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(54) Reduction of fitness evaluations using clustering technique and neural network ensembles

(57) The invention proposes an evolutionary optimi-
zation method. In a first step, an initial population of in-
dividuals is set up and an original fitness function is ap-
plied. Then the offspring individuals having a high eval-
uated quality value as parents are selected. In a third
step, the parents are reproduced to create a plurality of
offspring individuals. The quality of the offspring individ-
uals is evaluated by means of a fitness function, wherein
selectively the original or an approximate fitness func-
tion is used. Finally, the method goes back to the selec-
tion step until a termination condition is met.

The step of evaluating the quality of the offspring
individuals consists in grouping all λ offspring individu-
als in clusters, selecting for each cluster one or a plu-
rality of offspring individuals, resulting in altogether ξ se-
lected offspring individuals, evaluating the ξ selected
offspring individuals by means of the original fitness
function, and evaluating the remaining λ-ξ offspring in-
dividuals by means of the approximate fitness function.
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Description

FIELD AND BACKGROUND OF THE INVENTION

[0001] The underlying invention generally relates to the field of evolutionary computation, especially to the reduction
of the number of fitness evaluations in evolutionary algorithms (EA).
[0002] Many difficulties can arise in applying evolutionary algorithms to solve complex real-world optimization prob-
lems. One of the main concerns is that evolutionary algorithms usually need a large number of fitness evaluations to
obtain a good solution. Unfortunately, fitness evaluations are often time-consuming. Taking aerodynamic design opti-
mization as an example, one evaluation of a given design based on the 3-Dimensional Computational Fluid Dynamics
(CFD) Simulation can take hours even on a high-performance computer.

BRIEF DESCRIPTION OF THE PRESENT STATE OF THE ART

[0003] The background art references used in the present description are summarized and commented on in a table
at the end of the description.
[0004] Whenever in the present specification reference is made to the background art (in brackets), it is to be un-
derstood that the corresponding document is incorporated thereby by reference.
[0005] To alleviate the fact that evolutionary computation is often time consuming, computationally efficient models
can be set-up to approximate the fitness function. Such models are often known as approximate models, meta-models
or surrogates (see [8] for an overview of this topic). It would be ideal if an approximate model can fully replace the
original fitness function, however, research has shown that it is in general necessary to combine the approximate model
with the original fitness function to ensure the evolutionary algorithm to converge correctly. To this end, re-evaluation
of some individuals using the original fitness function, also termed as evolution control in [6], is essential.
[0006] Generation-based or individual-based evolution control can be implemented. In the generation-based ap-
proach [14, 2, 6, 7], some generations are evaluated using the approximate model and the rest using the original fitness
function. In individual-based evolution control, part of the individuals of each generation are evaluated using the ap-
proximation model and the rest using the original fitness function [6, 3, 17, 1]. Generally speaking, the generation-
based approach is more suitable when the individuals are evaluated in parallel, where the duration of the optimization
process depends to a large degree on the number of generations needed. By contrast, the individual-based approach
is better suited when the number of evaluations is limited, for example, when an experiment needs to be done for a
fitness evaluation.
[0007] On the other hand, individual-based èvolution control provides more flexibility in choosing which individuals
need to be re-evaluated. In [6] it is suggested to choose the best individuals according to the approximate model rather
than choosing the individuals randomly. In [3] not only the estimated function value but also the estimation error are
taken into account. The basic idea is that individuals having a larger estimation error are more likely to be chosen for
re-evaluation. Other uncertainty measures have also been proposed in [1].
[0008] In [9] the population of a genetic algorithm (GA) is grouped into a number of clusters and only one represent-
ative individual of each cluster is evaluated using the fitness function. Other individuals in the same cluster are estimated
according to their Euclidean distance to the representative individuals. Obviously, this kind of estimation is very rough
and the local feature of the fitness landscape is completely ignored.

OBJECT OF THE UNDERLYING INVENTION

[0009] In view of the prior art, it is the object of the present invention to propose a computationally efficient model
for fitness evaluations to assist the evolutionary algorithms.
[0010] This object is achieved by means of the features of the independent claims. Advantageous features are de-
fined in the dependent claims.

