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(57) The invention provides methods and a system
implementing these methods for identifying and charac-
terizing peptides and their functional relationships by
use of measures of correlation. These methods are
based on the interaction of a Correlation Associated
Network Module with several Application Modules in-
cluding a Sequence Network Module, a Differential Net-
work Module, a Marker Panel Network Module and a
Surrogate Network Module allowing e.g. the provision
of a representative overview of the peptide content of
biological samples, the prediction of peptide sequences,
the identification of peptides suitable to be used as
marker panels and the identification of peptides suitable
as surrogates for a known peptide.
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Description

Technical Field of the Invention

[0001] The invention relates to the field of high-throughput analysis of samples with peptide content and especially
computer implemented methods and a system implementing these methods for identifying and characterizing peptides
and their functional relationships by use of measures of correlation.

Background of the Invention

[0002] The success of the Human Genome Project in mapping the human genetic code offers astonishing potential
for medical research. A prerequisite for using this information, however, is the identification of gene products, especially
proteins and peptides. Peptides are the family of molecules formed from the linking, in a defined order, of various amino
acids. The link between one amino acid residue and the next is an amide bond, and is sometimes referred to as a
peptide bond. Peptides occur in nature and are responsible for a variety of functions, many of which are not understood.
They differ from proteins, which are also long chains of amino acids, by virtue of their size.
[0003] Parallel to the world-wide efforts in Genomics, a variety of discovery technologies have been developed for
analyzing samples with peptide content. Just as Genomics focuses on decoding the human genome, these technolo-
gies strive for an comprehensive analysis of the myriad of biologically relevant proteins and peptides with a molecular
mass between about 0.5 and 20 kDa, among which insulin is a prominent example.
[0004] Profiling of peptides and proteins of human body fluids and tissues by mass spectrometry reveals a large
number of peptide signals. Such high-throughput analytical processes demand highly sophisticated bioinformatic ap-
proaches to understand and analyze biological and pharmaceutical coherences in huge sets of data.
[0005] Conventional computer implemented methods for assisting the mass spectrometric identification of peptides
and small proteins interpret the spectra and generate proposals for the identity of the candidate peptide signal by
determining the differences of masses of the fragments in one spectra and assigning these differences to missing
amino acids. A string of missing amino acids is then composed to a proposed amino acid sequence that is thereafter
queried in a huge database containing tens of thousands of the known protein sequences, such as the Swiss-Prot
database. However, if the analyzed peptide or protein is not abundant and/or in a complex mixture, such an approach
turns out to be not very effective and, thus, time consuming concentration or fractionation steps of the sample have to
be performed.
[0006] More sophisticated approaches take the knowledge of a known sequence in a spectrum into consideration.
Here, proteolytic digests of the known sequence are proposed "in silico", and a hypothetic resulting spectrum is then
correlated with the actually measured one. However, these approaches are successful only if the sources of the spectra
contain only a few different analytes, as their fragment signals alter the calculations and lower the correlation coefficients
of the hypothesized calculated spectra with the actually measured one. If many possible protein precursors exist for a
given peptide, then creating such a hypothetic spectrum for each unknown peptide and each possible precursor, the
correlation process of hypothetic and measured spectra often turn out to be quite laborious and at times even unsuc-
cessful.
[0007] Eng et al (Journ. Am. Soc. Mass Spectrom. 5, 976-989, 1994) for instance describe a statistical scorer for
tandem mass spectrometry, that relies on cross-correlating experimental spectra with predicted spectra of peptides
from a database (Havilio et al, Anal. Chem. 75[3], 435-444, 2003). No additional information (e.g. enzyme specificity
used to create the peptides) about the peptide except the mass of the peptide is used. In a first step the tandem mass
spectrometry data is reduced, whereby all but the most abundant signals are removed. In a second step protein se-
quences are queried from a database for combinations of amino acids that match the mass of the peptide, wherein
the search algorithm only considers mass changes typical for a post-translational modification at every occurrence of
the modification site. In a third step, the preliminary matches are scored by summing the number of fragmented ions
that match the ions observed in the spectrum. Immonium ions are considered if the sequence contains the amino acids
Tyrosine, Tryptophan, Methionine or Phenylalanine. This and the sum of fragments are being taken into account in the
scoring function. Finally, a spectrum is reconstructed from the putative amino acid sequences and the highest scoring
predictions are assessed by a cross-correlational analysis. The cross-correlation function measures the coherence of
the reconstructed and the measured spectrum signals by, in effect, translating one signal across the other. Well-known
applications such as SEQUEST and Sonar make use of this approach. However, a disadvantage of this approach is
that the peak intensity strongly depends on the ion type, the ion mass and other experimental parameters and that
many factors are not fully understood yet that contribute to peptide fragmentation.
[0008] Perkins et al (Electrophoresis 20[18], 3551-3567, 1999) describe a statistical scorer that evaluates the prob-
ability of finding a collection of detected fragments in a protein database (Havilio et al, Anal. Chem. 75[3], 435-444,
2003). Applications such as Mascot, MOWSE, Protocall are based on this approach. However, a disadvantage of this
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approach is that the signal intensities of the measured spectra are not being considered for the data analysis.
[0009] Weinberger et al (United States Patent Application 2002/0182649) describe essentially two approaches. In
the first approach a protein candidate is identified by providing the mass spectrum to a protein database mining tool
which identifies at least one protein candidate for the test protein in the database based on a closeness-of-fit measure
between the mass spectrum and the theoretically calculated mass spectra of proteins in the database. In the second
approach, the protein candidate is directly sequenced using mass spectrometry. In this method the unknown peptide
is directly fragmented during mass spectrometry and the masses of the generated fragments are determined by mass
spectrometry and are used to calculate the sequence of the unknown peptide.
[0010] The approaches according to Eng et al and Weinberger et al have in common that a closeness-of-fit analysis
or a cross-correlation is performed over all signals of two spectra, i.e. the measured spectrum and the predicted spec-
trum. A fundamental disadvantage of these methods is that they rely on predicted mass spectra.
[0011] Thus, all of the above approaches have their disadvantages in that at times they turn out to be not very
effective, quite laborious, time consuming and often unsuccessful.
[0012] There is thus a need for methods for analyzing samples with peptide content and a system implementing
these methods overcoming or at least mitigating the disadvantages associated with the prior art.

Summary of the Invention

[0013] The following methods according to the present invention are based upon the concept of Correlation Asso-
ciated Networks and peptide topologies as will be apparent from the detailed description in the sections further below.
[0014] According to the present invention a method based on CANs is provided for providing a representative, non-
redundant overview of the peptide content of a sample type by analyzing a plurality of samples using its peptide topology,
wherein the method comprises the steps of providing a respective mass spectrum for each sample of said plurality of
samples, wherein signal intensity peaks correspond to potential peptides, computing the measures of correlation be-
tween the signal intensities of said potential peptides, grouping potential peptides together, which exhibit a degree of
correlation among each other above a certain threshold, thereby providing a plurality of correlation associated networks
of potential peptides, and assigning one representative potential peptide out of each correlation associated network
as a representative peptide to said correlation associated network of said sample type.
[0015] Furthermore, a method based on CANs is provided for predicting the sequence of peptides using the peptide
topology of a plurality of samples containing a peptide having a known precursor, wherein the method comprises the
steps of providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides, identifying said peptide having a known precursor using the mass of said
peptide, wherein the sequence of the known precursor is known, computing the measures of correlation between the
signal intensity of said peptide having a known precursor and the signal intensities of the other potential peptides,
selecting potential peptides, which exhibit a degree of correlation with said peptide having a known precursor above
a certain threshold, and predicting the sequence of the potential peptides by matching masses of putative fragments
of the sequence of the known precursor with the masses of the potential peptides correlating with said peptide having
a known precursor.
[0016] Still furthermore, a method based on CANs is provided for predicting the sequence of peptides using the
peptide topology of a plurality of samples containing a peptide with a known sequence, wherein the method comprises
the steps of providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides, identifying a peptide with a known sequence using its mass, computing the
measures of correlation between the signal intensity of said known peptide and the signal intensities of the potential
peptides, selecting potential peptides, which exhibit a degree of correlation with the known peptide above a certain
threshold, computing the mass differences between each of the potential peptides and the known peptide, and pre-
dicting the sequence and/or the biologically, chemically or physically modified sequence of the potential peptides by
using data about mass differences caused by biological, chemical or physical processes matching the mass differences
determined in the previous step.
[0017] Yet still furthermore, a method based on CANs is provided for identifying peptides suitable to be used as
marker panels using the peptide topology of a plurality of samples taken from at least two different experimental groups
representing a status A and a status B, wherein the method comprises the steps of providing a respective mass spec-
trum for each sample of said plurality of samples, wherein signal intensity peaks correspond to potential peptides,
computing the measures of correlation between the signal intensities of said potential peptides for each plurality of
samples within each experimental group separately, and selecting pairs of potential peptides, which exhibit a difference
in the degree of correlation between the different experimental groups above a certain threshold, thereby providing
peptides which are suitable to be used as marker panels for diagnostic purposes to distinguish between status A and
status B.
[0018] Yet still furthermore, a method based on CANs is provided for identifying peptides suitable to be used as
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marker panels using the peptide topology of a plurality of samples taken from at least two different experimental groups
representing a status A and a status B, wherein the method comprises the steps of providing a respective mass spec-
trum for each sample of said plurality of samples, wherein signal intensity peaks correspond to potential peptides,
selecting potential peptides correlating with a parameter being representative of status A or status B, computing the
measures of correlation between the signal intensities of said selected potential peptides for each plurality of samples,
and selecting pairs of potential peptides which exhibit no correlation of their respective signal intensities above a certain
threshold, thereby providing potential peptides which are suitable to be used as complementing peptides in a marker
panel for diagnostic purposes to distinguish between status A and status B.
[0019] Finally, a method based on CANs is provided for identifying peptides suitable as a surrogate for a known
peptide using the peptide topology of a plurality of samples, wherein the method comprises the steps of providing a
respective mass spectrum for each sample of said plurality of samples, wherein signal intensity peaks correspond to
potential peptides, computing the measures of correlation between the signal intensity of said known peptide and the
signal intensities of potential peptides, and selecting potential peptides, which exhibit a degree of correlation with said
known peptide above a certain threshold, thereby providing potential peptides suitable as a surrogate for said known
peptide.
[0020] Preferred embodiments of the present invention are disclosed in the dependent claims.

Brief Description of the Drawings

[0021]

FIGURE 1 shows schematically the hardware components and software modules according to the present inven-
tion, their interfaces as well as the flow of information between the hardware components and the software modules.

FIGURE 2 shows an averaged Peptide Mass Fingerprint of cerebrospinal fluid (CSF) samples from several pa-
tients. Each of the 96 chromatographic fractions of each sample is analyzed by MALDI-ToF-mass spectrometry
and all 96 mass spectra generated from one sample are visualized as a "2-D gel-like picture", wherein the x- and
y-axis correspond to the mass-to-charge ratio (m/z) and the chromatographic fraction (F), respectively. The bars
represent peptide peaks, wherein the color intensity represents the mass spectrometric signal intensity. Some
identified peptides including amino acid numbers are identified in this map.

FIGURE 3 shows a diagram exemplifying the correlational behavior of functionally related peptides. Four traces
of spectra from four different samples are focused on the signals of a human osteopontin peptide being comprised
of the amino acids 249-314 of human osteopontin (m/z = 7653.6 Da) and its phosphorylated derivatives, carrying
one (m/z = 7733.5 Da), two (m/z = 7813.5 Da), three (m/z = 7893.4 Da) or more phosporylated residues. The
conserved concentration ratios of the peptides between samples lead to high degrees of correlation of the signal
intensities of the respective peptide pairs.

FIGURE 4 shows a schematic example of a correlation associated network (CAN) according to the present inven-
tion. Any CAN starts from a hub peptide and any member of a 1st order neighborhood of such a hub peptide of 1st

order can be a hub peptide for the next order neighborhood and so forth.

FIGURE 5 shows a flow chart schematizing the procedural steps of an application of the CAN Module according
to the present invention.

FIGURE 6 shows a graphical representation of an exemplary peptide topology of a sample, wherein peptides are
represented by bullets and their mutual relations by lines connecting these bullets. Such a peptide network can
be projected onto a peptide map like Figure 2 for a more intuitive analysis of the results.

FIGURE 7 shows a flow chart schematizing the procedural steps of an interaction of the Sequence Network Module
with the CAN Module according to the present invention.

FIGURE 8a shows a flow chart schematizing the process of checking whether a predicted sequence matches the
experimental properties of an unknown peptide.

FIGURE 8b shows a flow chart exemplifying the generation of sequence predictions, which are checked according
to Figure 8a.
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FIGURE 8c shows a flow chart schematizing the query of all unknown peptides P2 which are related to a known
peptide P1. Sequence predictions are generated for any unknown peptide P2 according to Figure 8b.

