BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to air conditioners, and more particularly, to an air
conditioner of an improved air conditioning capability.
Background of the Related Art
[0002] In general, the air conditioner cools or heats a room space, such as a residential
space, a restaurant, a library, or an office, is provided with a compressor, and a
heat exchanger to circulate refrigerant for cooling/heating the room space.
[0003] The air conditioner is developed to a multi-type air conditioner which can cool and
heat at the same time enabling to cool or heat all rooms in the same operation mode,
for maintaining a more comfortable room environment without being influenced from
external weather or environment.
[0004] Such a related art multi-type air conditioner has a plurality of indoor units each
installed in each room and connected to one outdoor unit, for cooling or heating all
rooms in a cooling or heating mode.
[0005] However, in a case the related art multi-type air conditioner is applied to one,
such as a high building having a complicate structure, and varieties of positions
and purposes of rooms therein, pipelines from the outdoor unit to the indoor units
become lengthy, to cause a pressure drop of the refrigerant introduced into the indoor
unit, and drop of an air conditioning efficiency of the multi-type air conditioner.
[0006] In
EP 0 496 505 A2 an air-conditioning system is disclosed having a single heat source unit comprising
a compressor and a heat source unit side heat exchanger and an accumulator. The heat
source unit is connected to a plurality of indoor units. Each indoor unit , which
shows the features of the preamble of claim 1, comprises an individual heat exchanger.
Additional heat exchanging portions are provided at a junction portion between a vapor-liquid
separator and the indoor units.
SUMMARY OF THE INVENTION
[0007] Accordingly, the present invention is directed to an air conditioner that substantially
obviates one or more of the problems due to limitations and disadvantages of the related
art.
[0008] An object of the present invention is to provide an air conditioner having an improved
air conditioning capability.
[0009] Other object of the present invention is to provide an air conditioner which can
minimize a pressure loss of refrigerant flowing in a refrigerant pipe caused by lengthy
refrigerant pipeline for guiding the refrigerant, and secure a subcooling state of
refrigerant introduced into an expansion device.
[0010] One or more of the above mentioned objects is solved with an air conditioner with
the features of claim 1. Advantageous embodiments are given in the subclaims.
[0011] Additional features and advantages of the invention will be set forth in the description
which follows, and in part will be apparent to those having ordinary skill in the
art upon examination of the following or may be learned from practice of the invention.
The objectives and other advantages of the invention will be realized and attained
by the structure particularly pointed out in the written description and claims hereof
as well as the appended drawings.To achieve these objects and other advantages and
in accordance with the purpose of the present invention, as embodied and broadly described
herein, the air conditioner includes an outdoor unit installed in outdoor having a
compressor, an outdoor heat exchanger, an indoor unit installed in indoor having an
indoor heat exchanger, a distributor for guiding refrigerant from the outdoor unit
to the indoor unit proper to an operation condition, and refrigerant passed through
the indoor unit to the outdoor unit, again, and a subcooling device for subcooling
the refrigerant passed through a heat exchange process at the outdoor heat exchanger
under an isobaric condition, and guiding the subcooled refrigerant to the distributor,
wherein the subcooling device , wherein the subcooling device is provided to a predetermined
position inside of the outdoor unit.
[0012] The subcooling device makes a portion of the refrigerant passed through the heat
exchange process at the outdoor heat exchanger to expand, and the expanded portion
of the refrigerant to heat exchange with rest unexpanded refrigerant.
[0013] The subcooling device includes first connection pipeline having an expansion device
for expanding a portion of the refrigerant passed through a heat exchange process
at the outdoor heat exchanger, for guiding expanded refrigerant to the subcooling
heat exchanger, a second connection pipeline for guiding unexpanded refrigerant to
the subcooling heat exchanger, a third connection pipeline for guiding unexpanded
refrigerant passed through the subcooling heat exchanger to the distributor, and a
fourth connection pipeline for guiding the expanded refrigerant passed through the
subcooling heat exchanger to the refrigerant pipeline connected to a suction end of
the compressor.
[0014] The subcooling heat exchanger includes a first flow pipeline having one end connected
to the second connection pipeline, and the other end connected to the third connection
pipeline for flow of unexpanded refrigerant, and a second flow pipeline having one
end connected to the first connection pipeline, and the other end connected to the
fourth connection pipeline for making heat exchange with the first flow pipeline,
and flow of the expanded refrigerant.
[0015] The subcooling heat exchanger has a double pipe structure. The second flow pipeline
is provided in an inside of the first flow pipeline in a longitudinal direction.
[0016] The refrigerant flowing through the second flow pipeline has a flow direction opposite
to a flow direction of the refrigerant flowing through the first flow pipeline, or
a flow direction the same with a flow direction of the refrigerant flowing through
the first flow pipeline.
[0017] The first flow pipeline is provided inside of the second flow pipeline in a longitudinal
direction.
[0018] The subcooling heat exchanger has a length of 1 m ~ 2.5m.
[0019] The subcooling heat exchanger further includes a heat exchange part on an inside
wall for making a heat exchange area larger.
[0020] The heat exchange part is projected inward from an inside wall of the inner flow
pipe. In more detail, the heat exchange part is provided on an inside wall of the
inner flow pipe in a circumferential direction.
[0021] The heat exchange part is provided on an inside wall of the inner flow pipe in a
longitudinal direction, or in a helix.
[0022] The expansion device is an electronic expansion valve.
[0023] The air conditioner further includes an accumulator on a refrigerant pipeline connected
to the suction end of the compressor for separating gaseous refrigerant from liquid
refrigerant.
[0024] The fourth connection pipeline is connected to a refrigerant pipeline connected to
a refrigerant inlet to the accumulator.
[0025] The subcooling device is provided to a predetermined position of an inside of the
outdoor unit.
[0026] The outdoor unit further includes a switching device for switching a flow direction
of the refrigerant from the compressor to the outdoor heat exchanger or the distributor
selectively proper to an operation condition.