SUMMARY OF THE INVENTION

[0011] In the proposed invention, the population is grouped into a number of clusters, and only the individual that is
closest to the cluster center is evaluated using the original fitness function. In contrast to the distance-based estimation
method [9], according to a further aspect of the invention the evaluated individuals (centers of the clusters) can be
used to create a neural network ensemble, which is then used for estimating the fitness values of the remaining indi-
viduals. Both the structure and the parameters of the neural networks can e.g. be optimized using an evolutionary
algorithm (EA) with Lamarckian inheritance.
[0012] To reduce the number of fitness evaluations, the present invention thus proposes a computationally efficient
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model that can be constructed for fitness evaluations to assist the evolutionary algorithms.
[0013] The invention suggests a method for reducing the required number of fitness evaluations using meta-models.
It deals with three aspects in meta-model assisted evolutionary computation.
[0014] First, how to determine which individuals should be evaluated with the original time-consuming fitness function
and which ones should be evaluated using the meta-model: The invention uses a clustering method using a k-means
algorithm.
[0015] Second, how to improve the quality of the meta-models. A neural network ensemble has been used instead
of a single neural network. Meanwhile, both the structure and parameters of the neural networks are on-line optimized
using a Lamarkian evolutionary algorithm. Finally, the weights of the ensemble members are optimized using a standard
Evolution Strategy (ES).
[0016] Third, how to detect a large prediction error of the meta-models. The invention uses the output variance of
the ensemble members.

BRIEF DESCRIPTION OF THE CLAIMS

[0017] According to a first aspect of the present invention an evolutionary optimization method is proposed. In a first
step, an initial population of individuals is set up and an original fitness function is applied. Then the offspring individuals
having a high evaluated quality value are selected as parents. In a third step, the parents are reproduced to create a
plurality of offspring individuals. The quality of the offspring individuals is evaluated by means of a fitness function,
wherein selectively the original or an approximate fitness function is used. Finally, the method goes back to the selection
step until a termination condition is met. The step of evaluating the quality of the offspring individuals further consists
in grouping all λ offspring individuals in clusters, selecting for each cluster one or a plurality of offspring individuals,
resulting in altogether ξ selected offspring individuals, evaluating the ξ selected offspring individuals by means of the
original fitness function and evaluating the remaining λ-ξ offspring individuals by means of the approximate fitness
function.
[0018] The approximate fitness function can e.g. be a neural network ensemble comprising a plurality of neural
network.
[0019] The offspring individuals chosen for evaluation with the original fitness function can e.g. be the one closest
to the cluster center.
[0020] A k-means method can be used to group all offspring into clusters.
[0021] Moreover, the output of each neural network in the ensemble can be weighted and combined to the final
output of the neural network ensemble.
[0022] A Genetic Algorithm (GA) with a local search can also be used to generate the neural network ensemble.
[0023] An evolution strategy (ES) can be used to optimize the weights of the ensemble by minimizing an expected
prediction error.
[0024] The variance of the neural network's output in the ensemble can be derived and if the variance is larger than
a given threshold, the corresponding fitness value of the individual concerned can be replaced by the value of the
individual closest to the cluster center.
[0025] Said variance can be used to control how many individuals in each cluster are evaluated using the original
function.
[0026] The number of individuals to be evaluated using the original fitness function can be increased if the variance
is high and decreased if the variance is low.
[0027] According to another aspect of the invention a computer software program product implementing a method
as set forth above when running on a computing device is proposed.
[0028] According to a further aspect of the invention a use of the presented evolutionary optimization method is
proposed for the optimization of hydrodynamic or aerodynamic designs, of turbine rotor and stator blades and outlet
guide vanes, and of aerodynamic properties of vehicles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Further advantages of the underlying invention result from the subordinate claims as well as from the following
description of two preferred embodiments of the invention which are depicted in the following drawings. Herein,

Fig. 1 shows a known k-means algorithm for population clustering,

Fig. 2 shows an algorithm for constructing neural network ensemble according to the underlying invention,

