BACKGROUND OF THE INVENTION
[0001] The present invention relates to an automatic machine for photoengraving or photoetching
screen printing plates for screen printing high quality CD's.
[0002] Prior screen printing plate or frame photoengraving machines have a comparatively
large size and, moreover, they require a continuous presence of an operator for setting
the screen printing operations or procedures.
[0003] Another drawback of prior screen printing plate or frame photoengraving machines
is that said machines are not reliable in operation, since they include a comparatively
large number of movable parts which are subjected to wear phenomena, requiring the
machine to be frequently stopped.
SUMMARY OF THE INVENTION
[0004] Accordingly, the aim of the present invention is to overcome the above mentioned
drawbacks, by providing an automatic machine for photoengraving or photoetching screen
printing plates or frames for printing high quality CD's, which is adapted to operate
according to a continuous cycle, through the 24 hours of a day, without requiring
any operators and with an exposure time within a minute.
[0005] Within the scope of the above mentioned aim, a main object of the present invention
is to provide such an automatic machine allowing to provide high definition and resolution
engraved or etched images, and this in an apparatus including a very small number
of movable elements.
[0006] Another object of the present invention is to provide such an automatic machine which,
owing to its specifically designed features, is very reliable and safe in operation.
[0007] Yet another object of the present invention is to provide such an automatic machine
which can be easily made starting from easily available elements and materials and
which, moreover, is very competitive from a mere economic standpoint.
[0008] According to one aspect of the present invention, the above mentioned aim and objects,
as well as yet other objects, which will become more apparent hereinafter, are achieved
by an automatic machine for photoengraving screen printing plates for screen printing
high quality CD's, characterized in that said automatic machine comprises a central
control unit, operatively coupled to a photoengraving station including a printing
frame conveyor, to convey printing frames under a photoengraving assembly for photoengraving
said printing frames, said photoengraving assembly being adapted to scan, by a polygonal
mirror and a flat-field lens, a laser light beam.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Further characteristics and advantages of the present invention will become more
apparent hereinafter from the following detailed disclosure of a preferred, thought
not exclusive, embodiment of an automatic machine for photoengraving screen printing
plates or frames for screen-printing high quality CD's, which is illustrated, by way
of an indicative but not limitative example, in the accompanying drawings, where:
Figure 1 is a schematic view illustrating the automatic machine according to the present
invention;
Figure 2 schematically illustrates the operation principle of the photoengraving or
photoetching assembly included in the automatic machine according to the present invention;
Figure 3 is a front view illustrating the photoengraving or photoetching assembly;
Figure 4 is a partially cross-sectioned side elevation view illustrating the photoengraving
assembly;
Figure 5 is a front elevation view illustrating the automatic machine with a screw
conveyor;
Figure 6 is a top plan view illustrating the subject automatic machine;
Figure 7 is a side elevation view illustrating the subject automatic machine;
Figure 8 is a further front elevation view illustrating the automatic machine according
to the present invention including a belt conveyor;
Figure 9 is a top plan view illustrating the automatic machine shown in figure 8,
and
Figure 10 is a further side elevation view illustrating the automatic machine shown
in figure 8.
DESCRIPTION OF THE PREFERRED EMBODIMENT
[0010] With reference to the number references of the above mentioned figures, the automatic
machine for photoengraving or photoetching screen printing plates or frames for screen
printing high quality CD's, according to the present invention, comprises a central
control unit including, for example, a computer, indicated by 1, which is operatively
coupled to a photoengraving station, generally indicated by the reference number 2.
[0011] The photoengraving or photoetching station 2 comprises a photoengraving assembly,
generally indicated by the reference number 3, which will be disclosed in a more detailed
manner hereinafter, and which is arranged near a magazine 4 for feeding and properly
arranging screen printing plates or frames 10, a further photoengraved or photoetched
screen printing frame or plate unloading magazine 5 being moreover provided.
[0012] Said magazines 4 and 5 provide, in actual practice, loading and unloading units for
respectively loading and unloading the screen printing plates or frames, allowing
to remove frames from a vertical magazine, locate the removed frames under the photoengraving
assembly and then transfer the photoengraved frames to the unloading magazine, thereby
allowing the machine to operate without any operators.
[0013] The subject photoengraving machine or system can be easily started and operated,
since it does not require setting operations; actually, it operates as a desk printing
unit, and the photoengraving operation can be started by a simple "click" of a mouse.
[0014] Thus, the subject photoengraving assembly provides all the advantages of the digital
technology.
[0015] This will allow to store the screen printing files in an electronic type of pattern,
to allow a great reduction of the cost and time necessary for making the screen printing
plate or frames.
[0016] Moreover, the screen printing frames or plates can be produced in a flexible manner,
since it is possible to easily set a photoengraving procedure for different images
for each printing frame.
[0017] As is clearly shown in figure 2, the central control unit 1 is operatively coupled
to a synchronizer 11, driving an encoder 12 controlling a polygonal mirror, which
will be disclosed hereinafter, and an encoder 13 related to the screen printing frame
or plate position.