FIGURE 8d shows a flow chart exemplifying the iteration of the process as demonstrated in Figure 8c for any
peptide P1 with a known sequence.

FIGURE 9 shows a table of the monoisotopic and the average mass changes of a peptide upon the respective
modification.

FIGURE 10 shows a table with exemplified motifs of chemical and enzymatic reactions, their respective mecha-
nism/enzyme and the resulting average mass difference of the modified peptide.

FIGURE 11 shows a table listing the most common amino acids, their three- and one letter codes as well as their
monoisotopic and average mass in their dehydrated form.

FIGURE 12 shows a table listing the common amino-terminal and carboxy-terminal groups of peptides, as well as
the chemical composition, their respective monoisotopic and average mass.

FIGURE 13 shows a table that refers to the fraction shifts of peptides that are caused by addition of the respective
amino acid to the peptide sequence under the described experimental settings with cerebrospinal fluid as sample
source.

FIGURE 14a shows a table with amino acids and their empirically derived occurrence before the N-terminal cleav-
age position (start position) of a peptide in a precursor sequence, the respective overall occurrence of the given
amino acid in all determined sequences and the ratio thereof.

FIGURE 14b shows a table with amino acids and their empirically derived occurrence after the N-terminal cleavage
position (start position) of a peptide in a precursor sequence, the respective overall occurrence of the given amino
acid in all determined sequences and the ratio thereof.

FIGURE 14c shows a table with amino acids and their empirically derived occurrence before the C-terminal cleav-
age position (end position) of a peptide in a precursor sequence, the respective overall occurrence of the given
amino acid in all determined sequences and the ratio thereof.

FIGURE 14d shows a table with amino acids and their empirically derived occurrence after the C-terminal cleavage
position (end position) of a peptide in a precursor sequence, the respective overall occurrence of the given amino
acid in all determined sequences and the ratio thereof.

FIGURE 15 shows a flow chart schematizing the procedural steps of an interaction of the Differential Network
Module with the CAN Module according to the present invention.

FIGURE 16 shows a flow chart schematizing the procedural steps of an interaction of the Marker Panel Network
Module with the CAN Module according to the present invention.

FIGURE 17 shows a flow chart schematizing the procedural steps of an interaction of the Surrogate Network
Module with the CAN Module according to the present invention.

FIGURES 18a and 18b show a table of the signal intensity values of the peptides with coordinates Fraction 54;
m/z 2743.0, Fraction 54; m/z 1371.5, Fraction 56; m/z 2927.2 and Fraction 20; m/z 1114.3 taken from 74 samples.
Furthermore, the number of related peptides k with a Spearman's Rank Order Correlation Coefficient threshold of
|r| ≥ 0.8 is shown.

FIGURE 19 shows a table with the measures of correlation of the signal intensities of the peptide with coordinates
Fraction 54; m/z 2743.0 with some exemplary peptides using different measures of correlation.

FIGURE 20 shows a histogram of Spearman's Rank Order correlation coefficient probabilities. The value of a
correlation coefficient of a peptide-to-peptide relation (x-axis) is plotted versus the probability for that peptide-pair
to achieve that value (y-axis). Peptide-to-peptide pairs with low absolute correlation coefficients are most likely
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not related. This is expressed by the maximum at zero of peptide-to-peptide relations from random data (P(r)
Simulation). True positive relations are very likely to be found at higher absolute correlation coefficients. Therefore
the plot of correlation coefficients of peptide-to-peptide relations from measured data (P(r) Measurement) deviates
from P(r) Simulation, because correlation coefficients of functionally related peptides are most likely higher than
those obtained from random data. Such a plot should be generated when a threshold for a given CAN has to be
chosen in order to exclude as much false positive peptide-to-peptide relations while including as many true ones
as possible.

FIGURE 21 shows a table of identified peptides related to Chromogranin A 97-131, the Spearman's Rank Order
Correlation coefficient value of the said peptide with the related peptide, their relative monoisotopic mass and their
amino acid sequence.

FIGURE 22 shows a graph exemplifying the usability of a Differential Network of the peptides SG I 88-132 and
Chromogranin A 97-131. In hypothetic patients before prostatectomy (black triangles) a correlation between these
peptides is present (r = 0.97), and a signal intensity ratio of about 10/1 is conserved. In hypothetic samples after
prostatectomy (white squares) this ratio is not present and the Secretogranin I/Chromogranin A relation is "broken".

FIGURES 23a and 23b show a table of the signal intensity values of the peptides with coordinates Fraction 54;
m/z 1371.5, Fraction 56; m/z 2927.2 and Fraction 20; m/z 1114.3 of 74 samples after removal of the variance of
the signal intensity of the peptide with coordinates Fraction 54; m/z 2743.0. Furthermore, the number of related
peptides k with a Spearman's Rank Order Correlation Coefficient threshold of |r| ≥ 0.8 after the removal of said
variance is shown.

FIGURE 24a shows a graph plotting the signal intensity of the peptide in fraction 54 with a mass-to-charge-ratio
of 2743.0 (F 54; m/z 2743.0) versus the signal intensity of the peptide in fraction 20 with a mass-to-charge-ratio
of 1114.3 (F 20; m/z 1114.3). This plot exemplifies a pair of peptides showing no correlation.

FIGURE 24b shows a graph plotting the signal intensity of the peptide in fraction 54 with a mass-to-charge-ratio
of 2743.0 (F 54; m/z 2743.0) versus the signal intensity of the peptide in the same fraction with a mass-to-charge-
ratio of 1371.5 (F 54; m/z 1371.5). This plot exemplifies a correlation between a peptide-to-peptide pair consisting
of a single charged and a double charged peptide ion.

FIGURE 24c shows a graph plotting the signal intensity of the peptide in fraction 54 with a mass-to-charge-ratio
of 2743.0 (F 54; m/z 2743.0) versus the signal intensity of the peptide in fraction 56 with a mass-to-charge-ratio
of 2927.2 (F 56; m/z 2927.2). This plot exemplifies a peptide-to-peptide pair exhibiting a functional relation.

FIGURE 25a shows a graph plotting the studentized signal intensity of the peptide in fraction 54 with a mass-to-
charge-ratio of 2743.0 (F 54; m/z 2743.0) versus the studentized signal intensity of the peptide in fraction 20 with
a mass-to-charge-ratio of 1114.3 (F 20; m/z 1114.3), i.e. the peptide pair of Figure 24a. A minimum spanning tree
algorithm was performed to connect the nearest vertices. The path with the most vertices, i.e. the MST diameter,
has been higlighted by a bold line. In this example, the path comprises 29 vertices.

FIGURE 25b shows a graph plotting the studentized signal intensity of the peptide in fraction 54 with a mass-to-
charge-ratio of 2743.0 (F 54; m/z 2743.0) versus the studentized signal intensity of the peptide in the same fraction
with a mass-to-charge-ratio of 1371.5 (F 54; m/z 1371.5), i.e. the peptide pair of Figure 24b. This plot exemplifies
a correlation between a peptide-to-peptide pair consisting of a single charged and a double charged peptide ion.
A minimum spanning tree algorithm was performed to connect the nearest vertices. The path with the most vertices,
i.e. the MST diameter, has been highlighted by a bold line. In this example, the path comprises 50 vertices.

FIGURE 25c shows a graph plotting the studentized signal intensity of the peptide in fraction 54 with a mass-to-
charge-ratio of 2743.0 (F 54; m/z 2743.0) versus the studentized signal intensity of the peptide in fraction 56 with
a mass-to-charge-ratio of 2927.2 (F 56; m/z 2927.2), i.e. the peptide pair of Figure 24c. This plot exemplifies a
peptide-to-peptide pair exhibiting a functional relation. A minimum spanning tree algorithm was performed to con-
nect the nearest vertices. The path with the most vertices, i.e. the MST diameter, has been highlighted by a bold
line. In this example, the path comprises 40 vertices.

FIGURE 26 shows a table where the peptides with coordinates Fraction 54; m/z 1371.5 and Fraction 56; m/z
2927.2 were tested according to a method of the present invention, whether the given peptides are potentially n
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times charged ions of the peptide with coordinates Fraction 54; m/z 2743.0.

FIGURE 27 shows the precursor sequence of the "Hypothetical Precursor" (HP) using a one-letter code. The
sequence of the peptide HP 25-48 is underlined, the sequence of HP 25-50 is in bold letters.

Detailed Description of the Invention

[0022] Prior to giving a detailed albeit exemplary description of embodiments of the present invention the following
definitions are provided to establish how the technical terms are to be understood herein.

Definitions

[0023] Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly under-
stood by a person skilled in the art to which this invention belongs. As used herein, the following terms have the meaning
ascribed to them unless specified otherwise.
[0024] "Sample" refers to any material, substance or the like containing or potentially containing peptides.
[0025] "Peptides" refers to polymers of amino acids coupled by peptide bonds comprising at least two amino acids.
These amino acids can be the twenty standard amino acids and additionally unusual amino acids as known in the arts
including D- and L- amino acids. Peptides can contain additional modifications such as posttranslational, enzymatic
and/or chemical modifications.
[0026] "Status of a sample or an organism" means that the status or type of a sample at the time of the generation
of the sample, e.g. the drawing of blood, is reflected by the contents and the activities of the sample. The actual status
of an organism at the time of sample generation (such as the drawing of blood) is reflected in the contents and activities
present in the sample. The sample conserves the status similar to a snap shot picture. A status for example can
represent the presence or absence of a certain disease, the presence or absence of pregnancy, the sex of the individual
from which the sample originated, the presence of a certain genetic variation such as the knockout of a gene or a
polymorphism, the over expression or increased activity of a certain gene or gene product (for example as a conse-
quence of a drug or of the transfection of the gene coding for the gene product or by direct addition of the gene product,
etc.), the suppression of the expression or activity of a certain gene or gene product (for example as a consequence
of a drug, anti-sense nucleotides, RNAi (RNA interface) nucleotides, ribozymes, triplex-forming nucleotides, antibodies,
etc.), the presence of genetic modified ingredients in food, cosmetics or other products, the age of the organism from
which the sample originated, the species of the organism from which the sample originated, a certain treatment of the
organism from which the sample originated (for example with a therapeutically active substance a food ingredient or
substance present in cosmetics, treatment with insecticides, pesticides or other toxic substances, etc.), the geographic
origin of the sample, the development stage of the organism from which the sample originated (for example the stage
of a fertilized egg, an embryo, an adult, intracellular/extracellular bacteria/virus, egg/larva/pupal/adult-stage of for ex-
ample butterflies, different development stages of plasmodium, etc.), the metabolic state of the organism from which
the sample originated (for example hibernation, stages of the circadian rhythm, etc.), the point of time before, during
or after the treatment of an organism with a substance, the localization (or tissue) within the organism, from where the
sample was taken, and the like.
[0027] "Measurement parameter of a peptide" refers to any parameter known to or measurable by the investigator
such as the molecular mass of the peptide, the mass/charge ratio of the peptide, the signal intensity of the measured
peptide, the actual concentration of the measured peptide, the fraction-number in which the peptide is present as a
consequence of a certain separation protocol subjected to the sample, or the measured activity of the peptide.
[0028] "Correlation" or "relation" refers to a hypothesized mutual dependency of at least one parameter of two pep-
tides, may this dependency be symmetric or asymmetric, known or not known, statistically significant or not. Relations
of two peptides can be caused by chemical and biochemical reactions from one peptide to the other, by concerted
gene regulation of the analytes, by common precursor peptides and so on.
[0029] "Measure of correlation", "correlation measure" or "measure of association" refers to statistical means to
describe the symmetric or asymmetric statistical dependency of measurement parameters of pairs of peptides in terms
of their "relation". Examples for measures of correlation are: "Pearson Product-Moment Correlation Coefficient",
"Spearman's Rank-Order Correlation Coefficient", "Kendall's Tau", "Kendall's Coefficient of Concordance", "Goodman
and Kruskal's Gamma", "Manhattan distance", "Euclidean distance" and "Minimal Spanning Tree Diameter".
[0030] "Correlation associated network (CAN)" refers to the complete network of all measures of correlation identified
within samples representing one status or identified within different groups of samples representing different statuses.
It is possible that more than two peptides correlate to each other and a CAN contains at least two peptides correlating
to each other. It should be noted that the peptide CAN based on "a sample" does not necessarily comprise results
obtained from a single experiment. Rather, to completely determine a peptide CAN, multiple experiments are often
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needed, and the combined results of which are used to construct the peptide CAN for that particular sample. The
results of the calculation of a CAN (CAN of first order) can be used for another round of calculation of measures of
correlation and so on. The results of these kind of calculations are also termed CANs or more specifically CANs of
second or higher order.
[0031] "Peptide-topology" refers to the entirety of measured and computed peptide data of a sample ("measurement
parameter of peptides") comprising the masses of the peptides, the signal intensity of the peptides (preferably measured
by mass spectrometry or another measurement method suitable to quantify peptides), the fraction number (if the sample
was fractionated prior to mass spectrometry) and measures of correlation calculated using these data.
[0032] "Groups of samples" refers to a set of samples corresponding to a certain status. A group of samples for
example could comprise 10 plasma samples of diabetic patients. The samples of a group need not to be of exactly the
same origin. For example a group of samples may also comprise 5 plasma samples of diabetic patients and 5 urine
samples of diabetic patients. The reason for this being that many peptides present in plasma are also present in urine
and for example the same diabetes-specific peptides may be present in plasma and urine, as long as the sample
originates from a diabetic patient.
[0033] "Known peptide" means that the peptide with that particular sequence or part of a sequence in the sample is
known to the user of the invention. An unknown peptide is a peptide whose sequence is not known to the user of the
invention, although the sequence of the peptide may be known from the literature or other sources of information such
as sequence data bases.
[0034] "Potential peptide" refers to a mass spectrometric signal which most likely represents a peptide.
[0035] "Precursor of a peptide" refers to the longest amino acid sequence present in nature comprising the sequence
of the peptide, i.e. form which the peptide can originate.
[0036] "Coordinate(s) of a peptide" refer to the mass-to-charge ratio and optionally further specific measurable prop-
erties obtainable by a detection or identification process that are involved in the identification and/or quantification of
the said peptide/peptide ion. In the examples of this invention the peptide coordinates are the elution time/fraction
number of a chromatographic process and the mass-to-charge ratio, thus comprising of two coordinates. In this inven-
tion, these coordinates often are written in a short form, such as "F 56; m/z 2873.0", which identifies the signal of a
peptide found in fraction 56 with the mass-to-charge ratio 2873.0. Of course, further dimensions can be necessary,
such as a previous capillary electrophoresis, or a downstream second mass spectrometric process. "Coordinates of a
peptide", "signal coordinates" or "peptide" are often used synonymously.
[0037] "Fitness value" refers to an assessment of a predicted sequence based on the experimental properties of an
unknown peptide. Any predicted sequence gains points for properties that match the experimental properties, such as
the correct prediction of the fraction number. The higher the "fitness value", the more probable the correctness of the
predicted sequence. According to the present invention fitness values are manually or automatically suggested for
each sample type and empirically tested for suitability.
[0038] "Landmark peptides" refers to peptides that are related to numerous other peptide signals and least related
to each other. The identification, e.g. sequencing, of these landmark peptides should be prioritized to gain a rapid
overview about the peptide composition of a sample.