Fig. 3 shows the evolutionary optimization algorithm proposed by the invention,
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Fig. 4 shows a global silhouette width when the number of cluster is set to 10 and the population size is 30 on the
30-dimensional Ackley function,

Fig. 5 shows an ensemble output with an ensemble size of 3 (a) and an ensemble size of 5 (b),

Fig. 6 shows a prediction error versus the standard deviation (a) and a prediction error of the BEM versus that of
the GEM (b),

Fig. 7 shows a box plot of the optimization results for the 30-dimensional Ackley function for the proposed algorithm
(a) and for Plain ES (b), wherein the scales in (a) and (b) are not the same,

Fig. 8 shows a box plot of the optimization results for the 30-dimensional Rosenbrock function for the proposed
algorithm (a) and for Plain ES (b),

Fig. 9 shows a box plot of the optimization results for the 30-dimensional Sphere function for the proposed algorithm
(a) and for Plain ES (b), wherein the scales in (a) and (b) are not the same,

Fig. 10 shows the results for the 30-dimensional Ackley function with a single network,

Fig. 11 shows the results for the 30-dimensional Rosenbrock function with a single network,

Fig. 12 shows the results for the 30-dimensional SPH function with a single network.

DETAILED DESCRIPTION OF THE UNDERLYING INVENTION

[0030] When approximate models are involved in evolution, it is necessary to determine which individuals should be
re-evaluated using the original fitness function to guarantee a proper convergence of the evolutionary algorithm.
[0031] According to a first embodiment of the invention, the k-means method is applied to group the individuals of
a population into a number of clusters. For each cluster, e.g. only the individual that is closest to the cluster center is
evaluated using the expensive original fitness function. The fitness of the other individuals is estimated using a neural
network ensemble, which is also used to detect possible serious prediction errors. Simulation results from three test
functions show that the proposed invention exhibits better performance than the strategy where only the best individuals
according to the approximate model are re-evaluated.

Population clustering using the k-means algorithm

[0032] A variety of clustering techniques have been proposed for grouping similar patterns (data items) [4]. All of
these clustering techniques can be used in conjunction with the present invention. Generally, they can be divided into:

- hierarchical clustering algorithms, and
- partitional clustering algorithms.

[0033] A hierarchical algorithm yields a tree structure representing a nested grouping of patterns, whereas a parti-
tional clustering algorithm generates a single partition of the patterns.
[0034] Among the partitional clustering methods, the k-means is the simplest and the most commonly used clustering
algorithm. It employs the squared error criterion and its computational complexity is O(n), where n is the number of
patterns.
[0035] Fig. 1 shows an algorithm for population clustering which is known as such. A typical stopping criterion is that
the decrease in the squared error is minimized.
[0036] A major problem of the k-means clustering algorithm is that it may converge to a local minimum if the initial
partition is not properly chosen. Besides, the number of clusters needs to be specified beforehand, which is a general
problem for partitional clustering algorithms [4].
[0037] To assess the validity of a given cluster, the silhouette method [16] can be used. For a given cluster, Xj, j=l,...,
k , the silhouette technique assigns the i-th member (xij, i=1,...,nj) of cluster Xj a quality measure (silhouette width):

sij =
bi - ai

max{ai, bi}
----------------------------- (Eq. 1)
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where ai is the average distance between xij and all other members in Xj and bi denotes the minimum of ai, i=1,2,...,
nj, where nj is the number of patterns in cluster Xj and naturally, n1+...+nk equals n if each pattern belongs to one and
only one cluster, n is the number of patterns to be clustered.
[0038] It can be seen that sij has a value between -1 and 1. If sij equals 1, it means that sij is in the proper cluster. If
sij is 0, it indicates that xij may also be grouped in the nearest neighboring cluster and if xij is -1, it suggests that xij is
very likely in the wrong cluster. Thus, a global silhouette width can be obtained by summing up the silhouette width of
all patterns:

[0039] Consequently, this value can be used to determine the proper number of clusters.

