDICQARVTYKIVSRYFDIYEGGCIKACEVVVTNLNKSAGWPLNKF GKASLYYESISYEEQDALFALTKRNVLPTMTQLNLKYAISGKERARTVGGVSLLSTMTTRQYHQKHLK SIVNTRNATVVIGTTKFYGGWNNMLRTLIDGVENPMLMGWDYPKCDRALPNMIRMISAMVLGSKHVNC CTATDRFYRLGNELAQVLTEVVYSNGGFYFKPGGTTSGDASTAYANSIFNIFQAVSSNINRLLSVPSD SCNNVNVRDLQRRLYDNCYRLTSVEESFIEDYYGYLRKHFSMMILSDDGVVCYNKDYAELGYIADISA FKATLYYQNNVFMSTSKCWVEEDLTKGPHEFCSQHTMQIVDKDGTYYLPYPDPSRILSAGVFVDDVVK TDAVVLLERYVSLAIDAYPLSKHPNSEYRKVFYVLLDWVKHLNKNLNEGVLESFSVTLLDNQEDKFWC EDFYASMYENSTIL AGLCVVCGSQTVLRCGDCLRKPMLCTKCAYDHVFGTDHKFILAITPYVCNAS GCGVSDVKKLYLGGLNYYCTNHKPQLSFPLCSAGNIFGLYKNSATGSLDVEVFNRLATSDWTDVRDYK LANDVKDTLRLFAAETIKAKEESVKSSYAFATLKEVVGPKELLLSWESGKVKPPLNRNSVFTCFQISK DSKFQIGEFIFEKVEYGSDTVTYKSTVTTKLVPGMIFVLTSHNVQPLRAPTIANQEKYSSIYKLHPAF NVSDAYANLVPYYQLIGKQKITTIQGPPGSGKSHCSIGLGLYYPGARIVFVACAHAAVDSLCAKAMTV **YSID**KCTRIIPARARVECYSGFKPNNTSAQYIFSTVNALPECNADIVVVDEVSMCTNYDLSVINQRLS YKHIVYVGDPQQLPAPRVMITKGVMEPVDYNVVTQRMCAIGPDVFLHKCYRCPAEIVIQFLNLFMRTS LSLLNLLVNSVLKSFLRVMYKVDNGSSINRKQLEIVKLFLVKNPSWSKAVFISPYNSQNYVASRFLGL QIQTVDSSQGSEYDYVIYAQTSDTAHACNVNRFNVAITRAKKGIFCVMCDKTLFDSLKFFEIKHADLH SSQVCGLFKNCTRTPLNLPPTHAHTFLSLSDQFKTTGDLAVQIGSNNVCTYEHVISFMGFRFDISIPG SHSLFCTRDFAIRNVRG**WLGMDVESAH**VCGDNIGTNVPLQVGFSNGVNFVVQTEGCVSTNFGDVIKPV CAKSPPGEQFRHLIPLLRKGQPWLIVRRRIVQMISDYLSNLSDILVFVLWAGSLELTTMRYFVKIGPI KYCYCGNFATCYNSVSNEYCCFKHALGCDYVYNPYAFDIQQWGYVGSLSQNHHTFCNIHRNEHDASGD AVMTRCLAVHDCFVKNVDWTVTYPFIANEKFINGCGRNVQGHVVRAALKLYKPSVIHDIGNPKGVRCA

