Field of the Invention
[0001] Embodiments of the invention relate to techniques for determining the binding affinities
of molecules for a molecule binding partner. More specifically, embodiments of the
invention relate to methods of determining the relative binding affinity of antibodies
to a target antigen by contacting each antibody with limited dilutions of antigen.
Background of the Invention
[0002] During an immune response B-cells are stimulated to generate antibodies that specifically
bind molecules that activate the immune system. The genetic recombination events involved
with the synthesis of antibodies enables animals to create an immense diversity of
antibodies each with its own characteristics such as binding specificity and binding
affinity. Antibodies are currently being used for diverse diagnostic, imaging, or
therapeutic applications. Antibodies that can be successfully used for diagnostic,
imaging or therapeutic applications often require special characteristics. In particular,
the kinetic properties of the antibody often dictate their utility. In general, the
effectiveness or suitability of an antibody shows a strong positive correlation with
the antibody's, affinity for its target. As higher affinity antibodies are able to
bind their target faster and remain bound to the target longer, they generally are
effective at lower concentrations. Monoclonal antibodies (mAbs) can be generated by
a variety of techniques including hybridoma technology, which involves fusing antibody-producing
B-cells with cancerous myeloma cells. (
Kohler & Milstein (1975) Nature 256: 52-53). The resulting hybridoma cell is an "immortalized" cell that secretes an antibody
of single specificity (monoclonal antibody). An alternative method for monoclonal
antibody generation is termed the Selected Lymphocyte Antibody Method (SLAM), described
in
U.S. Patent No. 5,627,052 entitled "Methods for the production of proteins with a desired function" and in
"A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes
producing antibodies of defined specificities"
Babcook et al. (1996) Proc Natl Acad Sci U S A. 93:7843-8. This method allows one to first identify B-cells that are making antibodies with
desired characteristics such as binding specificity, function, and optimal kinetics.
The selected B-cells are then isolated and the antibody variable domain genes encoding
the binding portion of the antibody are rescued by molecular techniques, such as the
polymerase chain reaction (PCR), and cloned into expression vectors having an antibody
constant region domain. The expression vectors are then transfected into cells, such
as CHO or NS0 cells, to produce secreted antibody molecules. This process allows the
virtually unlimited production of the desired antibody. Other methodologies such as
phage display or the viral immortalization (including Epstein Barr Vins (EBV)) of
B-cells have also been used successfully in the generation of monoclonal antibodies.
[0003] During the SLAM process, millions of B-cells are screened for the specificity, function
and kinetic characteristics of the antibodies they produce. For a selected target,
thousands of target-specific B-cells might be identified. Examples of known methods
of screening include screening for antibodies which (1) bind to natively expressed
antigen on the cell surface, (2) bind cell lines and induce apoptosis, (3) bind cells
and either induce proliferation or block proliferation, and (4) bind to ligand and
block binding of the ligand to receptor and vice versa. To determine formal affinity
measurements of large panels of antibodies is a time-consuming, expensive, and inefficient
process for identifying optimal antibodies. Accordingly, what is needed is a simple,
rapid, and accurate mechanism for screening antibodies to determine their relative
binding characteristics.
[0004] Watkins
et al. have described the determination of the relative affinities of antibody fragments
expressed in Escherichia coli by enzyme-linked immunosorbent assay (ELISA). (
Watkins et al. (1997) Anal Biochem 253:37-45).
U.S. Patent No. 5,800,815 relates to compositions and methods for treating inflammation and other pathological
conditions using novel blocking P-selectin antibodies.
Summary of the Invention
[0005] The present invention includes a method for kinetically ranking each antibody in
an antibody set by preparing a set of diluted antigen preparations and thereafter
measuring the binding of each antibody in the set of antibodies to the diluted antigen
preparations. During the binding assay, antibody and antigen are combined, the binding
reaction is allowed to go to equilibrium, and after equilibrium is achieved, each
antibody is preferably labeled with a detectable label, and the strength each antibodies
label signal is related to the binding affinity of the antibody for a diluted antigen
preparation. A comparison of each antibody's relative affinity for each particular
antigen preparation can thereby be performed. Antibodies that bind to the more dilute
antigen preparations have a higher relative affinity for the antigen, whereas antibodies
that only bind to more concentrated antigen preparations have a relatively lower binding
affinity to the antigen.
[0006] One embodiment of the invention is a method of determining the relative binding affinities
of antibodies to an antigen. This embodiment includes: determining the limiting concentration
of an antigen that maximizes the detectable range of antibody affinities for said
antigen; providing a set of antibody solutions, wherein the concentration of antibodies
in each antibody solution is known; incubating the limiting concentration of antigen
with each member of the set of antibody solutions; measuring the relative degree to
which the antibodies in each member of the set of antibody solutions binds to the
limiting concentration of antigen; and ranking the antibodies in each member of said
set of antibody solutions based on their binding affinity to said different dilutions
in order to determine the relative binding affinities of each of said different antibodies
to said antigen.
[0007] Another embodiment of the invention is a method of determining the relative binding
affinities of a set of antibodies to an antigen which includes: providing an antigen
solution comprising a first dilution of the antigen, wherein said antigen is labeled
with a first label, and a second dilution of the antigen, wherein said antigen is
labeled with a second label; providing a set of antibody solutions wherein each antibody
solution has substantially the same relative concentration of said antibody; measuring
the binding of the antibody to the first dilution of said antigen; measuring the binding
of the antibody to the second dilution of the antigen; and ranking the antibody in
the set of antibody solutions which bind to a relatively more dilute antigen preparation
as having a higher relative affinity and the antibody that substantially only bind
to relatively more concentrated antigen preparations as having a relatively lower
binding affinity to the antigen.
[0008] Still another embodiment is a method of determining the relative binding affinities
of a set of molecules to a molecule binding partner. This method includes: determining
the limiting concentration of a molecule binding partner that maximizes the detectable
range of molecule affinities for said molecule binding partner; providing a set of
molecule solutions, wherein the concentration of molecules in each molecule solution
is known; incubating the limiting concentration of molecule binding partners with
each member of the set of molecule solutions; measuring the relative degree to which
the molecules in each member of the set of molecule solutions binds to the limiting
concentration of molecule binding partners; and ranking the molecules in each member
of said set of molecule solutions based on their binding affinity to said different
dilutions in order to determine the relative binding affinities of each of said different
molecules to said molecule binding partners.
Detailed Description
[0009] Embodiments of the invention relate to methods for rapidly determining the differential
binding properties within a set of antibodies. Accordingly, rapid identification of
optimal antibodies for binding to a target can be determined. Any set of antibodies
raised against a particular target antigen may bind to a variety of epitopes on the
antigen. In addition, antibodies might bind to one particular epitope with varying
affinities. Embodiments of the invention provide methods for determining how strongly
or weakly an antibody binds to a particular epitope in relation to other antibodies
generated against the antigen.
[0010] One embodiment of the invention is provided by preparing a set of diluted antigen
preparations and thereafter measuring the binding of each antibody in a set of antibodies
to the diluted antigen preparations. A comparison of each antibody's relative affinity
for a particular concentration of antigen can thereby be performed. Accordingly, this
method discerns which antibodies bind to the more dilute concentration of antigen,
or to the more concentrated antigen preparations, as part of a comparative assay for
the relative affinity of each antibody in a set.
[0011] Another embodiment of the invention is provided by preparing a set of diluted antibody
preparations and thereafter measuring the binding of an antigen to each of the diluted
antibody preparations. A comparison of each antibody's relative affinity for a particular
antigen can thereby be performed. Accordingly, this method discerns whether a particular
concentration of an antigen binds to the more dilute concentration of antibody preparations,
or to the more concentrated antibody preparations, as part of a comparative assay
for the relative affinity of each antibody in a set.