Construction of neural network ensembles using an evolutionary algorithm

[0040] After the population is grouped into a number of clusters, only the individual that is closest to each cluster
center is evaluated using the original fitness function. Note that also a plurality of individuals being more or less in the
center of a cluster can be selected.
[0041] In [9], the fitness value of all other individuals are estimated based on their Euclidean distance to the cluster
center. Obviously, this simplified estimation ignores the local feature of the fitness landscape which can be extracted
from the evaluated cluster centers.
[0042] In [6, 7], a standard neural network has been constructed using the data generated during optimization. The
neural network model is trained off-line and further updated when new data are available. One problem that may occur
is that as the number of samples increases, the learning efficiency may decrease. To improve the learning efficiency,
weighted learning [7] and off-line structure optimization of the neural networks have been shown to be promising.
[0043] According to the invention, the approximation quality can be further improved in two aspects:

- First, structure optimization of the neural network is carried out on-line and only the data generated in the most
recent two generations are used (S21). This makes it possible to have an approximate model that reflects the local
feature of the landscape.

- Second, an ensemble instead of a single neural network is used to improve the generalization property of the
neural networks (S22).

[0044] The benefit of using a neural network ensemble originates from the diversity of the behavior of the ensemble
members on unseen data. Generally, diverse behavior on unseen data can be obtained via the following approaches:

- Using various initial random weights.
- Varying the network architecture.
- Employing different training algorithms.
- Supplying different training data by manipulating the given training data.
- Generating data from different sources.
- Encouraging diversity [12], decorrelation [15] or negative correlation [10, 11] between the ensemble members.

[0045] In the present invention, a Genetic Algorithm (GA) can be used to generate the neural network ensemble
(S22), which can provide two sources of diversity: both the architecture and the final weights of the neural networks
are different. Since the goal of the neural networks is to learn the local fitness landscape, the optimization method of
the invention only uses the data generated in the two most recent generations instead of using all data.
[0046] Assuming that the λ individuals in the population are grouped into ξ clusters, thus ξ new data will be generated
in each generation. Accordingly, the fitness function for evolutionary neural network generation can be expressed as
follows:



EP 1 557 788 A2

5

10

15

20

25

30

35

40

45

50

55

6

where 0.5≤α≤1 is a coefficient giving more importance to the newest data, yi
d(t), i=1,..., ξ are the data generated in the

current generation and yi
d(t - 1), i=1,..., ξ are those generated in the last generation and yi is the network output for

the i-th data set.
[0047] Given N neural networks, the final output of the ensemble can be obtained by averaging the weighted outputs
of the ensemble members:

where y(k) and w(k) are the output and its weight of the k-th neural network in the ensemble. In this case, the expected
error of the ensemble is given by:

where Cij is the error correlation matrix between network i and network j in the ensemble (S23):

where E(.) denotes the mathematical expectation.
[0048] It has been shown [13] that there exists an optimal set of weights that minimizes the expected prediction error
of the ensemble:

where 1≤i,j,k≤N.
[0049] However, a reliable estimation of the error correlation matrix is not straightforward because the prediction
errors of different networks in an ensemble are often strongly correlated.
[0050] A few methods have been proposed to solve this problem [5, 18, 19]. Genetic programming is applied to the
search for an optimal ensemble size in [19] whereas the recursive least-square method is adopted to optimize the
weights in [18]. In [18], a Genetic Algorithm (GA) is also used to search for an optimal subset of the neural networks
in the final population as ensemble members.
[0051] A canonical Evolution Strategy (ES) can be employed to find the optimal weights (S24) to minimize the ex-
pected error in Eq. 5.
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[0052] The algorithm for constructing the neural network ensemble and the entire evolutionary optimization algorithm
are sketched in Fig. 2 and Fig. 3, respectively.