Providing the data

[0039] Figure 1 shows schematically the hardware components and software modules according to the present
invention, their interfaces and the flow of information between the hardware components and the software modules.
Although measurement data could be provided without fractionating the samples prior to performing mass spectrometry,
such a fractionation e.g. by chromatography into e.g. 96 fractions is preferred. A "fraction" in terms of chromatography
is a part or the effluent recovered during a separation step. Usually, several fractions are collected. Fractions usually
contain different "subsets" of peptides from the sample. Suitable separations methods for peptides are chromatographic
methods such as ion exchange, hydrophobic interaction, iso-electric focusing, gel filtration or affinity chromatography,
electrophoretic methods such as native, iso-electric, denaturizing or SDS-gel electrophoresis using matrixes such as
polyacrylamide or agarose gels, paper electrophoresis, thin layer chromatography, capillary electrophoresis, methods
using centrifugation for separation such as sucrose or Caesiumchloride gradient centrifugation and the like. These
chromatographic fractions are then subjected to a measurement of the mass spectrum providing 96 mass spectra,
which can be visualized e.g. in a 2D gel-like format as shown in Figure 2. To this end all kinds of methods suitable to
determine masses of peptides and preferably all kinds of mass spectrometry can be used in the present invention such
as matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry, liquid chromatography electro-spray
ionization (ESI) quadrupole time of flight mass spectrometry (LC-ESI qTOF) and the like. It is furthermore possible to
analyze only selected but not all fractions by mass spectrometry.
[0040] Each bar in Figure 2 depicts a peak present in one of the 96 mass spectra, wherein the colour intensity of the
bar corresponds to the intensity of the corresponding mass spectrometric signal. The x-axis of Figure 2 represents the
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mass to charge ratio m/z and the y-axis the chromatographic fraction number. The m/z values preferably range from
1.000 to 15.000, although higher or lower m/z values can be included as long as these values can be resolved by mass
spectrometry or other methods. Within this range of m/z values the detected peptides can be comprised of only two
amino acids at the lower end up to peptides of very large molecular mass such as alpha-2 macroglobuline having a
molecular mass of 725 kDa.
[0041] Similar 2D gel-like maps are produced for every sample out of the set of samples to be analyzed. These maps
can be averaged yielding an averaged peptide mass fingerprint map as shown in Figure 2. This averaged map serves
as a template for the definition of usually about a thousand peak coordinates, i.e. the x-coordinate corresponding to
the m/z value and the y-coordinate corresponding to the fraction number. In practice one selects those peak coordinates
exhibiting a signal above a certain threshold value.

Data Pre-processing

[0042] In order to obtain measurement data that is suitable for a correlation analysis and that gives meaningful results
preferably a pre-processing of the data is performed using methods such as baseline correction, spectra normalization,
outlier detection and the like. Methods for baseline correction are well known in the art (e.g. Fuller et al, Applied Spec-
troscopy, 42, 217 1988). In a preferred embodiment the pre-processing of the data is performed by applying the baseline
correction being part of the software RAZOR Library 4.0, Spectrum Square Associates, Ithaca NY, USA. Optionally a
normalization of the mass spectra can be performed by using the signal intensities or the integrated mass spectra.
Outlier samples can be identified by means of a principal component analysis as provided by the commercially available
software package Pirouette 3.0, Infometrix Inc., WA, USA. Based on this principal component analysis individual mass
spectra or even whole samples that exhibit a Mahalanobis distance MD above a critical threshold value of should not
be considered for a further analysis and thus be discarded. In the examples described further below a Mahalanobis
distance of MD > 11.5 was chosen for 74 samples.
[0043] The preprocessing, processing and display of the data according to the present invention can be performed
e.g. on a Apple G4 Computer, wherein the CPU consists of 2 processors with 800 MHz each and the memory size is
1.25 Gigabyte. The local data storage of peptide-to-peptide relations (measures of correlation, coordinates of peptides)
is accomplished by a local Valentina Database system (Valentina 1.9 for Realbasic, Paradigma Software, Beaverton,
Oregon, USA). The peptide sequence information is provided by a proprietary Interbase Server (Interbase 6, Borland
Software Corp., Scotts Valley, CA, USA). Microsoft Internet Explorer 5.1 for Apple computer systems can be used for
representation of results from internet resources. The CAN software launches the Internet explorer with a specific
address that contained the keywords for querying the Swiss-Prot, the PubMed, and the US Patent database. Visuali-
zation of three-dimensional objects can be performed using a Realbasic RB3D engine (RealBasic 3.5, RealSoft, Austin,
Texas, USA).
[0044] Other digital computer system configurations can also be employed to perform the methods of the present
invention, and to the extent that a particular system configuration is capable of performing the method of this invention,
it is equivalent to the representative digital computer system schematically shown in Figure 2. Once they are pro-
grammed to perform particular functions pursuant to instructions from program software that implements the methods
of the present invention, such digital computer systems in effect become special-purpose computers particular to the
methods of this invention.
[0045] Computer programs implementing the methods according to the present invention will commonly be distrib-
uted to users on a distribution medium such as floppy disk or CD-ROM. From there, they will often be copied to a hard
disk or a similar intermediate storage medium. When the programs are to be run, they will be loaded either from their
distribution medium or their intermediate storage medium into the execution memory of the computer, configuring the
computer to act in accordance with the method of this invention. All these operations are well-known to those skilled
in the art of computer systems. The term "computer-readable medium" encompasses distribution media, intermediate
storage media, execution memory of a computer, and any other medium or device capable of storing a computer
program implementing the methods of this invention for later access by a computer.

Correlation Associated Network Module

[0046] As exemplified by the arrows in Figure 1 the raw measurement data or preferably the preprocessed meas-
urement data is supplied to the so called Correlation Associated Network (CAN) Module 42. Of the modules 40 of the
present invention the CAN Module 42 is the most fundamental one. Basically the CAN Module 42 scans the measure-
ment data obtained for example from Liquid Chromatography-Mass Spectrometry (LC-MS) experiments 22. On the
basis of this data correlations of peptides are searched for by calculating measures of correlation between for example
their relative concentration as measured by mass spectrometry.
[0047] Measures of correlation can be used to represent the degree of relationship between two variables throughout
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many observations. These variables can be either correlated, not correlated or anti-correlated. In the context of the
present invention measures of correlation are used to detect such correlated, not correlated or anti-correlated peptides
in a set of samples. This can be done e.g. by calculating Spearman's rank-order correlation coefficient of the signal
intensities of two peptides measured in several samples. Preferably this is done for all pairs of peptides. Once these
measures of correlation have been calculated only those pairs of peptides are selected that exhibit a certain behaviour,
i.e. a certain degree of correlation, a certain degree of anti-correlation or a certain degree of no correlation at all. The
parameters of such selected peptide pairs, e.g. the coordinates of the two peptides of each peptide pair, the measure
of correlation, etc., can be stored, displayed on a display device or further processed. Preferably the data is stored in
a database, as a text file or in another computer-readable form. Alternative measures of correlation to Spearman's
rank order correlation coefficient are Pearson Product-Moment Correlation Coefficient, Kendall's Tau, Kendall's Coef-
ficient of Concordance, Goodman and Kruskal's Gamma and Minimal Spanning Tree diameters.
[0048] A Minimal Spanning Tree (MST), also known as Minimum Spanning Tree, is defined by the collection of edges
that joins together all points in a connected set of data points, with the minimum possible sum of edge values (e.g.
Evan, Graph Algorithms, Computer Science Press, 1979). An edge can be graphically displayed by a line connecting
two data points. A MST can be graphically displayed by a set of points (data points) connected by a minimum of lines
to each other. Examples of MSTs are shown in Figures 25a to 25c as described in more detail further below. A MST
also provides a plausible "connectionist" approach to solving the "Traveling Salesman" problem (e.g. Kruskal, Proc.
American Math. Soc., 7, 48-50, 1956; Sun et al, Physica A, 199, 232-242, 1993), which identifies the minimum con-
nected path between all data points. The MST diameter can be defined as the maximum number of edges in the paths
of a graph of a MST. Usually a correlation, for example a Spearman's rank order correlation coefficient, is used to find
a measure of correlation or association or dependency between variables, i.e. data points. A problem is that correlation
is sensitive to linear trend, and linear trends are not always well presented for two associated variables. In the present
invention, the diameter of the MST is used as an alternative measure of correlation between two variables. In order to
use the diameter of the MST to analyze a given set of n statistical observations, all observations should be connected
via the MST and then the MST diameter should be calculated. The larger the MST diameter is, the stronger is the
association between two variables. In the context of mass spectrometry signal intensity data (in the present invention
preferably MALDI mass spectrometry signal intensity data) it was found, that MST diameters > 0.425 times n indicate
a noticeable association between signal intensities of peptide coordinates. In general all kinds of mass spectrometry
signal intensity data, such as MALDI or ESI mass spectrometry data, can be used according to the present invention.
[0049] As already mentioned pairs of peptides are tested for their degree of correlation by estimating e.g. Spearman's
rank order correlation coefficients between their signal intensities throughout many observations. It turns out that pairs
of peptides which are biologically or functionally related surprisingly often exhibit correlation coefficients that are much
higher than correlation coefficients that would be expected by chance. Unrelated pairs of peptides have low absolute
values of correlation coefficients. Figure 3 exemplifies the correlational behaviour of related peptides. Four traces of
spectra from four different samples are focused on the signals of a human osteopontin peptide being comprised of the
amino acids 249-314 of human osteopontin (m/z = 7653.6 Da) and its phosphorylated derivatives, carrying one (m/z
= 7733.5 Da), two (m/z = 7813.5 Da), three (m/z = 7893.4 Da) or more phosphorylated residues. The conserved
concentration ratios of the peptides between samples leads to high degrees of correlation of the signal intensities of
the respective peptide pairs.
[0050] Using the results of the above described computations of measures of correlation so called correlation asso-
ciated networks (CANs) can be defined. A CAN, i.e. a network of peptide relations, comprises a peptide of interest,
the so called hub peptide, and all those peptides and sample parameters that correlate to a certain degree with the
hub peptide. The term hub is used in a similar manner in the theory of network topology and is to characterize the
resemblance of a hub peptide to the hub of a wheel, the hub peptide being at the center of the spokes representing
the peptide-to-peptide relations and the correlating peptides being at the respective ends of the spokes. In practice,
the composition of a CAN is highly dependent on the threshold of correlation as selected by the user. This threshold
is chosen according to the goal of a user. If a user is searching for peptides that strongly relate to a peptide of interest,
such as peptides stemming from the same precursor, then he will select a threshold that will cause a selection of only
the upper 5 % of the strongest correlations with the peptide of interest. The threshold value to be chosen for e.g. the
Spearman's rank order correlation coefficient depends for the thus selected subset on the number of samples and the
peptide of interest. In case the user is interested in finding functionally related peptides, such as e.g. peptides being
co-secreted from vesicles, the user will choose a threshold value, that will select e.g. the upper 10 % of the strongest
correlations.
[0051] The hub peptide and the peptides related thereto and selected as described above represent a CAN of first
order. Depending on the objective it can be necessary to compute CANs of higher order due to the complexity of
biological networks and pathways. As explained above, CANs connect directly related peptides which exhibit a high
degree of correlation. Adjusting the threshold to lower values results in including more loosely related peptides into
the network as well as increasing the probability of predicting false relations. For this reason a preferred embodiment
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of the present invention contemplates the computation of CANs of higher orders, such as e.g. second and third order.
Since the direct members of a network of interest constitute the first order neighborhood, all these members are potential
starting points for the calculation of second order neighborhoods as shown in Figure 4. Although computing CANs of
higher order certainly will improve the results, the computational requirements set an upper limit, because the compu-
tational effort increases with the order of the CANs. A calculation of a CAN of the nth order, where n is greater than 5,
can require more than several millions of calculations. Thus, this approach preferably should be used for the analysis
of rather complex samples in order to include indirectly related peptides, thus avoiding having to decrease the value
of the correlation threshold and possibly including false relations.
[0052] For any kind of sample the composition of peptides varies, novel peptide coordinates emerge, others disap-
pear and many peptide coordinates have a different peptide sequence aligned to it. This results in dealing with many
unknown peptide coordinates when operating with novel sample sources (types of samples). In order to accelerate
analysis of an interest list or more general, to analyze the overall peptide composition of a sample, according to the
present invention it is possible using CANs to accelerate the identification of peptides in complex biological samples
by defining a list of representative peptides, so called landmark peptides, for further analysis such as peptide sequenc-
ing based on CANs described further below. The method comprises the following steps, which are shown in Figure 5.
At step 80 mass spectra are provided as described above, wherein the peaks of the signal intensities in the mass
spectra correspond to potential peptides. Then the measures of correlation between the measured signal intensities
corresponding to potential peptides are computed (step 82). Thereafter at step 84 those peptides are grouped together
that exhibit a degree of correlation above an adjustable threshold. These selected peptides constitute a CAN present
in the samples analyzed. Finally, one peptide out of each determined CAN is assigned to represent that respective
CAN at step 86. In doing so a plurality of landmark peptides is provided being representative of the analyzed samples.
These landmark peptides have the properties of being hub peptides and they are least related to other peptides within
the same type of samples. Identifying a list of these landmark or prioritized peptides gives a rapid overview about the
peptide composition present in complex biological samples, omitting the majority of similar peptides from for example
the same precursor peptide. This is useful to obtain a general overview of the key peptides present in a sample or
present in an interest list from that sample.
[0053] It is contemplated that a such generated interest list of prioritized landmark peptides will contain a set of n
peptide coordinates, and for any peptide z the number of relations, which the peptide z has at a defined threshold r,
kz,r, will be determined. The peptide z with the highest value of kz,r will be defined as y and be rank 1 etc. on the
prioritization list. Then the variance of signal intensities of that determined peptide coordinate y will be removed from
the signal intensities of the related peptides x in a data matrix, for example by a combination of formulas 1, 2 and 3
shown below. Then this peptide will be removed from the data matrix. Calculations of any k and r start from the beginning
to determine the representative peptide ranked number 2 in the prioritization list, and so on. Calculations end for ex-
ample when the data matrix contains no more peptide coordinates, or no peptide has more than zero relations, or the
number of peptide coordinates desired has been reached.