VTDAKWYCYDKQPVNSNVKLLDYDYATHGQLDGLCLFWNCNVDMYPEFSIVCRFDTRTRSVFNLEGVN
GGSLYVNKHAFHTPAYDKRAFVKLKPMPFFYFDDSDCDVVQEQVNYVPLRASSCVTRCNIGGAVCSKH
ANLYQKYVEAYNTFTQAGFNIWVPHSFDVYNLWQIFIETNIGSLENIAFNVVKKGCFTGVDGELPVAV
VNDKVFVRYGDVDNLVFTNKTTLPTNVAFELFAKRKMGLTPPLSILKNLGVVATYKFVLWDYEAERPF
TSYTKSVCKYTDFNEDVCVCFDNSIQGSYERFTLTTNAVLFSTVVIKNLTPIKLNFGMLNGMPVSSIK
GDKGVEKLVNWYIYVRKNGQFQDHYDGFYTQGRNLSDFTPRSDMEYDFLNMDMGVFINKYGLEDFNFE
HVVYGDVSKTTLGGLHLLISQFRLSKMGVLKADDFVTASDTTLRCCTVTYLNELSSKVVCTYMDLLLD
DFVTILKSLDLGVISKVHEVIIDNKPYRWMLWCKDNHLSTFYPQLOSAEWKCGYAMPQIYKLQRMCLE
PCNLYNYGAGIKLPSGIMLNVVKYTQLCQYLNSTTMCVPHNMRVLHYGAGSDKGVAPGTTVLKRWLPP
DAIIIDNDINDYVSDADFSITGDCATVYLEDKFDLLISDMYDGRIKFCDGENVSKDGFFTYLNGVIRE
KLAIGGSVAIKITEYSWNKYLYELIQRFAFWTLFCTSVNTSSSEAFLIGINYLGDFIQGPFIAGNTVH
ANYIFWRNSTIMSLSYNSVLDLSKFECKHKATVVVTLKDSDVNDMVLSLIKSGRLLLRNNGRFGGFSN
HLVSTK

Annotated putative proteolytic cleavage products ORF 1ab

Adenosine diphosphate-ribose 1'- phosphatase

MNPQCAIVQASESKVLLERFLPKCPEILLSIDDGHLWNLFVEKFNFVTDWLKTLKLTLTSNGLLGNC AKRFRRVLVKLLDVYNGFLETVCSVAYTAGVCIKYYAVNVPYVVISGFVSRVIRRERCDMTFPCVSCV TFFYEFLDTCFGVSKPNAIDVEHLELKETVFVEPKDGGQFFVSGDYLWYVVDDIYYPASCNGVLPVAF TKLAGGKISFSDDVIVHDVEPTHKVKLIFEFEDDVVTSLCKKSFGKSIIYTGDWEGLHEVLTSAMNVI GQHIKLPQFYIYDEEGGYDVSKPVMISQWPISNDSNGCVVEASTDFHQLECIVDDSVREEVDIIEQPF EEVEHVLSIKQPFSFSFRDELGVRVLDQSDNNCWISTTLVQLQLTKLLDDSIEMQLFKVGKVDSIVQK CYELSHLISGSLGDSGKLLSELLKEKYTCSITFEMSCDCGKKFDDQVGCLFWIMPYTKLFQKGECCIC HKMOTYKLVSMKGTGVFVQDPAPIDIDAFPVKPICSSVYLGVKGSGHYQTNLYSFNKAIDGFGVFDIK NSSVNTVCFVDVDFHSVEIEAGEVKPFAVYKNVKFYLGDISHLVNCVSFDF**VVNAAN**EN**LLHGGGV**AR AIDILTEGO SILSKDYISSNGPLKVGAGVMLECEKFNVFNVVGPRTGKHEHSLLVEAYNSILFENGI