Experimental Setup

[0053] In the simulations, optimization runs are carried out on three well known test functions, the Ackley function,
the Rosenbrock function and the Sphere function.
[0054] The dimension of the test functions are set to 30. A standard (5, 30) Evolution Strategy (ES) is used in all
simulations.
[0055] To implement the evolutionary optimization with approximate fitness models, a few important parameters have
to be determined, such as the number of clusters and the number of neural networks in the ensemble.
[0056] The first issue is the number of clusters. This number is relevant to performance of the clustering algorithm,
the quality of the approximate model, and eventually the convergence property of the evolutionary algorithm.
[0057] A few preliminary optimization runs are carried out with only a single neural network being used for fitness
approximation on the 30-dimensional Ackley function. It is found that with the clustering algorithm, the evolutionary
algorithm is able to converge correctly when about one third of the population is re-evaluated using the original fitness
function. When the number of the re-evaluated individuals is much fewer than one third of the population, the perform-
ance of the evolutionary algorithm becomes unpredictable, that is, the evolutionary algorithm may converge to a false
minimum.
[0058] The clustering performance is then evaluated when the number of clusters is set to be one third of the pop-
ulation. Fig. 4 shows the global silhouette width when the cluster number is 10 and the population size is 30 on the
30-dimensional Ackley function. It can be seen that the clustering performance is acceptable.
[0059] Next, simulations are conducted to investigate the ensemble size. So far, the ensemble size has been deter-
mined heuristically in most applications. In [19], the optimal size turns out to be between 5 and 7. Considering the fact
that a large ensemble size will increase computational cost, two cases are compared, where the ensemble size is 3
and 5 on 200 samples collected in the first 20 generations of an optimization run on the 30-dimensional Ackley function.
[0060] The ensemble output versus that of a single network is plotted in Fig. 5, where in Fig. 5(a) the ensemble size
is 3 and in Fig. 5(b) the ensemble size is 5. Note that the more points locate in the right lower part of the figure the
more effective the ensemble. It can be seen from the figure that no significant performance improvement has been
achieved when the ensemble size is changed from 3 to 5. Thus, the ensemble size is fixed to 3.
[0061] It seems that the use of an ensemble has not improved the prediction accuracy significantly. Thus, the moti-
vation to employ an ensemble becomes questionable. The following paragraph shows that an ensemble is important
not only in that it is able to improve prediction.
[0062] The equally important reason for introducing the ensemble in the optimization according to the invention is
to estimate the prediction accuracy based on the different behaviors of the ensemble members, i.e., the variance of
the members in the ensemble. To demonstrate this, Fig. 6(a) shows the relationship between the standard deviation
of the predictions of the ensemble members and the estimation error of the ensemble. These data are also collected
in the first 20 generations of an evolutionary run of the Ackley function. Additional function evaluations are carried out
to get the prediction error. Of course, they are neither used in neural network training nor in optimization. It can be
seen that a large standard deviation most probably indicates a large prediction error, although a small standard deviation
does not guarantee a small prediction error. Encouraged by this close correlation between a large deviation and a large
prediction error, a try to predict the model error is made. When the standard deviation is larger than a threshold (1 in
this example), the model prediction is replaced by the fitness of the individual closest to the cluster center, which is a
very rough but feasible approximation.
[0063] Finally, a standard Evolution Strategy (ES) with a population size of (3,15) is used to optimize the weights of
the ensemble members. The predictions of the Generalized Ensemble Method (GEM), where the weights are optimized,
and that of a Basic Ensemble Method (BEM) are shown in Fig. 6(b). It can be seen that the prediction accuracy has
been improved using the GEM.

Optimization Results

[0064] The evolutionary optimization method of the invention is applied to the optimization of three functions: Ackley
function, the Rosenbrock function and the Sphere function. The maximal number of fitness evaluations is set to 2000
in all simulations.
[0065] Fig. 7, 8 and 9 show the box plots of the ten runs on the three test functions. For clarity, only 20 data points
are shown in the figures, which are uniformly sampled from the original data. From these figures, it can clearly be seen
that on average, the optimization results using the proposed algorithm are much better than those from the plain ev-
olution strategy on all test functions. Meanwhile, they are also much better than the results reported in [6], where no
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clustering of the population has been implemented. As mentioned, without clustering, the evolutionary algorithm does
not converge correctly if only one third of the population is re-evaluated using the original fitness function. Nevertheless,
it can noticed that for the Ackley function, the result from one of the 10 runs using the proposed method is much worse
than the average performance, even a little worse than the average result when the plain ES is used, refer to Fig. 7(a).
[0066] Fig. 10, 11 and 12 depict the box plots of results using only a single neural network (where no remedy of large
prediction errors is included) on the three test functions in order to show the benefit of using the neural network en-
semble. Similarly, only 20 data points are presented for the clarity of the figures. Compared with the results shown in
Fig. 7, 8 and 9, they are much worse. In the Rosenbrock function, some runs even have diverged, mainly due to the
bad performance of the model prediction.

