[0001] EP-A-294 056 discloses a photochromic article comprising a photochromic polyurethane layer using
a polyether polyol for making the polyurethane.
DESCRIPTION OF THE INVENTION
[0002] The present invention relates to an article comprising a solid transparent substrate,
e.g., a plastic substrate such as a polymeric material used for optical applications,
and a thermoplastic polyurethane film appended to said substrate, which polyurethane
film incorporates a desired light filtering property, whereby in the various embodiments
of the present invention said film is formed form polyurethane material selected from
polycarbonate-based polyurethane and mixtures of polyether-based polyurethane and
polycarbonate-based polyurethane. In particular, the present invention relates to
a photochromic optical article used for ophthalmic applications, e.g., a lens. More
particularly, the present invention relates to an optical article comprising, in combination,
(a) a solid transparent substrate having a front surface and a back surface, (b) transparent
thermoplastic polyurethane film adjacent to at least one of said front and back surfaces,
said polyurethane film providing a desirable light filtering property to said optical
article, said polyurethane film further having been formed from a polyurethane composition
comprising polyurethane material selected from polycarbonate-based polyurethane material
and mixtures of polyether-based polyurethane material and polycarbonate based material,
and (c) transparent protective film of polymeric material superposed on said transparent
thermoplastic polyurethane film.
[0003] Still more particularly, the present invention relates to a photochromic optical
article comprising (a) a solid transparent optical substrate having a front surface
and a back surface, (b) transparent thermoplastic photochromic polyurethane film adjacent
to at least one of said front and back surfaces of the substrate, the polyurethane
film comprising a polyurethane material selected from polycarbonate-based polyurethane,
and mixtures of polyether-based polyurethane, and polycarbonate based material, and
a photochromic amount of at least one organic photochromic material, and (c) transparent
protective film of polymeric material superposed on said transparent thermoplastic
polyurethane film.
[0004] In a further embodiment of the present invention, there is contemplated an optical
article comprising, in combination, (a) a solid transparent optical substrate having
a front surface and a back surface, (b) a transparent laminate adjacent to at least
one of said front and back surfaces of the optical substrate, the transparent laminate
comprising (i) transparent thermoplastic photochromic polyurethane film, the polyurethane
film being prepared from polyurethane material selected from polycarbonate-based polyurethane,
and mixtures of polyether-based polyurethane and polycarbonate-based polyurethane,
and containing a photochromic amount of at least one organic photochromic material,
(ii) transparent polarizing film and (iii) transparent protective film of polymeric
material superposed on one of said polarizing film or photochromic polyurethane film.
[0005] Still further, the present invention relates to an optical article comprising (a)
a solid transparent optical substrate having a front surface and a back surface, (b)
a transparent laminate adjacent to at least one of said front and back surfaces of
the substrate, the transparent laminate comprising (i) a first transparent thermoplastic
polyurethane film, (ii) a transparent polarizing film, (iii) a second transparent
thermoplastic polyurethane film material selected from polyurethane material comprising
polycarbonate-based polyurethane, and mixtures of polyether-based polyurethane and
polycarbonate such polyurethane which second polyurethane film further provides a
further desired light filtering property, e.g., photochromism and/or tinting, and
(iv) transparent protective film of polymeric material superposed on said second transparent
thermoplastic polyurethane film, said polarizing film being interposed between the
first transparent polyurethane film and the second thermoplastic polyurethane film,
said first transparent polyurethane film being adjacent to the surface of said optical
substrate.
[0006] In a particular feature of the present invention, there is contemplated an optical
article comprising, in combination, (a) a solid transparent optical substrate having
a front surface and a back surface; (b) transparent, e.g., optically clear, thermoplastic
polyurethane film adjacent to at least one surface of the substrate; (c) polarizing
sheet or film appended to the surface of the polyurethane film of (b); (d) transparent,
thermoplastic photochromic polyurethane film appended to said polarizing sheet/film,
said photochromic polyurethane film containing a photochromic amount of at least one
organic photochromic material and being formed from polyurethane material selected
from polycarbonate-based polyurethane and mixtures of polyether-based polyurethane
and polycarbonate based polyurethane material; and (d) transparent protective film
of polymeric material superposed on said photochromic polyurethane film. If the polarizing
sheet/film does not absorb ultraviolet radiation, the order of placement of the photochromic
polyurethane film and the polarizing sheet/film can be reversed.
[0007] In a further contemplated embodiment of the present invention, there is contemplated
a high refractive index optical article comprising, in combination: (a) a transparent,
solid optical material substrate having a front surface and a rear surface, said substrate
having a refractive index of greater than 1.58, e.g., between 1.58 or 1.6 and 1.9;
(b) transparent, thermoplastic photochromic polyurethane film appended to at least
a portion of the surface of said high refractive index substrate, said polyurethane
film being formed from polyurethane material selected from polycarbonate-based polyurethane,
and mixture of polyether-based polyurethane and polycarbonate-based polyurethane and
containing a photochromic amount of at least one organic photochromic material; and
(c) transparent protective film of polymeric material superposed on said photochromic
polyurethane film.
