(19)
(11) EP 1 561 029 B2

(12) NEUE EUROPÄISCHE PATENTSCHRIFT
Nach dem Einspruchsverfahren

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Entscheidung über den Einspruch:
06.07.2011  Patentblatt  2011/27

(45) Hinweis auf die Patenterteilung:
23.08.2006  Patentblatt  2006/34

(21) Anmeldenummer: 03809686.3

(22) Anmeldetag:  04.06.2003
(51) Internationale Patentklassifikation (IPC): 
F02M 65/00(2006.01)
(86) Internationale Anmeldenummer:
PCT/DE2003/001852
(87) Internationale Veröffentlichungsnummer:
WO 2004/040129 (13.05.2004 Gazette  2004/20)

(54)

VERFAHREN UND VORRICHTUNG ZUR MESSUNG DER EINSPRITZRATE EINES EINSPRITZVENTILS FÜR FLÜSSIGKEITEN

METHOD AND DEVICE FOR MEASURING THE INJECTION RATE OF AN INJECTION VALVE FOR LIQUIDS

PROCEDE ET DISPOSITIF POUR MESURER LE DEBIT D'INJECTION D'UN INJECTEUR DE LIQUIDES


(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priorität: 25.10.2002 DE 10249754

(43) Veröffentlichungstag der Anmeldung:
10.08.2005  Patentblatt  2005/32

(73) Patentinhaber: ROBERT BOSCH GMBH
70442 Stuttgart (DE)

(72) Erfinder:
  • KUHN, Ulrich
    71272 Renningen (DE)


(56) Entgegenhaltungen: : 
WO-A-02/064970
DE-A- 3 916 418
DE-A- 3 118 425
   
       


    Beschreibung

    Stand der Technik



    [0001] Bei der Fertigungs- und Funktionsprüfung von Kraftstoff-Einspritzkomponenten, wie beispielsweise von Einspritzventilen, Common-Rail-Injektoren und anderen Hochdruckeinspritzventilen, sind zur Mengenmessung verschiedene Prüfvorrich-tungen und -verfahren im Stand der Technik beschrieben. So ist beispielsweise aus der DE 100 64 511 A1 das Messkolben-prinzip bekannt, bei dem das Einspritzventil Kraftstoff in ein mit einem Prüfmedium gefülltes Messvolumen einspritzt. Der Druck in dem Messvolumen wird konstant gehalten, indem ein Messkolben durch die Einspritzmenge verdrängt wird. Aus der Verschiebung des Messkolbens kann dann unmittelbar die Einspritzmenge berechnet werden. Dieses Verfahren ist wegen der mechanischen Kolbenbewegung dynamisch begrenzt und kann dadurch die steigenden Anforderungen nach zeitlich hochaufgelöster Messung der Einspritzrate bei modernen Hochdruck-Einspritzsystemen für Brennkraftmaschinen, die pro Einspritzzyklus häufig mehrere Teileinspritzungen umfassen, nicht erfüllen.

    [0002] Ein alternatives und genaues Verfahren, wie es beispielsweise in W. Zeuch: "Neue Verfahren zur Messung des Einspritzgesetzes und der Einspritz-Regelmäßigkeit von Diesel-Einspritzpumpen", Motortechnische Zeitschrift (MTZ) 22 (1961), S. 344-349, beschrieben ist, ist das hydraulische Druckanstiegsverfahren (HDV). Ein ähnliches Verfahren ist auch aus MTZ 25/7 S.268-282 "Der Einspritzgesetzindikator, ein neues Meßgerät zur direkten Bestimmung des Einspritzgesetzes von Einzeleinspritzungen" (W. Bosch) bekannt. Hierbei spritzt das Einspritzventil ebenfalls in ein flüssigkeitsgefülltes Messvolumen ein, jedoch wird hier das Messvolumen konstant gehalten. Dadurch kommt es zu einem Druckanstieg im Messvolumen, was mit einem geeigneten Drucksensor gemessen wird. Moderne Drucksensoren auf Piezo-Basis zeichnen sich dabei durch eine sehr kurze Ansprechzeit aus, was zeitlich hochaufgelöste Messungen möglich macht. Aus dem zeitlichen Verlauf des Druckanstiegs lässt sich im Prinzip der Verlauf der Einspritzrate und die eingespritzte Menge berechnen.