PLMPLLSCGIFGVRIENSLKALFSCDINKPLQVFVYSSNEEQAVLKFLDGLDLTPVIDDVDVVKPFRV EGNFSFFDCGVNALDGDIYLLFTNSILMLDKOGOLLDTKLNGILOOAALDYLATVKTVPAGNLVKLFV ESCTIYMCVVPSINDLSFDKNLGRCVRKLNRLKTCVIANVPAIDVLKKLLSSLTLTVKFVVESNVMDV NDCFKNDNVVLKITEDGINVKDVVVESSKSLGKOLGVVSDGVDSFEGVLPINTDTVLSVAPEVDWVAF YGFEKAALFASLDVKPYGYPNDFVGGFRVLGTTDNNCWVNATCIILOYLKPTFKSKGLNVLWNKFVTG DVGPFVSFIYFITMSSKGQKGDAEEALSKLSEYLISDSIVTLEQYSTCDICKSTVVEVKSAIVCASVL KDGCDVGFCPHRHKLRSRVKFVNGRVVITNVGEPIISOPSKLLNGIAYTTFSGSFDNGHYVVYDAANN AVYDGARLFSSDLSTLAVTAIVVVGGCVTSNVPTIVSEKISVMDKLDTGAQKFFQFGDFVMNNIVLFL TWLLSMFSLLRTSIMKHDIKVIAKAPKRTGVILTRSFKYNIRSALFVIKQKWCVIVTLFKFLLLYAI YALVFMIVQFSPFNSLLCGDIVSGYEKSTFNKDIYCGNSMVCKMCLFSYQEFNDLDHTSLVWKHIRDP ILISLQPFVILVILLIFGNMYLRFGLLYFVAQFISTFGSFLGFHQKQWFLHFVPFDVLCNEFLATFIV CKIVLFVRHIIVGCNNADCVACSKSARLKRVPLQTIINGMHKSFYVNANGGTCFCNKHNFFCVNCDSF GPGNTFINGDIARELGNVVKTAVQPTAPAYVIIDKVDFVNGFYRLYSGDTFWRYDFDITESKYSCKEV LKNCNVLENFIVYNNSGSNITQIKNACVYFSQLLCEPIKLVNSELLSTLSVDFNGVLHKAYVDVLCNS FFKELTANMSMAECKATLGLTVSDDDFVSAVANAHRYDVLLSDLSFNNFFISYAKPEDKLSVYDIACC MRAGSKVVNHNVLIKESIPIVWGVKDFNTLSQEGKKYLVKTTKAKGLTFLLTFNDNQAITQVPATSIV AKOGAGFKRTYNFLWYVCLFVVALFIGVSFIDYTTTVTSFHGYDFKYIENGOLKVFEAPLHCVRNVFD NFNQWHEAKFGVVTTNSDKCPIVVGVSERINVVPGVPTNVYLVGKTLVFTEQAAFGNTGVCYDFDGVT TSDKCIFNSACTRLEGLGGDNVYCYNTDLIEGSKPYSTLOPNAYYKYDAKNYVRFPEILARGFGLRTI RTLATRYCRVGECRDSHKGVCFGFDKWYVNDGRVDDGYICGDGLIDLLVNVLSIFSSSFSVVAMSGHM LFNFLFAAFITFLCFLVTKFKRVFGDLSYGVFTVVCATLINNISYVVTONLFFMLLYAILYFVFTRTV RYAWIWHIAYIVAYFLLIPWWLLTWFSFAAFLELLPNVFKLKISTQLFEGDKFIGTFESAAAGTFVLD MRSYERLINTISPEKLKNYAASYNKYKYYSGSASEADYRCACYAHLAKAMLDYAKDHNDMLYSPPTIS YNSTIC