[0012] Although a process is disclosed in which an antibody's relative affinity can be determined,
a similar protocol can be foreseen for the identification of high affinity antibody
fragments, protein ligands, small molecules or any other molecule with affinity toward
another. Thus, the invention is not limited to only analyzing binding of antibodies
to antigens.
[0013] One embodiment of the invention provides a method for analyzing the kinetic properties
of antibodies to allow ranking and selection of antibodies with desired kinetic properties.
Affinity, as defined herein, reflects the relationship between the rate at which one
molecule binds to another molecule (association constant, K
on) and the rate at which dissociation of the complex occurs (dissociation constant,
K
off). When an antibody and target are combined under suitable conditions, the antibody
will associate with the target antigen. At some point the ratio of the amount of antibody
binding and releasing from its target reaches an equilibrium. This equilibrium is
referred to as the "affinity constant" or just "affinity".
[0014] When binding reactions having identical concentrations of antibody and target molecule
are compared, reactions containing higher affinity antibodies will have more antibodies
bound to the target at equilibrium than reactions containing antibodies of lower affinity.
[0015] In assays where the binding of one molecule to another is measured by the formation
of complexes which generate a signal, the amount of signal is proportional to the
concentrations of the molecules as well as to the affinity of the interaction. For
purposes of the present disclosure, assays are employed to measure formation of complexes
between antibodies and their targets (on antigens), where signals being measured in
such assays may be proportional to the concentrations of antibody or antibodies, concentration
of target antigen, and the affinity of the interaction. Suitable assay methods for
measuring formation of antibody-target complexes include enzyme linked immunosorbent
assays (ELISA), fluorescence-linked immunosorbent assays (including Luminex systems,
fluorometric microvolume assay technology (FMAT) and fluorescence activated cell sorting
(FACS) sytems), radioisotopic assay (RIA) as well as others which can be chosen by
one of skill in the art.
[0016] Another aspect of the present invention includes methods for kinetically ranking
antibodies by affinity based on the signal strength of an assay such as an assay listed
above, when the target or antigen is provided at limiting concentrations. Antibody
and antigen are combined, the binding reaction is allowed to go to equilibrium, and
after equilibrium is achieved, an assay is performed to determine the amount of antibody
bound to the target or antigen. According to one aspect of the present invention,
the amount of bound antibody detected by the assay is directly proportional to the
affinity of the antibody for the target or antigen. At very low concentrations of
antigen, some antibodies of low affinity will not generate a detectable signal due
to an insufficient amount of bound antibody. At the same very concentrations of antigen,
antibodies of moderate affinity will generate low signals, and antibodies with high
affinity will generate strong signals.
[0017] During a standard assay using moderate to high concentrations of target, a collection
of different antibodies having different affinities for the same target antigen may
generate signals of equal or similar intensity. However, as the amount of antigen
is diluted, it becomes possible to discern differences in affinity among the antibodies.
Using limiting concentrations of target antigen in the assay in accordance with the
teachings of the present disclosure, it is possible to establish a kinetic ranking
of a collection of antibodies against the same target antigen.
[0018] Under conditions of limiting amounts of antigen, a collection of antibodies against
the same antigen will give a range of signals from high to low or no signal, even
though in the original assay using high to moderate levels of antigen, some of these
antibodies may have produced signals of similar apparent strength. Antibodies can
thus be affinity-ranked by their signal intensity in a limiting antigen assay carried
out in accordance with the teachings of the present disclosure.
[0019] Another aspect of the invention is a method of determining antibodies with higher
affinities than currently known and characterized antibodies. This method involves
using the characterized antibodies as kinetic standards. A plurality of test antibodies
are then measured against the kinetic standard antibodies to determine those antibodies
that bind to more dilute antigen preparations than to the standard antibodies. A plurality
of test antibodies is then measured against the kinetic standard antibody to determine
those antibodies which have more antibody bound to a given dilute preparation of antigen.
This allows the rapid discovery of antibodies that have a higher affinity for antigen
in comparison to the kinetic standard antibodies.
[0020] In one preferred embodiment, an ELISA is used in a limiting antigen assay in accordance
with the present disclosure.
[0021] It has been empirically determined that supernatants of cultured B-cells generally
secrete antibodies in a concentration range from 20 ng/ml to 800 ng/ml. Because there
is often a limited amount of supernatant from these cultures, B-cell culture supernatants
are typically diluted 10-fold for most assays, giving a working concentration of from
2 ng/ml- 80 ng/ml for use in affinity determination assays. In one aspect of the invention,
the appropriate concentration of target antigen used to coat ELISA plates was determined
by using a reference solution from a monoclonal antibody at a concentration of 100
ng/ml. This number could change depending on the concentration range of test antibodies
and the affinity of the reference antibody, such that the concentration of target
antigen required to give half-maximal signal in a ELISA-based measurement of antibody/antigen
binding can be empirically determined. This determination is discussed in more detail
below.
[0022] Antigen at an empirically determined optimal coating concentration was used in affinity
measurement assays to discern the antibodies produced by various B-cell cultures that
gave an ELISA value higher than a reference monoclonal antibody. According to the
methods of the present invention, the only way to obtain a higher signal than that
obtained using the reference antibody is if (1) the antibody is of higher affinity
than the reference antibody or (2) the antibody has the same affinity but is present
in a higher concentration that the reference monoclonal antibody. As disclosed previously,
antibodies in B-cell culture supernatants are usually at concentrations of between
20-800 ng/ml and are diluted to a working concentration of between 2 to 80 ng/ml.
In one embodiment, test antibodies at a concentration of between 2 to 80 ng/ml are
used in assays having a reference antibody concentration of 100 ng/ml. The signal
achieved from the test antibodies is compared to that of the 100 ng/ml reference antibody.
If antibodies within the test group are found to have a higher signal, then the antibody
is assumed to be of a higher affinity than the reference antibody.
[0023] In another embodiment, antibodies generated from hybridomas were ranked using a limiting
kinetic antigen assay in an ELISA-based protocol. The binding affinities for these
antibodies was confirmed by quantifying and kinetically ranked the antibodies using
a Biacore system. As is known, the Biacore system gives formal kinetic values for
the binding coefficient between each antibody and the antigen. It was determined that
the kinetic ranking of antibodies using the limiting antigen assay as taught by the
present disclosure closely correlated with the formal kinetic values for these antibodies
as determined by the Biacore method, as shown in Table 5 (Example 5).
[0024] Briefly, the Biacore technology uses surface plasmon resonance (SPR) to measure the
decay of antibody from antigen at various concentrations of antigen and at a known
concentration of antibody. For example, chips are loaded with antibody, washed, and
the chip is exposed to a solution of antigen to load the antibodies with antigen.
The chip is then continually washed with a solution without antigen. An initial increase
in SPR is seen as the antibody and antigen complex forms, followed by decay as the
antigen-antibody complex dissociates. This decay in signal is directly proportional
to antibody affinity. Similarly this method could run the reverse assay with limited
concentrations of antibody coated on the chip.
[0025] Using the Luminex (MiraiBio, Inc., Alameda, CA) technology antibodies are assayed
for how they bound a plurality of different antigen coated beads. In this assay each
bead set is preferably coated with a different concentration of antigen. As the Luminex
reader has the ability to multiplex all the beads sets, the bead sets are combined
and antibody binding to each of the different bead sets are determined. The behavior
of antibodies on the differentially coated beads can then be tracked. Once normalized
for antibody concentration, then antibodies which maintain a high degree of binding
as one moves from non-antigen limiting concentrations to limited antigen concentrations
correlate well to high affinity. Advantageously, these differential shifts can be
used to relatively rank antibody affinities. For example, samples with smaller shifts
correspond to higher affinity antibodies and antibodies with larger shifts correspond
to lower affinity antibodies.