[0027] The present invention provides a multi-type air conditioner which enables some of
rooms operative in a cooling mode, while other rooms are operative in a heating mode
according to room environments, improves degrees of freedom of installation of the
multi-type air conditioner, and maintains a subcooling state of the refrigerant.
[0028] It is to be understood that both the foregoing description and the following detailed
description of the present invention are exemplary and explanatory and are intended
to provide further explanation of the invention claimed.
BRIEF DESCRITPION OF THE DRAWINGS
[0029] The accompanying drawings, which are included to provide a further understanding
of the invention and are incorporated in and constitute a part of this application,
illustrate embodiment(s) of the invention and together with the description serve
to explain the principle of the invention.
[0030] In the drawings;
FIG. 1 illustrates a system diagram of an air conditioner in accordance with one preferred
embodiment of the present invention;
FIG. 2 illustrates a system diagram of an air conditioner in accordance with another
preferred embodiment of the present invention;
FIG 3 illustrates a system diagram of one preferred embodiment of a subcooling device
provided to the air conditioner in FIG. 1 or 2;
FIG. 4 illustrates a perspective view of one preferred embodiment of a subcooling
heat exchanger in the subcooling device in FIG. 3;
FIG 5 illustrates a perspective view of another preferred embodiment of a subcooling
heat exchanger in the subcooling device in FIG. 3; and
FIG 6 illustrates a P-h diagram of a refrigerating cycle of a multi-type air conditioner
of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0031] Reference will now be made in detail to the preferred embodiments of the present
invention, examples of which are illustrated in the accompanying drawings. In describing
the embodiments, identical parts will be given the same names and reference symbols,
and repetitive description of which will be omitted.
[0032] For better understanding of the present invention, functions of the air conditioner
will be described. The air conditioner controls temperature, humidity, motion, and
cleanliness of air so as to be suitable to a purpose of use for a particular area,
for an example, room spaces, such as residential space, office, restaurant, and the
like.
[0033] In a cooling operation, the air conditioner cools a room by compressing low pressure
refrigerant having absorbed heat from the room and discharging the heat to an outdoor
air, and, in a heating operation, heats the room by an opposite operation of the above
process.
[0034] FIG. 1 illustrates a system diagram of an air conditioner in accordance with one
preferred embodiment of the present invention, of a concurrent heating/cooling multi-type
air conditioner that cools /heats rooms at the same time.
[0035] Referring to FIG 1, the concurrent heating/cooling multi-type air conditioner includes
an outdoor unit 10, a distributor 20, and a plurality of indoor units 30a, 30b, and
30c in each of rooms.
[0036] The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, an outdoor
fan 13 on one side of the outdoor heat exchanger, a switching device 15 for switching
a compressed refrigerant flow from the compressor 11 to the outdoor heat exchanger
or the distributor selectively proper to operation modes, and accumulator 14 on a
refrigerant pipeline connected to a suction end of the compressor for separating vapor
phase refrigerant from liquid phase refrigerant.
[0037] The outer unit 10 is connected to the distributor 20 by the switching device through
a first pipeline 21 for guiding high pressure refrigerant from the compressor 11 to
the distributor through the outdoor heat exchanger 12, a second refrigerant pipeline
22 for guiding the refrigerant from the compressor 11 to the distributor 20 directly,
and a third refrigerant pipeline 23 connected between the distributor 20 and the suction
end of the compressor 11.
[0038] Each of the indoor units 30a, 30b, and 30c includes an indoor heat exchanger 31a,
31b, or 31c, and an expansion device 32a, 32b, or 32c for expanding refrigerant introduced
into the indoor heat exchanger to a preset state in a cooling mode.
[0039] The distributor 20 is designed such that the refrigerant is guided from the outdoor
unit 10 to the expansion device 32a, 32b, or 32c of the indoor unit directly if the
indoor unit is operated in the cooling mode, and the refrigerant is guided from the
outdoor unit 10 to the indoor heat exchanger 31a, 31 b, or 31c of the indoor unit
directly if the indoor unit is operated in the heating mode.
[0040] For this, the distributor 20 includes first refrigerant branch pipelines 21a, 21b,
and 21c branched from the first refrigerant pipeline 21 as many as a number of the
indoor units, and connected to the indoor unit expansion devices 32a, 32b, and 32c
respectively, second refrigerant branch pipelines 22a, 22b, and 22c branched from
the second refrigerant pipeline and connected to the indoor heat exchangers 31a, 31b,
and 31c respectively, and third refrigerant branch pipelines 23a, 23b, and 23c branched
from the third refrigerant pipeline 23, and connected to the indoor heat exchangers
31 a, 31b, and 31c, respectively. The second refrigerant branch pipelines 22a, 22b,
and 22c have first electronic shut off valves 26a, 26b, and 26c, respectively, and
the third refrigerant branch pipeline 23a, 23b, and 23c have second electronic shut
off valves 27a, 27b, and 27c, respectively.
[0041] According to above system, in a case the indoor unit is operated in the heating mode,
the first electronic shut off valve on the second refrigerant branch pipeline connected
to the indoor unit is opened, and the second electronic shut off valve on the third
refrigerant branch pipeline connected to the indoor unit is closed, such that the
refrigerant flows from the compressor 11 to the indoor heat exchanger through the
second refrigerant pipeline 22, and the second refrigerant branch pipeline connected
to the indoor unit. In a case of the indoor unit operated in the cooling mode, the
first electronic shut off valve on the second refrigerant branch pipeline connected
to the indoor unit operated in the cooling mode is closed, and the second electronic
shut off valve on the third refrigerant branch pipeline connected to the indoor unit
is opened, such that the refrigerant having introduced through the first refrigerant
branch pipeline connected to the indoor unit, and expanded at the indoor unit expansion
device is introduced into the third refrigerant pipeline 23 through the indoor heat
exchanger of the indoor unit and the third refrigerant branch pipeline connected to
the indoor unit.