    [0003] In der Praxis wird dies jedoch durch eine Reihe von Faktoren erschwert: Im Messvolumen V kommt es durch den eingespritzten Kraftstoff zu Druckschwingungen in den entsprechenden Eigenfrequenzen des Messvolumens, wobei diese Eigenfrequenzen von den geometrischen Abmessungen des Messvolumens abhängen. Neben der Grundschwingung werden in der Regel auch viele Oberschwingungen angeregt, wobei in der Regel mehrere Schwingungsmoden möglich sind. Dies erschwert eine Filterung des Drucksensor-Messsignals, da die Frequenzen der Eigenschwingungen zum Teil im Bereich der Frequenzen des Messsignals liegen.

    [0004] Weiter wird eine genaue Messung des Absolutwerts der Einspritzmenge Δm dadurch erschwert, dass die Messgröße des Drucks erst auf die eingespritzte Flüssigkeitsmenge umgerechnet werden muss. Die Umrechnungsfaktoren beinhalten hierbei den Kompressionsmodul und die Dichte. Diese Größen hängen von den jeweiligen Prüfbedingungen und der Vorgeschichte ab und stehen deshalb nicht mit der notwendigen Genauigkeit aus früheren Messungen zur Verfügung. Um diese Größen zu ermitteln ist für jede Messung ein separater, aufwendiger Kalibriervorgang nötig, was die Messung umständlich und in der Praxis schwer durchführbar macht. Hierzu wird über einen separaten Kalibrierzylinder ein definiertes Kalibrier-Volumen ΔVk in das Messvolumen V eingebracht und die Druckänderung Δpk gemessen. Der Kompressionsmodul K ergibt sich dann aus der Beziehung



    [0005] Damit lässt sich jetzt das eingespritzte Volumen ΔV berechnen:



    [0006] Um letztendlich die Einspritzmenge zu berechnen ist eine Umrechnung auf die Masse erforderlich, was die Kenntnis der Dichte ρ notwendig macht:



    [0007] Hierbei hängt die Dichte von der Temperatur des Prüfmediums ab. Um dies zu berücksichtigen wird die Temperatur mittels eines Temperatursensors im Messvolumen gemessen und die Dichte entsprechend korrigiert. Die Temperaturmessung ist dabei punktuell und berücksichtigt nicht eine eventuell ungleiche Temperatur im gesamten Messvolumen. Ein derartiges Verfahren wird in der WO 02/064970 A beschrieben.

    [0008] Für die Ermittlung des Kompressionsmoduls K nach der angegebenen Gleichung (I) ist die Einbringung eines definierten Kalibrier-Volumens in das Messvolumen notwendig, was einen separaten Volumengeber nötig macht. Darüber hinaus ergibt sich der Nachteil, dass für die Kalibriermessung eine separate Messzeit notwendig ist, was die mögliche Frequenz von aufeinanderfolgenden Messungen reduziert.

    Vorteile der Erfindung



    [0009] Die erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sich aus dem Druckverlauf in einfacher Weise die Einspritzmenge bestimmen lässt. Hierzu wird der zeitliche Verlauf des Drucks im Messvolumen bei der Einspritzung aufgezeichnet und daraus der zeitliche Verlauf der Einspritzmenge berechnet. Um den Faktor zur Berechnung des Absolutwerts der Einspritzmenge zu ermitteln, wird die Schallgeschwindigkeit bestimmt. Aus dem Druckanstieg und der Schallgeschwindigkeit lässt sich dann direkt die Einspritzmenge bzw. deren zeitlicher Verlauf, also die Mengen-Einspritzrate, berechnen.

    [0010] In einer Weiterbildung wird die Schallgeschwindigkeit mittels eines separaten Messvorgangs ermittelt, bei dem ein Schallimpuls von einem Schallgeber in das Messvolumen abgegeben wird und durch den Drucksensor aufgefangen wird. Sind der Schallgeber und der Drucksensor einander gegenüber angeordnet, so lässt sich aus dem Abstand und der Laufzeit direkt die Schallgeschwindigkeit berechnen. Dies ist ein sehr schnelles Messverfahren, das kaum nennenswerte Verzögerungen des Messablaufs bewirkt.