Formulae 1 to 3: Removal of variance of the representative peptide coordinate y on peptide coordinate x

[0054]

where

XVR,p : Signal intensity of peptide x at observation p, Variance of peptide y removed
Xp : Signal intensity of peptide x at observation p
Yp: Signal intensity of peptide y at observation p
m : number of observations

XVR,p = Xp - axy - bxyYp (1)
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and

[0055] It is further contemplated that peptides being part of a CAN preferably are represented by graphical objects
such as e.g. bullets and their mutual relations by lines connecting these bullets. In order to enable a more intuitive
analysis of the results, this network can be projected onto a peptide map as shown in Figure 6. Peptides that have
been identified can be provided with links to databases, with lists containing additional information about these peptides
or with other sources of additional information regarding said peptides.
[0056] The coordinates or measurement parameters of related peptides can be queried in public, commercial and/
or proprietary databases in order to identify further data about the potential identity, function or use of the corresponding
peptides. Suitable public databases include e.g. the PubMed literature database, the OMIM disease database, the
NCBI-Sequence database (all provided by the US National Library of Medicine, MD, USA), the Swiss-Prot and TrEMBL
Sequence database, enzyme database, Swiss 3D image database, Prosite protein family and domain database (all
provided the Swiss Institute of Bioinformatics, Switzerland), patent databases of the US, European, Japanese, German
patent offices, the Gene Cards database of the Weizmann Institute, etc. Suitable commercial databases are for instance
commercial patent databases containing patented amino acid or nucleic acid sequences such as DGENE (Thomson
Derwent, USA) or REGISTRY (Chemical Abstracts Service, USA). A suitable proprietary database is the database of
the user containing peptide sequences from various sources and species. This combination of the visualization of
peptide networks and the connection to many sources of information alleviates the evaluation of the identified peptides
for potential uses such as their use as therapeutic peptides or as biomarkers as will be described in more detail further
below.
[0057] As is apparent from the above, correlation associated networks can be used to generate hypotheses about
relations between structurally and/or biologically related peptides. These hypotheses are based on a correlational
analysis of signal intensities and corresponding relative peptide concentrations from independent samples. The ex-
amples described in the sections further below will demonstrate that correlation associated networks are powerful tools
for the systematic analysis and interpretation of large peptidomic and proteomic data in order to reveal functional
relationships governing protein synthesis, posttranslational modifications and degradation. CANs support the discovery
of novel bioactive and diagnostic peptides leading beyond the mere comparison of peptide concentration changes
caused by a disease.
[0058] According to the present invention the CAN Module 42 is interacting with several application modules 44
comprising a Sequence Network Module 46, a Differential Network Module 48, a Marker Panel Network Module 50
and a Surrogate Network Module 52 as shown in Figure 1. These application modules 44 of the present invention and
their interaction with the fundamental CAN Module 42 will be described in detail in the sections below.

Sequence Network Module

[0059] The interaction of the Sequence Network Module with the fundamental CAN Module according to the present
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invention allows to predict the amino acid sequences of unknown peptides with or without modifications of the sequence
and/or to predict unknown modifications of a known or unknown peptide sequence. Although the identity of the peptide
is unknown, certain physicochemical and biochemical properties of the signal of an unknown peptide are known and
can be exploited for amino acid sequence prediction such as the mass-to-charge ratio (m/z) or the chromatographic
behaviour (fraction number/retention time). Furthermore bioinformatic support data shown at 56 in Figure 1 such as
the correlation associated network of related peptides, mass differences and differences in fraction number between
the peptides of the correlation associated network, and the like are accessible as they can be computed using exper-
imental data and the amino acid sequences of other members of the correlation associated network possibly already
known.
[0060] Figure 7 shows a flow chart schematizing the procedural steps of an interaction of the Sequence Network
Module with the CAN Module according to the present invention allowing the prediction of the sequence of peptides
using the peptide topology of a plurality of samples containing a peptide having a known precursor. At step 80 a re-
spective mass spectrum for each sample of said plurality of samples is provided, wherein the signal intensity peaks
correspond to potential peptides. Thereafter at step 88 the peptide having a known precursor is identified using the
mass of said peptide, wherein the sequence of the known precursor is known. Then measures of correlation between
the signal intensity of the peptide having a known precursor and the signal intensities of the other potential peptides
are computed at step 90. At step 92 those potential peptides are selected, which exhibit a degree of correlation with
the peptide having a known precursor above a certain adjustable threshold, and finally the sequence of the potential
peptides are predicted at step 94 by matching masses of putative fragments of the sequence of the known precursor
with the masses of the potential peptides correlating with said peptide having a known precursor.
[0061] Alternatively after step 92 the mass differences between each of the potential peptides and the known peptide
can be computed at step 96, and thereafter the sequence and/or the biologically, chemically or physically modified
sequence of the potential peptides predicted at step 98 by using data about mass differences caused by biological,
chemical or physical processes matching the mass differences determined in step 96.
[0062] The first of the above approaches is more comprehensive, since all plausible putative sequences are gener-
ated from the precursor sequence of the known peptide (steps 90-98). The second approach (steps 90-96, 100-102)
generates fewer but more reliable predictions. It has been observed that related peptides very often have very similar
sequences/sequence modifications, and these predictions are promoted by the second approach. Nevertheless, since
both approaches have steps 90-96 in common, computational power is "saved" if both approaches are combined in
one operation, as contemplated in the present invention.
[0063] Mass differences may result from addition or removal of N- or C-terminal amino acid residues or of postrans-
lational modifications of amino acid side chains such as phosphorylation, amidation, sulfatation, glycosylation, fatty
acids or Ubiquitin modification, and the like or chemical modifications such as oxidation, disulfide bonding, and the like
or Nor C-terminal modifications such as pyroglutamate modifications and the like. All of these modifications result in
distinct increases or decreases of the molecular mass of the corresponding peptide. Also internal insertions or deletions
or the exchange of one amino acid for another, so called point mutations, result in exactly predictable mass changes
of the peptide.
[0064] According to the present invention the prediction of sequences is possible regardless of whether the identity
of one of the related peptides is known or not. Especially if the identity of one peptide is known, mass differences
corresponding to the molecular masses of amino acid residues allow to directly predict the complete sequence of the
unknown peptide with high reliability. If the identity of no peptide is known, than for example it can be predicted that
the unknown peptide 1 and the unknown peptide 2 are identical, except that for example peptide 2 contains an additional
amino acid residue, for example a Tyrosine residue, or for example peptide 2 is the same peptide as peptide 1 except
that it is phosphorylated, etc. The prediction is not always correct, but the more independent information is accessible,
the more reliable the prediction becomes. For example if the mass difference fits to the addition of an Tyrosine amino
acid residue and the peptide is present in a fraction, which fits to the prediction of the fraction-shift of a peptide with
an additional Tyrosine residue, the overall reliability of the prediction increases.
[0065] For this embodiment the use of proprietary and/or commercial and/or public databases is possible. Suitable
databases are for example databases containing amino acid or nucleic acid sequence information such as the NCBI
sequence data base, Swiss-Prot, the EMBEL sequence data base, the DNA data base of Japan, data bases of patented
sequences, and the like, data bases containing information about the structure of carbohydrates, such as PROSITE
(Falquet et al, Nucleic Acids Res., 30, 235-238, 2002), data bases containing information about postranslational, en-
zymatic or chemical peptide modifications such as phosphorylation sites of peptides, glycosylation sites of peptides,
positions of unusual amino acids such as hydroxy-proline or hydroxy-lysine within peptides, databases containing
information about recognitions sites of proteases, ligases, phophatases, kinases, and the like within peptide sequences,
databases containing information about the susceptibility of certain amino acids or sequences of amino acids towards
chemical modifications such as oxidation, reduction, intra-molecular rearrangement, data bases containing data about
three-dimensional structures about peptides, carbohydrates or other biological structures, and the like (Falquet et al,
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Nucleic Acids Res., 30, 235-238, 2002). All of these different kinds of databases enable to predict the structural differ-
ence between peptides, based on certain incremental increased or decreased molecular masses of these peptides.
For example:

(i) amino acid sequences stored in databases allow the calculation of the masses of successive shortened or
extended peptides or of peptides containing mutations of their sequence

(ii) databases containing for example recognition sites (sequences) of kinases allow to predict, that the molecular
mass of a certain peptide, containing such a recognition site, may have a molecular weight increased or decreased
by the mass of a phosphate group

(iii) data bases of recognition sites of proteases allow to predict the molecular masses of potential proteolytic
fragments of a certain peptide

(iv) databases containing experimental data about physical properties of peptides such as elution times during for
example hydrophobic interaction chromatography allow to predict, if a certain peptide sequence with a certain
molecular mass is likely to elute at a certain time point during chromatography