Table 1
Comparison of Affinity Rankings Between Biacore and Luminex Methods |
BiaCore Affinity Measurements |
Luminex rank |
ka (M -1 s -1) |
kd (s -1) |
Biacore Med-res KD (nM) |
Rank |
9.9 x 105 |
9.3 x 10-3 |
9.4 |
1 |
1 |
2.7 x 10 5 |
4.2 x 10-3 |
16 |
2 |
14 |
3.1 x 10 5 |
5.6 x 10-3 |
18 |
3 |
57 |
8.2 x 10 5 |
2.7 x 10-2 |
33 |
4 |
83 |
1.4 x 106 |
6.2 x 10-2 |
42 |
5 |
116 |
2.9 x 105 |
1.6 x 10-2 |
54 |
6 |
123 |
[0026] In another embodiment of the invention, a series of limited concentrations of the
antibody being tested are compared to a standard solution of antibody. Such a method
using limiting concentrations of antibody would appear to be a "reverse" of the method
using limiting antigen concentrations, but it provides a similar mechanism for rapidly
screening a set of antibodies to determine each antibody's relative affinity for the
target antigen. Other plates that are, or can be, chemically modified to allow covalent
or passive coating can also be used. One of skill in the relevant art can devise further
modifications of the methods presented herein to carry out an assay using limiting
antibody dilution to screen and kinetically rank test antibodies.
Determining optimal bound antigen concentration
[0027] Embodiments of the limiting antigen assay method are practiced using a method by
which antigen is bound or attached to a stationary surface prior to subsequent manipulations.
The surface is preferably part of a vessel in which subsequent manipulations may occur;
more preferably, the surface is in a flask or test tube, even more preferably the
surface is in the well of a microtiter plate such as a 96-well plate, a 384-well plate,
or a 864-well plate. Alternately, the surface to which antigen is bound may be part
of a surface such as a slide or bead, where the surface with bound antigen may be
manipulated in subsequent antibody binding and detection steps. Preferably, the process
by which the antigen is bound or attached to the surface does not interfere with the
ability of antibodies to recognize and bind to the target antigen.
[0028] In one embodiment, the surface is coated with streptavidin and the antigen is biotinylated.
In a particularly preferred embodiment, the plate is a microtiter plate, preferably
a 96-well plate, having streptavidin coating at least one surface in each well, and
the antigen is biotinylated. Most preferably, the plate is Sigma SA 96-well plate
and the antigen is biotinylated with Pierce EZ-link Sulpho-NHS Biotin (Sigma-Aldrich
Canada, Oakville Ontario, CANADA). Alternative methods of biotinylation which attach
the biotin molecule to other moieties can also be used.
[0029] In the unlikely event that an antigen cannot be biotinylated, alternative surfaces
to which antigen can be bound can be substituted. For example, the Costar® Universal-BIND
™ surface, which is intended to covalently immobilize biomolecules via an abstractable
hydrogen using UV illumination resulting in a carbon-carbon bond. (Coming Life Sciences,
Coming, NY). Plates, for example, Costar® Universal-BIND
™ 96-well plates, may be used. One of skill in the art can modify subsequent manipulations
in the event that the use of alternate surfaces such as Costar® Universal-BIND
™ increases the time of the assay and/or requires the use of more antigen.
[0030] In one embodiment of the present invention, a "checkerboard" assay design is used
to find optimal concentration of bound antigen. One example is shown below in Table
2. The following description includes a disclosure of the steps to determine the optimal
coating concentration of biotinylated antigen using 96-well plates coated with streptavidin.
This disclosure is intended merely to illustrate one way to practice various aspects
of the present invention. The scope of the present invention is not limited to the
methods of the assay described above and below, as one of skill in the art can practice
the methods of the present invention using a wide variety of materials and manipulations.
Methods including but not limited to; expression of antigen on cells (transient or
stable), using phage which express different copy number of antigen per phage.
Antigen dilution and distribution.
[0031] An antigen to be tested is selected. Such an antigen may be, for example, any antigen
that might provide a therapeutic target by antibodies. For example, tumor markers,
cell surface molecules, Lymphokines, chemokines, pathogen associated proteins, and
immunomodulators are non-limiting examples of such antigens.
[0032] A solution of antigen at an initial concentration, preferably about 1 ug/ml, is diluted
in a series of stepwise dilutions. Diluted samples are then placed on surfaces such
as in the wells of a microtiter plate, and replicates of each sample are also distributed
on surfaces. Antigen solutions may contain blocking agents if desired. In a preferred
embodiment, serial dilutions of antigen are distributed across the columns of a 96-well
plate. Specifically, a different antigen dilution is placed in each column, with replicate
samples in each row of the column. In a 96-well plate, replicates of each dilution
are placed in rows A-H under each column. Although the standard dilutions vary from
antigen to antigen, the typical dilution series starts at lug/ml and is serially diluted
1:2 to a final concentration of about 900 pg/ml.
[0033] In one embodiment, biotinylated antigen is diluted from a concentration of 1 µg/ml
to 900 pg/ml horizontally across a 96 well plate. While a preferred blocking buffer
is a phosphate buffered saline (PBS) Milk solution, others buffers such as bovine
serum albumin (BSA) diluted in PBS can be substituted. In another embodiment, biotinylated
antigen is diluted from a concentration of 1 ug/ml to 900 pg/ml in 1% skim milk/ 1X
PBS pH 7.4, and pipetted into the wells of columns 1 to 11 of a Sigma SA (streptavidin)
microtiter plate, with 8 replicates of each dilution placed in rows A-H of each column.
Column 12 is left blank, serving as the "antibody-only" control. The final volume
in each well is 50 ul. Antigen is incubated on the surface (e.g., in the wells of
the plate) for a suitable amount of time for the antigen to become attached to the
surface; incubation time, temperature, and other conditions can be determined from
manufacturer's instructions and/or standard protocols for the surface being used.
After incubation, excess antigen solution is removed. If needed, plates are then blocked
with a suitable blocking solution containing, e.g., skim milk, powdered milk, BSA,
gelatin, detergent, or other suitable blocking agents, to prevent nonspecific binding
during subsequent steps.
[0034] Plates with biotinylated antigen are then incubated for a suitable amount of time
for antigen to bind or attach to the surface. Biotinylated antigen in a Sigma SA plate
is incubated at room temperature for 30 minutes. Excess biotinylated antigen solution
is then removed from the plate. In this embodiment, blocking is not necessary because
Sigma SA plates are pre-blocked.
[0035] In another embodiment using Costar® Universal-BIND
™ plates, antigen is passively adsorbed overnight at 4 degrees C in 1X PBS pH 7.4,
0.05% azide. Generally, if Costar® Universal-BIND
™ plates are used, the initial concentration of antigen is a somewhat higher concentration,
preferably 2-4 ug/ml. The next morning, excess antigen solution is removed from Costar®
Universal-BIND
™ plate or plates, preferably by "flicking", and each plate is exposed to UV light
at 365 nm for four (4) minutes. Each plate is then blocked with 1% skim milk / 1X
PBS pH 7.4 at 100 ul of blocking solution per well, for 30 minutes.
[0036] After incubation with antigen and removal of excess antigen solution, and blocking,
if necessary, plates are washed four times (4X) with tap water. Plates may be washed
by hand, or a microplate washer or other suitable washing tool may be used.