    [0011] In einer Weiterbildung werden die Messdaten des Druckverlaufs mit Hilfe eines elektronischen Rechners gespeichert, der auch eine direkte Weiterbearbeitung der Daten möglich macht.

    [0012] In einer Weiterbildung wird aus den Druckmesswerten die Frequenz einer Druckeigenschwingung des Messvolumens bestimmt. Aus der Eigenfrequenz ergibt sich dann die Schallgeschwindigkeit als gemittelte Größe über das gesamten Messvolumen, ohne dass eine separate Messung mit entsprechenden Vorrichtungen nötig wäre. Beispielshaft ist es hierbei möglich, die Frequenzanalyse mit Hilfe eines Fourier-Verfahrens zu berechnen, wobei auch andere, moderne Verfahren möglich sind.

    [0013] Die Filterung der Druckmesswerte wird beispielsweise mit einem Tiefpass durchgeführt, so dass Störungen und Rauschen weitgehend eliminiert werden. Aus der zeitlichen Differentiation des Drucksignals lässt sich dann die Einspritzmengenrate bestimmen.

    [0014] Die erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 1 weist gegenüber dem Stand der Technik den Vorteil auf, dass das Messsignal besser gefiltert werden kann. Hierzu ist der Drucksensor im Druckknoten der ersten Druckeigenschwingung, also der Grundeigenschwingung, angeordnet, so dass der Drucksensor kein Signal der Grundeigenschwingung erfasst. Deshalb kann die Grenzfrequenz des Tiefpassfilters zur Glättung der Druckmesswerte um einen Faktor zwei nach oben verschoben werden.

    Zeichnung



    [0015] In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Es zeigt
    Figur 1
    die Messvorrichtung mit den schematisch dargestellten Komponenten,
    Figur 2
    eine Darstellung des Messvolumens mit dem Druckverlauf der ersten Druckeigenschwingung und
    Figur 3
    das Diagramm einer Messung, wobei der Druck und dessen Ableitung über der Zeit abgetragen sind.

    Beschreibung des Ausführungsbeispiels



    [0016] In der Figur 1 ist die Messvorrichtung in einer teilweise geschnittenen Darstellung gezeigt. Ein zylinderförmiges Messvolumen 1 mit einer Wandung 2 ist mit einer Prüfflüssigkeit vollständig gefüllt, wobei das Messvolumen 1 allseitig abgeschlossen ist. Die Wandung 2 weist eine erste Grundfläche 102 und eine zweite Grundfläche 202 auf, die durch die Seitenwand 303 verbunden sind, welche eine Längsachse 4 aufweist. Durch eine Öffnung 10 in der ersten Grundfläche 102 der Wandung 2 ragt ein Einspritzventil 3 mit seiner Spitze in das Messvolumen 1, wobei der Durchtritt des Einspritzventils 3 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Das Einspritzventil 3 weist einen Ventilkörper 7 auf, in dem in einer Bohrung 6 eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Durch eine Längsbewegung der Ventilnadel 5 werden mehrere Einspritzöffnungen 12, die an der in das Messvolumen 1 hineinragenden Spitze des Einspritzventils 3 ausgebildet sind, geöffnet oder geschlossen. Bei geöffneten Einspritzöffnungen 12 strömt Prüfflüssigkeit aus einem zwischen der Ventilnadel 5 und der Wand der Bohrung 6 ausgebildeten Druckraum 9 zu den Einspritzöffnungen 12 und wird von dort in das Messvolumen 1 eingespritzt, bis die Einspritzöffnungen 12 durch die Ventilnadel 5 wieder verschlossen werden. Die Einspritzung der Prüfflüssigkeit erfolgt hierbei mit einem hohen Druck, der je nach verwendetem Einspritzventil bis zu 200 MPa betragen kann.