(v) databases containing prediction values of chromatographic retention times or fraction numbers based on the
amino acid composition and/or sequence of the peptide: if a certain chromatographic column is used, a peptide
with an additional tyrosine residue would elute 3 fractions later than a peptide without that additional tyrosine
residue. For example a peptide I in fraction x with mass y is known and a related peptide II within fraction x+3 has
the molecular mass y plus the mass of a tyrosine residue. This would indicate with high reliability that peptide II is
the same peptide as peptide I, except that it contains an additional tyrosine residue somewhere within its sequence

(vi) databases of three-dimensional structures of for example peptides allow to predict, if there is for example space
enough at a certain amino acid side chain to be modified for example by a phosphate group or a sugar moiety,
resulting in an increased molecular weight of the potential corresponding peptide

[0066] The prediction of physicochemical and biochemical properties of putative amino acid sequences fit surprisingly
well to experimentally determined properties. This approach can be extended by utilizing knowledge about precursor
amino acid sequences and posttranslational, chemical and enzymatic modifications of known related peptides as pro-
vided by the support data 56 shown in Figure 1 and as discussed above. Furthermore, information about a known
peptide such as the name of its precursor, its precursor sequence, its start and end-position within the precursor se-
quence can be retrieved before or during the prediction processes. Information about protease recognition sites, pre-
dictions of domains, and structures sensitive to proteolytic digestions can also be retrieved. This information can be
supplied manually, from databases or lists or from a comparable source of information. A conversion of mono-isotopic
m/z ratio to average m/z ratio, from the m/z ratio of the charged ion to the m/z ratio of the un-charged ion within a
reasonable error tolerance is known to those skilled in the art.
[0067] The invention comprises specific rules, which determine if a putative amino acid sequence derived according
to one of the methods described above fits to the peptide signal coordinates of an unknown peptide. These rules which
are schematically shown in Figures 8a to 8d can be applied in any order and it is not necessary to apply all of them in
any given case:

Rule a:

[0068] This rule applies formula 4 (shown below) to check, whether the unknown peptide coordinate is an n-fold
charged ion of the known peptide coordinate by the following condition, where n can be an integer number greater
than 1, m/zunknownpeptide is the m/z ratio of the unknown peptide, m/zknownpeptide is the m/z ratio of the known peptide
and MassThreshold is a maximum difference of the calculated mass from the measured mass. A preferable MassThreshold
equals the mass precision of the instrument and the subsequent data processing routines. If this condition is met, the
proposal is rewarded with a high fitness value and the proposal that the unknown peptide is the n-fold charged ion of
the known peptide can be stored.
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Formula 4: Check for n times charged peptide ions

[0069]

Rule b:

[0070] If the difference of the masses of a known hub peptide P1 and a related peptide P2 corresponds to a mass
of an post-translational modification, as listed for example in the table "Mass Changes Due to Post-translational Mod-
ifications of Peptides and Proteins" shown in Figure 9 or as known from the prior art (Falquet et al, Nucleic Acids Res.,
30, 235-238, 2002), then P2 is proposed to be the post-translationally modified derivative of P1. If the amino acid
sequence of the known hub peptide P1 contains specific sites for posttranslational modifications or it is known that P1
is or can be posttranslationally modified, and if the mass difference between the known and the unknown peptide
corresponds to the mass difference resulting from the presence or absence of that posttranslational modification, the
fitness value is increased. The table shown in Figure 15 exemplifies motifs, enzymes recognizing these motifs and the
resulting mass differences. Numerous other postranslational modifications or putative sequence motifs bearing certain
post-translational modifications are known in the prior art and could be used as well such as N-glycosylation or O-
glycosylation sites (motifs), phosphorylation sites, sulfatation sites, and the like (e.g. Alberts et al, Molecular Biology
of the Cell, Garland Publications, 2002; Coligan et al, Short Protocols in Protein Science, John Wiley & Sons, 2003;
Falquet et al, Nucleic Acids Res., 30, 235-238, 2002).

Rule c:

[0071] Putative sequences or putative fragments are generated from potential amino- and carboxy-terminal trunca-
tions or additions of amino acids of the known precursor sequence of the hub peptide and are checked whether they
match the found m/z ratio of the unknown peptide coordinate. A putative sequence is generated by systematically and
iteratively defining start- and end-positions, i and j, in the given precursor sequence of the hub peptide, as exemplified
in Figure 8b. The mass of the putative amino acid sequence MCALC is calculated by summing up the masses of the
amino acids, the hypothesized postranslational modifications of the amino acid residues and/or of the terminal groups
of the putative amino acid sequence (see the tables in Figures 9, 11 and 11 and formula 5 shown below). Rule c defines
that if the calculated mass differs from the measured mass MFOUND of the unknown peptide signal by less than a given
mass threshold TMass, this putative amino acid sequence plus posttranslational modifications are proposed and further
rules d to i can be applied, otherwise this proposal is rejected. This can be done with one or more putative peptide
sequences or with all hypothetically possible peptide sequences that can be deduced from the precursor sequence of
the known related peptide signal coordinates.

Formula 5: Calculation of Masses

[0072]

wherein:

MCALC is the calculated mass of the peptide with the given/putative sequence,
MONE LETTER AMINO ACID CODE is the mass of the appropriate amino acid,
nONE LETTER AMINO ACID CODE is the number of the appropriate amino acid in the given/putative sequence,
MN-Terminal Group is the mass of the N-terminal group,
MC-Terminal Group is the mass of the C-terminal group, and
MModifications is the mass change by modification(s), in the case of no modification MModifications = 0.

n*(m/zunknownpeptide - 1) - m/zknownpeptide = Massdeviation ≤ Massthreshold

MCALC = nA * MA + nR * MR + nN * MN + nD * MD + nC * MC + nE * ME + nQ * MQ + nG * MG +

nH * MH + nI * MI + nL * ML + nK * MK + nM * MM + nF * MF + nP * MP + nS * MS + nT * MT +

nW * MW + nY * MY + nV * MV + MN-Terminal Group + MC-Terminal Group + MModifications
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Rule d:

[0073] The number and the identity of amino acids influence the elution time/fraction number, depending on the size
and the kind of the chromatography column used and the chromatography conditions. The fraction number/elution time
of a peptide can be surprisingly well predicted on the basis of its amino acid sequence by the so called Group Method
of Data (GMDH, e.g. Mueller and Lemke, Self-Organising Data Mining Extracting Knowledge From Data, Trafford Pub-
lishing, 2003), multiple regression or comparable mathematic methods with a training set of peptides with known se-
quences, which are separated under the same chromatographic conditions as exemplified in Formula 6 shown below.
In the said training set, the number of any amino acid residue type of a peptide is the independent variable whereas
the fraction number of the peptide is the dependent variable. If the calculated fraction number (e.g. Formula 6) of the
predicted amino acid sequence matches the derived fraction number of the unknown peptide within a given error
tolerance, then the model fitness points are increased. If the mass differences are proposed to be resulting from distinct
amino acid deletions/additions and if the differences in fraction number can be matched with these said amino acid
sequence differences (see Figure 13), the model fitness points are increased.

Formula 6: Estimation of fraction number based on proposed sequence

[0074]

wherein:

FCALC is the calculated Fraction number of the given sequence, and
nONE LETTER AMINO ACID CODE is the number of the appropriate amino acid in the given sequence.

Rule e:

[0075] If the N-terminal position of the predicted amino acid sequence is the same as the N-terminal position of the
known peptide, the fitness value is increased. This is because the known peptide and the unknown peptide of the
underlying signals are related via a C-terminal proteolytic reaction, which is observed surprisingly often.

Rule f:

[0076] If the C-terminal position of the predicted amino acid sequence is the same as the C-terminal position of the
known peptide signal, the fitness value is increased. This is because the known peptide and the unknown peptide of
the underlying signals are related via an N-terminal proteolytic reaction, which is observed surprisingly often.

Rule g:

[0077] If the start position and/or the end-position of the predicted sequence is preceded or followed by sites of
infrequent proteolytic events, the fitness value of this proposal is decreased. If the start position and/or the end-position
of the predicted sequence is preceded or followed by sites of frequent proteolytic events, the fitness value of this
proposal is increased. This is because it has been observed that peptides are often products of specific and/or unspe-
cific proteases. Depending on the source and preparation procedure of the samples, proteases and intra-molecular
rearrangements, such as disulfide bonding, can vary. With for example liquor cerebrospinalis (CSF) as sample source,
the sequences "R-R" or "R-K" are frequently preceding a peptide's N-terminal position in a precursor as they are
recognition sites of the prohormone convertase PC2 in CSF. Next to known enzyme recognition sites, some amino
acids are more frequently and others are less frequent. Positions preceding or following N-and C-terminal positions of
peptides can be predicted on the basis of their mere percentage occurrence in a particular sample treated in that
particular way. This kind of information can easily be determined empirically and an example for peptides present in
human liquor cerebrospinalis is shown in the tables in Figures 14a to 14d. The tables "CSF: amino acid Before First
Cleavage", "CSF: amino acid After First Cleavage", "CSF: amino acid Before Last Cleavage", and "CSF: amino acid
After Last Cleavage" summarize empirically found Nor C-terminal amino acid frequencies as a result of proteolytic
processes. Rule h increases the fitness value when those amino acids at the top of the tables shown in Figures 14a

FCALC = 35.89 - 0.45 * nS + 0.47 * nE + 2.86 * nI - 3.82 * nH + 5.15 * nL + 5.54 * nF + 2.92 * nY -

1.72 * nK - 0.85 * nQ + 5.35 * nW + 2.20 * nV
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to 14d are present at the corresponding positions in the predicted sequence, while those amino acids at the bottom of
these tables decrease the fitness value of the prediction. The tables shown in Figures 14a to 14d are suitable to predict
the likelihood of the presence of certain amino acid residues at the N- or C-terminus of peptides present in human
liquor cerebrospinalis as long as the CSF samples are treated in the same way as the CSF samples of the examples
of the present invention. Tables similar to the ones shown in Figures 14a to 14d can be generated empirically for any
sample such as whole blood, serum, plasma, urine and the like, and the treatment of the samples can be of any kind,
as long as all samples are treated in the same way.

Rule h:

[0078] If the mass difference between the peptide coordinates of a known and an unknown peptide can be explained
by the loss of one or more distinct N- or C-terminal amino acids, the fitness value of this prediction is increased.

Rule i:

[0079] If a prediction has been generated by one of the rules b to h or a combination thereof, proposing that the
unknown peptide is a reactant or a product of a post-translational modification of the known peptide, this proposal is
tested by determining in terms of accessibility of the reaction site within the protein sequence by an enzyme performing
the given post-translational modification. Thus, if a look-up in a database storing three-dimensional data of peptides
or proteins reveals that the proposed site is on the surface of the protein and/or its conformation sterically allows action
of that enzyme, the fitness value of that prediction is increased. In the same way, if a region of a sequence is proposed
to be modified by a post-translational modification process, the accessibility of that sequence region to enzymes is
assessed by means of algorithms estimating the hydrophobicity of that particular region (Engelman et al, Ann. Rev.
Biophys. Chem., 15, 321, 1986; von Heijne, Eur. J. Biochem., 116, 419, 1981). For example, a highly hydrophilic se-
quence region is more likely to be accessible by enzymes performing post-translational modifications than a hydro-
phobic sequence region, thus the fitness value of that prediction is increased.
[0080] The results computed by applying rules a to i and optionally additional rules can be stored in a list or a database
in computer readable format and/or can be printed or displayed via an appropriate user interface such as a monitor. If
more than one prediction for an unknown amino acid sequence fits the results obtained with the rules described above,
then the predicted sequence can be ranked with the best fitting sequence for the unknown peptide on top as shown
at step 148 in Figure 8b. If the known peptide P1 has more than one related, unknown peptide P2, than the approach
described can be repeated for all unknown peptides P2 as shown in Figure 8c. The approach described above can be
extended to any known peptide signal P1 in a list of peptides as exemplified in Figure 8d.