[0042] Moreover, the distributor 20 includes a bypass pipe 25 connected between the second
refrigerant pipeline 22, and the third refrigerant pipeline 23, and an electronic
conversion valve 25a on the bypass pipe for converting high pressure refrigerant stagnant
at the second refrigerant pipeline 22 into a low pressure refrigerant, for preventing
liquefaction of the refrigerant due to the stagnation of high pressure refrigerant
in a case all the indoor units are operated in the cooling mode.
[0043] In the meantime, the concurrent heating/cooling multi-type air conditioner further
includes a subcooling device 100 on the first refrigerant pipeline 21 connected between
the outdoor heat exchanger 12 and the distributor 20.
[0044] The subcooling device 100 subcools the refrigerant passed through a heat exchange
process at the outdoor heat exchanger under an isobaric condition, and guides to the
distributor, i.e., expands a portion of the refrigerant from the outdoor heat exchanger
12, makes the expanded refrigerant to heat exchange with rest of the refrigerant discharged
from the outdoor heat exchanger, and flowing toward the distributor 20 following the
first refrigerant pipeline 21, and introduce into the third refrigerant pipeline 23
connected between the distributor 20 and the suction end of the compressor 11. The
subcooling device 100 will be described in detail with reference to FIGS. 3~5, later.
[0045] In addition to above system, it is preferable that the distributor 20 further includes
a supplementary subcooling device 24 of a coaxial tube fitted between the distributor
20 and the first refrigerant pipeline 21. The supplementary subcooling device 24 secures
subcooling of the refrigerant introduced into the indoor heat exchangers 31a, 31b,
and 31c by means of heat exchange between refrigerants.
[0046] As another embodiment of the air conditioner of the present invention, a cooling/heating
selective multi-type air conditioner will be described with reference to FIG 2. FIG.
2 illustrates a system diagram of an air conditioner in accordance with another preferred
embodiment of the present invention.
[0047] The cooling/heating selective multi-type air conditioner includes an outdoor unit
50, a distributor 60, and a plurality of indoor units 70a, 70b, and 70c in each room,
for operating all the indoor units in a cooling mode, or heating mode.
[0048] The outdoor unit 50 includes a compressor 51, an outdoor heat exchanger 52, an outdoor
fan 53 on one side of the outdoor heat exchanger, a switching device 55 for switching
a compressed refrigerant flow from the compressor 51 to the outdoor heat exchanger
or the distributor selectively proper to operation modes, and an accumulator 54 on
a refrigerant pipeline connected to a suction end of the compressor 51 for separating
vapor phase refrigerant from liquid phase refrigerant.
[0049] The outer unit 50 is connected to the distributor 60 by the switching device 55 through
a first pipeline 61 for guiding high pressure refrigerant from the compressor 51 to
the distributor through the outdoor heat exchanger 52, a second refrigerant pipeline
62 having one end connected to a refrigerant pipeline connected to a discharge end
of the compressor 51 for guiding the refrigerant from the compressor 51 to the distributor
60 directly, and a third refrigerant pipeline 63 connected between the distributor
60 and the suction end of the compressor 51.
[0050] Each of the indoor units includes an indoor heat exchanger 71a, 71b, or 71c, and
an expansion device 72a, 72b, or 72c for expanding refrigerant introduced into the
indoor heat exchanger to a preset state in a cooling mode.
[0051] The distributor 60 is designed such that the refrigerant is guided from the first
connection pipeline 61 to the expansion device 72a, 72b, or 72c of the indoor unit
directly if all the indoor units 70a, 70b, and 70c are operated in the cooling mode,
and the refrigerant is guided from the first connection pipeline 62 to the indoor
heat exchanger 71a, 71b, or 71c of the indoor unit directly if all the indoor units
70a, 70b, and 70c are operated in the heating mode.
[0052] For this, the distributor 60 includes first refrigerant branch pipelines 61a, 61
b, and 61c branched from the first refrigerant pipeline 61 as many as a number of
the indoor units 70a, 70b, and 70c, and connected to the indoor unit expansion devices
72a, 72b, and 72c respectively, second refrigerant branch pipelines 62a, 62b, and
62c branched from the second refrigerant pipeline 62 and connected to the indoor heat
exchangers 71a, 71b, and 71c of the indoor units respectively, and an electronic shut
off valves 64 at a position before the second refrigerant pipeline 62 is branched
to the second refrigerant branch pipelines. The third refrigerant pipeline 63 is connected
to the other end of the second refrigerant pipeline 62.
[0053] According to above system, in a case all the indoor units 70a, 70b, and 70c are operated
in the cooling mode, the electronic shut off valve 64 on the second refrigerant branch
pipeline 62 is closed, such that the refrigerant flows from the compressor 51 to the
expansion devices 72a, 72b, and 72c through the first refrigerant branch pipelines
61a, 61b, and 61c connected to the first refrigerant pipeline 61 and the indoor units
70a, 70b, and 70c by the switching device 55, and expands at the expansion devices
72a, 72b, and 72c, and is drawn into the compressor 51 through the indoor heat exchanger
71 a, 71b, and 71c, the second refrigerant branch pipelines 62a, 62b, and 62c, and
the third refrigerant pipeline 63.
[0054] In a case all the indoor units 70a, 70b, and 70c are operated in the heating mode,
the electronic shut off valve 64 on the second refrigerant branch pipeline 62 is opened,
such that the refrigerant flows from the compressor 51 to the indoor heat exchangers
71a, 71 b, and 71c through the second refrigerant branch pipelines 61a, 61 b, and
61 c connected to the second refrigerant pipeline 62 and the indoor units 70a, 70b,
and 70c by the switching device 55, heat exchanges at the indoor heat exchangers 71a,
71b, and 71c, and is drawn into the compressor 51 through the expansion devices 72a,
72b, and 72c, the first refrigerant branch pipelines 61a, 61b, and 61c, and the first
refrigerant pipeline 61.
[0055] In the meantime, the heating/cooling selective multi-type air conditioner further
includes a subcooling device 100 on the first refrigerant pipeline 21 connected between
the outdoor heat exchanger 12 and the distributor 20.