[0008] A further contemplated feature of each of the aforedescribed embodiments and features
includes superposing an abrasion-resistant coating on the protective polymeric film.
In a still further contemplated feature of the present invention, at least one antireflective
layer or coating is superposed on the abrasion-resistant coating. Typically, the abrasion-resistant
coating is a coating comprising an organo-silane. Additional layers or coatings may
be juxtaposed to the abrasion-resistant coating and/or antireflective layer to provide
additional functional or protective properties to the optical article.
[0009] In recent years, optical articles, particularly optical articles for ophthalmic applications
that provide a light filtering function, have been the subject of considerable interest
and research. Light filtering functions, such as photochromism, polarization and tinting,
have been of particular interest. Clear plastic ophthalmic lenses that provide good
imaging qualities while reducing the transmission of incident light into the eye are
needed for a variety of applications, including use in sunglasses, fashion lenses,
non-prescription (plano) and prescription lenses (finished and semi-finished), sport
masks, face shields and goggles. In particular, photochromic ophthalmic plastic lenses
have been of interest because of the weight advantage they offer
vis-à-vis mineral glass lenses.
[0010] Photochromism is a phenomenon involving a reversible change in color of an organic
or inorganic photochromic material, e.g., a chromene or silver halide salt respectively,
or an article comprising such a photochromic material, when the photochromic material
(or article) is exposed to ultraviolet radiation. Sources that contain ultraviolet
radiation include, for example, sunlight and the light of a mercury lamp. When a photochromic
material is exposed to ultraviolet radiation, it changes color, and when the ultraviolet
radiation is discontinued, the photochromic material returns to its original color
or colorless state. Articles that have photochromic material(s) applied to, incorporated
in, or otherwise associated with it exhibit this reversible change in color and a
consequent reversible change in light transmission.
[0011] Polarized optical articles, such as polarized goggles and sun glasses for sport use,
which reduce the glare of reflected light, have also become of increasing interest
for outdoor activities. These articles include a glare-reducing material, e.g., a
linear molecularly oriented dichroic dye, e.g., iodine, in a synthetic resin material,
e.g., stretched (oriented) polyvinyl alcohol. Other means of filtering light through
an optical article include tinting the article, e.g., incorporating a coloring dye
into the matrix of the optical article or otherwise associating a dye with the article
so that the incident light passes through the dye before reaching the eye.
[0012] The mechanism believed to be responsible for the reversible change in color of organic
photochromic materials, i.e., the change in the absorption spectrum in the electromagnetic
spectrum of visible light (400-700 nm) that is characteristic of different types of
organic photochromic compounds, has been described. See, for example,
John C. Crano, "Chromogenic Materials (Photochromic)", Kirk-Othmer Encyclopedia of
Chemical Technology, Fourth Edition, 1993, pp. 321-332. The mechanism responsible for the reversible change in color for organic photochromic
compounds, such as indolino spiropyrans, indolino spirooxazines, naphthopyrans, particularly
indeno-fused naphthopyrans, is believed to involve an electrocyclic mechanism. When
exposed to activating ultraviolet radiation, these organic photochromic compounds
transform from a colorless closed ring compound into a colored open ring species.
In contrast, the electrocyclic mechanism responsible for the reversible change in
color of organic photochromic fulgide compounds is believed to be a transformation
from a colorless open ring form into a colored closed ring form.
[0013] Photochromic plastic articles have been prepared by incorporating the photochromic
material into the plastic substrate by surface imbibition techniques. See, for example,
U.S. Patents 5,130,353 and
5,185,390, which describe the inclusion of photochromic dyes into the subsurface region of
a plastic article, such as a lens, by first applying one or more photochromic dyes/compounds
to the surface of the article, either as the neat photochromic dye/compound or dissolved
in a polymeric or other organic solvent carrier, and then using heat to cause the
photochromic dye(s)/compounds to diffuse into the lens (a process commonly referred
to as "imbibition"). The plastic substrates of such photochromic plastic articles
are believed to have sufficient free volume and/or flexibility in the polymer matrix
to allow photochromic compounds, such as the aforementioned spirooxazines, spiropyrans,
naphthopyrans and fulgides, to convert from the colorless form of the compounds into
the colored form.
[0014] There are, however, certain polymer matrices that are believed not to have sufficient
free volume or flexibility to allow the aforedescribed electrocyclic mechanism to
occur sufficiently to permit commercial use of such polymer matrices as a substrate
for imbibed (or internally incorporated) photochromic materials. When used in that
manner, those polymer matrices do not produce commercially acceptable photochromic
articles. Typically, the article does not darken sufficiently to be a commercially
viable product, i.e., there is only a small change in optical density (Δ OD). Such
polymer matrices include, for example, thermoset polymer matrices prepared from diallyl
glycol carbonate monomers, such as diethylene glycol bis(allyl carbonate) and copolymers
thereof, and the commonly known thermoplastic bisphenol A-based polycarbonates. Mineral
glass, which is an inorganic matrix, also is not considered by those skilled in the
art to be useful as a substrate for internally incorporated organic photochromic materials.