    [0017] In die Seitenwand 303 der zylinderförmigen Wandung 2 mündet eine mit einem Druckhalteventil 17 verbundene Leitung 16, durch die Prüfflüssigkeit aus dem Messvolumen 1 in ein in der Zeichnung nicht dargestelltes Leckvolumen abgeleitet werden kann. In der Leitung 16 ist darüber hinaus ein Steuerventil 15 angeordnet, durch das im Bedarfsfall die Leitung 16 verschlossen werden kann, falls eine Ableitung von Prüfflüssigkeit aus dem Messvolumen 1 nicht gewünscht wird. Durch das Druckhalteventil 17 ist sichergestellt, dass ein gewisser Druck im Messvolumen 1 aufrecht erhalten wird und dieses stets völlig mit Flüssigkeit gefüllt bleibt.

    [0018] Eine Halterung 22 ragt durch die zweite Grundfläche 202 der Wandung 2 in das Messvolumen 1 hinein. Am Ende der Halterung 22 ist ein Drucksensor 20 angeordnet, der über eine Signalleitung 24, die in der Halterung 22 aus dem Messvolumen 1 hinausführt, mit einem elektronischen Rechner 28 verbunden ist, wobei der Durchtritt der Halterung 22 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Der Drucksensor 20 ist in der Mittelebene zwischen den beiden Grundflächen 102, 202 der Wandung 2 angeordnet und hat somit zu beiden Grundflächen 102, 202 denselben Abstand. Da der Drucksensor 20 auch auf der Längsachse 4 liegt, weist er zur Seitenfläche 303 einen allseitig gleichen Abstand s auf. Über den elektronischen Rechner 28 kann das Signal, das der Drucksensor 20 liefert, ausgelesen und elektronisch gespeichert werden. Um eine schnelle Messung des Druckverlaufs zu ermöglichen ist der Drucksensor 20 beispielsweise auf Piezo-Basis gebaut, so dass auch schnelle Änderungen des Drucks ohne nennenswerte Verzögerung gemessen werden können. An der Seitenfläche 303 der Wandung 2 ist ein Schallgeber 21 angeordnet, der vom Drucksensor 20 den Abstand s aufweist. Alternativ kann es auch vorgesehen sein, dass ein separater Schallempfänger 30 diametral dem Schallgeber 21 an der Seitenfläche 303 gegenüberliegt, um eine möglichst große Laufstrecke des Schallsignals zu erhalten und damit eine größere Genauigkeit bei der Bestimmung der Schallgeschwindigkeit c.

    [0019] Die zu messende Einspritzmenge Δm der Prüfflüssigkeit kann aus dem Druckanstieg und der Schallgeschwindigkeit berechnet werden. Ist ρ die Dichte der Prüfflüssigkeit und V das Volumen des Messvolumens, so ergibt sich durch das Einspritzen des Einspritzventils bei konstantem Volumen V eine Änderung der Dichte Δρ, so dass gilt



    [0020] Nach der bekannten akustischen Theorie ist der Zusammenhang zwischen der Schallgeschwindigkeit c, der Dichteänderung Δρ und dem Druckanstieg Δp wie folgt

    und damit gilt



    [0021] Es gibt also einen direkten Zusammenhang zwischen dem Druckanstieg Δp und der Mengenänderung Δm.

    [0022] Mit dem Drucksensor 20 wird der zeitliche Verlauf des Drucks gemessen, woraus sich wiederum die Einspritzrate r(t) bestimmen lässt, also die pro Zeiteinheit dt eingespritzte Menge dm(t) der Prüfflüssigkeit. Aus dem obigen Zusammenhang ergibt sich damit für die Einspritzrate r(t), also die zeitliche Ableitung der eingespritzten Menge dm(t)/dt, folgende Gleichung:



    [0023] Das heißt, dass bei Kenntnis der Schallgeschwindigkeit c und des Volumens V aus dem zeitlichen Verlauf des Drucks p(t) der Absolutwert der Einspritzrate r(t) berechnet werden kann.