Differential Network Module

[0081] According to the present invention the interaction of the Differential Network Module with the fundamental
CAN Module allows to identify peptides which independently from each other distinguish between a sample A and a
sample B. A status can be young, old, healthy, diseased, sweet taste, bitter taste, transfected, non-transfected, yellow,
green, male female, pregnant, non pregnant, smoker, non smoker or any other criterion defining a group or a subgroup
of samples or organisms from which samples are derived. Optionally the Differential Network Module is linked with
various databases, containing data such as the status of the samples, as well as with the other modules of the present
invention and especially the basic CAN Module as shown in Figure 1. The Differential Network Module instructs the
CAN Module to define subgroups of samples defined by distinct criteria, such as the status of the samples, and further
to calculate separately the peptide-to-peptide relations for any status or any combination of more than one status. First,
those peptide pairs that suffice a threshold of correlation in a group of samples representing the status A, second,
those peptide pairs that suffice a threshold of correlation in a group of samples representing the status B, and third,
relations can be defined on the basis of differences between the correlations of the compared status A and status B.
If a user is interested in peptide-to-peptide relations, that are most different in samples from two different statuses A
and B, then he will search for peptides where the correlation coefficients of the respective peptide-to-peptide relations
is different, and where ∆r = |rStatus A-rStatus B| is preferably greater than 85% of all peptide-to-peptide ∆r.
[0082] Figure 15 shows a flow chart schematizing the above described procedural steps of an interaction of the
Differential Network Module with the CAN Module according to the present invention allowing for the identification of
peptides suitable to be used as marker panels using the peptide topology of a plurality of samples taken from at least
two different experimental groups representing a status A and a status B. At step 170 a respective mass spectrum for
each sample of said plurality of samples is provided, wherein signal intensity peaks correspond to potential peptides.
Then the measures of correlation between the signal intensities of said potential peptides are computed at step 172
for each plurality of samples within each experimental group separately. Finally pairs of potential peptides are selected
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at step 174, which exhibit a difference in the degree of correlation between the different experimental groups above a
certain threshold, thereby providing peptides which are suitable to be used as marker panels for diagnostic purposes
to distinguish between status A and status B.
[0083] The results of the Differential Network Module allow statements about the different relations of peptides within
samples of status A compared to status B as follows: If the difference of correlation coefficients of peptide I with peptide
II in status A minus the corresponding correlation coefficient in status B is greater than a given threshold, signal coor-
dinates of the peptide pairs, their mutual distance within the observed status A and status B or the degree of difference
or combinations of the latter information are stored in a database or list. The Differential Network Module optionally
provides the same visualization methods as the other modules, that means peptide coordinates and their relations can
be represented as bullets connected by lines, respectively, as shown in Figure 6, and identified peptides can be re-
viewed via convenient connections to databases or lists containing supportive data resources.
[0084] Another use of this aspect of the present invention is the comparison of the molecular masses of peptides
present in at least three samples, representing one or at least two different states, status A with corresponding samples
and status B with corresponding samples. For example samples from individuals with a certain disease versus samples
from individuals without that certain disease, samples from pregnant versus samples from non-pregnant individuals,
samples from bacteria transformed with an expression vector versus samples from non-transformed bacteria, samples
from yoghurt with a strong acidic taste versus samples from yoghurt with a mild acidic taste, etc. might be compared
by computing the correlation measures of peptides present in these samples. The comparison of measurement pa-
rameters of a peptide within two samples corresponding to two different states A and B may also indicate that the
peptide is present only in samples of state A but not in samples of state B. Also in this case the measurement parameters
of this peptide in status A and status B possibly can be related by a measure of correlation. If at least two different
peptides, e.g. peptide I and peptide II, are identified, the measurement values of the parameters for peptide I and
peptide II can be combined. Using measurement values of at least three samples being representative of status A and
three samples being representative of status B, a mathematical function can be computed. This mathematical function
describes the correlation-network of peptide I and peptide II. It is possible to include more than two different peptides
in one correlation-network, e.g. to include more than two different peptides in one mathematical function describing a
correlation-network. The resulting mathematical function describes which combinations of measures of correlation of
at least two peptides (peptide I and peptide II) allow to distinguish status A from status B.
[0085] Furthermore, another use of this aspect of the present invention comprises the automated identification of
sets of peptides that allow a prediction of a status of a sample by a regression model. The invention detects relations
between at least two peptides, where the relations are representative for a given status A. In a next step, a linear or
non-linear regression model is set up that uses input parameters of the found peptides, such as their respective MALDI
signal intensities, and that fits these input parameters to an end point parameter, such as the diagnosis (yes/no = 1/0),
or that fits to another parameter of a peptide of this derived set.
[0086] In order to check whether a sample of unknown status is a member of the status A, the input parameters of
these peptides from that sample are applied to the derived model. If the output value obtained from that sample deviates
in the range as other samples from status A from an expected value obtained by means of the determined function,
than this unknown sample can be considered to be from status A. Otherwise, the sample most likely has another status.

Marker Panel Network Module

[0087] According to the present invention the interaction of the Marker Panel Network Module with the fundamental
CAN Module allows to identify peptides which independently from each other distinguish between a sample represent-
ing status A and a sample representing status B. For example a disease is caused by different factors such as inflam-
mation and an increased heart beat rate. Each of these disease factors might result in altered concentrations of distinct
peptides in for example blood plasma of the patient. If a panel of for example two peptide markers is used for diagnosis
of the disease it would be useful if one of the peptide markers indicates inflammation and the other peptide marker
indicates increased heart beat rate. The combination of these two markers would increase the specificity and sensitivity
of the marker panel to detect the disease caused by a combination of inflammation and increased heart beat rate. The
Marker Panel Network Module selects those potential peptides which are related to the disease but are most likely
associated to different disease factors (in this hypothetical case inflammation and increased heart beat rate), since
these peptide coordinates have a low measure of correlation to each other but both have a high correlation to the
disease. Thus the specificity and sensitivity of a diagnostic test can be improved by combining these complementary
peptide coordinates to a marker panel.
[0088] For example a disease 1 (status A) which is associated with inflammation has to be distinguished from another
disease 2 (status B) which is not associated with inflammation. There are, for example, four peptides found, which
distinguish disease 1 form disease 2. Peptide 1 and peptide 2 are fragments from the same protein, for example from
TNF-alpha, peptide 3 is, for example, a fragment of IL-6 and peptide 4 is a fragment of an unknown protein. All of these
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four peptides differentiate between disease 1 and disease 2 by a measure of correlation, but peptide 1 and 2 correlate
to each other, which is not surprising, as they originate from the same molecule (TNF-alpha). Additionally peptide 1
and peptide 3 correlate to each other, which is also not surprising, as TNF-alpha and IL-6 have similar pro-inflammatory
functions. Consequently there are two groups of peptides, peptides 1, 2 and 3 belong to one group and peptide 4
represents the second group. To obtain a diagnostic test, with improved specificity and/or sensitivity combination of
the detection of peptide 1 and 2 or 1 and 3 or 2 and 3 would not increase the specificity and/or sensitivity as much as
combination of peptide 1 and 4 or 2 and 4 or 3 and 4 would do. This method allows to identify panels of peptides with
additive or synergistic value (diagnostic, therapeutic, functional, etc.). Figure 16 shows a flow chart schematizing the
procedural steps of an interaction of the Marker Panel Network Module with the CAN Module according to the present
invention allowing for the identification of peptides suitable to be used as marker panels using the peptide topology of
a plurality of samples taken from at least two different experimental groups representing a status A and a status B. At
step 180 a respective mass spectrum for each sample of said plurality of samples is provided, wherein signal intensity
peaks correspond to potential peptides. Then potential peptides correlating with a parameter being representative of
status A or status B are selected at step 182. Thereafter the measures of correlation between the signal intensities of
said selected potential peptides for each plurality of samples are computed at step 184 and finally pairs of potential
peptides which exhibit no correlation of their respective signal intensities above a certain threshold are selected at step
186, thereby providing potential peptides which are suitable to be used as complementing peptides in a marker panel
for diagnostic purposes to distinguish between status A and status B.
[0089] In other words, the Marker Panel Network Module selects potential peptides which correlate with a parameter
being representative for status A or status B. The Marker Panel Network Module then queries the Correlation Associated
Network (CAN) Module for those pairs of selected peptide coordinates, which have a very low measure of correlation
of their respective signal intensities to each other. The result are pairs of peptides which are related to the status A or
B but not directly related to each other and can be combined for a marker panel to distinguish between status A and
B. It is possible to combine two or more peptides to a marker panel.
[0090] The Differential Network Module described in the previous section discovers combinations of peptides, whose
ratio of concentration indicate a certain state and deviations from that ratio indicate a different state. It is mandatory to
measure the signal intensity (e.g. concentration) of both/any peptide to calculate said ratio. The relations between two
peptides may be present only in state A, whereas the relations between the same two peptides may be different or
absent in state B.
[0091] In contrast, any peptide found by the Marker Panel Network Module described in the present section could
serve as a diagnostic marker alone, but a combination of both markers improves the sensitivity/specificity etc. of the
diagnostic test. The members of a marker panel ideally should not correlate with each other in any of both states. If
the members of a marker panel correlate with each other their combination most likely would not improve the sensitivity/
specifity of the diagnosis.

Surrogate Network Module

[0092] The Surrogate Network Module relates to the identification of peptides (so called surrogate peptides) that can
replace or complement established diagnostic or therapeutic peptides or peptides of other use. If for instance it is
discovered that peptides correlate with known bioactive therapeutic peptides, these peptides might serve as surrogates
for therapeutic measures or even may exhibit a higher/larger potency, efficacy, specificity, selectivity and/or less un-
desirable side effects. These kind of peptides can be found using the Surrogate Network Module in combination with
the CAN Module according to the present invention by applying the steps shown in Figure 17. Initially a respective
mass spectrum for each sample analyzed is provided, wherein signal intensity peaks correspond to potential peptides
(step 190). Thereafter at step 192 measures of correlation between the signal intensity of a known peptide and the
signal intensities of potential peptides are computed and finally those potential peptides are selected at step 194, which
exhibit a degree of correlation with the known peptide above a certain threshold, thereby providing potential peptides
suitable to replace or complement the known peptide. Two exemplary applications of the Surrogate Network Module
are given below
[0093] For example a plasma sample is known to contain the peptide insulin and a potentially unknown peptide X
within the same plasma sample correlates with the peptide insulin. In this case peptide X might have the same function
as insulin, as its correlation measure indicates that it is related to insulin. The reason for this could be that peptide X
is a derivative of insulin, for example a glycosylated form of insulin, or another peptide which is completely different
from the amino acid sequence of insulin but which is involved in the same functional or metabolic cycles as insulin. In
both cases peptide X could serve as an alternative to the use of insulin for example in treating diabetes. It might also
turn out that peptide X in combination with insulin improves the therapeutic effect of insulin by itself.
[0094] In a further example a tissue sample of a prostate cancer patient contains the prostate-specific antigen (PSA)
peptide, which is a known marker for prostate cancer. Another potentially unknown peptide Y is related by a correlation
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measure to the PSA peptide and consequently peptide Y might have the same diagnostic value as a biomarker for
prostate cancer as the PSA peptide or the measurement of peptide Y might complement the prostate cancer diagnosis
by PSA measurements.

Interaction of Modules

[0095] Though any of the modules described above can be used independently, any combination of these modules
can be used and potentially can synergistically improve the result of one or more of the modules.
[0096] For example results of the Surrogate Network Module can be analyzed by the Sequence Network Module. In
case the Surrogate Network Module yields peptide signals, which are not yet sequenced, a prediction of the sequence
can give early hints for biological interpretation, thus accelerating validation processes of for example therapeutic or
diagnostic peptides. However, a subsequent identification of these peptides by sequencing is recommended.
[0097] Results of the Differential Network Module can be analyzed with the Surrogate Network Module. If the Differ-
ential Network Module yields for example potential biomarkers, it is highly desirable to identify possible surrogate
markers that show a similar behavior and therefore are of interest as well. Therefore a combination of the Surrogate
Network Module with the Differential Network Module accelerates the discovery of novel therapeutic, diagnostic or
other peptides and is highly synergistic.
[0098] Furthermore, results of the Differential Network Module can be analyzed with the Sequence Network Module.
If the Differential Network Module yields peptide signals, which have not been sequenced yet, the prediction of the
sequences of the unknown peptides can give early hints for biological interpretation, thus accelerating validation proc-
esses of potential therapeutic, diagnostic or other peptides. However, the later identification of these peptides by se-
quencing is recommended.

Examples

[0099] The following examples are intended to describe how the methods according to the present invention can be
applied to real data. For the sake of a clarity only a limited number of exemplary measurement parameters are calculated
and presented in the figures. However, as is readily observable by the person skilled in the art, the advantages of the
methods according to the present invention become even more obvious when applied to large sets of data. On present
computer systems commonly measures of correlation for data sets consisting of up to 6.000 potential peptides are
commonly calculated and without undue effort data sets of up to 100.000 potential peptides can be analyzed by means
of the methods according to the present invention.