Reference antibody dilution and distribution.
[0037] A reference antibody that recognizes and binds to the antigen is then added. The
reference antibody is preferably a monoclonal antibody, but can alternatively be polyclonal
antibodies, natural ligands or soluble receptors, antibody fragments or small molecules.
[0038] A solution of reference antibody, also known as anti-antigen antibody, at an initial
concentration, preferably about 1 ug/ml, is diluted in a series of stepwise dilutions.
Diluted samples are placed on surfaces such as in the wells of a microtiter plate,
and replicates of each sample are also distributed on surfaces. Serial dilutions of
reference antibody are distributed across the rows of a 96-well plate. Specifically,
each reference antibody dilution is placed in a row, with replicate samples placed
in each column of the row. In a 96-well plate, a different dilution of reference antibody
is placed in each row, with replicates of each dilution placed in each column across
each row starting at an initial concentration of about 1 ug/ml progressively and diluted
1:2 seven times for a series of seven wells. An ending concentration of about 30 ng/ml
is used as the standard solution series. Solutions of reference antibody are incubated
with bound antigen under suitable conditions determined by the materials and reagents
being used, preferably about 24 hours at room temperature. One of skill in the art
can determine whether incubation for longer or shorter times, or at higher or lower
temperatures would be suitable for a particular embodiment.
Optional Step: Incubation with shaking.
[0039] If desired, the plate may be tightly wrapped and incubation of the reference antibody
with bound antigen may be carried out with shaking to promote mixing and more efficient
binding. Plates containing reference antibody and bound antigen may be incubated overnight
with shaking, for example as provided by a Lab Line Microplate Shaker at setting 3.
Add detection antibody.
[0040] Plates are washed to remove unbound reference antibody, preferably about five times
(5X) with water. Next, a labeled detection antibody that recognizes and binds to the
reference antibody is added, and the solution is incubated to permit binding of the
detection antibody to the reference antibody. The detection antibody may be polyclonal
or monoclonal. The detection antibody may be labeled in any manner that allows detection
of antibody bound to the reference antibody. The label may be an enzymatic label such
as alkaline phosphatase or horseradish peroxidase (HRP), or a non-enzymatic label
such as biotin or digoxygenin, or may be a radioactive label such as
32P,
3H, or
14C, or may be any other label suitable for the assay based on reagents, materials,
and detection methods available.
[0041] Following labeling, 50 ul of goat anti-Human IgG Fc HRP polyclonal antibody (Pierce
Chemical Co, Rockford IL, catalog number 31416) at a concentration of 0.5 ug/ml in
1 % skim milk, 1X PBS pH 7.4 is added to each well of a microtiter plate. The plate
is then incubated for 1 hr at room temperature.
[0042] Excess solution containing detection antibody is removed, and plates are washed with
water repeatedly, preferably at least five times, in order to remove all unbound detection
antibody.
Measurement of bound detection antibody.
[0043] The amount of detection antibody bound to reference antibody is determined by using
the appropriate method for measuring and quantifying the amount of label present.
Depending on the label chosen, methods of measuring may include measuring enzymatic
activity against added substrate, measuring binding to a detectable binding partner
(
e.g., for biotin) scintillation counting to measure radioactivity, or any other suitable
method to be determined by one of skill in the relevant art.
[0044] In the embodiment described above using goat anti-Human IgG Fc HRP polyclonal antibody
as the detection antibody, 50 ul of the chromogenic HRP substrate tetramethylbenzidine
(TMB) is added to each well. The substrate solution is incubated for about 30 minutes
at room temperature. The HRP/TMB reaction is stopped by adding 50 ul of 1M phosphoric
acid to each well.
Quantification.
[0045] The amount of bound label is then quantified by the appropriate method, such as spectrophotometric
measurement of formation of reaction products or binding complexes, or calculation
of the amount of radioactive label detected. Under the conditions disclosed here,
the amount of label measured in this step is a measure of the amount of labeled detection
antibody bound to the reference antibody.
[0046] In the embodiment described above using goat anti-Human IgG Fc HRP polyclonal antibody
and TMB substrate, the amount of detection antibody bound to reference antibody is
quantified by reading the absorbance (optical density or "OD") at 450 nm of each well
of the plate.
Data analysis to determine optimal antigen concentration.
[0047] A known reference antibody concentration is chosen, and the results from wells having
the chosen antibody concentration and different amounts of antigen are examined. The
antigen concentration that produces the desired signal strength, or standard signal,
is chosen as the optimal antigen concentration for subsequent experiments. The standard
signal may be empirically determined according to the conditions and materials used
in a particular embodiment, because the standard signal will serve as a reference
point for comparing signals from other reactions. For a detection method that produces
a chromogenic product, a desirable standard signal is one that falls within the most
dynamic region of the ELISA reader or other detector and may be an optical density
(OD) of between about 0.4 and 1.6 OD units and for this system preferably about 1.0
OD units, although it is possible to achieve signals ranging from 0.2 to greater than
3.0 OD units. Any OD value may be chosen as the standard signal, although an OD value
of about 1.0 OD units permits a accurate measurement of a range of test signals above
and below 1.0 OD units, and further permits easy comparison with other test signals
and reference signals. The concentration of antigen identified as the concentration
that produces the standard signal will be used in subsequent experiments to screen
and kinetically rank antibodies.
[0048] In a preferred embodiment using a 96-well plate, a reference antibody concentration
of 100 ng/ml is chosen. It is possible, depending on the sensitivity and antibody
concentrations employed in the system, to use other reference antibody concentrations.
The signals from the detection antibody reaction in the wells in all columns of the
row containing 100 ng/ml antibody are then examined to find the antigen concentration
that produces an OD value of about 1.0. In the preferred embodiment described above
using goat anti-Human IgG Fc HRP polyclonal antibody and TMB substrate, the wells
in the row containing 100 ng/ml antibody are examined to determine which antigen concentration
produces a reaction which, when absorbance is measured at 450 nm, has an OD value
of about 1.0. This concentration of antigen will then be used for the subsequent experiments
to screen and kinetically rank antibodies. A similar approach for identifying optimal
antigen densities was used for the Luminex bead based system.
Screening antibodies using limiting antigen concentrations
Coat surfaces at optimized antigen concentration
[0049] The surface or surfaces being used to carry out antibody screening are coated with
antigen at the optimal concentration as previously determined. In a preferred embodiment,
the surfaces are wells of a 96-well streptavidin plate such as a Sigma SA plate, and
biotinylated antigen at optimal concentration is added the wells. In a more preferred
embodiment, 50 ul of antigen in a solution of 1% skim milk, 1X PBS pH 7.4, and plates
are incubated for 30 minutes. In another preferred embodiment, unmodified antigen
is added to Costar® Universal-BIND
™ plates, and incubation and UV-mediated antigen binding are carried out according
to manufacturer's instructions and/or standard protocols, as described above.
[0050] After incubation with antigen solution for a suitable amount of time, plates are
washed to remove unbound antigen, preferably at least four times (4X).
Addition of test antibodies to be screened and ranked
[0051] Antibodies to be screened and ranked by the limiting antigen assay are called test
antibodies. Test antibodies may be recovered from the solution surrounding antibody-producing
cells. Preferably, test antibodies are recovered from the media of antibody-producing
B cell cultures, hybridoma supernatants, antibody or antibody fragments expressed
from any type of cell, more preferably from the supernatant of B cell cultures. Solutions
containing test antibodies, for example B cell culture supernatants, generally do
not require additional processing; however, additional steps to concentrate, isolate,
or purify test antibodies would also be compatible with the disclosed methods.