[0056] The subcooling device 100 subcools the refrigerant passed through a heat exchange
process at the outdoor heat exchanger 52 under an isobaric condition, and guides to
the distributor, i.e., expands a portion of the refrigerant from the outdoor heat
exchanger 52, makes the expanded refrigerant to heat exchange with rest of the refrigerant
discharged from the outdoor heat exchanger, and flowing toward the distributor 60
following the first refrigerant pipeline 61, and introduce into the third refrigerant
pipeline 63 connected between the distributor 60 and the suction end of the compressor
51.
[0057] A system of the subcooling device 100 applied to the concurrent, or selective heating/cooling
multi-type air conditioner will be described with reference to FIGS. 3~5.
[0058] The subcooling device 100 includes a subcooling heat exchanger 110, an expansion
device 120, and connection pipes to the subcooling heat exchanger.
[0059] In more detail, the subcooling device 100 includes a subcooling heat exchanger 110
for heat exchange between a portion of refrigerant expanded and rest of refrigerant
not expanded, a first connection pipeline 131 having the expansion device 120 for
expanding the portion of refrigerant passed through a heat exchange process at the
outdoor heat exchanger, and connected to the first refrigerant pipeline 21, or 61
for guiding expanded refrigerant to the subcooling heat exchanger 110, a second connection
pipeline 132 for guiding the refrigerant not expanded to the subcooling heat exchanger
110, a third connection pipeline 133 for guiding the unexpanded refrigerant passed
through, heat exchanged, and subcooled at the subcooling heat exchanger 110 to the
distributor 20 or 60, and a fourth connection pipeline 134 for guiding the expanded
refrigerant passed through, and heat exchanged at the subcooling heat exchanger to
the third refrigerant pipeline connected to the suction end of the compressor 11 or
51.
[0060] The subcooling heat exchanger 110 has flow passages designed to introduce the refrigerant
from the outdoor heat exchanger 12 or 52 in a plurality of paths. For this, it is
preferable that the subcooling heat exchanger 110 includes a first flow pipeline 111
having one end connected to the second connection pipeline 132, and the other end
connected to the third connection pipeline 133 for flow of the unexpanded high temperature
refrigerant, and a second flow pipeline 112 having one end connected to the first
connection pipeline 131, and the other end connected to the fourth connection pipeline
134, for heat exchange with the first flow pipeline 111, and flow of the low temperature
expanded refrigerant.
[0061] It is preferable that the subcooling heat exchanger 110 has a double pipe structure
with an inner flow pipe and an outer flow pipe on an outside of the inner flow pipe,
for improving a heat exchange efficiency of the refrigerant.
[0062] In the present invention, it is preferable that the inner flow pipe is the second
flow pipeline 112, and the outer flow pipe is the first flow pipeline 111, for flow
of the expanded low temperature refrigerant in the inner flow pipe 112, and the high
temperature refrigerant discharged from the outdoor heat exchanger 12 or 52 in the
outer flow pipe 111, to prevent dew from forming on a surface of the subcooling heat
exchanger 110. Of course, it is apparent that the outer flow pipe of the subcooling
heat exchanger 110 can be connected to the first connection pipeline 131, and the
second connection pipeline 132 can be connected to the second connection pipeline
132. However, in this instance, since the outer flow pipeline has the relatively low
temperature refrigerant flowing therein, it is liable that dew is formed on the surface
of the subcooling heat exchanger 110.
[0063] The subcooling heat exchanger 110 may have a variety of structures as far as the
structure brings the two flow pipes 111, and 112 into contact. As one example, the
subcooling heat exchanger may have a structure in which the second flow pipe winds
the first flow pipe several times. Moreover, it is preferable that the two flow pipes
111, and 112 are formed of a material having a good thermal conductivity.
[0064] In order to prevent liquid refrigerant from entering into the compressor, it is preferable
that the fourth connection pipeline 134 is connected to a predetermined position of
the third refrigerant pipeline 23, and 63 which is connected to the inlet of the accumulator
14 or 54.
[0065] Of course, it is apparent that the fourth connection pipeline 134 can be connected
to the third refrigerant pipeline 23 between the compressor 11, or 51, and the accumulator
14, or 54. Since the refrigerant is expanded to a substantially gas state, even though
the refrigerant is introduced into the compressor 11, or 51, stability of the compressor
11, or 51 is not harmed much.
[0066] It is preferable that the first to fourth pipelines 131, 132, 133, and 134 are connected
to the subcooling heat exchanger 110 such that the high temperature refrigerant flowing
in the first flow pipeline 111 has a flow direction opposite to a flow direction of
the low temperature expanded refrigerant, for enhancing a heat exchange efficiency.
Of course, depending on a design condition of the subcooling heat exchanger 100, it
is possible that the first to fourth pipelines 131, 132, 133, and 134 are connected
to the subcooling heat exchanger 110 such that the high temperature refrigerant flowing
in the first flow pipeline 111 has a flow direction opposite to a flow direction of
the low temperature expanded refrigerant.
[0067] It is preferable that the inner flow pipe of the subcooling heat exchanger has a
heat exchange part 113a, or 113b for making a heat exchange area larger.
[0068] In more detail, the heat exchange part 113a, or 113b are inward projections from
the inner flow pipe, the second flow pipe 112, for preventing an increase of flow
resistance of the refrigerant flowing along the first flow pipeline 111, and increasing
a heat exchange area of the refrigerant flowing through the second flow pipeline 112.
[0069] Of course, the heat exchange part 113a, or 113b may be formed both on the inside/outside
walls of the inner flow pipe, or both on the inside/outside of the inner flow pipe,
and on an inside wall of the outer flow pipeline.
[0070] The heat exchange part 113a, or 113b may be formed on the inside wall surface of
the inner flow pipe in a form of a ring along a circumferential direction, or as shown
in FIG 4, in a form of a helix along the flow direction, or as shown in FIG 5, in
a form thin, and extended along the flow direction of the refrigerant. Those structures
enable to increase the thermal efficiency of the refrigerant, while decreasing a flow
resistance of the expanded refrigerant.