[0015] It has been proposed to apply organic photochromic coatings to the surface(s) of
substrates such as mineral glass, thermoset polymers, thermoplastic polycarbonates
and highly cross-linked materials so that these materials may be used as substrates
for organic photochromic articles. See, for example,
U.S. Patent 6,187,444 B1, which describes the application of a photochromic polyurethane coating to plastic
and glass substrates. It has also been proposed to apply an abrasion-resistant coating
onto the exposed surface of the photochromic coating to protect the surface of the
photochromic coating from scratches and other similar defects resulting from physical
handling, cleaning, and exposure of the photochromic coating to the environment. See,
for example,
U.S. Patent 6,268,055 B1. The photochromic polyurethane coatings disclosed in
U.S. Patent 6,187,444 By are describe as having a Fischer microhardness of from 50 to 150 Newtons per square
millimeter, most preferably from 100 to 130 Newtons per square millimeter, in order
to demonstrate good photochromic properties and provide a coating that meets optical
coating cosmetic standards required by the optical industry. (Cosmetic standards include
the absence of defects such as spots, scratches, inclusions, cracks and crazing in
the coated lens.)
[0016] It has now been observed that the harder the photochromic coating, the slower are
the rate at which the coating darkens and the rate at which the coating fades, i.e.,
bleaches back to its original or clear state. It would therefore be desirable to provide
a photochromic article comprising a substrate that does not accommodate internally
incorporated organic photochromic materials, which article not only exhibits relatively
fast rates of darkening and fading, but which also is characterized by a large change
in optical density (Δ OD) from the bleached state to the darkened state.
[0017] It has now been discovered that an improved article, which provides at least one
light filtering property selected from photochromism, polarization and/or tinting,
can be prepared. In one embodiment of such discovery, an article that provides a light
filtering property selected from photochromism and/or tinting is prepared by placing
an appropriate (as later described) thermoplastic polyurethane film (which comprises
organic photochromic material and/or a tint or colored dye) adjacent to the surface
of a pre-formed substrate, e.g., attaching directly the polyurethane film to the substrate
(with or without a transparent adhesive), and superposing a protective polymeric film
or layer on the thermoplastic polyurethane film. The presence of the protective polymeric
film substantially eliminates the hardness requirement specified for the polyurethane
coating described in the aforementioned '444 patent. The polyurethane film and protective
film can be first laminated together and the resultant laminate placed on the surface
of the pre-formed substrate. In another method, a preformed laminate of the polyurethane
film and protective polymeric film is placed in a suitable mold, e.g., an optical
mold (the protective polymeric film being next to the mold surface), and the substrate
formed in-situ against the performed laminate by casting, injection molding, reaction
injection molding, etc. In a further feature, an abrasion-resistant coating is superposed
on the protective polymeric film, and in a still further feature, an antireflective
coating can be superposed on the abrasion-resistant coating.
[0018] In another embodiment, a polarizing sheet or film is interposed between the polyurethane
film and the protective polymeric film. In such an embodiment, the polarizing film
should not absorb ultraviolet radiation in amounts that interfere with the light filtering
mechanism associated with the polyurethane film, e.g., photochromism. In a further
contemplated embodiment, a thermoplastic polyurethane film, that may or may not possess
a light filtering property, is placed adjacent to the substrate followed sequentially
by a polarizing film/sheet, a thermoplastic photochromic polyurethane film and then
the protective polymeric film.
[0019] It has now also been discovered surprisingly that interference fringes caused by
the mismatch of a high refractive index substrate and a lower refractive index coating
that has been placed on such a substrate can be substantially eliminated by use of
the thermoplastic polyurethane film of the present invention in place of the low refractive
index coating, even though the refractive index of the thermoplastic polyurethane
film is lower than the refractive index of the substrate. It has also been discovered
that a laminate of the thermoplastic polyurethane film and protective polymeric film
can be used in place of the polyurethane film and still avoid interference fringes.
This discovery allows the facile preparation of photochromic articles that are substantially
free of interference fringes with high refractive index substrates. Typically, high
refractive index substrates, e.g., optical substrates, have a refractive index of
at least 1.58, e.g., from 1.58 or 1.60 to 1.75 or 1.9. Coatings having a refractive
index of less than 1.54 applied to such a high refractive index substrate result in
the aforedescribed interference fringes.
[0020] In accordance with the present invention, there is provided an article, e.g., an
optical article, comprising, in combination:
- (a) a transparent solid substrate having a front surface and a back surface;
- (b) transparent thermoplastic polyurethane film adjacent to at least one surface of
said solid substrate, the polyurethane film providing at least one desirable light
filtering property to said substrate and being formed from polyurethane material selected
from polycarbonate-based polyurethane and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane materials, and
- (c) transparent protective polymeric film superposed on said polyurethane film.