[0052] Each solution containing test antibodies is diluted to bring the concentration within
a desirable range and samples are added to a surface having attached antigen. Typically,
a desirable concentration range for test antibodies has a maximum concentration lower
than the concentration of reference antibody used to select the optimal antigen concentration
as described above. One aspect of the present invention provides that a test antibody
would produce a signal higher than that of the reference antibody for the same antigen
concentration if the test antibody (a) has a higher affinity for the antigen, or (b)
has a similar affinity but is present in higher concentration than the reference antigen.
Thus, when test antibodies are used at concentrations lower than the concentration
of the reference antibody used to select the antigen concentration used in the screening
assay, only a test antibody having higher affinity for the antigen would produce a
higher signal than the reference antibody signal.
[0053] In one embodiment in which a reference antibody concentration of 100 ng/ml is used
to select the optimal antigen concentration (as described above), B cell culture supernatants
having an empirically determined test antibody concentration range of between about
20 ng/ml to 800 ng/ml are typically diluted ten-fold to produce a working assay test
antibody concentration of between about 2 ng/ml to 80 ng/ml. Preferably, at least
two duplicate samples of each diluted B cell culture supernatant are tested. Preferably,
the diluted B cell culture supernatants are added to wells of a microtiter plate,
where the wells are coated with antigen at an optimal concentration previously determined
using antigen and a reference antibody.
[0054] A positive control should be included as part of the screening, wherein the reference
antibody used to optimize the assay by determining optimal antigen concentration is
diluted and reacted with the antigen. The positive control provides a set of measurements
useful both as an internal control and also to compare with previous optimization
results in order to confirm, assure, and demonstrate that results from a screening
of test antibodies are comparable with the expected results of the positive control,
and are consistent with previous optimization results.
[0055] In one embodiment, each B cell culture supernatant to be tested is diluted 1:10 in
1% skim milk / 1X PBS pH 7.4 / .05% azide, and 50 ul is added to each of two antigen-coated
wells of a 96-well plate, such that 48 different samples are present in each 96-well
plate. A positive control comprising a dilution series of the reference antibody is
preferably added to wells of about one-half a 96-well plate, to provide confirmation
and to demonstrate that results of the screening of test antibodies in B cell culture
supernatants run in parallel with the positive control are internally consistent and
also consistent with previous optimization results.
[0056] Test antibodies are incubated with antigen under suitable conditions. Reference antibodies
used as positive controls are incubated in parallel under the same conditions. In
one preferred embodiment, plates are wrapped tightly, for example with plastic wrap
or paraffin film, and incubated with shaking for 24 hours at room temperature.
Add detection antibody to test antibodies
[0057] Plates are washed to remove unbound test antibodies, preferably about five times
(5X) with water. Next, a labeled detection antibody that recognizes and binds to the
test antibody is added, and the solution is incubated to permit binding of the detection
antibody to the test antibody. Detection antibody is also added to the positive control,
to confirm the interaction between the reference antibody and detection antibody.
The detection antibody may be polyclonal or monoclonal. The detection antibody may
be labeled in any matter that allows detection of antibody bound to the reference
antibody. The label may be an enzymatic label such as alkaline phosphatase or horseradish
peroxidase (HRP), or a non-enzymatic label such as biotin or digoxygenin, or a radioactive
label such as
32P,
3H, or
14C, or fluorescence, or it may be any other label suitable for the assay based on reagents,
materials, and detection methods available.
[0058] In one embodiment, using human test antibodies, 50 ul of goat anti-Human IgG Fc HRP
polyclonal antibody (Pierce Chemical Co, Rockford IL, catalog number 31416) at a concentration
of 0.5 ug/ml in 1% skim milk, 1X PBS pH 7.4 is added to each well of microtiter plates
containing test antibodies and reference antibodies (as a positive control). The plate
is then incubated for 1 hr at room temperature.
[0059] Excess solution containing detection antibody is removed, and plates are washed with
water repeatedly, preferably at least five times, in order to remove all unbound detection
antibody.
Measurement of bound detection antibody.
[0060] The amount of detection antibody bound to test antibody (and bound to reference antibody
of the control) is determined by using the appropriate method for measuring and quantifying
the amount of label present. Depending on the label chosen, methods of measuring may
include measuring enzymatic activity against added substrate, measuring binding to
a detectable binding partner (
e.g., for biotin) scintillation counting to measure radioactivity, or any other suitable
method to be determined by one of skill in the relevant art.
[0061] In the method described above, using goat anti-Human IgG Fc HRP polyclonal antibody
as the detection antibody, 50 ul of the chromogenic HRP substrate tetramethylbenzidine
(TMB) is added to each well. The antibody-substrate solution is incubated for about
30 minutes at room temperature. The HRP/TMB reaction is stopped by adding 50 ul of
1M phosphoric acid to each well.
Quantification.
[0062] The amount of bound label is then quantified by the appropriate method, such as the
spectrophotometric measurement of formation of reaction products or binding complexes,
or calculation of the amount of radioactive label detected. In accordance with one
aspect of the present invention, the amount of label provides a measure of the amount
of labeled detection antibody bound to the test antibody (or, in the positive control,
bound to the reference antibody). In accordance with another aspect of the present
invention, the amount of label provides a measure of the amount of test antibody bound
to antigen. Thus, detecting and quantifying the amount of label provides a means of
measuring the binding of test antibody to the test antigen. By comparing the standard
signal with the signal that quantifies the amount of test antibody bound to antigen,
it is possible to identify test antibodies with higher affinities by searching for
test antibodies which give a higher signal than the reference.
[0063] In the method described above using goat anti-Human IgG Fc HRP polyclonal antibody
and TMB substrate, the amount of detection antibody bound to test antibody (and reference
antibody in the positive control) is quantified by reading the absorbance (optical
density, OD) at 450 nm of each well of each plate.
Data analysis to identify and rank antibodies of interest.
[0064] The results from each test antibody are averaged and the standard range is determined.
In a preferred embodiment wherein two samples of each test antibody are assayed using
a HRP-labeled detection antibody, OD values at 450 nm are averaged and the standard
deviation is calculated. The average OD values of test antibodies are compared against
the OD value of the standard signal. Values from the positive control assays are also
calculated and examined for reliability of the assay.
[0065] Test antibodies are kinetically ranked by considering the average OD value and the
range of the OD's between replicates. The average OD value provides a measure of the
affinity of the test antibody for the antigen, where affinity is determined by comparison
with the standard signal, or the OD value of the reference antibody in the positive
control. The range provides a measure of reliability of the assay, where a narrow
range indicates that the OD values are likely to be accurate measurements of the amount
of test antibody bound to the antigen, and a wide range indicates that the OD values
may not be accurate measurements of binding. Acceptable standard deviations are typically
OD's of between 5-15% of each other. Test antibodies giving the highest OD values,
where the standard deviation of the average value is low, are given the highest kinetic
ranking.
[0066] In one embodiment, wherein the standard signal is 1.0 OD units, any test antibody
with both an average OD of greater than 1.0 OD units, and an acceptably low standard
deviation, is considered to have a higher affinity for the antigen than the affinity
of the reference antibody.
[0067] In another embodiment, Luminex based assays using differentially antigen coated beads
were used. In this assay antibodies were ranked based on how they bound antigen at
higher then at lower antigen densities.
Example 1
Determination of optimal antigen concentration
Antigen Preparation
[0068] Parathryroid hormone (PTH) was biotinylated using Pierce EZ-Link Sulpho-NHS biotin
according the manufacturer's directions (Pierce EZ-link Sulpho-NHS Biotin, (Pierce
Chemical Co., Rockford, IL, Catalogue number 21217). When the antigen could not be
biotinylated, Costar UV plates were substituted. The use of Costar UV plates increased
the time of the assay and generally required the use of considerably more antigen.