    [0024] Beim Einspritzen der Prüfflüssigkeit in das Messvolumen 1, das anfänglich einen konstanten Druck aufweist, der beispielsweise 1 MPa entspricht, steigt der Druck im Messvolumen 1 an. Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, so dass auch eine kleine Mengenzunahme zu einer gut messbaren Druckerhöhung führt. Durch das stoßartige Einbringen der Prüfflüssigkeit werden im Messvolumen 1 Druckeigenschwingungen angeregt. Die Eigenfrequenzen hängen von den geometrischen Abmessungen des Messvolumens 1 ab: Für die erste Druckeigenschwingung, die sogenannte Grundschwingung, bei der eine Longitudinalwelle entlang der Längsachse 4 schwingt, ist die halbe Wellenlänge λ/2 gleich der Länge L des Messvolumens 1, also gilt



    [0025] Figur 2 zeigt diese erste Druckeigenschwingung schematisch, wobei die mit p bezeichneten Linien den Druckverlauf zeigen, bei dem an den Rändern Druckbäuche zu finden sind und in der Mitte, also in der Radialebene des zylinderförmigen Messvolumens, in der der Drucksensor 20 angeordnet ist, ein Druckknoten liegt. Die Frequenz νe der ersten Druckeigenschwingung errechnet sich dann einfach aus der Schallgeschwindigkeit c nach der Beziehung λe·νe = c zu



    [0026] Für die Frequenz νn der n. Oberschwingung gilt entsprechend, dass die Länge des Messvolumens L ein Vielfaches von λ/2 sein muss:



    [0027] Der Drucksensor 20 registriert die erste Druckeigenschwingung nicht, da am Druckknoten keine Druckänderungen auftreten. Ebensowenig werden die 2., 4. und alle anderen geradzahligen Oberschwingungen vom Drucksensor 20 aufgenommen.

    [0028] Zur Auswertung der Messung geht man folgendermaßen vor: In das Messvolumen 1, in dem sich die Prüfflüssigkeit befindet, spritzt das Einspritzventil 3 durch eine schnelle Längsbewegung der Ventilnadel 5, durch welche die Einspritzöffnungen 12 geöffnet und wieder verschlossen werden, eine bestimmte Flüssigkeitsmenge ein. Der Drucksensor 20 misst den Druck p(t), der mit einer bestimmen Rate von beispielsweise 100 kHz vom Rechner 28 ausgelesen und gespeichert wird.

    [0029] Um den zeitlichen Verlauf der Einspritzmenge dm(t)/dt, also die Einspritzrate r(t) zu bestimmen, benutzt man Gleichung (III). Die im Rechner gespeicherten Messwerte p(t) werden zeitlich differenziert und mit dem Faktor V/c2 multipliziert, was direkt die Einspritzrate r(t) ergibt.

    [0030] Neben der Bestimmung der Schallgeschwindigkeit durch eine separate Messung ist es auch möglich, diese aus den gemessenen Druckmesswerten direkt zu bestimmen. Die im Rechner 28 aufgezeichneten Druckmesswerte sind zum einen verrauscht und zum anderen sind Druckeigenschwingungen des Messvolumens 1 überlagert, was zu weiteren Verfälschungen führt. Aus einer Frequenzanalyse kann aus den Druckmesswerten die Frequenzen der ersten Oberschwingung der Druckeigenschwingungen bestimmt werden, woraus nach der oben angegebenen Beziehung c = ν·L die Schallgeschwindigkeit c berechnet wird, die in der verwendeten Prüfflüssigkeit bei den vorliegenden Bedingungen herrscht. Obwohl die ungefähre Größe von c natürlich bekannt ist, kommt es doch zu Schwankungen durch veränderte Zusammensetzungen der Prüfflüssigkeit oder geänderte Temperaturen, was andernfalls zu einer Verminderung der Messgenauigkeit führen würde. Durch eine Filterung der Druckmesswerte durch einen Tiefpass kann hochfrequentes Rauschen unterdrückt werden. Wegen der Anordnung des Drucksensors 20 in der Mitte des Messvolumens kann die Grenzfrequenz νG für den Tiefpass doppelt so groß gewählt werden, da die erste Grundschwingung vom Drucksensor 20 nicht registriert wird. Die geglätteten Druckmesswerte werden anschließend zeitlich differenziert, und nach Multiplikation mit dem Faktor V/c2 ergibt sich bei bekanntem Volumen V die Einspritzrate r(t).