3CI^{pro} Coronavirus polyprotein processing endoprotease

SGLKKMAQPSGCVERCVVRVCYGSTVLNGVWLGDTVTCPRHVIAPSTTVLIDYDHAYSTMRLHNFSVS HNGVFLGVVGVTMHGSVLRIKVSQSNVHTPKHVFKTLKPGDSFNILACYEGIASGVFGVNLRTNFTIK GSFINGACGSPGYNVRNDGTVEFCYLHQIELGSGAHVGSDFTGSVYGNFDDQPSLQVESANLMLSDNV VAFLYAALLNGCRWWLCSTRVNVDGFNEWAMANGYTSVSSVECYSILAAKTGVSVEQLLASIQHLHEG FGGKNILGYSSLCDEFTLAEVVKQMYGVN

RNA dependant RNA polymerase (pfam00680)

GKQTELAVNSGLLTACAFSVDPATTYLEAVKHGAKPVSNCIKMLSNGAGNGQAITTSVDANTNQDSY
GGASICLYCRAHVPHPSMDGYCKFKGKCVQVPIGCLDPIRFCLENNVCNVCGCWLGHGCACDRTTIQS
VDISYLNEQGVLVQLDRARGSSAARLEPCNGTDIDKCVRAFDIYNKNVSFLGKCLKMNCVRFKNADLK
DGYFVIKRCTKSVMEHEQSMYNLLNFSGALAEHDFFTWKDGRVIYGNVSRHNLTKYTMMDLVYAMRNF
DEQNCDVLKEVLVLTGCCDNSYFDSKGWYDPVENEDIHRVYASLGKIVARAMLKCVALCDAMVAKGVV
GVLTLDNQDLNGNFYDFGDFVVSLPNMGVPCCTSYYSYMMPIMGLTNCLASECFVKSDIFGSDFKTFD
LLKYDFTEHKENLFNKYFKHWSFDYHPNCCDCYDDMCVIHCANFNTLFATTIPGTAFGPLCRKVFIDG

VPLVTTAGYHFKQLGLVWNKDVNTHSVRLTITELLQFVTDPSLIIASSPALVDQRTICFSVAALSTGL
TNQVVKPGHFNEEFYNFLRLRGFFDEGSELTLKHFFFAQNGDAAVKDFDFYRYNKPTILDICQARVTY
KIVSRYFDIYEGGCIKACEVVVTNLNKSAGWPLNKFGKASLYYESISYEEQDALFALTKRNVLPTMTQ
LNLKYAISGKERARTVGGVSLLSTMTTRQYHQKHLKSIVNTRNATVVIGTTKFYGGWNNMLRTLIDGV
ENPMLMGWDYPKCDRALPNMIRMISAMVLGSKHVNCCTATDRFYRLGNELAQVLTEVVYSNGGFYFKP
GGTTSGDASTAYANSIFNIFQAVSSNINRLLSVPSDSCNNVNVRDLQRRLYDNCYRLTSVEESFIEDY
YGYLRKHFSMMILSDDGVVCYNKDYAELGYIADISAFKATLYYQNNVFMSTSKCWVEEDLTKGPHEFC
SQHTMQIVDKDGTYYLPYPDPSRILSAGVFVDDVVKTDAVVLLERYVSLAIDAYPLSKHPNSEYRKVF
YVLLDWVKHLNKNLNEGVLESFSVTLLDNQEDKFWCEDFYASMYENSTI

ExoN 3'to 5' Exonuclease and helicase

The bold underlined amino acid residues are conserved in orthologous cellular and viral enzymes.

AGLCVVCGSQTVLRCGDCLRKPMLCTKCAYDHVFGTDHKFILAITPYVCNASGCGVSDVKKLYLGGL NYYCTNHKPQLSFPLCSAGNI FGLYKNSATGSLDVEVFNRLATSDWTDVRDYKLANDVKDTLRLFAAE TIKAKEESVKSSYAFATLKEVVGPKELLLSWESGKVKPPLNRNSVFTCFQISKDSKFQIGEFIFEKVE YGSDTVTYKSTVTTKLVPGMIFVLTSHNVQPLRAPTIANQEKYSSIYKLHPAFNVSDAYANLVPYYQL IGKOKITTIOGPPGSGKSHCSIGLGLYYPGARIVFVACAHAAVDSLCAKAMTVYSIDKCTRIIPARAR VECYSGFKPNNTSAOYIFSTVNALPECNADIVVVDEVSMCTNYDLSVINORLSYKHIVYVGDPOOLPA PRVMITKGVMEPVDYNVVTQRMCAIGPDVFLHKCYRCPAEIVIQFLNLFMRTSLSLLNLLVNSVLKSF LRVMYKVDNGSSINRKQLEIVKLFLVKNPSWSKAVF**ISPYNS**QNYVASRFLGLQIQTVDSSQGSEYDY VIYAQTSDTAHACNVNRFNVAITRAKKGIFCVMCDKTLFDSLKFFEIKHADLHSSQVCGLFKNCTRTP LNLPPTHAHTFLSLSDQFKTTGDLAVQIGSNNVCTYEHVISFMGFRFDISIPGSHSLFCTRDFAIRNV RGWLGMDVESAHVCGDNIGTNVPLQVGFSNGVNFVVQTEGCVSTNFGDVIKPVCAKSPPGEQFRHLIP LLRKGQPWLIVRRRIVQMISDYLSNLSDILVFVLWAGSLELTTMRYFVKIGPIKYCYCGNFATCYNSV SNEYCCFKHALGCDYVYNPYAFDIQQWGYVGSLSQNHHTFCNIHRNEHDASGDAVMTRCLAVHDCFVK NVDWTVTYPFIANEKFINGCGRNVQGHVVRAALKLYKPSVIHDIGNPKGVRCAVTDAKWYCYDKOPVN SNVKLLDYDYATHGOLDGLCLFWNCNVDMYPEFSIVCRFDTRTRSVFNLEGVNGGSLYVNKHAFHTPA YDKRAFVKLKPMPFFYFDDSDCDVVOEOVNYVPLRASSCVTRCNIGGAVCSKHANLYOKYVEAYNTFT QAGFNIWVPHSFDVYNLWQIFIETNEG