Example 1

[0100] The basic CAN Module calculates to what extent a potential peptide for each individual potential peptide
measured in a sample correlates to every other potential peptide in that sample. The CAN Module determines a network
of correlations among the peptides which in case of some degree of correlation supposedly are related to each other
for certain reasons such as a common precursor as the origin of the peptides or the same biological function of the
different precursors of the correlating peptides.
[0101] In the present example the set of data, i.e. the data matrix, consists of 444.000 values comprising measure-
ment parameters, in this case signal intensities, of 74 independent samples, each sample resulting in 6.000 peptide
coordinates. The tables shown in Figures 18a, 18b list the corresponding raw data for four out of a total of 6.000 peptide
coordinates. Four different methods to determine measures of correlation, namely, Spearman's rank order correlation,
Pearson's product moment correlation, Kendall's rank correlation tau, and Minimal Spanning Tree (MST) diameter, are
calculated for the three exemplified pairs of peptide coordinates comparing the peptide coordinate Fraction 54; m/z
2743.0 with three other peptide coordinates (Fraction 54; m/z 1371.5, Fraction 56; m/z 2927.2 and Fraction 20; m/z
1114.3) (see table shown in Figure 19). The definition of the threshold is an important step in the creation of Correlation
Associated Networks and should be performed carefully as has been described in detail further above. In the data
matrix 6.000 x 6.000 x 0.5 = 1.8 x 107 possible peptide-to-peptide pairs can be combined, and each of these pairs
exhibits a certain correlation coefficient r. Figure 20 shows a plot of the probability of a peptide pair P(r) to have a
certain correlation coefficient r. A value of r of zero or close to zero describes relations which are completely random,
whereas values of r close to 1 or -1 describes relations which respectively correlate or anti-correlate very strongly. The
more peptide pairs are tested for a correlation by means of measures of correlations, such as Spearman's rank order
correlation coefficient, the more peptide pairs by chance correlate to some extent with each other. This means that a
correlation coefficient regarded as informative and real has to pass a higher threshold value. It is recommended to
perform a plot like in Figure 20 to estimate the information content of a given correlation coefficient. One curve (black
circles) in this figure plots the likelihood (y-axis) for a given correlation coefficient (x-axis) for all peptide-to-peptide
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pairs from the said data matrix comprising 6.000 peptide coordinates. The other curve in Figure 20 marked by the white
squares describes the likelihood of correlations occurring by chance.
[0102] Most probable true positive relations can be found where the area under the curve is small, while the maxima
of the curves represent the correlations coefficients which are most likely false positive relations. In case Spearman's
rank order correlation coefficient is chosen as measure of correlation and |tthreshold| ≥ 0.8 is chosen as threshold for a
definition of a peptide-to-peptide relation, the peptide coordinate Fraction 20; m/z 1114.3 is not related to the peptide
coordinate Fraction 54; m/z 2743.0 (see table shown in Figure 19). In contrast, the peptide coordinates Fraction 54;
m/z 1371.5, and F 56; m/z 2937.3 are highly related to the peptide with coordinates Fraction 54; m/z 2743.0 (see table
shown in Figure 19). These peptide relations could pass through a filter and be stored in a local Valentina Database file.

Example 2

[0103] Assuming that one is interested in finding surrogate markers for Chromogranin A in hypothetical prostate
cancer patients and that some of the 74 samples described above originated from healthy male persons and some
samples originated from prostate cancer patients. Under the further assumption that a peptide originating from Chrom-
ogranin A, amino acids 97-131, had been identified, the Surrogate Network Module would now query the basic CAN
Module for peptide coordinates that are highly related by a correlation measure with the hub-peptide Chromogranin
A, 97-131. This could be done for example by defining that the Spearman's rank order correlation coefficient of peptide-
to-peptide relations r has to comply with the relation |r| ≥ 0.67. Then the Surrogate Network Module would instruct the
CAN Module to query the Valentina Database, and report that there are about 14 peptide coordinates matching this
condition. These peptide coordinates are searched in databases for any known peptide fitting to these coordinates. In
this way it would be found that three peptides known from the database and present in the list of 14 peptides belong
to the Chromogranin/Secretogranin family as illustrated in the table shown in Figure 21. The Surrogate Network Module
would project the peptide coordinates of the related peptides and the hub peptide as bullets on a two-dimensional or
three-dimensional plane, such as a peptide map fingerprint of a serum sample as shown in Figure 6. Relations between
peptide coordinates are depicted as lines between the bullets. Lines can be selected by a computer pointing device
such as a mouse and a small information window will pop up containing information about the kind of correlation
measure and the value for the measure of correlation of the connected peptide coordinates is shown. The bullets can
also be selected by a computer mouse click, and an information window will provide information about the peptide
coordinate, and if this peptide coordinate has already been identified, then the name of the precursor peptide, the start-
and stop position of the identified peptide will be provided by retrieval of a "Sequence Information Database" as ex-
emplified at 56 in Figure 1. Also links to other databases such as Swiss-Prot and GeneCard are provided and/or other
databases such as the Patent database of the USPTO can be queried for the search terms "name of the peptide" and
"diagnostic". An internet browser window could display the results from the US-Patent Database. The visualization of
peptide-to-peptide relations and convenient connection and access to internet and intranet resources by the Surrogate
Network Module significantly increases the speed of data acquisition that is needed for an evaluation of the results.
The example of Chromogranin A indicates that other peptides originating from members of the secretogranin-chrom-
ogranin family are automatically found by the CAN Module. These peptides are listed in the table shown in Figure 21
and can serve as a diagnostic marker for the prediction of the therapeutic success in the hypothetic prostate cancer
patients.

Example 3

[0104] In an exemplary hypothetic serum dataset 48 samples are derived from patients before prostatectomy and
26 samples from patients after prostatectomy. For the Differential Network Module a correlation measure, e.g. the
Spearman's rank order correlation coefficient r, between the peptides is calculated for samples from patients before
prostatectomy and for samples from patients after prostatectomy separately. The correlation coefficient of Chrom-
ogranin A 97-131 and Secretogranin I 88-132 for all 74 samples is r = 0.67, for those patients before prostatectomy is
r = 0.23 and for those after prostatectomy is r = 0.97 (see Figure 22). This shows that the peptides Chromogranin A
97-131 and Secretogranin I 88-132 obviously are much less related after prostatectomy than before. This also explains
the loss of correlation for all patients. For the given example this means that Secretogranin I 88-132 is a potential
surrogate marker for Chromogranin A 97-131 only before prostatectomy, thereafter the relation is broken. This would
have a significant impact on the design of a clinical evaluation of Secretogranin I 88-132 as a surrogate marker for
Chromogranin A, and could save enormous costs. Furthermore, the ratio of concentration of Chromogranin A 97-131
and Secretogranin I 88-132 is a diagnostic parameter itself. If the ratio deviates from 10/1 significantly, then a prosta-
tectomy has been accomplished. Figure 22 exemplifies the use of the ratio of the signal intensities of Chromogranin
A 97-131 and Secretogranin I 88-132 as a diagnostic parameter: The ratio of 10/1 is present in all samples from patients
before prostatectomy. In samples after prostatectomy this ratio is not present, i.e. the Secretogranin I/Chromogranin
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A relation is "broken".

Example 4

[0105] This section exemplifies the identification of representative peptides, also called "landmark peptides" and also
refers to the given data matrix of 74 observations of 6.000 peptide coordinates already discussed in a previous example.
[0106] Two peptide coordinates are considered as related if the Spearman's rank order correlation of their signal
intensities is above r > 0.8. The number of relations k a respective peptide has with different peptide coordinate is
shown in the second row of the table shown in Figure 18a. From all peptide coordinates, Fraction 54; m/z 2743.0 has
the most relations, i.e. k = 20. Therefore, this peptide coordinate would be No. 1 in a prioritization list. Then, the signal
variance of Fraction 54; m/z 2743.0 is removed from the signal intensities of the 20 related peptide coordinates, wherein
Formulas 1, 2 and 3 are applied. Then the data of Fraction 54; m/z 2743.0 is removed from the data matrix. The tables
shown in Figures 23a and 23b show the values given in the tables shown in Figures 18a and 18b after the variance
of Fraction 54; m/z 2743.0 on the related peptide coordinates has been removed. This process is iterated to determine
the next peptide coordinate as a candidate for the sequencing prioritization list, until the number of peptides to be
sequenced has been reached.

Example 5

[0107] In this example, the signal intensities of four fictive peptide coordinates of 74 samples, their respective mass-
to-charge ratio and their fraction numbers are given (see table shown in Figure 18a). The calculation is performed
using five fictive peptide coordinates using as the 5th peptide coordinate F 53; m/z 2823.0. One of the five signal
coordinates, the fictive peptide HP 25-48 in Fraction 54; m/z 2743.029, has already been identified, and guided by the
rules for the Sequence Network Module, the identities of the four remaining, unknown peptides will be proposed.
[0108] The measure of correlation of the four unknown peptide coordinates with HP 25-48 has been calculated in
the CAN Module by means of Spearman's rank order correlation coefficient:

r (HP 25-48 and F 20; m/z 1114.3) = +0.00
r (HP 25-48 and F 54; m/z 1371.5) = +0.92
r (HP 25-48 and F 56; m/z 2927.3) = +0.84
r (HP 25-48 and F 53; m/z 2823.0) = +0.87

[0109] As can be seen in Figures 24a to 24c and by the low correlation coefficient and MST diameter shown below,
respectively, F 20; m/z 1114.3 is not related to HP 25-48, thus will not be hypothesized to be related to the HP precursor
protein. The generation of proposals for this peptide coordinate stop at this point.
[0110] In the same manner, the MST diameter was calculated as a measure of correlation:

MST diameter (HP 25-48 and F 20; m/z 1114.3) = 29 (see Figure 25a)
MST diameter (HP 25-48 and F 54; m/z 1371.5) = 50 (see Figure 25b)
MST diameter (HP 25-48 and F 56; m/z 2927.3) = 38
MST diameter (HP 25-48 and F 53; m/z 2823.0) = 40 (see Figure 25c)