[0021] In accordance also with the present invention, there is contemplated the above-described
article further comprising an abrasion-resistant coating, such as a hard coating comprising
an organo-silane, superposed on the surface of the protective polymeric film. In a
still further embodiment of the present invention, there is contemplated an article
that has an antireflective coating superposed on the abrasion-resistant coating. Other
coatings, such as antistatic and/or anti-wetting coatings can also be applied to the
antireflective coating. In addition, the light filtering property provided by a tinting
dye can be associated with the optical article by adding such a dye to, for example,
the polyurethane film or by providing a separate resin layer (coating, film or sheet)
containing the tinting dye within the stack of functional films comprising the article.
[0022] In accordance with an embodiment of the present invention, there is contemplated
a photochromic optical article, e.g., an ophthalmic photochromic article, such as
a lens, comprising, in combination:
- (a) a transparent solid optical substrate having a front surface and a back surface,
- (b) transparent photochromic thermoplastic polyurethane film adjacent to at least
one surface of said optical substrate, said polyurethane film having been formed from
polyurethane material selected from polycarbonate-based polyurethane and mixtures
of polyether-based polyurethane and polycarbonate based polyurethane materials, and
wherein said polyurethane film contains at least one organic photochromic material,
and
- (c) transparent protective film of polymeric material superposed on said thermoplastic
polyurethane film.
[0023] It is further contemplated that the foregoing photochromic optical article may provide
a polarizing function in addition to the photochromic function, e.g., by combining
a polarizing layer, e.g., a sheet or film, with the polyurethane film. In a typical
embodiment, the polarizing layer is positioned between the polyurethane film and the
protective polymeric material if the polarizing layer is not a significant ultraviolet
light (UV) absorber. If the polarizing layer is a significant UV absorber, it is contemplated
that the polarizing layer is positioned between the surface of the substrate and the
photochromic polyurethane film.
[0024] In a further embodiment of the present invention, there is contemplated a photochromic
optical article, such as an ophthalmic article, comprising, in combination:
- (a) a transparent solid optical substrate having a front surface and a back surface;
- (b) transparent, e.g., optically clear, thermoplastic polyurethane film adjacent to
at least one surface of said optical substrate;
- (c) polarizing layer adjacent to said transparent polyurethane film (b);
- (d) transparent thermoplastic photochromic polyurethane film adjacent to the polarizing
layer, said thermoplastic polyurethane film having been formed from polyurethane material
selected from polycarbonate-based polyurethane and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane materials, said photochromic polyurethane film
further containing at least one organic photochromic material; and
- (e) transparent protective film of polymeric material superposed on said photochromic
polyurethane film.
Abrasion-resistant coatings and antireflective coatings may be superposed on the protective
film, as described previously.
[0025] In a still further embodiment of the present invention, there is contemplated a high
refractive index optical article, e.g., an ophthalmic lens, comprising, in combination:
- (a) a transparent solid optical substrate having a refractive index of at least 1.58,
e.g., from 1.58 or 1.6 to 1.9, usually from 1.60 to 1.75;
- (b) transparent thermoplastic polyurethane film adjacent to at least one surface of
the said optical substrate, said polyurethane film providing at least one desired
light filtering property to said substrate and being prepared from polyurethane material
selected from polycarbonate-based polyurethane materials and mixtures of polyether-based
polyurethane and polycarbonate-based polyurethane materials; and
- (c) transparent protective film of polymeric material superposed on said thermoplastic
polyurethane film.
As with other embodiments, an abrasion-resistant coating may be superposed on said
protective polymeric film, and antireflective coatings may be superposed on said abrasion-resistant
coating.
[0026] In a particular embodiment of the present invention, there is contemplated a photochromic
optical article comprising, in combination:
- (a) a transparent solid organic plastic substrate, such as a thermoset substrate prepared
from a polymerizable composition comprising an allyl glycol carbonate, e.g., diethylene
glycol bis(allyl carbonate), a substrate prepared from thermoplastic polycarbonate,
substrates prepared from polyurea urethanes, and substrates prepared from compositions
comprising the reaction product of polyfunctional isocyanate(s) and polythiol or polyepisulfide
monomers(s), the plastic substrate having a front surface and a back surface;
- (b) transparent thermoplastic photochromic polyurethane film appended to at least
one surface of said optical substrate, said polyurethane film containing a photochromic
amount of at least one organic photochromic material and being prepared from polyurethane
material selected from polycarbonate-based polyurethane and mixtures of polyether-based
polyurethane and polycarbonate-based polyurethane materials; and
- (c) transparent protective film of polymeric material superposed on said polyurethane
film.
[0027] In another particular embodiment of the present invention, there is contemplated
a photochromic optical article comprising, in combination:
- (a) a transparent solid high refractive index substrate, such as an organic plastic
substrate or a glass substrate, said substrate having a refractive index of, for example,
from 1.58 to 1.9;
- (b) transparent thermoplastic polyurethane film appended to at least one surface of
said substrate, the polyurethane film containing at least one organic photochromic
material; and
- (c) transparent protective film of polymeric material appended to said polyurethane
film.