XendoU (homolog of) polyU-specific endoribonuclease

SLENIAFNVVKKGCFTGVDGELPVAVVNDKVFVRYGDVDNLVFTNKTTLPTNVAFELFAKRKMGLTPP LSILKNLGVVATYKFVLWDYEAERPFTSYTKSVCKYTDFNEDVCVCFDNSIQGSYERFTLTTNAVLFS TVVIKNLTPIKLNFGMLNGMPVSSIKGDKGVEKLVNWYIYVRKNGQFQDHYDGFYTQGRNLSDFTPRS DMEYDFLNMDMGVFINKYGLEDFNFEHVVYGDVSKTTLGGLHLLISQFRLSKMGVLKADDFVTASDTT LRCCTVTYLNELSSKVVCTYMDLLLDDFVTILKSLDLGVISKVHEVIIDNKPYRWMLWCKDNHLSTFY PQEE

2'-O-MT 2: S-adenosylmethionine-dependant ribose 2'-orthomethyltransferase

Plays a role in the methylation of cap structure (GpppNm) at the 5'end of the viral RNA. Antiviral compounds inhibiting this transfer of methyl groups to reaction (carboxylic adenosine analogs e.g. Neoplanocin A and 3-deazaneoplancin A) interfere with expression of viral proteins. Again the underlined residues in bold print are conserved

SAEWKCGYAMPQIYKLQRMCLEPCNLYNYGAGIKLPSGIMLNVVKYTQLCQYLNSTTMCVPHNMRVLH YGAGSDKGVAPGTTVLKRWLPPDAIIIDNDINDYVSDADFSITGDCATVYLEDKFDLLISDMYDGRIK FCDGENVSKDGFFTYLNGVIREKLAIGGSVAIKITEYSWNKYLYELIQRFAFWTLFCTSVNTSSSEAF LIGINYLGDFIQGPFIAGNTVHANYIFWRNSTIMSLSYNSVLDLSKFECKHKATVVVTLKDSDVNDMV LSLIKSGRLLLRNNGRFGGFSNHLVSTK