[0111] In contrast, peptide coordinates F 54; m/z 1371.5, F 53; m/z 2823.0 and F 56; m/z 2927.3 are highly related
to HP 25-48 (see Figures 24b, 24c and Figures 25b, 25c). A proposal using the sequence of the precursor of the protein
HP will be assigned to these peptide coordinates and the rules according to the Sequence Network Module of the
present invention will be applied for sequence prediction.
[0112] Rule a determines whether the related peptide coordinate is a n-charged ion of HP 25-48. The calculation of
MassDeviation is exemplified with n = 1, 2, 3 or 4 and the mass-to charge ratios of F 54; m/z 1371.5 and F 56; m/z
2927.26 given in the table shown in Figure 26, using Formula 4. It is highly probable that F 56; m/z 1371.5 is a double
charged ion of HP 25-48, as in the case of n = 2 MassDeviation < MassThreshold = 0.5, therefore it is proposed as HP
25-482+, i.e. the double charged ion of HP 25-48.
[0113] Rules b to i will now be applied to F 53; m/z 2823.0 and F 56; m/z 2927.3. Rule b assumes that the relation
of the hub peptide P1 in fraction F 54; m/z 2743.029 of known identity with the unknown peptide P2 (peptide coordinate
F 53; m/z 2823.0) is derived from a post-translational modification. In this case, the mass difference of the hub peptide
P1 and the unknown peptide P2 MDIFF = |MP1-MP2| = 79.971 might be caused by phosphorylation or sulphation (see
table shown in Figure 9). Alignment of HP 25-48 with recognition sequence motifs of protein kinases, that are enzymes
responsible for phosphorylation of proteins and peptides, identifies the sequence HP 35-37 to be "TYD", which is as
a potential target of a hypothetic protein kinase HPKC. Therefore a proposal for F 53; m/z 2823.0 is HP 25-48 with
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one phosphorylation at the tyrosine residue on position 36 of the peptide HP 25-48.
[0114] As stated before, if the unknown peptide and the known hub peptide are related, it is hypothesized that the
unknown peptide is derived from the same precursor protein and thus has the same precursor sequence as the known
hub peptide. An algorithm systematically defines putative start and end positions, I an E, in the precursor sequence of
the hub peptide P1 proposing a putative sequence fragment potentially derived from the precursor sequence, that
could be the sequence of the unknown peptide P2 (see Figure 8b). Of course, the sum of masses of the amino acid
residues, plus their amino- and carboxy-terminal ends and plus potential posttranslational modifications must match
the measured m/z ratio Mfound of the unknown peptide P2 within a given threshold T. The Mass of the putative sequence
is calculated by summing up the masses of the amino acid residues comprising the putative sequence for P2 plus the
mass of a hydrogen and a hydroxyl group. Exemplary values of masses applying Formula 5 are given in the tables
shown in Figures 11 and 12.
[0115] With HP 25-48 as the hub peptide and P2 having the peptide coordinate Fraction 56; m/z 2927.3 the Sequence
Network Module searches for possible sets of start and end positions in the protein precursor sequence of HP as
defined in Figure 27, that have a deviation of mass lower than the threshold TMASS = 0.5.
[0116] One possible combination is a start position at amino acid No. 25 and an end position at amino acid No. 50
of HP resulting in the potential peptide HP 25-50:
nD = 2, nA = 4, nH = 2, nK=2, ns = 1, nE = 3, nV = 2, nR = 1, nF = 1, nL = 3, nG = 1, nI =1, nN = 1, nT = 1, nY = 1 in Formula
5 results in MCALC = 2927.337
This proposal is added to the list of proposals for P2.
[0117] The Sequence Network Module will now address the evaluation of the proposal HP 25-50 for P2 by applying
rules c to i. In rule d, the chromatographic fraction of the proposed sequence FCALC is estimated and compared with
the found peptide coordinate of P2 (FFOUND). If FCALC deviates from FFOUND by less than the threshold for fractionation
(TFRACTION) then the proposal is awarded with 2 model fitness points. If Formula 6, "Estimation of fraction number
based on proposed sequence", is applied to HP 25-50, the calculated Fraction results in FCALC = 56. As P2 HP 25-50
is found in fraction 56, the number of model fitness points for this proposal is increased by two points. Formula 6 was
generated empirically from a mathematical model using data originating from liquor cerebrospinalis samples separated
using a specific HPLC-column (as described in the patent application WO 03/048775 A2) using a specific software.
Of course, for different types of samples and different separation methods other empirically determined models can
be calculated in the same way.
[0118] Rule e rewards those proposals for P2, whose start-positions match the start positions of the hub peptide P1.
In the case of HP 25-48 as the P1 hub peptide and HP 25-50 as the proposal for the related peptide P2, the proposal
HP 25-50 will be rewarded with 3 model fitness points.
[0119] Rule f rewards those proposals for P2, whose end-positions equal the end-position of the hub peptide P1.
This is not the case with HP 25-50 as a proposal, therefore this rule does not increase the model fitness points of this
proposal for P2.
[0120] Rule g will increase the model fitness points of the proposal HP 25-50 by three points as the start position 25
is preceded by the amino acid sequence "R-R" (written in 1-letter amino acid code). The sequence "R-R" is a recognition
site of prohormone convertases, which commonly cleave after the second "R". In addition, rule g will increase the
model fitness points for this proposal by another 3 points, as the "D-A" sequence is one of the preferred starts for
peptide sequences present in liquor cerebrospinalis. Further sites of frequent proteolytic cleavage sites at start positions
awarded by rule f are well known in the art.
[0121] Rule g assumes that the unknown peptide P2 is a product of N- or C-terminal proteolysis of the known hub
peptide P1 or vice versa. The mass difference of P1 and P2 MDIFF = |MP1-MP2| is determined and aligned with the
masses of the amino acids preceding and following the start- and end positions of P2 in the precursor sequence HP.
In the example of HP 25-48 as P1 and HP 28-50 as P2 the mass difference is MDIFF = 184.2 and can be explained by
the amino acids "I-A" (MI + MA = 184.2) which are following the end position of P1. Therefore P2 fits the model and
the model fitness points for this proposal for P2 are increased by 3 points.
[0122] Obviously, rules c to i can be examined in any order, and rules can be left out for biological considerations,
but still any combinations and any omissions of these rules are within the scope of this invention.
[0123] The process described above can be repeated for all unknown peptides coordinates P2, which are related
with HP 25-48.
[0124] While this invention has been described with reference to preferred embodiments, it will be understood by
those skilled in the art that various changes or modifications in form and detail may be made without departing from
the scope of the invention as defined in the following claims.
[0125] For example it is readily apparent that the present invention can advantageously be utilized basically with all
kinds of samples potentially containing peptides, such as samples from animals, plants, fungi, humans, parasites,
microorganisms, such as bacteria, yeasts, viruses, and the like, samples from food or other agricultural materials such
as meat, milk, grain, vegetables, wool, cotton, silk, samples from cosmetic products or other products containing pep-
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tides such as cleaning agents (often containing proteolytic enzymes), etc. Samples for example can be plasma, serum,
hemo-filtrate, whole blood, blood cells, tissues samples, in vitro grown cells, cell culture supernatants, urine, cerebro-
spinal fluid, lymph fluid, sputum, tear fluid, ascites, preparations of cell organelles, tissue homogenate or homogenates
of a virus, a microorganism, a parasite, a multi-cellular organism, an animal, a fungus or a plant and the like or com-
binations thereof. Examples of combinations are in vitro cultured cells infected with a microorganism or treated with
pharmaceutical substances, tissue samples of humans infected with a microorganism, food products containing mi-
croorganisms, tissue culture supernatants of cells treated with peptides or mixtures of peptides present in food or
cosmetic products, and the like.

Claims

1. A method of providing a representative, non-redundant overview of the peptide content of a sample type by ana-
lyzing a plurality of samples using its peptide topology, wherein the method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides,
b) computing the measures of correlation between the signal intensities of said potential peptides,
c) grouping potential peptides together, which exhibit a degree of correlation among each other above a certain
threshold, thereby providing a plurality of correlation associated networks of potential peptides, and
d) assigning one representative potential peptide out of each correlation associated network as a represent-
ative peptide to said correlation associated network of said sample type.

2. A method for predicting the sequence of peptides using the peptide topology of a plurality of samples containing
a peptide having a known precursor, wherein the method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides,
b) identifying said peptide having a known precursor using the mass of said peptide, wherein the sequence
of the known precursor is known,
c) computing the measures of correlation between the signal intensity of said peptide having a known precursor
and the signal intensities of the other potential peptides,
d) selecting potential peptides, which exhibit a degree of correlation with said peptide having a known precursor
above a certain threshold, and
e) predicting the sequence of the potential peptides by matching masses of putative fragments of the sequence
of the known precursor with the masses of the potential peptides correlating with said peptide having a known
precursor.

3. A method for predicting the sequence of peptides using the peptide topology of a plurality of samples containing
a peptide with a known sequence, wherein the method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides,
b) identifying a peptide with a known sequence using its mass,
c) computing the measures of correlation between the signal intensity of said known peptide and the signal
intensities of the potential peptides,
d) selecting potential peptides, which exhibit a degree of correlation with the known peptide above a certain
threshold,
e) computing the mass differences between each of the potential peptides and the known peptide, and
f) predicting the sequence and/or the biologically, chemically or physically modified sequence of the potential
peptides by using data about mass differences caused by biological, chemical or physical processes matching
the mass differences determined in step e).

4. A method for identifying peptides suitable to be used as marker panels using the peptide topology of a plurality of
samples taken from at least two different experimental groups representing a status A and a status B, wherein the
method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
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peaks correspond to potential peptides,
b) computing the measures of correlation between the signal intensities of said potential peptides for each
plurality of samples within each experimental group separately, and
c) selecting pairs of potential peptides, which exhibit a difference in the degree of correlation between the
different experimental groups above a certain threshold, thereby providing peptides which are suitable to be
used as marker panels for diagnostic purposes to distinguish between status A and status B.

5. A method for identifying peptides suitable to be used as marker panels using the peptide topology of a plurality of
samples taken from at least two different experimental groups representing a status A and a status B, wherein the
method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides,
b) selecting potential peptides correlating with a parameter being representative of status A or status B,
c) computing the measures of correlation between the signal intensities of said selected potential peptides for
each plurality of samples, and
d) selecting pairs of potential peptides which exhibit no correlation of their respective signal intensities above
a certain threshold, thereby providing potential peptides which are suitable to be used as complementing
peptides in a marker panel for diagnostic purposes to distinguish between status A and status B.

6. A method for identifying peptides suitable as a surrogate for a known peptide using the peptide topology of a
plurality of samples, wherein the method comprises the steps of:

a) providing a respective mass spectrum for each sample of said plurality of samples, wherein signal intensity
peaks correspond to potential peptides,
b) computing the measures of correlation between the signal intensity of said known peptide and the signal
intensities of potential peptides, and
c) selecting potential peptides, which exhibit a degree of correlation with said known peptide above a certain
threshold, thereby providing potential peptides suitable as a surrogate for said known peptide.

7. The method according to any one of claims 1 to 3 or 6, where a plurality of minimal spanning tree diameters is
computed as a measure of correlation using the signal intensity of said potential peptides in said samples, wherein
the selection of potential peptides is done by using minimal spanning tree diameter threshold, wherein the minimal
spanning tree diameter for an association of two potential peptides has to be above an adjustable threshold of at
least 0.425 times the number of samples.

8. The method according to claims 4 or 5, where a plurality of minimal spanning tree diameters is computed as a
measure of correlation using the signal intensity of said potential peptides in said samples, wherein the selection
of pairs of potential peptides is done by using minimal spanning tree diameter threshold, wherein the difference
between the minimal spanning tree diameter found in the said different experimental groups is above an adjustable
threshold of at least 0.1 times the number of samples.

9. The method according to any one of the preceding claims, wherein the method comprises the additional step of
at least one fractionating step of said samples prior to providing the mass spectra of said samples and wherein at
least one fraction of said samples is used for providing said mass spectra.

10. The method according to any one of the preceding claims using at least one measure of correlation selected from
the group consisting of "Pearson Product-Moment Correlation Coefficient", "Spearman's rank order Correlation
Coefficient", "Kendall's Tau", "Kendall's Coefficient of Concordance", "Goodman and Kruskal's Gamma" and "Min-
imal Spanning Tree diameters".

11. The method according to any one of the preceding claims using at least one method for calibrating the mass
spectrometric data selected from the group consisting of "Simple Offset Correction", "2-Point Baseline Correction",
"Multi-Point Baseline Correction", "Interactive Polynomial Baseline Correction", "Function Fit Baseline Correction",
and "GIFTS (Auto Leveling Method) Baseline Correction".

12. The method according to any one of the preceding claims using at least one method for identifying outlier samples
selected from the group consisting of "Principal Component Analysis", "multivariate calibration partial least-
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squares", and "Replicator Neural Networks".

13. The method according to any one of the preceding claims, wherein the calculation of the measures of correlation
is repeated at least once using the peptide coordinates resulting from the previous round of calculations of meas-
ures of correlation, thereby providing the measures of correlation of 2nd or higher order neighborhood.

14. The method according to any one of the preceding claims using additional coordinates besides the mass selected
from the group consisting of fraction number, elution time, retention time, protein chip coordinates, peptide con-
centration, enzyme activities, structural properties, chemical properties and biological properties.

15. The method according to any one of the preceding claims, wherein MALDI mass spectrometry or ESI mass spec-
trometry is used to generate the mass spectra.

16. The method according to any one of the preceding claims, wherein the samples or groups of samples are homo-
geneous.

17. The method according to any one of the preceding claims, wherein the computation of measures of correlation is
done in advance prior to the analysis to accelerate the speed of the analysis using pre-determined values the
measures of correlation.

18. The method according to any one of the preceding claims, wherein the necessary sequence information is provided
by manual input or automatically queried from a database.

19. The method according to any one of the preceding claims, wherein the corresponding results are automatically
combined with data from other sources chosen from the group consisting of sequence databases, patent data-
bases, literature databases, medical databases, 3D structure databases, databases containing information about
enzyme recognition sites, postranslational modifications, genetic polymorphisms, clinical trials.

20. The method according to any one of the preceding claims, wherein at least one step of data processing or data
supply is done using a remote computer system and wherein the user is connected via an internet, intranet or
other network to the remote computer system.

21. A digital computer system programmed to perform a method according to any one of the preceding claims.

22. A computer readable medium storing a computer program implementing a method according to any one of claims
1 to 20.



EP 1 553 515 A1

27



EP 1 553 515 A1

28



EP 1 553 515 A1

29



EP 1 553 515 A1

30



EP 1 553 515 A1

31



EP 1 553 515 A1

32



EP 1 553 515 A1

33



EP 1 553 515 A1

34



EP 1 553 515 A1

35



EP 1 553 515 A1

36



EP 1 553 515 A1

37



EP 1 553 515 A1

38



EP 1 553 515 A1

39



EP 1 553 515 A1

40



EP 1 553 515 A1

41



EP 1 553 515 A1

42



EP 1 553 515 A1

43



EP 1 553 515 A1

44



EP 1 553 515 A1

45



EP 1 553 515 A1

46



EP 1 553 515 A1

47



EP 1 553 515 A1

48



EP 1 553 515 A1

49



EP 1 553 515 A1

50



EP 1 553 515 A1

51



EP 1 553 515 A1

52



EP 1 553 515 A1

53



EP 1 553 515 A1

54



EP 1 553 515 A1

55



EP 1 553 515 A1

56



EP 1 553 515 A1

57



EP 1 553 515 A1

58



EP 1 553 515 A1

59



EP 1 553 515 A1

60



EP 1 553 515 A1

61



EP 1 553 515 A1

62



EP 1 553 515 A1

63



EP 1 553 515 A1

64



EP 1 553 515 A1

65



EP 1 553 515 A1

66



EP 1 553 515 A1

67



EP 1 553 515 A1

68



EP 1 553 515 A1

69



EP 1 553 515 A1

70



EP 1 553 515 A1

71


	bibliography
	description
	claims
	drawings
	search report