[0028] The articles of the present invention can be prepared by several methods. One contemplated
method comprises the steps of:
- (a) providing a preformed transparent solid optical substrate having a front surface
and a back surface,
- (b) providing a preformed laminate comprising a ply of transparent thermoplastic polyurethane
film and a ply of a transparent protective polymeric film, the polyurethane film providing
at least one desired light filtering property and being formed from polyurethane material
selected from polycarbonate-based polyurethane and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane materials, the laminate being of a size sufficient
to cover the selected surface(s) of the substrate and which conforms to or is conformable
to the shape of said selected surface(s),
- (c) placing the laminate adjacent to the selected surface(s) of the substrate, e.g.,
placing the polyurethane ply of the laminate in contact with the selected surface(s)
of the substrate, and
- (d) press forming the laminate against the substrate under conditions of heat and
pressure to adhere the laminate to the substrate.
[0029] The foregoing method can be modified to prepare articles having a polarizing function.
In the modified method, a polarizing film/sheet is positioned between the polyurethane
film and the protective film. In a case where the light filtering property is photochromism
and the polarizing film/sheet absorbs a significant amount of UV radiation, the polarizing
film/sheet is placed in front of the polyurethane film, i.e., adjacent to the surface
of the preformed solid substrate. In a further modification of the foregoing method,
the preformed laminate can comprise a stack comprising a ply of transparent thermoplastic
polyurethane film (with or without photochromic or tint materials), polarizing sheet
or film, thermoplastic transparent photochromic film and protective polymeric film.
[0030] Another contemplated method for preparing articles of the present invention comprises
the steps of:
- (a) providing a preformed laminate comprising, for example, a ply of transparent thermoplastic
polyurethane film and a ply of transparent protective polymeric film, the polyurethane
film providing at least one light filtering property, and being formed from polyurethane
material selected from polycarbonate-based polyurethane and mixtures of polyether-based
polyurethane and polycarbonate-based polyurethane materials, the laminate being of
a size sufficient to cover the selected surface of the optical article formed in step
(e),
- (b) providing a mold designed for preparing articles of a desired size and shape,
the mold having a first element, a second element and a cavity between such elements,
- (c) placing the laminate within the mold and against at least one of the mold surfaces
of the first element or the second element that face the cavity, the protective polymeric
film being adjacent to the surface of the first or second element,
- (d) injecting polymerizable resin capable of a forming a solid transparent plastic
article into the cavity of the mold, and
- (e) curing the polymerizable resin, thereby to form a composite transparent plastic
article comprising a transparent plastic substrate, which has the laminate attached
to at least one surface of the substrate.
[0031] The foregoing methods are particularly useful for preparing optical articles, e.g.,
lenses by the use of optical molds, preformed optical substrates, polymerizable optical
resins, etc. Certain polymerizable resins, e.g., polyurea urethanes, form quickly
the desired substrate due to the speed at which the polymerization reaction occurs.
In some instances, the curing step (e) in the above-described second contemplated
method can involve a thermal post reaction step to allow the molded substrate to cure
fully, i.e., a thermal post cure. The thermal post cure typically involves placing
the molded plastic substrate (with or without the mold) in an oven maintained at a
desired temperature for a short time. As in a previously described method, the laminate
placed in the mold may contain also a polarizing film/sheet between the polyurethane
film and the protective film in the manner discussed, and the laminate may be a modified
laminate, as in a previously described method.
[0032] In the case of optical substrates having a high base curve, e.g., a base curve of
greater than 4, the preformed laminate is shaped to the curvature of the optical substrate
(or the shape of the concave surface of the optical mold when the optical substrate
is formed
in-situ) using heat and possible some positive pressure to conform the laminate to the surface
of the substrate (or mold) before final preparation of the optical article.
DETAILED DESCRIPTION OF THE INVENTION
[0033] Substrates useful in preparing the articles of the present invention include transparent
mineral glass, e.g., mineral glass useful for optical applications, and transparent
plastic substrates, i.e., polymeric organic substrates that are transparent, e.g.,
optically clear. The substrate is solid and has a first surface and second surface,
usually denoted as a front surface and a back surface. In certain embodiments of the
methods used to prepare the articles of the present invention, the substrate is pre-formed.
In other embodiments of such methods, the substrate is formed
in-situ during preparation of the articles of the present invention, i.e., the substrate
is prepared by casting, injection molding, reaction injection molding or other equivalent
processes, in the presence of a laminate comprising the thermoplastic polyurethane
film and the protective polymeric protective film. When the substrate is an ophthalmic
article, e.g., a lens, the article will typically have a convex surface and a concave
surface (either pre-formed or formed
in-situ by the respective concave and convex surfaces of the optical mold in which the substrate
is formed): The substrate provides the principal optical power and/or magnification
characteristics of the optical article. The substrate of the present invention may
be machined (ground) to modify the focal power of the article, e.g., a lens, to a
desired prescription.