SUMMARY OF THE ADVANTAGES OF THE PRESENT INVENTION

[0067] A new method for reducing fitness evaluations in evolutionary computation is proposed. In each generation,
the population is clustered into a number of groups and only the individuals closest to each cluster center is evaluated.
Then a neural network ensemble is constructed using the data from the evaluated individuals. To further improve the
prediction quality, the weights of the ensemble are optimized using a standard ES.
[0068] The invention further exploit information contained in the ensemble by taking advantage of the standard de-
viation of the output of the ensemble members. When the ensemble members disagree significantly, the prediction
error is very likely to be large and thus the ensemble prediction is replaced by the fitness value of the cluster center of
the individual. Simulation results on the test functions suggest that the proposed algorithm is very promising.
[0069] Currently, the number of individuals to be controlled is fixed. As suggested in [7], an adaptation of the control
frequency could provide more performance improvement. One possibility is to determine the number of individuals to
optimize the performance of the clustering algorithm using the global silhouette width.
[0070] Aspects of the invention are:

- The k-means clustering is used for selecting individuals for re-evaluation in the context of the individual-based
evolution control.

- An ensemble, instead of a single model is used to improve the prediction quality. Besides, an ES is used to optimize
the weights of the ensemble on-line based on an estimated prediction error.

- One of the main contributions of the invention is that the variance of the ensemble members is exploited to detect
large prediction errors. Once such an error is detected, the prediction of the meta-model is discarded and the
fitness of the concerned individual is replaced by that of the individual closest to the cluster center.

[0071] The following table summarizes the abbreviations used in the present description:

[0072] The following table summarizes the background art referenced in the present description:

BEM Basic Ensemble Method

CFD Computational Fluid Dynamics

ES Evolution Strategy

GA Genetic Algorithm

GEM Generalized Ensemble Method

SPH Sphere test function

[1] J. Branke and C. Schmidt. Fast convergence by means of fitness estimation. Soft Computing, 2003.

[2] M.A. El-Beltagy, P.B. Nair, and A.J. Keane. Metamodeling techniques for evolutionary optimization of
computationally expensive problems: promises and limitations. In Proceedings of Genetic and Evolutionary
Conference, pages 196-203, Orlando, 1999. Morgan Kaufmann.

[3] M. Emmerich, A. Giotis, M. Ozdenir, T. Bäck, and K. Giannakoglou. Metamodel assisted evolution strategies.
In Parallel Problem Solving from Nature, number 2439 in Lecture Notes in Computer Science, pages
371-380. Springer, 2002.
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Claims

1. An evolutionary optimization method, comprising the following steps:

- setting up an initial population of individuals and applying an original fitness function (S31),
- selecting the offspring individuals having a high evaluated quality value as parents (S32a),
- reproducing the parents to create a plurality of offspring individuals (S32b),
- evaluating the quality of the offspring individuals by means of a fitness function, wherein selectively the original

or an approximate fitness function is used (S32c), and
- going back to the selection step (S32a) until a termination condition is met (S33),

(continued)

[4] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264-323,
September 1999.

[5] D. Jimenez. Dynamically weighted ensemble neural networks for classification. In Proceedings of
International Joint Conference on Neural Networks, pages 753-756, Anchorage, 1998. IEEE Press.

[6] Y. Jin, M. Olhofer, and B. Sendhoff. On evolutionary optimization with approximate fitness functions. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages 786-792. Morgan Kaufmann,
2000.