[0071] Above forms of the heat exchange part 113a, or 113b are only a few embodiments, and
it is apparent that there can be many variations of the heat exchange part 113a, or
113b.
[0072] It is preferable that the subcooling device 100 with the subcooling heat exchanger
110 is mounted on an inside of the outdoor unit 10 or 50. In more detail, a length
of the first refrigerant pipeline 21 or 61 between the subcooling device 100 and the
outdoor heat exchanger 12 or 52 is made shorter, to make the refrigerant from the
outdoor heat exchanger 12 or 52 heat exchange, for preventing expansion of a portion
of the refrigerant in the first refrigerant pipeline 21, and subcooled liquid refrigerant
is supplied to the distributor 20, for minimizing pressure drop of the refrigerant
at the first refrigerant pipeline 21, or 61.
[0073] It is preferable that the subcooling heat exchanger 110 has a length of 1 ~ 2.5m,
for adequate heat exchange of the low temperature refrigerant expanded at the expansion
device 120 on the first connection pipeline 131 and the unexpanded refrigerant flowing
through the second connection pipeline at the subcooling heat exchanger 110.
[0074] Since operations of the subcooling devices 100 provided to the concurrent heating/cooling
multi-type air conditioner, and the selective heating/cooling multi-type air conditioner
are almost identical, the operation of the present invention will be described with
reference to the concurrent heat/cooling multi-type air conditioner a majority of
which indoor units 30b and 30c are in cooling mode, and a minority of which indoor
units 30a are in a heating mode.
[0075] At first, when the concurrent heat/cooling multi-type air conditioner is put into
operation, the refrigerant compressed to a high pressure at, and discharged from the
compressor 11 is introduced into the outdoor heat exchanger 12 by the switching device
15. The high pressure refrigerant heat exchanges with the outdoor air, and condenses
as the outdoor fan 13 rotates, and discharged to the first refrigerant pipeline 21
connected to the subcooling device 100.
[0076] A portion of the refrigerant introduced into the subcooling device 100 following
the first refrigerant pipeline 21 is expanded to a low temperature refrigerant by
the expansion device 120 on the first connection pipeline 131, and flows through the
second flow pipeline 112, rest of the refrigerant introduced into the subcooling device
100 following the first refrigerant pipeline 21 is introduced into the first flow
pipeline 111 by the second connection pipeline 132, to heat transfer to each other,
such that the refrigerant flowing through the first flow pipeline 111 is subcooled
under an isobaric state.
[0077] Next, the refrigerant from the first flow pipeline 111 of the subcooling heat exchanger
110 is introduced into the distributor 20 through the third connection pipeline 133
and the first refrigerant pipeline 21 in an unexpanded state, guided to the indoor
units 30b, and 30c through the first refrigerant branch pipelines 21b and 21c connected
to the indoor units operative in the cooling mode, passes through an expansion process
and heat exchange process to cool respective rooms, is drawn into the compressor 11
through the third refrigerant branch pipeline 23b, and 23c, the third refrigerant
pipeline 23, and the accumulator 14.
[0078] The refrigerant from the second flow pipeline 112 of the subcooling heat exchanger
110 is introduced into the accumulator 14 guided by the fourth connection pipeline
134 and the third connection pipeline 23, separated into gaseous refrigerant and liquid
refrigerant, and drawn into the compressor 11.
[0079] In the meantime, a portion of the refrigerant from the compressor 11 is introduced
into the distributor 20 directly without passing through the outdoor heat exchanger
12, and introduced into the indoor unit 30a through the second refrigerant branch
pipeline 22a connected to the indoor unit 30a operative in the heating mode, passes
through a heat exchange process to heat the room, and joins with the refrigerant flowing
through the first refrigerant pipeline following through the first refrigerant branch
pipeline 21 a connected to the indoor unit operative in the heating mode.
[0080] FIG 6 illustrates a P-h diagram of a refrigerating cycle of a multi-type air conditioner
of the present invention.
[0081] The air conditioner of the present invention has the following advantages.
[0082] First, even if a length of the first refrigerant pipeline between the outdoor unit
and the indoor unit is extensive, refrigerant pressure drop is minimized and refrigerant
capability is improved owing to the subcooling device that provides subcooled refrigerant.
[0083] Second, the noise occurred at the time of expansion of the refrigerant at the expansion
device of the indoor unit can be minimized owing to introduction of the subcooled
high pressure refrigerant thereto.
[0084] Third, the minimized pressure drop of the refrigerant introduced into the indoor
unit permits to minimize a capacity of the compressor provided to the air conditioner,
enabling to save a production cost, and minimize a volume of the air conditioner.
[0085] It will be apparent to those skilled in the art that various modifications and variations
can be made in the present invention without departing from the scope of the invention.
Thus, it is intended that the present invention cover the modifications and variations
of this invention provided they come within the scope of the appended claims
1. An air conditioner comprising:
an outdoor unit (10) installed in outdoor having a compressor (11, 51), an outdoor
heat exchanger (12, 52);
an indoor unit (30a, 30b, 30c) installed in indoor having an indoor heat exchanger
(31a, 31b, 31c);
a distributor (20, 60) for guiding refrigerant from the outdoor unit (10) to the indoor
unit (30a, 30b, 30c) proper to an operation condition, and refrigerant passed through
the indoor unit (30a, 30b, 30c) to the outdoor unit (10), again; and
a subcooling device (100) for subcooling the refrigerant passed through a heat exchange
process at the outdoor heat exchanger (12, 52) under an isobaric condition, and guiding
the subcooled refrigerant to the distributor (20, 60),
characterized in that
the subcooling device (100) is provided to a predetermined position of an inside of
the outdoor unit (10).
2. The air conditioner as claimed in claim 1, wherein the subcooling device (100) makes
a portion of the refrigerant passed through the heat exchange process at the outdoor
heat exchanger (12, 52) to expand, and the expanded portion of the refrigerant to
heat exchange with rest unexpanded refrigerant.