[0034] It is contemplated that the articles of the present invention can be used for a variety
of applications. In particular, it is contemplated that such articles will be used
in optical applications. As used in this description and accompanying claims, the
terms "optical", "optical applications", "optical article" or terms of like import
are meant to include those applications relating to or concerned with an individual's
vision, e.g., an individual's ability to view objects. Non-limiting examples of optical
applications include ophthalmic applications, such as plano (without optical power)
and vision correcting (prescription) lenses (finished and semi-finished) including
multifocal lenses (bifocal, trifocal, and progressive lenses), sun lenses, fashion
lenses, sport masks, face shields and goggles; commercial and residential windows;
architectural glazing, automotive and aircraft transparencies such as windshields,
windshield visors and sun roofs; helmets, plastic sheeting, clear films, automatic
teller machine screens, etc. By the term "transparent" or optically clear, as used
in this disclosure and claims in connection with a substrate for an article, sheet,
film or coating, is meant that the indicated substrate, sheet, film or coating has
a light transmission of at least 70%, preferably at least 80%, and more preferably
at least 85%.
[0035] Other than in the operating examples, or where otherwise indicated, all values, such
as those expressing wavelengths, quantities of materials, recited ranges, percentages,
reaction conditions, etc. used in this description and the accompanying claims are
to be understood as modified in all instances by the term "about". When a series of
recited ranges are used, the range can be between any combination of the specific
values stated for the range, inclusive of the recited values.
[0036] Polymeric organic substrates that may be used in preparing optical articles of the
present invention are any known (or later discovered) transparent plastic materials
that are useful as substrates for optical applications, such as ophthalmic applications,
e.g., lenses. Such plastic materials are prepared from art-recognized organic optical
resins, which are used, for example, to prepare castings of optical quality, e.g.,
transparent, particularly, optically clear, castings.
[0037] Any conventional transparent mineral glass used for optical applications, i.e., glass
of optical quality, can be used as a substrate to prepare the optical articles of
the present invention. The glass substrate can be made of colorless or tinted mineral
glass provided that the mineral glass meets the herein described transparency requirement.
Such glass elements are available commercially, e.g., from Coming Incorporated, Coming
New York under the designation 0211. Glass used for automotive, and residential and
commercial window applications is commercially available from any number of manufacturers.
[0038] Non-limiting examples of organic substrates that may be used to prepare optical articles
of the present invention are the polymers, i.e., homopolymers and copolymers, of the
monomers and mixtures of monomers disclosed in
U.S. Patent 5,962,617, and in column 15, line 28 to column 16, line 17 of
U.S. Patent 5,658,501. Such organic substrates can be thermoplastic or thermoset polymeric substrates that
have a refractive index that typically ranges from 1.48 to 1.90, e.g., from 1.48 to
1.75, more typically, from 1.50 to 1.67.
[0039] High refractive index substrates, i.e., substrates having a refractive index of at
least 1.58, e.g., from 1.58 or 1.6 to 1.9, usually from 1.60 to 1.75, can be used
in the present invention without concern for producing optical articles that exhibit
interference fringes caused by the meaningful difference in refractive indices of
the high index substrate and a lower index layer, e.g., the thermoplastic polyurethane
film of the present invention, which is superposed, e.g., superimposed, on the optical
surface of the high refractive index optical substrate. Such high refractive index
substrates may be prepared from mineral glass or organic polymeric materials. In accordance
with the present invention, an optical article that is substantially free of interference
fringes is contemplated. This optical article comprises, in combination, a high retroactive
index optical substrate (as described herein) and either (a) the thermoplastic polyurethane
films, (b) a laminate of the thermoplastic polyurethane film and protective polymeric
film, or (c) a laminate of the thermoplastic polyurethane film, polarizing film, and
protective polymeric film (all of the present invention) that is superposed on the
optical surface of the optical article, e.g., placed directly upon the high index
substrate.
[0040] Examples of the monomers and polymers referred to in the aforementioned
U.S. Patents 5,962,617 and
5,658,501 include, but are not limited to, polyol(allyl carbonate) monomers, e.g., diethylene
glycol bis(allyl carbonate), which monomer is sold under the trademark
CR-39 by PPG Industries, Inc; polyurea-polyurethane (polyurea urethane) polymers, which
are the reaction product of a polyurethane prepolymer and a diamine curing agent,
a composition for one such polymer being sold under the trademark
TRIVEX by PPG Industries, Inc; polyol(meth)acryloyl terminated carbonate monomer; diethylene
glycol dimethacrylate monomers; ethoxylated phenol methacrylate monomers; diisopropenyl
benzene monomers; ethoxylated trimethylol propane triacrylate monomers; ethylene glycol
bismethacrylate monomers; poly(ethylene glycol) bismethacrylate monomers; urethane
acrylate monomers; poly(ethoxylated bisphenol A dimethacrylate); poly(vinyl acetate);
poly(vinyl alcohol); poly(vinyl chloride); poly(vinylidene chloride); acrylonitrile-styrene
copolymers; cellulose acetate; epoxy resins; polyethylene; polypropylene; polyurethanes;
polythiourethanes; thermoplastic polycarbonates, such as the carbonate-linked resin
derived from bisphenol A and phosgene, such as the material sold under the trademark
LEXAN; polyesters, such as the material sold under the trademark
MYLAR; poly(ethylene terephthalate); polyvinyl butyral; poly(methyl methacrylate) and its
copolymers, such as the material sold under the trademark
PLEXIGLAS, and polymers prepared by reacting polyfunctional isocyanates with polythiols or
polyepisulfide monomers, either homopolymerized or co-and/or terpolymerized with polythiols,
polyisocyanates, polyisothiocyanates and optionally ethylenically unsaturated monomers
or halogenated aromatic-containing vinyl monomers. Also contemplated are art-recognized
copolymers of such monomers, and blends of the described polymers and copolymers with
other polymers, e.g., to form interpenetrating network products. The exact chemical
make-up of the organic substrate is not critical to the present invention.