Checkerboard ELISA
[0069] An assay laid out in a "checkerboard" arrangement was carried out as described below
to determine optimal coating concentration of the antigen. The assay was performed
using streptavidin-coated 96-well plates (Sigma SA mitcrotiter plates, Sigma-Aldrich
Chemicals, St Louis MO, Catalogue number-M5432) as follows.
[0070] The parathyroid hormone (PTH) antigen was biotinylated using Pierce EZ-link Sulpho-NHS
biotin ((Pierce Chemical Co, Rockford IL, catalog number 21217) according to manufacturer's
instructions. Biotinylated antigen diluted in 1% skim milk/ 1X PBS pH 7.4 in a series
of stepwise dilutions from a beginning concentration of 500 ng/ml to a final concentration
of 0.5ng/ml. Diluted biotinylated antigen was distributed horizontally across a 96-well
Sigma SA microtiter plate (Sigma Aldrich Chemicals, catalogue M-5432), placing 50
ul of each dilution in wells of each of columns 1 through 11, with replicates in each
well of rows A-H under each column. No antigen was added to column 12. The plate was
incubated at room temperature for 30 minutes. No blocking step was performed because
Sigma SA plates are pre-blocked.
[0071] The plate was washed four times with tap water. Plates were washed by hand, or using
a microplate washer when available.
[0072] An anti-PTH antibody with known affinity was used as a reference antibody. Anti-PTH
antibody 15g2 was diluted 1% skim milk / 1X PBS pH 7.4 / 0.05% to final initial dilution
of 1 ug/ml was serially diluted 1:2, 7 wells to an ending concentration 15 ng/ml and
50 ul of each dilution was distributed in each well of row A to row G, with replicates
in each well of columns 1-12. No antibody was added to row H. Plates containing the
antigen and reference antibody were incubated at room temperature for approximately
24 hours.
[0073] The plate was wrapped tightly ("air tight") with plastic wrap or paraffin film, and
incubated overnight with shaking using a Lab Line Titer Plate Shaker at setting 3.
[0074] The plates were washed five times (5X) with water to remove unbound reference antibody.
Bound reference antibody was detected by adding fifty microliters (50 ul) of 0.5 ug/ml
goat anti-Human IgG Fc HRP polyclonal antibody (Pierce Chemical Co, Rockford IL, catalog
number 31416) in 1% skim milk / 1X PBS pH 7.4 to each well and incubating the plate
1 hr at room temperature. (Gt anti-Human Fc HRP- Pierce catalogue number-31416).
[0075] The plate was washed at least five times (5X) with water to remove unbound goat anti-Human
IgG Fc HRP polyclonal antibody
[0076] Fifty microliters (50 ul) of the HRP substrate TMB (Kirkegaard & Perry Laboratories,
Inc, Gaithersberg, MD) was added to each well and the plate was incubated for one-half
hour at room temperature. The HRP-TMB reaction was stopped by adding 50 ul of 1M phosphoric
acid to each well. Optical density (absorbance) at 450 nm was measured for each well
of the plate.
Data analysis
[0077] Table 2 shows the results from the reference assay using PTH as the antigen and 15g2
anti-PTH as the reference antibody. OD measurements from the row of samples corresponding
to the reference antibody concentration of 100 ng/ml were examined to find the antigen
concentration that gives an OD of approximately 1.0. This concentration was determined
to be approximately 15 ng/ml PTH. This concentration of antigen was considered the
optimal antigen concentration and will be used for the subsequent experiments.

Example 2
Limiting Antigen Assay of Test Antibodies
[0078] SA microtiter plates were coated with biotinylated antigen PTH at the optimal concentration
of 15 ng/ml as determined in Example 1. Fifty microliters (50 ul) of biotinylated
antigen at a concentration of 15 ng/ml in 1% skim milk / 1X PBS pH 7.4 was added to
each well, in a dilution pattern as described in Example 1. The plate was incubated
for 30 minutes.
[0079] Plates were washed four times (4X) with water, and a B-cell culture supernatant containing
test antibodies diluted 1:10 in 1% skim milk / 1X PBS pH 7.4 / .05% azide, and 50
ul of each sample was added to each of two wells. Forty-eight (48) different samples
were added per 96 well plate. On a separate plate, reference antibody 15g2 anti-PTH
at the concentration used to determine the optimal antigen concentration was diluted
out at least half a plate. This provided a positive control to assure that results
from assays of test antibodies are comparable with optimization results.
[0080] Plates were wrapped tightly with plastic wrap or paraffin film, and incubated with
shaking for 24 hours at room temperature.
[0081] On the following day, all plates were washed five times (5X) and 50 ul goat anti-Human
IgG Fc HRP polyclonal antibody at a concentration of 0.5 ug/ml in 1% milk, 1X PBS
pH 7.4 was added to each well. The plates were incubated for 1 hour at room temperature.
[0082] Plates were washed at least five times (5X with tap water). Fifty microliters (50)
ul of HPR substrate TMB was added to each well, and the plate were incubated for 30
minutes. The HRP-TMB reaction was stopped by adding 50 ul of 1M phosphoric acid to
each well. Optical density (absorbance) at 450 nm was measured for each well of the
plate.
Data Analysis
[0083] OD values of test antibodies were averaged and the range was calculated. Antibodies
with the highest signal and acceptably low standard deviation were selected as antibodies
having a higher affinity for the antigen than did the reference antibody.
[0084] Table 3 shows the results of a limiting antigen dilution assay using PTH as a ligand.
Antibodies are ranked according to their relative affinity for various PTH antigens,
and identified by their well number.