    [0031] Die Schallgeschwindigkeit c kann auch in einem separaten Verfahren bestimmt werden. Hierzu wird vom Schallgeber 21 ein Schallimpuls ausgesandt, der von dem als Schallempfänger dienenden Drucksensor 20 oder von einem separaten Schallempfänger 30 nach einer Laufzeit tL aufgefangen wird. Aus dem Abstand s von Schallgeber 21 und Drucksensor 20 berechnet sich dann nach

    die Schallgeschwindigkeit c. Nach der oben gezeigten Gleichung (II) ergibt sich dadurch sofort die eingespritzte Menge Δm.

    [0032] Figur 3 zeigt den zeitlichen Verlauf von Druck p(t) und dessen Ableitung dp(t)/dt als Funktion der Zeit t in willkürlichen Einheiten U. Der Druck p(t) steigt etwa zum Zeitpunkt t = 1 ms auf ein erstes Niveau an und etwa zum Zeitpunkt t = 2 ms auf ein zweites, deutlich höheres Niveau. Dies entspricht einer Einspritzung von zuerst einer kleineren Menge Prüfflüssigkeit und in einem Abstand von etwa 1 ms einer größeren Menge. Wird ein Einspritzventil gemessen, wie es für direkteinspritzende, selbstzündende Brennkraftmaschinen verwendet wird, entspricht dies einer Kraftstoffeinspritzung, die sich in eine Pilot- oder Voreinspritzung und eine nachfolgende Haupteinspritzung gliedert. Nachdem das vom Drucksensor 20 gemessene Drucksignal p(t) nach der oben geschilderten Methode geglättet worden ist, ergibt die Ableitung dp(t)/dt einen Wert, der proportional zur Einspritzrate r(t) ist. Durch Multiplikation mit dem Faktor V/c2 erhält man daraus schließlich den Absolutwert der Einspritzrate r(t).

    [0033] Das Messverfahren zusammen mit dem beschriebenen Messaufbau ermöglicht es also, den Druckverlauf zu messen und die Schallgeschwindigkeit c bei den aktuellen Prüfbedingungen zu bestimmen, woraus sich die Einspritzmenge und die Einspritzrate bestimmen lässt. Wird die Schallgeschwindigkeit c aus der Frequenz der Eigenschwingungen berechnet, so können sämtliche notwendigen Größen aus dem Druckverlauf bestimmt werden, was Fehler durch zusätzliche Bauteile ausschließt. Durch die Anordnung des Drucksensors 20 genau zwischen den beiden Grundflächen 102, 202 kann die Grenzfrequenz νG des Tiefpassfilters auf die doppelte Frequenz der Grundschwingung νe angehoben werden, ohne dass eine qualitative Beeinträchtigung durch das Filtern zu erwarten ist. Aufwendige Kalibrierverfahren, bei denen in einem separaten Messverfahren die Schallgeschwindigkeit bestimmt wird, können somit entfallen.

    [0034] Die Prüfflüssigkeit kann Kraftstoff sein oder eine andere Flüssigkeit, deren Eigenschaften dem Stoff nahekommen, der im normalen Gebrauch des Einspritzventils verwendet wird. Das Messvolumens 1 muss nicht zylinderförmig ausgebildet sein, sondern statt eines Zylinders kann auch ein quaderförmiges Messvolumen 1 oder eine andere geeignete Form vorgesehen sein, beispielsweise eine Kugel. Der Drucksensor 20 wird auch hier in einem Druckknoten der ersten Druckeigenschwingung des Messvolumens 1 angeordnet, um die Grenzfrequenz für die Filterung möglichst hoch ansetzen zu können.


    Ansprüche

    1. Vorrichtung zur Messung der Einspritzrate (r(t)) eines Einspritzventils (3) für Flüssigkeiten mit einem Messvolumen (1), das allseitig abgeschlossen ist und mit einer Prüfflüssigkeit gefüllt ist, einer Öffnung (10) in der Wandung (2) des Messvolumes (1) zur Aufnahme eines Einspritzventils (3), so dass das Einspritzventil (3) in Einbaulage mit wenigstens einer Einspritzöffnung (12) in das Messvolumen (1) hineinragt, und einem Drucksensor (20), der im Messvolumen (1) angeordnet ist, dadurch gekennzeichnet, dass der Drucksensor (20) im Druckknoten der ersten Druckeigenschwingung des Messvolumens (1) angeordnet ist, und die Schallgeschwindigkeit durch Messung der Laufzeit eines Schallsignals im Messvolumen (1) oder direkt aus den Druckmesswerten ermittelt werden kann.
     