3. The air conditioner as claimed in claim 1, wherein the subcooling device includes;
a subcooling heat exchanger for making an expanded portion of the refrigerant to heat
exchange with rest unexpanded refrigerant,
a first connection pipeline (131) having an expansion device (120) for expanding a
portion of the refrigerant passed through a heat exchange process at the outdoor heat
exchanger (12, 52), for guiding expanded refrigerant to the subcooling heat exchanger
(110),
a second connection pipeline (132) for guiding unexpanded refrigerant to the subcooling
heat exchanger (110),
a third connection pipeline (133) for guiding unexpanded refrigerant passed through
the subcooling heat exchanger (110) to the distributor, and
a fourth connection pipeline (134) for guiding the expanded refrigerant passed through
the subcooling heat exchanger (110) to the refrigerant pipeline connected to a suction
end of the compressor (11, 51).
4. The air conditioner as claimed in claim 3, wherein the subcooling heat exchanger includes;
a first flow pipeline (111) having one end connected to the second connection pipeline
(132), and the other end connected to the third connection pipeline (133) for flow
of unexpanded refrigerant, and
a second flow pipeline (112) having one end connected to the first connection pipeline
(131), and the other end connected to the fourth connection pipeline (1349 for making
heat exchange with the first flow pipeline (111)and flow of the expanded refrigerant.
5. The air conditioner as claimed in claim 4, wherein the subcooling heat exchanger has
a double pipe structure.
6. The air conditioner as claimed in claim 5, wherein the second flow pipeline is provided
in an inside of the first flow pipeline in a longitudinal direction.
7. The air conditioner as claimed in claim 1, wherein the refrigerant flowing through
the second flow pipeline (112) has a flow direction opposite to a flow direction of
the refrigerant flowing through the first flow pipeline (111).
8. The air conditioner as claimed in claim 1, wherein the refrigerant flowing through
the second flow pipeline (112) has a flow direction the same with a flow direction
of the refrigerant flowing through the first flow pipeline (111).
9. The air conditioner as claimed in claim 5, wherein the first flow pipeline is provided
inside of the second flow pipeline in a longitudinal direction.
10. The air conditioner as claimed in claim 4, wherein the subcooling heat exchanger (110)
has a length of 1m~2.5m.
11. The air conditioner as claimed in claim 1, wherein the subcooling heat exchanger (110)
further includes a heat exchange part (113a, 113b) on an inside wall for making a
heat exchange area larger.
12. The air conditioner as claimed in claim 8, wherein the heat exchange part (113a, 113b)
is projected inward from an inside wall of the inner flow pipe.
13. The air conditioner as claimed in claim 9, wherein the heat exchange part (113a) is
provided on an inside wall of the inner flow pipe in a circumferential direction.
14. The air conditioner as claimed in claim 9, wherein the heat exchange part (113b) is
provided on an inside wall of the inner flow pipe in a flow direction of the refrigerant.
15. The air conditioner as claimed in claim 9, wherein the heat exchange part is provided
on an inside wall of the inner flow pipe in a helix.
16. The air conditioner as claimed in claim 3, wherein the expansion device (120) is an
electronic expansion valve.
17. The air conditioner as claimed in claim 3, further comprising an accumulator (14,
54) on a refrigerant pipeline connected to the suction end of the compressor (11,
51) for separating gaseous refrigerant from liquid refrigerant.
18. The air conditioner as claimed in claim 9, wherein the fourth connection pipeline
(134) is connected to a refrigerant pipeline connected to a refrigerant inlet to the
accumulator (14,54).
19. The air conditioner as claimed in claim 1, wherein the outdoor unit (10) further includes
a switching device (15, 55) for switching a flow direction of the refrigerant from
the compressor (11, 51) to the outdoor heat exchanger (12, 52) or the distributor
(20, 60) selectively proper to an operation condition.
20. The air conditioner as claimed in one of the claims 1 to 19, wherein the distributor
(20) comprises a supplementary subcooling device (24).
1. Eine Klimaanlage umfassend:
eine Außeneinheit (10), installiert im Außenbereich, aufweisend einen Kompressor (11,51),
einen Außen-Wärmetauscher (12,52),
eine Inneneinheit (30a, 30b, 30c) installiert im Innenbereich aufweisend einen Innen-Wärmetauscher
(31 a, 31b, 31c),
einen Verteiler (20,60) zum Führen von Kältemittel von der Außeneinheit (10) zur Inneneinheit
(30a, 30b, 30c) geeignet für einen Betriebszustand, wobei Kältemittel erneut durch
die Inneneinheit (30a, 30b, 30c) zur Außeneinheit (10) durchläuft und
ein Sub-Kühleinheit (100) zum Sub-Kühlen des Kältemittels, das einen Wärmeaustauschprozess
am Außen-Wärmetauscher (12,52) unter isobaren Bedingungen durchläuft, und Führen des
sub-gekühlten Kältemittels zum Verteiler (20,60),
dadurch gekennzeichnet, dass
das Sub-Kühlgerät (100) an einer vorbestimmten Position im Inneren der Außeneinheit
(10) vorgesehen ist.
2. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei die Sub-Kühleinheit (100) einen
Teil des Kältemittels, das den Wärmeaustauschprozess im Außen-Wärmetauscher (12,52)
durchläuft, expandiert, und der expandierte Teil des Kältemittels, einen Wärmeaustausch
mit dem übrigen unexpandierten Kältemittel vollzieht.
3. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei die Sub-Kühleinheit umfasst:
einen Sub-Kühl-Wärmetauscher, um einen Wärmeaustausch des expandierten Teils des Kältemittels
mit dem Rest an unexpandierten Kältemittel zu vollziehen,
eine erste Verbindungsleitung (131) aufweisend eine Expansionseinrichtung (120) zum
Expandieren eines Teiles des Kältemittels, das einen Wärmeaustauschprozess im Außengerät
(12,52) durchläuft, und zum Führen von expandiertem Kältemittel zum Sub-Kühl-Wännetauscher
(110),
eine zweite Verbindungsleitung (132) zum Führen von unexpandiertem Kältemittel zum
Sub-Kühl-Wärmetauscher (110),
eine dritte Verbindungsleitung (133) zum Führen von unexpandiertem Kältemittel, das
den Sub-Kühl-Wärmetauscher (110) zum Verteiler durchläuft, und
eine vierte Verbindungsleitung (134) zum Führen des expandierten Kältemittels, das
den Sub-Kühl-Wärmetauscher (110) zur Kältemittelleitung durchläuft, verbunden mit
einem Ansaugende des Kompressors (11,51).