[7] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization with approximate fitness
functions. IEEE Transactions on Evolutionary Computation, 6(5):481-494, 2002.

[8] Y. Jin and B. Sendhoff. Fitness approximation in evolutionary computation - A survey. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 1105-1112, 2002.

[9] H.-S. Kim and S.-B. Cho. An efficient genetic algorithms with less fitness evaluation by clustering. In
Proceedings of IEEE Congress on Evolutionary Computation, pages 887-894. IEEE, 2001.

[10] Y. Liu and X. Yao. Negatively correlated neural networks can produce best ensemble. Australian Journal of
Intelligent Information Processing System, 4 (3-4) :176-185, 1997.

[11] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transactions
on Evolutionary Computation, 4(4):380-387, 2000.

[12] D.W. Opitz and J. W. Shavlik. Generating accurate and diverse members of a neural network ensemble. In
Advances in Neural Information Processing Systems, volume 8, pages 535-541, Cambridge, MA, 1996. MIT
Press.

[13] M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble methods for hybrid neural networks. In
R. J. Mammone, editor, Artificial Neural Networks for Speech and Vision, pages 126-142. Chapman & Hall,
London, 1993.

[14] A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In A.
Eiben, Th. Back, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, volume
V, pages 87-96, 1998.

[15] B. E. Rosen. Ensemble learning using decorrelated neural networks. Connection Science, 8(3-4):373-384,
1996.

[16] P.J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53-65, 1987.

[17] H. Ulmer, F. Streicher, and A. Zell. Model-assisted steady-state evolution strategies. In Proceedings of
Genetic and Evolutionary Computation Conference, LNCS 2723, pages 610-621, 2003.

[18] X. Yao and Y. Liu. Making use of population information in evolutionary artificial neural networks. IEEE
Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 28(3):417-425, 1998.

[19] B.-T. Zhang and J.G. Joung. Building optimal committee of genetic programs. In Parallel Problem Solving
from Nature, volume VI, pages 231-240. Springer, 2000.



EP 1 557 788 A2

5

10

15

20

25

30

35

40

45

50

55

10

wherein the evaluation step (S32c) consists in:

- grouping all λ offspring individuals in clusters (S32d),
- selecting for each cluster one or a plurality of offspring individuals, resulting in altogether ξ selected offspring

individuals (S32e),
- evaluating the ξ selected offspring individuals by means of the original fitness function (S32f), and
- evaluating the remaining λ-ξ offspring individuals by means of the approximate fitness function (S32h).

2. A method according to claim 1,
wherein
the approximate fitness function is a neural network ensemble comprising a plurality of neural network (S32h).

3. A method according to anyone of the preceding claims,
wherein
the offspring individuals chosen for evaluation with the original fitness function are the one closest to the cluster
center (S32e).

4. A method according to anyone of the preceding claims,
wherein
a k-means method is used to group all offspring into clusters (S32d).

5. A method according to any claims 2 to 4,
wherein
the output of each neural network in the ensemble is weighted (S24) and combined (S32g) to the final output of
the neural network ensemble.

6. A method according to any claims 2 to 5,
wherein
a Genetic Algorithm (GA) with a local search is used to generate the neural network ensemble (S22).

7. A method according to any claims 2 to 6,
wherein
an evolution strategy is used to optimize the weights of the ensemble by minimizing an expected prediction error
(S24).

8. A method according to any claims 2 to 7,
wherein
the variance of the neural network's output in the ensemble is derived and if the variance is larger than a given
threshold, the corresponding fitness value of the individual concerned is replaced by the value of the individual
closest to the cluster center, which has been evaluated using the original fitness function

9. A computer software program product,
implementing a method according to any of the preceding claims when running on a computing device.

10. Use of a method according to any claims 1 to 8, for the optimization of hydrodynamic or aerodynamic designs.

11. Use of a method according to any claims 1 to 8, for the optimization of turbine rotor and stator blades and outlet
guide vanes.

12. Use of a method according to any claims 1 to 8, for the optimization of aerodynamic properties of vehicles.
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