Figure 22

ORF-2 Spike protein/S-gene

MKLFLILLVLPLASC

FFTCNSNANLSMLOLGVPDNSSTIVTGLLPTHWFCANOSTSVYSA NGFFYIDVGNHRSAFALHTGYYDANQYYIYVTNEIGLNASVTLKICKFSRNTTFDFLSNA SSSFDCIVNLLFTEQLGAPLGITISGETVRLHLYNVTRTFYVPAAYKLTKLSVKCYFNYS CVFSVVNATVTVNVTTHNGRVVNYTVCDDCNGYTDNIFSVQQDGRIPNGFPFNNWFLLTN GSTLVDGVSRLYQPLRLTCLWPVPGLKSSTGFVYFNATGSDVNCNGYQHNSVVDVMRYNL NFSANSLDNLKSGVIVFKTLQYDVLFYCSNSSSGVLDTTIPFGPSSQPYYCFINSTINTT HVSTFVGILPPTVREIVVARTGQFYINGFKYFDLGFIEAVNFNVTTASATDFWTVAFATF VDVLVNVSATNIQNLLYCDSPFEKLQCEHLQFGLQDGFYSANFLDDNVLPETYVALPIYY QHTDINFTATASFGGSCYVCKPHQVNISLNGNTSVCVRTSHFSIRYIYNRVKSGSPGDSS WHIYLKSGTCPFSFSKLNNFOKFKTICFSTVEVPGSCNFPLEATWHYTSYTIVGALYVTW SEGNSITGVPYPVSGIREFSNLVLNNCTKYNIYDYVGTGIIRSSNQSLAGGITYVSNSGN LLGFKNVSTGNIFIVTPCNOPDOVAVYOOSIIGAMTAVNESRYGLONLLOLPNFYYVSNG GNNCTTAVMTYSNFGICADGSLIPVRPRNSSDNGISAIITANLSIPSNWTTSVQVEYLQI TSTPIVVDCATYVCNGNPRCKNLLKQYTSACKTIEDALRLSAHLETNDVSSMLTFDSNAF SLANVTSFGDYNLSSVLPQRNIRSSRIAGRSALEDLLFSKVVTSGLGTVDVDYKSCTKGL SIADLACAQYYNGIMVLPGVADAERMAMYTGSLIGGMVLGGLTSAAAIPFSLALQARLNY VALQTDVLQENQKILAASFNKAINNIVASFSSVNDAITQTAEAIHTVTIALNKIQDVVNQ QGSALNHLTSQLRHNFQAISNSIQAIYDRLDSIQADQQVDRLITGRLAALNAFVSQVLNK YTEVRGSRRLAQQKINECVKSQSNRYGFCGNGTHIFSIVNSAPDGLLFLHTVLLPTDYKN VKAWSGICVDGIYGYVLRQPNLVLYSDNGVFRVTSRVMFQPRLPVLSDFVQIYNCNVTFV NISRVELHTVIPDYVDVNKTLQEFAQNLPKYVKPNFDLTPFNLTYLNLSSELKQLEAKTA SLFQTTVELQGLIDQİNSTYVDLKLLNRFENYIKWPWWVWLIISVVFVVLLSLLVFCCLS TGCCGCCNCLTSSMRGCCDCGSTKLPYYEFEKVHVQ

Figure 23

ORF-4 Corona virus envelope protein/E-gene

MFLRLIDDNGIVLNSILWLLVMIFFFVLAMTFIKLIQLCFTCHYFFSRTLYQPVYKIFLA YQDYMQIAPVPAEVLNV

ORF-5 pfam01635, Corona_M, Coronavirus M matrix/glycoprotein.
MSNSSVPLLEVYVHLRNWNFSWNLILTLFIVVLQYGHYKYSRLLYGLKMSVLWCLWPLVLA

LSIFDCFVNFNVDWVFFGFSILMSIITLCLWVMYFVNSFRLWRRVKTFWAFNPETNAII SLQVYGHNYYLPVMAAPTGVTLTLLSGVLLVDGHKIATRVQVGQLPKYVIVATPSTTIVC DRVGRSVNETSQTGWAFYVRAKHGDFSGVASQEGVLSEREKLLHLI

ORF-6 Pfam 00937, Coronavirus nucleocapsid protein

MASVNWADDRAARKKFPPPSFYMPLLVSSDKAPYRVIPRNLVPIGKGNKDEQIGYWNVQE RWRMRRGQRVDLPPKVHFYYLGTGPHKDLKFRQRSDGVVWVAKEGAKTVNTSLGNRKRNQ KPLEPKFSIALPPELSVVEFEDRSNNSSRASSRSSTRNNSRDSSRSTSRQQSRTRSDSNQ SSSDLVAAVTLALKNLGFDNQSKSPSSSGTSTPKKPNKPLSQPRADKPSQLKKPRWKRVP TREENVIQCFGPRDFNHNMGDSDLVQNGVDAKGFPQLAELIPNQAALFFDSEVSTDEVGD NVQITYTYKMLVAKDNKNLPKFIEQISAFTKPSSIKEMQSQSSHVAQNTVLNASIPESKP LADDDSAIIEIVNEVLH

Application Number

which under Rule 45 of the European Patent Convention EP $\,04\,$ 07 $\,5050\,$ shall be considered, for the purposes of subsequent proceedings, as the European search report