4. Die Klimaanlage wie in Anspruch 3 beansprucht, wobei der Sub-Kühl-Wärmetauscher umfasst:
eine erste Strömungsleitung (111) aufweisend ein Ende, das mit der zweiten Verbindungsleitung
(132) verbunden ist und das andere Ende mit der dritten Verbindungsleitung (133) zum
Durchströmen mit unexpandierten Kältemittel verbunden ist,
und eine zweite Strömungsleitung (112) aufweisend ein Ende, das mit der ersten Verbindungsleitung
(131) verbunden ist und das andere Ende mit der vierten Verbindungsleitung (134) zum
Vollziehen eines Wärmeaustausches mit der ersten Strömungsleitung (111) und zum Durchströmen
mit dem expandierten Kältemittel verbunden ist.
5. Die Klimaanlage wie in Anspruch 4 beansprucht, wobei der Sub-Kühl-Wärmetauscher eine
Doppelleitungsstruktur aufweist.
6. Die Klimaanlage wie in Anspruch 5 beansprucht, wobei die zweite Strömungsleitung an
einer Innenseite der ersten Strömungsleitung in longitudinaler Richtung vorgesehen
ist.
7. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei das Kältemittel, das durch die
zweite Strömungsleitung (112) hindurch strömt, eine Strömungsrichtung entgegengesetzt
zu einer Strömungsrichtung des Kältemittels, das durch die erste Strömungsleitung
(111) hindurchfließt, aufweist.
8. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei das Kältemittel, das durch die
zweite Strömungsleitung (112) hindurchfließt eine Strömungsrichtung aufweist, die
gleichgerichtet mit einer Strömungsrichtung des Kältemittels ist, das durch die erste
Strömungsleitung (111) hindurchfließt.
9. Die Klimaanlage wie in Anspruch 5 beansprucht, wobei die erste Strömungsleitung in
longitudinaler Richtung an einer Innenseite der zweiten Strömungsleitung vorgesehen
ist.
10. Die Klimaanlage wie in Anspruch 4 beansprucht, wobei der Sub-Kühl-Wärmetauscher (110)
eine Länge von 1 m bis 2,5 m aufweist.
11. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei der Sub-Kühl-Wärmetauscher (110)
des Weiteren einen Wärmeaustauschteil (113a, 113b) an einer Innenwandung umfasst,
um einen Wärmeaustauschbereich zu vergrößern.
12. Die Klimaanlage wie in Anspruch 8 beansprucht, wobei der Wärmeaustauschteil (113a,
113b) von einer Innenwandung der inneren Strömungsleitung nach Innen hervorsteht.
13. Die Klimaanlage wie in Anspruch 9 beansprucht, wobei der Wärmeaustauschteil (113a)
an einer Innenwandung der inneren Strömungsleitung in Umfangsrichtung vorgesehen ist.
14. Die Klimaanlage wie in Anspruch 9 beansprucht, wobei der Wärmeaustauschteil (113b)
an einer Innenwandung der inneren Strömungsleitung in einer Strömungsrichtung des
Kältemittels vorgesehen ist.
15. Die Klimaanlage wie in Anspruch 9 beansprucht, wobei der Wärmeaustauschteil an einer
Innenwandung der inneren Strömungsleitung helixförmig vorgesehen ist.
16. Die Klimaanlage wie in Anspruch 3 beansprucht, wobei die Expansionseinrichtung (120)
ein elelctronisches Expansionsventil ist.
17. Die Klimaanlage wie in Anspruch 3 beansprucht, des Weiteren umfassend einen Abscheider
(14,54) in einer Kältemittelleitung verbunden mit dem Ansaugende des Kompressors (11,51)
um gasförmiges Kältemittel von flüssigem Kältemittel zu trennen.
18. Die Klimaanlage wie in Anspruch 9 beansprucht, wobei die vierte Verbindungsleitung
(134) mit einer Kältemittelleitung verbunden ist, die mit einem Kältemitteleinlass
des Abscheiders (14,54) verbunden ist.
19. Die Klimaanlage wie in Anspruch 1 beansprucht, wobei die Außeneinheit (10) des Weiteren
umfasst eine Schalteinheit (15,55) zum Schalten einer Strömungsrichtung des Kältemittels
vom Kompressor (11,51) zum Außen-Wärmetauscher (12,52) oder zum Verteiler (20,60)
geeignet für einen Betriebszustand.
20. Die Klimaanlage wie in einem der Ansprüche 1 bis 19 beansprucht, wobei der Verteiler
(20) eine Zusatz-Sub-Kühleinrichtung (24) umfasst.
1. Conditionneur d'air, comprenant :
une unité extérieure (10) installée à l'extérieur ayant un compresseur (11, 51) et
un échangeur de chaleur extérieur (12, 52) ;
une unité intérieure (30a, 30b, 30c) installée à l'intérieur ayant un échangeur de
chaleur intérieur (31a, 31b, 31c) ;
un distributeur (20, 60) pour guider un réfrigérant depuis l'unité extérieure (10)
vers l'unité intérieure (30a, 30b, 30c) d'une manière propre à une condition fonctionnelle,
et un réfrigérant qui a traversé l'unité intérieure (30a, 30b, 30c) à nouveau vers
l'unité extérieure (10) ;
et
un dispositif de sous-refroidissement (100) pour sous-refroidir le réfrigérant qui
a traversé un processus d'échange de chaleur au niveau de l'échange de chaleur extérieur
(12, 52) sous une condition isobare, et
pour guider le réfrigérant sous-refroidi vers le distributeur (20, 60),
caractérisé en ce que
le dispositif de sous-refroidissement (100) est prévu à une position prédéterminée
à l'intérieur de l'unité extérieure (10).