[0018] More specifically, said synchronizer 11 is coupled to a modulator 14 controlling
a power supply source 15 for a laser 16 adapted to emit a light beam to be sent on
the screen printing frame.
[0019] To that end, as is shown in figure 3, the beam provided by the laser 16 will impinge
on a flat fixed mirror 17, in turn sending the beam to a rotary mirror 20, controlled
by said encoder 12, so as to synchronize the displacement thereof with that of the
frame 10 on the working plane of the photoengraving assembly.
[0020] The laser beam, sent by the rotary mirror to a flat field lens, generally indicated
by the reference number 30, will pass through a first flat-concave lens, indicated
by the reference number 31, a second concave-convex lens, indicated by the reference
number 32 and a third flat-convex lens, indicated by the reference number 33.
[0021] The above optical assembly will operate to emit a modulated beam, adapted to provide
a very high image definition accuracy.
[0022] In this connection it should be pointed out that the movement of the rotary mirror
20 is synchronized or timed with the movement of the screen printing frame 10 conveyor,
in turn controlled by the mentioned encoder 13.
[0023] The screen printing frames or plates can be driven, as shown in figures 5 to 7, by
a screw system, provided for alternatively displacing or driving centering pegs 41.
[0024] The latter will convey or entrain the screen printing frame from their loading station
under the photoengraving assembly and then to the unloading magazine.
[0025] Then, said centering pegs will return to their starting position, for taking up a
further screen printing frame.
[0026] Optionally, the screen printing frame, as shown in figures 8 to 10, can comprise
a belt conveyor, generally indicated by the reference number 50, which is rotatively
driven by an operating assembly, indicated by the reference number 51, designed for
conveying the printing frame in a synchronized or timed manner.
[0027] On the screen printing frame, a screen printing plate including a photosensitive
film is provided, said screen printing plate being affected by a laser light source,
having a wavelength of 405 nm.
[0028] In particular, the laser light is emitted, as stated, by the laser source and passes
through the above disclosed optic chain, and, as driven by the polygonal mirror, will
impinge on the frame photosensitive film.
[0029] More specifically, the polygonal mirror will direct the point-like light beam to
the photosensitive film, thereby causing the photosensitive film layer to cure at
set points, since the flat field lens will linearize the light beam, thereby preventing
any beam distortion and aberration phenomena from occurring.
[0030] In particular, the photosensitive film portion not affected by the light beam can
be solubilized, by using water or any other suitable solutions.
[0031] From the above disclosure, it should be apparent that the invention fully achieves
the intended aim and objects.
[0032] In fact, the invention provides a fully automatic machine allowing to photoengrave,
in a continuous operation cycle, screen printing plates for screen printing high quality
CD's, which machine can be easily controlled, owing to the provision of the disclosed
central control unit.
[0033] Said central control unit, in particular, will control the laser beam, by modulating
it depending on the signals coming from the above disclosed encoders controlling both
the conveyor and the rotary polygonal mirror, which is designed for displacing the
light beam.
[0034] The invention, as disclosed, is susceptible to several modifications and variations,
all of which will come within the inventive idea.
[0035] Moreover, all the constructional details can be replaced by other technically equivalent
elements.
[0036] In practicing the invention, the used materials, as well as the contingent size and
shapes can be any, depending on requirements.
1. An automatic machine for photoengraving screen printing plates for screen printing
high quality CD's, characterized in that said automatic machine comprises a central control unit operatively coupled to a
photoengraving station including a screen printing frame conveyor for conveying screen
printing frames under a screen printing photoengraving assembly adapted to scan a
laser beam by a polygonal mirror and a flat-field lens.
2. An automatic machine, according to the preceding claim, characterized in that said automatic machine comprises moreover a screen printing frame loading station
arranged upstream a photoengraving station and a screen printing unloading station
arranged downstream of said photoengraving station.
3. An automatic machine, according to claim 1, characterized in that said polygonal mirror is a rotary polygonal mirror.
4. An automatic machine, according to claim 1, characterized in that said central control unit is operatively coupled to a synchronizer and a modulator,
driven by said synchronizer, which is operatively coupled to a control encoder for
controlling said polygonal mirror and a further control encoder for controlling a
position of said screen printing frame on said conveyor.
5. An automatic machine, according to claim 4, characterized in that said modulator drives a laser supply source, said laser being designed for emitting
a laser beam deflected by a fixed mirror to said polygonal mirror, the beam of said
polygonal mirror being sent to said flat field lens.
6. An automatic machine, according to claim 1, characterized in that said conveyor comprises a longitudinal extending conveyor screw, including removable
coupling means for removably coupling said screening frames and being controlled by
a screening frame position controlling encoder.
7. An automatic machine, according to claim 1, characterized in that said screen printing frame conveyor comprises an endless conveyor belt driven by
a driving assembly in turn controlled by said screen printing frame position controlling
encoder.
8. An automatic machine, according to claim 5, characterized in that said flat field lens comprises a first flat-concave lens, a second concave-convex
lens and a third flat-convex lens.