Category		ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
X	XP002290973 Database accession	ne] 2001-07-11), In coronavirus 229E"	1,2,4,9, 14,15, 18,19,	C12N7/00 C07K14/165 A61K39/215 C12Q1/68 G01N33/569 C07K16/10
X	replicase polyprote XP002290974 Database accession	0003 (2003-09-15), uman conoravirus 229E vin 1ab"	5,6,8, 21,24, 25,29, 33,36,37	
		-/	,	TECHNICAL FIELDS SEARCHED (Int.CI.7) C12N C07K A61K
The Seam not complete carried Claims see		application, or one or more of its claims, does, a meaningful search into the state of the art ca y, for these claims.		
	Place of search The Hague	Date of completion of the search 4 August 2004	Bro	Examiner uns, G
X : part Y : part docu A : tech O : non	CATEGORY OF CITED DOCUMENTS CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document Coument of the same patent family, or document			hed on, or

Application Number EP 04 07 5050

1	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	DATABASE SWISS-PROT [Online] EBI; 15 August 1999 (1999-08-15), RAABE T ET AL.: "E2 glycoprotein precursor (spike glycoprotein) (peplomer protein)" XP002275246 Database accession no. P15423 65% homologous to 1168 amino acids of SEQ ID N0:64 * abstract *	5,6,8, 21,24, 25,29, 33,36,37	
X	DATABASE SWISS-PROT [Online] EBI; 15 September 2003 (2003-09-15), RAABE T AND SIDDELL S: "Human coronavirus 229E envelope protein" XP002290975 Database accession no. P19741 47% identical to SEQ ID NO:65 * abstract *	5,6,8, 21,24, 25,29, 33,36,37	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
X	DATABASE SWISS-PROT [Online] EBI; 15 September 2003 (2003-09-15), SCHREIBER ET AL.: "Human coronavirus 229E nucleocapsid protein" XP002290976 Database accession no. P15130 44% identical to SEQ ID NO:67 * abstract *	5,6,8, 21,24, 25,29, 33,36,37	

Application Number EP 04 07 5050

Citation of document with indication, where appropriate	Belevant	APPLICATION (Int.CI.7)
of relevant passages	to claim	
1273-1281, XP002203483	10,11, 13, 21-23, 28,32, 36,37, 43-46, 53-55	
* the whole document *	24,25, 29-31, 33,34	
VABRET ASTRID ET AL: "Direct diagnosis of human respiratory coronaviruses 229E and 0C43 by the polymerase chain reaction" JOURNAL OF VIROLOGICAL METHODS, vol. 97, no. 1-2, September 2001 (2001-09), pages 59-66, XP002275244	10,11, 14,15, 17,18, 23,35, 37,39,40	TECHNICAL FIELDS SEARCHED (Int.CI.7)
* the whole document *	21,24, 25, 29-31, 33,34	
DATABASE ENTREZ NUCLEOTIDES [Online] NCBI; 24 June 2003 (2003-06-24), ZIEBUHR J ET AL.: "Avian infectious bronchitis virus" XP002275248 Database accession no. NC_001451 100% identical over 10 nucleotides:13644-13654 * abstract *	16,39,40	
-/		
	THIEL V ET AL: "Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus" JOURNAL OF GENERAL VIROLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, READING, GB, vol. 82, 19 March 2001 (2001-03-19), pages 1273-1281, XP002203483 ISSN: 0022-1317 * the whole document * VABRET ASTRID ET AL: "Direct diagnosis of human respiratory coronaviruses 229E and 0C43 by the polymerase chain reaction" JOURNAL OF VIROLOGICAL METHODS, vol. 97, no. 1-2, September 2001 (2001-09), pages 59-66, XP002275244 ISSN: 0166-0934 * the whole document * DATABASE ENTREZ NUCLEOTIDES [Online] NCBI; 24 June 2003 (2003-06-24), ZIEBUHR J ET AL.: "Avian infectious bronchitis virus" XP002275248 Database accession no. NC_001451 100% identical over 10 nucleotides:13644-13654 * abstract *	THIEL V ET AL: "Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus" 21-23, 28,32, 30,000 F GENERAL VIROLOGY, SOCIETY FOR GENERAL MICROBIOLOGY, READING, GB, vol. 82, 19 March 2001 (2001-03-19), pages 1273-1281, XP002203483 ISSN: 0022-1317 * the whole document * 24,25, 29-31, 33,34 VABRET ASTRID ET AL: "Direct diagnosis of human respiratory coronaviruses 229E and 0C43 by the polymerase chain reaction" JOURNAL OF VIROLOGICAL METHODS, vol. 97, no. 1-2, September 2001 (2001-09), pages 59-66, XP002275244 ISSN: 0166-0934 * the whole document * 21,24, 25, 29-31, 33,34 DATABASE ENTREZ NUCLEOTIDES [Online] NCBI; 24 June 2003 (2003-06-24), ZIEBUHR J ET AL: "Avian infectious bronchitis virus" XP002275248 Database accession no. NC_001451 100% identical over 10 nucleotides:13644-13654 * abstract *