    2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Messvolumen (1) zylinderförmig ausgebildet ist.
     
    3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Drucksensor (20) in der Radialebene angeordnet ist, die mittig zwischen den beiden Grundflächen (102; 202) des Zylinders liegt.
     
    4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein elektronischer Rechner (28) die Messwerte des Drucksensors (20) erfasst und speichert.
     
    5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass auf dem elektronischen Rechner (28) ein Programm läuft, das aus den aufgezeichneten Druckmesswerten (p(t)) die Eigenfrequenzen des Messvolumens (V) berechnet.
     
    6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im Messvolumen (V) ein Schallgeber (21) und ein separater Schallempfänger (30) angeordnet sind.
     


    Claims

    1. Device for measuring the injection rate (r(t)) of an injection valve (3) for liquids, with a measurement volume (1) which is closed off on all sides and is filled with a test liquid, with an orifice (10) in the wall (2) of the measurement volume (1) for receiving an injection valve (3), so that, in the installation position, the injection valve (3) projects with at least one injection orifice (12) into the measurement volume (1), and with a pressure sensor (20) which is arranged in the measurement volume (1), characterized in that
    the pressure sensor (20) is arranged at the pressure node of the first natural pressure oscillation of the measurement volume (1), and the sound velocity can be determined by the measurement of the transit time of a sound signal in the measurement volume (1) or directly from the pressure measurement values.
     
    2. Device according to Claim 1, characterized in that the measurement volume (1) is of cylindrical design.
     
    3. Device according to Claim 2, characterized in that the pressure sensor (20) is arranged in the radial plane which lies centrally between the two bases (102; 202) of the cylinder.
     
    4. Device according to Claim 1, characterized in that an electronic computer (28) detects and stores the measurement values of the pressure sensor (20).
     
    5. Device according to Claim 4, characterized in that the electronic computer (28) runs a program which calculates the characteristic frequencies of the measurement volume (1) from the recorded pressure measurement values (p(t)).
     
    6. Device according to Claim 1, characterized in that a sound transmitter (21) and a separate sound receiver (30) are arranged in the measurement volume (1).
     


    Revendications

    1. Dispositif pour mesurer le débit d'injection (r(t)) d'un injecteur (3) de liquides avec un volume de mesure (1) scellé de tous côtés et rempli avec un liquide d'essai, une ouverture (10) dans la paroi (2) du volume de mesure (1) pour recevoir un injecteur (3), de sorte que l'injecteur (3) en position d'installation pénètre avec au moins une ouverture d'injection (12) dans le volume de mesure (1), et avec un capteur de pression (20) dans le volume de mesure (1), caractérisé en ce que
    le capteur de pression (20) est placé dans le noeud de pression de la première oscillation de pression propre du volume de mesure (1), et la vitesse du son peut être déterminée par mesure du temps de propagation d'un signal sonore dans le volume de mesure (1), ou directement à partir des valeurs de mesure de pression.
     
    2. Dispositif selon la revendication 1, caractérisé en ce que le volume de mesure (1) a une forme cylindrique.
     
    3. Dispositif selon la revendication 2, caractérisé en ce que le capteur de pression (20) est dans le plan radial à mi-chemin entre les deux surfaces de base (102; 202) du cylindre.
     
    4. Dispositif selon la revendication 1, caractérisé en ce qu'un ordinateur (28) enregistre et mémorise les valeurs de mesure du capteur de pression (20).
     
    5. Dispositif selon la revendication 4, caractérisé en ce que l'ordinateur (28) exécute un programme de calcul des fréquences fondamentales du volume de mesure (V) à partir des valeurs de mesure de pression enregistrées (p(t)).
     
    6. Dispositif selon la revendication 1, caractérisé par une source sonore (21) et un capteur de son (30) dans le volume de mesure (V).
     




    Zeichnung











    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente




    In der Beschreibung aufgeführte Nicht-Patentliteratur