Table 3
Affinity Ranking of Test Antibodies to Limited Dilution of PTH |
Well |
Limiting Ag OD |
Limiting Ag Rank |
Primary OD |
Secondary OD |
PTH(1-84) |
PTH(7-84) |
PTH(17-44) |
Rat PTH(1-84) |
292A10 |
2.747 |
1 |
0.992 |
ND |
1.40 |
1.95 |
3.26 |
0.62 |
302A7 |
1.376 |
2 |
0.317 |
ND |
0.35 |
0.36 |
2.66 |
0.19 |
253D10 |
1.009 |
3 |
0.954 |
0.511 |
0.79 |
1.10 |
2.10 |
1.18 |
263C8 |
0.693 |
5 |
0.372 |
0.286 |
1.75 |
1.98 |
3.29 |
1.34 |
245B10 |
0.644 |
6 |
0.622 |
0.580 |
0.84 |
0.32 |
0.12 |
0.19 |
238F8 |
0.566 |
7 |
0.667 |
0.541 |
1.05 |
1.34 |
2.79 |
1.19 |
228E3 |
0.504 |
8 |
0.560 |
0.259 |
0.48 |
0.80 |
3.12 |
1.40 |
262H1 |
0.419 |
9 |
0.461 |
0.274 |
0.86 |
1.20 |
2.45 |
0.36 |
161G7 |
0.411 |
10 |
0.409 |
0.212 |
0.49 |
0.90 |
1.88 |
0.84 |
331H6 |
0.322 |
11 |
0.312 |
ND |
0.52 |
0.45 |
2.40 |
0.24 |
287E7 |
0.261 |
12 |
0.682 |
ND |
0.71 |
0.13 |
0.36 |
1.03 |
315D8 |
0.221 |
13 |
0.441 |
ND |
0.14 |
0.17 |
0.29 |
0.31 |
279E6 |
0.213 |
14 |
0.379 |
ND |
0.31 |
0.10 |
0.17 |
0.19 |
250G6 |
0.178 |
15 |
0.560 |
0.248 |
0.44 |
0.66 |
1.77 |
0.19 |
244H11 |
0.175 |
16 |
0.405 |
0.556 |
0.50 |
0.86 |
0.98 |
0.31 |
313D5 |
0.170 |
17 |
0.664 |
ND |
0.12 |
0.29 |
0.43 |
0.30 |
339F5 |
0.120 |
18 |
0.319 |
ND |
0.40 |
0.21 |
0.11 |
0.25 |
279D2 |
0.114 |
19 |
0.353 |
ND |
0.31 |
0.11 |
0.27 |
0.18 |
307H1 |
0.084 |
20 |
0.401 |
ND |
0.10 |
0.14 |
0.30 |
0.42 |
308A1 |
0.079 |
21 |
0.312 |
ND |
0.19 |
0.22 |
0.30 |
0.45 |
322F2 |
ND |
22 |
1.870 |
ND |
1.01 |
0.15 |
0.34 |
1.41 |
Example 3
Dilutions of Antibodies Against Interleukin-8 (IL-8)
[0085] The proper coating concentration of IL-8 was determined as described above to determine
a concentration of IL-8 that resulted in an OD of approximately 1. The optimal concentration
was then incubated with a variety of anti-IL-8 antibody supernatants derived from
XenoMouse animals immunized with IL-8. Table 4 illustrates typical results and ranking
of antibodies screened for their affinity for IL-8. The columns "primary OD" and "secondary
OD" refer to primary and secondary binding screen OD's achieved when non-limited amounts
of IL-8 were used in the binding ELISA. OD values reported in the limited antigen
section refer to an average of two binding ELISA's done at limited antigen. As shown
by Table 4, the top three antibodies are able retain their binding to antigen even
at the limited concentrations. Other antibodies which also achieved high OD's in the
primary and secondary non-limited antigen binding ELISA were not able to achieve the
same signal when antigen concentrations were limiting.
Table 4
Affinity Ranking of Test Antibodies to Limited Dilution of IL-8 |
Clone Number |
|
|
Limited Ag |
plate |
well |
Primary OD |
Secondary OD |
Average |
St dev. |
Limited Ag Rank |
36 |
C6 |
1.95 |
3.023 |
1.32 |
4% |
1 |
6 |
G11 |
2.021 |
1.403 |
0.90 |
9% |
2 |
50 |
B1 |
1.818 |
2.398 |
0.82 |
14% |
3 |
41 |
C11 |
1.83 |
3.218 |
0.81 |
19% |
4 |
53 |
G5 |
1.128 |
2.521 |
0.80 |
1 % |
5 |
44 |
B8 |
2.09 |
2.707 |
0.78 |
2% |
6 |
51 |
G10 |
1.408 |
1.652 |
0.78 |
2% |
7 |
53 |
E1 |
1.992 |
3.035 |
0.72 |
12% |
8 |
38 |
C1 |
2.571 |
2.945 |
0.71 |
3% |
9 |
32 |
F3 |
2.339 |
3.322 |
0.66 |
13% |
10 |
13 |
F10 |
1.505 |
1.833 |
0.66 |
5% |
11 |
41 |
D2 |
2.997 |
2.944 |
0.66 |
5% |
12 |
53 |
C2 |
1.56 |
1.869 |
0.64 |
22% |
13 |
14 |
E2 |
1.255 |
1.875 |
0.57 |
25% |
14 |
54 |
C3 |
2.131 |
2.486 |
0.51 |
12% |
15 |
50 |
F3 |
0.572 |
1.635 |
0.51 |
26% |
16 |
55 |
E8 |
1.031 |
1.917 |
0.50 |
10% |
17 |
42 |
E5 |
3.07 |
3.147 |
0.49 |
4% |
18 |
6 |
E7 |
0.637 |
1.545 |
0.49 |
22% |
19 |
7 |
E10 |
1.794 |
1.953 |
0.48 |
18% |
20 |
8 |
B2 |
1.725 |
1.777 |
0.48 |
5% |
21 |
48 |
E6 |
2.103 |
3.004 |
0.48 |
25% |
22 |
33 |
A1 |
2.623 |
2.351 |
0.47 |
17% |
23 |
51 |
F5 |
2.062 |
2.838 |
0.45 |
15% |
24 |
51 |
B1 |
1.778 |
2.631 |
0.45 |
0% |
25 |
44 |
A5 |
2.473 |
2.55 |
0.44 |
5% |
26 |
6 |
G4 |
2.117 |
1.505 |
0.41 |
7% |
27 |
43 |
G4 |
0.991 |
1.943 |
0.41 |
2% |
28 |
47 |
E3 |
1.049 |
2.222 |
0.40 |
16% |
29 |
46 |
F11 |
1.641 |
1.843 |
0.39 |
9% |
30 |
43 |
F4 |
0.744 |
1.449 |
0.39 |
7% |
31 |
54 |
H1 |
1.465 |
1.584 |
0.38 |
25% |
32 |
44 |
F4 |
2.05 |
2.573 |
0.38 |
13% |
33 |
49 |
G11 |
1.334 |
2.019 |
0.37 |
6% |
34 |
11 |
C10 |
1.169 |
1.498 |
0.37 |
3% |
35 |
41 |
B12 |
1.107 |
1.347 |
0.37 |
3% |
36 |
46 |
F2 |
0.865 |
1.15 |
0.37 |
11% |
37 |
52 |
E11 |
0.961 |
2.034 |
0.37 |
5% |
38 |
7 |
B6 |
2.039 |
1.802 |
0.33 |
6% |
39 |
39 |
F6 |
1.434 |
1.196 |
0.33 |
6% |
40 |
10 |
E5 |
0.886 |
1.262 |
0.33 |
6% |
41 |
36 |
C12 |
1.078 |
1.991 |
0.33 |
10% |
42 |
44 |
B9 |
1.469 |
1.683 |
0.32 |
4% |
43 |
8 |
H1 |
1.338 |
1.316 |
0.31 |
2% |
44 |
52 |
F3 |
1.289 |
1.204 |
0.28 |
16% |
45 |
45 |
A4 |
1.136 |
1.302 |
0.28 |
13% |
46 |
25 |
A11 |
1.199 |
1.17 |
0.27 |
25% |
47 |
51 |
C12 |
0.955 |
1.148 |
0.26 |
11 % |
48 |
6 |
E5 |
1.41 |
1.138 |
0.24 |
8% |
49 |
39 |
H3 |
0.471 |
1.155 |
0.23 |
6% |
50 |
14 |
E3 |
1.958 |
1.255 |
0.22 |
15% |
51 |
3 |
D1 |
2.254 |
3.497 |
0.21 |
24% |
52 |
33 |
F4 |
1.323 |
1.408 |
0.21 |
24% |
53 |
51 |
A12 |
0.555 |
1.522 |
0.19 |
17% |
54 |
5 |
G1 |
2.205 |
2.274 |
0.17 |
4% |
55 |
35 |
C9 |
1.217 |
1.249 |
0.17 |
4% |
56 |
6 |
B10 |
1.006 |
1.145 |
0.17 |
8% |
57 |
39 |
B4 |
1.326 |
1.62 |
0.17 |
8% |
58 |
5 |
G3 |
1.192 |
1.387 |
0.17 |
29% |
59 |
35 |
F10 |
1.307 |
1.777 |
0.17 |
29% |
60 |
17 |
E11 |
0.839 |
1.805 |
0.17 |
15% |
61 |
3 |
D3 |
0.605 |
1.351 |
0.16 |
5% |
62 |
31 |
A1 |
1.557 |
1.826 |
0.16 |
17% |
63 |
28 |
C5 |
1.373 |
1.942 |
0.16 |
5% |
64 |
14 |
F5 |
1.441 |
1.482 |
0.15 |
25% |
65 |
43 |
D8 |
0.714 |
1.501 |
0.15 |
22% |
66 |
29 |
D5 |
1.326 |
1.322 |
0.14 |
23% |
67 |
32 |
F11 |
1.36 |
1.284 |
0.48 |
71% |
68 |
7 |
D4 |
0.874 |
2.333 |
0.44 |
34% |
69 |
47 |
G11 |
0.811 |
1.209 |
0.42 |
76% |
70 |
39 |
G2 |
0.676 |
1.157 |
0.42 |
32% |
71 |
15 |
G4 |
2.046 |
2.461 |
0.39 |
41% |
72 |
31 |
G12 |
1.902 |
1.929 |
0.36 |
44% |
73 |
41 |
C2 |
1.201 |
2.522 |
0.33 |
34% |
74 |
7 |
E11 |
1.402 |
1.719 |
0.32 |
50% |
75 |
40 |
A4 |
1.786 |
1.427 |
0.32 |
50% |
76 |
45 |
E12 |
1.986 |
2.887 |
0.26 |
54% |
77 |
2 |
B10 |
1.871 |