EPO FORM 1503 03.82 (P04C10)

Application Number

EP 04 07 5050

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THI APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Х	ANAND KANCHAN ET AL: "Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs." SCIENCE (WASHINGTON D C), vol. 300, no. 5626, 13 June 2003 (2003-06-13), pages 1763-1767, XP002291115 ISSN: 0036-8075 * page 1765, right-hand column * page 1766, right-hand column, paragraph 1 *	50-52	
Υ	WO 01/09290 A (LOZANO DUBERNARD BERNARDO; SARFATI MISRAHI DAVID (MX); ARANDA MERL) 8 February 2001 (2001-02-08) * claims 17-36,39-42,44 *	21,24, 25, 29-31, 33,34	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
А	ZIEBUHR JOHN ET AL: "Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase" JOURNAL OF VIROLOGY, vol. 71, no. 5, 1997, pages 3992-3997, XP002291116 ISSN: 0022-538X * table 3 * * page 3997, last paragraph *	50-52	
Т	VAN DER HOEK LIA ET AL: "Identification of a new human coronavirus" NATURE MEDICINE, vol. 10, no. 4, April 2004 (2004-04), pages 368-373, XP002290972 ISSN: 1078-8956 * the whole document *	1-59	

Application Number EP 04 07 5050

1	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	. ,
Т	FOUCHIER RON A M ET AL: "A previously undescribed coronavirus associated with respiratory disease in humans" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 101, no. 16, 20 April 2004 (2004-04-20), pages 6212-6216, XP002291117 ISSN: 0027-8424 * the whole document *	1-59	
			TECHNICAL FIELDS SEARCHED (Int.Cl.7)

INCOMPLETE SEARCH SHEET C

Application Number EP 04 07 5050

Although claim 41 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Although claim 42 is directed to a diagnostic method practised on the human/animal body comprising a step 'obtaining a sample' (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) not searched: 12,49

Reason for the limitation of the search:

The claims refer to amino acid and nucleotide sequences as depicted in figures 16-19 and/or tables 3, 7 and 10, which are considered to relate to SEQ ID NOs: 9-13, 31-35, 47-65 and 67, and on which the search has been based.

Claim 12 refers to a virus with a desirable characteristic, namely that it is 'capable of inducing' a HCoV-NL63 related disease. However, due to lack of technical features, no meaningful search for said virus is possible.

In addition, claims 17-20, 30, 31,34, 35 and 40 refer to an isolated molecule 'binding' to the virus of the invention, or a part thereof. No specific examples for said molecules are provided and the search has been limited to antibodies, antisense nucleic acid molecules and ribozymes binding to the virus, viral proteins or viral nucleic acids of the invention. Since the essential technical and structural features of said molecules are well known to the skilled person, said molecules are considered to be sufficiently disclosed and supported. In addition, the 'compound' of claim 49 has not been defined by searchable technical features and claims 50-52 have only been searched in as far as said compound comprises an amino acid sequence YNSTLQ or the hexapeptides of claim 52 defined by SEQ ID NOs:1 and 2.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 07 5050

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04-08-2004

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0109290	Α	08-02-2001	WO	0109290	A2	08-02-200

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82