2. Conditionneur d'air selon la revendication 1, dans lequel le dispositif de sous-refroidissement
(100) amène une portion du réfrigérant qui est passé à travers le processus d'échange
de chaleur au niveau de l'échangeur de chaleur extérieur (12, 52) en expansion, et
la portion dilatée du réfrigérant à échanger de la chaleur avec le reste du réfrigérant
non expansé.
3. Conditionneur d'air selon la revendication 1, dans lequel le dispositif de sous refroidissement
inclut :
un échangeur de chaleur de sous-refroidissement pour amener une portion expansée du
réfrigérant à échanger de la chaleur avec le reste du réfrigérant non expansé,
un premier tubage de connexion (131) ayant un dispositif d'expansion (120) pour provoquer
une expansion d'une portion du réfrigérant qui a traversé un processus d'échange de
chaleur au niveau de l'échangeur de chaleur extérieur (12, 52), afin de guider le
réfrigérant expansé vers l'échangeur de chaleur de sous refroidissement (110),
un second tubage de connexion (132) pour guider le réfrigérant non expansé vers l'échangeur
de chaleur de sous-refroidissement (110),
un troisième tubage de connexion (133) pour guider le réfrigérant non expansé qui
a traversé l'échangeur de chaleur de sous-refroidissement (110) vers le distributeur,
et
un quatrième tubage de connexion (134) pour guider le réfrigérant dilaté qui a traversé
l'échangeur de chaleur de sous-refroidissement (110) vers le tubage de réfrigérant
connecté à une extrémité de succion du compresseur (11, 51).
4. Conditionneur d'air selon la revendication 3, dans lequel l'échangeur de chaleur de
sous refroidissement inclut :
un premier tubage d'écoulement (111) ayant une extrémité connectée au second tubage
de connexion (132) et l'autre extrémité connectée au troisième tubage de connexion
(133) pour l'écoulement d'un réfrigérant non expansé, et
un second tubage d'écoulement (112) ayant une extrémité connectée au premier tubage
de connexion (131) et l'autre extrémité connectée au quatrième tubage de connexion
(134) pour établir un échange de chaleur avec le premier tubage d'écoulement (113)
et le flux de réfrigérant expansé.
5. Conditionneur d'air selon la revendication 4, dans lequel l'échangeur de chaleur de
sous-refroidissement possède une structure à double tube.
6. Conditionneur d'air selon la revendication 5, dans lequel le second tubage d'écoulement
est prévu à l'intérieur du premier tubage d'écoulement dans une direction longitudinale.
7. Conditionneur d'air selon la revendication 1, dans lequel le réfrigérant qui s'écoule
à travers le second tubage d'écoulement (112) présente une direction d'écoulement
opposée à une direction d'écoulement du réfrigérant qui s'écoule à travers le premier
tubage d'écoulement (111).
8. Conditionneur d'air selon la revendication 1, dans lequel le réfrigérant qui s'écoule
à travers le second tubage d'écoulement (112) présente une direction d'écoulement
identique à une direction d'écoulement du réfrigérant qui s'écoule à travers le premier
tubage d'écoulement (111).
9. Conditionneur d'air selon la revendication 5, dans lequel le premier tubage d'écoulement
est prévu à l'intérieur du second tubage d'écoulement dans une direction longitudinale.
10. Conditionneur d'air selon la revendication 4, dans lequel l'échangeur de chaleur de
sous-refroidissement (110) a une longueur de 1 m à 2,5 m.
11. Conditionneur d'air selon la revendication 1, dans lequel l'échangeur de chaleur de
sous-refroidissement (110) inclut encore une partie d'échange de chaleur (113a, 113b)
sur une paroi intérieure pour rendre plus grande une superficie d'échange de chaleur.
12. Conditionneur d'air selon la revendication 8, dans lequel la partie d'échange de chaleur
(113a, 113b) se projette vers l'intérieur depuis une paroi intérieure du tubage d'écoulement
intérieur.
13. Conditionneur d'air selon la revendication 9, dans lequel la partie d'échange de chaleur
(113a) est prévue sur une paroi intérieure du tubage d'écoulement intérieur dans une
direction circonférentielle.
14. Conditionneur d'air selon la revendication 9, dans lequel la partie d'échange de chaleur
(113b) est prévue sur une paroi intérieure du tubage d'écoulement intérieur dans une
direction d'écoulement du réfrigérant.
15. Conditionneur d'air selon la revendication 9, dans lequel la partie d'échange de chaleur
est prévue sur une paroi intérieure du tubage d'écoulement intérieur suivant une hélice.
16. Conditionneur d'air selon la revendication 3, dans lequel le dispositif d'expansion
(120) est une valve d'expansion électronique.
17. Conditionneur d'air selon la revendication 3, comprenant en outre un accumulateur
(14, 54) sur un tubage de réfrigérant connecté à l'extrémité de succion du compresseur
(11, 51) pour séparer le réfrigérant gazeux vis-à-vis du réfrigérant liquide.
18. Conditionneur d'air selon la revendication 9, dans lequel le quatrième tubage de connexion
(134) est connecté à un tubage de réfrigérant connecté à une entrée de réfrigérant
de l'accumulateur (14, 54).
19. Conditionneur d'air selon la revendication 1, dans lequel l'unité extérieure (10)
inclut encore un dispositif commutateur (15, 55) pour commuter une direction d'écoulement
du réfrigérant depuis le compresseur (11, 51) vers l'échangeur de chaleur extérieur
(12, 52) ou vers le distributeur (20, 60) sélectivement de manière appropriée à une
condition fonctionnelle.
20. Conditionneur d'air selon l'une des revendications 1 à 19, dans lequel le distributeur
(20) comprend un dispositif de sous-refroidissement supplémentaire (24).