1.389 |
0.22 |
38% |
78 |
7 |
H8 |
1.516 |
1.171 |
0.22 |
45% |
79 |
28 |
C3 |
1.246 |
1.182 |
0.15 |
52% |
80 |
Table 4A
Affinity Measurement of Reference Antibody 1 |
Reference antibody 1 |
Conc. ng/ml |
Limited Ag OD |
St. Dev. |
125.00 |
1.52 |
1 % |
62.50 |
1.38 |
2% |
31.25 |
1.25 |
12% |
15.63 |
1.13 |
28% |
7.81 |
0.80 |
2% |
3.91 |
0.78 |
18% |
1.95 |
0.67 |
0% |
0.98 |
0.73 |
8% |
0.49 |
0.53 |
18% |
0.24 |
0.39 |
17% |
Table 4B
Affinity Measurement of Reference Antibody 2 |
Reference antibody 2 |
Conc. ng/ml |
Limited Ag OD |
St. Dev. |
125.00 |
0.52 |
23% |
62.50 |
0.38 |
11% |
31.25 |
0.34 |
1% |
15.63 |
0.42 |
43% |
7.81 |
0.54 |
13% |
3.91 |
0.46 |
30% |
1.95 |
0.54 |
9% |
0.98 |
0.34 |
9% |
0.49 |
0.49 |
32% |
0.24 |
0.55 |
38% |
Example 4
Affinity Ranking
Preparation of Antigens
[0086] In order to increase the effective throughput of the antibody affinity ranking process,
we labeled different concentrations of an antigen with different colored beads. In
this example, beads from the Luminex system were used. As is known, each bead, when
activated, emits light of a varying wavelength. When put in a Luminex reader, the
identity of each bead can be readily ascertained.
[0087] In this example, a different color of strepavidin luminex bead was bound to each
of four concentrations of biotinylated antigen (lug/ml, 100ng/ml, 30ng/ml, and 10ng/ml).
Thus, each concentration of the antigen was represented by a different color bead.
The four concentrations were the mixed into a single solution containing all four
color-bound concentrations.
[0088] All of the antibody samples were then diluted to the same concentration (~500ng/ml)
using Luminex quantitation results or a one-point quantitation by Luminex. A serial
dilution (1:5) of all of the samples was then performed so a total of four dilution
points were obtained, while preferably diluting enough sample for two plates: a quantitation
plate and the ranking plate.
Ranking of Antibodies
[0089] In order to rank the antibodies, ~ 2000 of each mixture of luminex bead-antigen samples
was loaded into each well of the luminex plate, and then the well was aspirated. Then
50 ul of each antibody sample (24 samples total) was loaded into each well and left
overnight while shaking in 4°C. The plates were washed three times (3X) with washing
buffer. Detection with a fluorescent anti-human antibody (hIgG-Phycoerythrin (PE)
(1:500 dilution)) that bound 50ul/well was then performed while shaking at room temperature
for 20 min. The plates were then washed three times (3X) with washing buffer. The
plates were re-suspended in 80 ul blocking buffer. Next, the plates were loaded in
the Luminex.
Data Analysis
[0090] Because each well held four different concentrations of the same antigen, that could
be distinguished based on color, it was possible to rapidly rank binding affinities
of the different antibodies. For example, antibodies that had very strong binding
affinity for the antigen bound to even the weakest dilution of antibody. This could
be measured by analyzing the amount of fluorescent anti-human antibody bound to the
colored bead attached to the weakest antigen concentration. Alternatively, antibodies
that did not bind strongly might were only detected as binding with the lug/ml and
100ng/ml antigen concentrations, but not the 30ng/ml or 10ng/ml concentrations.
[0091] Data analysis was performed using SoftMax Pro for the quantitation data. The Luminex
signal of samples tested at several concentrations were compared. The samples were
then ranked accordingly.
Example 5
Comparison of Limiting Antigen Output Compared to Absolute Biacore KD Measurements
[0092] The following kinetic ranking technique was performed by ELISA and compared to formal
BiaCore kinetics. Below in Table 5 is a comparison of a typical limited antigen output
as compared to absolute Biacore derived KD measurements. In short, 68 antibodies were
ranked (relative to each other) using limited antigen ranked. From the 68 antibodies
17 were scaled up to sufficient quantities for formal affinity measurements using
BiaCore technology.
Table 5
Comparison of Affinity Measurement Based on Limited Dilutions with Biacore Affinity
Measurements |
Sample ID |
Limited Antigen Ranking |
Biacore Affinity (nM) |
A |
1 |
1.9 |
B |
3 |
1.9 |
C |
4 |
1.3 |
D |
5 |
6.9 |
E |
7 |
3.3 |
F |
10 |
17.7 |
G |
11 |
28.9 |
H |
12 |
3.8 |
I |
13 |
4.4 |
J |
23 |
11.2 |
K |
28 |
57.8 |
L |
30 |
29.2 |
M |
34 |
1667 |
N |
46 |
115.2 |
O |
47 |
305.1 |
P |
51 |
1000 |
Q |
60 |
33.1 |
Data Analysis
[0093] As can be seen overall there is a high degree of correlation between high limited
antigen rank and the formal K
D. In the case of antibodies which do not correlate well, there are a number of reasons
why such discrepancies could exist. For example, although antigen is coated on ELISA
plates at a low density avidity effects cannot completely be ruled out. In addition,
it is possible that, when coating assay material for the limited antigen ranking technique,
certain epitopes could be masked or altered. In Biacore analysis, if antigen is flowed
over an antibody coated chip, these epitopes on the antigen could be presented in
a different conformation and, therefore, seen at a different relative concentration.
This could, in turn, could result in a different kinetic ranking between the two methods.
[0094] It is also possible that an antibody with lower Biacore derived affinities may give
a high limited antigen rank due to a much higher than average concentration of antigen
specific antibody being present in the test sample. This could, in turn, lead to an
artificially high limited antigen score.
[0095] Importantly, the limited antigen kinetics method did allow a rapid determination
of relative affinity and it identified the antibodies with the highest formal affinity
of the tested antibodies in this panel. Further, as the limited antigen kinetic relative
ranking method is easily scalable to interrogate 1000's of antibodies at early stages
of antibody generation it offers significant advantage over other technologies which
do not offer similar advantages of scale.