[0041] Of particular interest as a substrate are those optical resin materials prepared
from compositions comprising polyol(allyl carbonate) monomers, polyurea urethanes
and thermoplastic polycarbonates. These materials are known in the art for the production
of transparent substrates useful for the preparation of articles of optical quality,
e.g., ophthalmic articles such as lenses. Polyol(allyl carbonate) monomers, such as
diethylene glycol bis(allyl carbonate), and compositions comprising such monomers
are commercially available from PPG Industries, Inc. Non-limiting examples of such
compositions include resin compositions sold under the designations CR-39® CR-307,
CR-407 and CR-607 by PPG Industries, Inc.
[0042] Transparent thermoplastic polycarbonates useful for optical articles, such as lenses
and glazing applications, and resins for preparing such transparent thermoplastic
polycarbonates are known in the art. Examples of such polycarbonates are homopolycarbonates,
copolycarbonates, branched polycarbonates, and mixtures thereof. Also included are
blends of polycarbonates and polyesters, e.g., polycaprolactone, such as described
in
U.S. Patent 5,998,520. The polycarbonates are generally aromatic polycarbonates having a weight average
molecular weight of from 10,000 to 200,000, e.g., 20,000 to 80,000, and a melt flow
rate, as measured by ASTM D-1238 at 300°C, of from 1 to 65 g/10 min., preferably from
2 to 15 g/10 min. The aforedescribed polycarbonates may be prepared from a carbonic
acid derivative, such as phosgene, and dihydroxy compounds by polycondensation using
the known diphasic interfacial process. See, column 2, line 55 to column 4, line 47
of the aforementioned '520 U. S. Patent for a description of suitable dihydroxy compounds,
the most preferred of which is 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A). Such
disclosure is incorporated herein by reference.
[0043] Suitable polycarbonate resins that are commercially available include, for example,
MAKROLON FCR 2400, MAKROLON CD 2005, MAKROLON 2600, MAKROLON 2800 and MAKROLON 3100,
all of which are bisphenol-based homopolycarbonate resins of varying molecular weights
and melt flow indices. A branched polycarbonate, such as MAKROLON 1239, can also be
used. See also
U.S. Patents 3.030,331;
3,169,121;
3,395,119;
3,729,447;
4,225,556;
4,260,731;
4,369,303 and
4,714,746 for descriptions of useful polycarbonates and their methods of preparation. The disclosures
of such patents are incorporated herein by reference.
[0044] Transparent, non-elastomeric polyurea urethanes useful for architectural glazings,
vehicle transparencies, e.g., sidelights and backlights, aircraft canopies, face masks,
visors, ophthalmic lenses and sun lenses have been described in the art. See, for
example,
U.S. Patent 6,127,505. These polyurea urethanes are described as having good optical clarity, good ballistic
properties, high chemical resistance and high heat distortion temperatures. Polyurea
urethanes are prepared from one or more polyols having greater than one hydroxyl group
per molecule, e.g., a dihydroxy polyol, at least one polyisocyanate having greater
than one isocyanato group per molecule, e.g., a diisocyanate, and at least one polyamine
having more than one amino group per molecule, e.g., a diamine. Optionally, a polyol
having greater than two hydroxyl groups per molecule is also used as a reactant. The
term "non-elastomeric", as used with respect to the polyurea urethane, means that
the referenced article cannot be stretched to twice its length and then return to
its original length when the tension is released.
[0045] Typically, the polyurea urethane is prepared by the prepolymer method. In such method,
at least one polyol, e.g., polyester polyol, polycaprolactone polyol, polyether polyol,
polycarbonate polyol or mixtures of such polyols, each of which polyols have a weight
average molecular weight of from 400 to 2000, e.g., 400 to 1000, is reacted with a
polyisocyanate in an equivalent ratio that provides from 2.5 to 4.0 isocyanato (NCO)
groups for each hydroxyl (OH) group, thereby to form the prepolymer having free isocyanate
groups. This prepolymer is then reacted with at least one polyamine compound in an
equivalent ratio of from 0.85 to 1.02 amino (NH
2) groups to 1.0 isocyanato (NCO) group, usually from 0.90 to 1.0 amino groups to 1.0
isocyanato group, more usually from 0.92 to 0.96 amino groups to 1.0 isocyanato group.
The polyurea urethanes may also be prepared by the one shot or quasi-prepolymer methods.
In the one shot method, all of the reactants are mixed together at one time. In the
quasi-prepolymer method, 30 to 80 percent of the total amount of polyol reactant is
reacted with the polyisocyanate to form a prepolymer, and then the remaining 20 to
70 percent of the polyol reactant is added to the prepolymer with the polyamine curing
agent.
[0046] Polyester polyols that have been found suitable for preparing the polyurea urethane
include the esterification product of one or more saturated dicarboxylic acids having
from 4 to 10, preferably 6 to 9, carbon atoms, such as adipic, succinic and sebacic
acids, with a stoichiometric excess of one or more low molecular weight glycols having
from 2 to 10, e.g., 4 to 8, carbon atoms, such as ethylene glycol, propylene glycol,
diethylene glycol, 1,4-butane diol, neopentyl glycol, 1,6-hexane diol and 1,10-decane
diol so as to produce a hydroxyl terminated product. Examples of specific polyester
polyols are the esterification products of adipic acid with glycols having from two
to ten carbon atoms. Polycaprolactone glycols include the reaction products of epsilon-caprolactone
with one or more of the aforementioned low molecular weight glycols. See also the
later discussion with respect to polyester polyols used to prepare polyurethanes for
the polymeric protective film. Polyether polyols include those mentioned hereinafter
with respect to the thermoplastic polyurethane film, e.g., polytetramethylene glycol.
Polycarbonate polyols include aliphatic polycarbonate glycols, such as those mentioned
hereinafter with respect to the thermoplastic polyurethane film. The aforementioned
polyols are well known to those skilled in the art and many are commercially available
from manufacturers such as Ruco Polymer Corp., Solvay Interox and Enichem.
[0047] Small amounts of a tri-functional or higher functional polyol, e.g., a triol, may
be added to the prepolymer to produce a small amount of cross-linking, e.g., one percent,
in the polyurea urethane. Generally, from 4 to 8 weight percent of such a polyol,
e.g., triol, basis the total weight of the reactants, is sufficient to produce the
desired level of cross-linking. Triols that are useful include trimethylol ethane
and trimethylol propane. These multifunctional polyols are commercially available.
Various other additives, such as antioxidants, ultraviolet stabilizers, color blockers,
optical brighteners and mold release agents, may also be added to the prepolymer prior
to its reaction with the polyamine compound.
[0048] Polyisocyanates useful in the preparation of the polyurea urethane are numerous and
widely varied. Non-limiting examples of types of polyisocyanates include aliphatic
polyisocyanates, cycloaliphatic polyisocyanates wherein one or more of the isocyanato
groups are attached directly to the cycloaliphatic ring, cycloaliphatic polyisocyanates
wherein one or more of the isocyanato groups are not attached directly to the cycloaliphatic
ring, aromatic polyisocyanates wherein one or more of the isocyanato groups are attached
directly to the aromatic ring, and aromatic polyisocyanates wherein one or more of
the isocyanato groups are not attached directly to the aromatic ring. When an aromatic
polyisocyanate is used, care should be taken to select a material that does not cause
the polyurea urethane to color, e.g., yellow.
[0049] A particularly contemplated polyisocyanate is the cycloaliphatic diisocyanate, 4,4'-methylene
bis(cyclohexyl isocyanate), which is commercially available from Bayer Corporation
under the designation DESMODUR W. 4,4'-methylene bis(cyclohexyl isocyanate) is available
as
trans-trans, cis-cis, and
cis-trans isomers. Usually, this diisocyanate product is sold as a mixture of the isomers.
The isomer ratio of [DESMODUR W is reported by Bayer Corp. to be 17-24 weight percent
of the
cis-cis isomer, 47-54 weight percent of the
cis-trans isomer, and 17-24 weight percent of the
trans-trans isomer. Other suitable polyisocyanates are described hereinafter in connection with
the disclosure of isocyanates with respect to the thermoplastic polyurethane film
material, and such disclosure is incorporated herein by reference.
[0050] Although no catalyst is required during prepolymer formation, the use of a catalyst
is often desirable. When a catalyst is used, organometallic catalysts, such as for
example, the organometallic tin, lead, iron, bismuth, or mercury compounds are used.
Organotin compounds such as dibutyltin dilaurate are particularly useful. Catalyst
concentration is typically in the range of from 25 to 1000 parts by weight of catalyst
to one million parts of total reactants.
[0051] The polyamine curing agent has more than one amino group per molecule, each amino
group being independently selected from primary amino (-NH
2) and secondary amino (-NH-) groups. Such polyamines are numerous and widely varied,
and many are commercially available from Albemarle Corp. under the ETHACURE tradename,
and from Lonza Ltd. under the LONZACURE tradename. In one contemplated embodiment,
the amino groups are all primary groups. The polyamine curing agent can be selected
from aliphatic polyamines, cycloaliphatic polyamines, aromatic polyamines, and mixtures
of such polyamines. It is useful if the amine has a relatively low color and/or be
manufactured and/or stored in such a manner as to prevent the amine from developing
a color, e.g., from yellowing, in order to produce a polyurea urethane that has a
low color.
[0052] Non-limiting examples of polyamine curing agents include aliphatic diamines having
from 2 to 10 carbon atoms, such as 1,2-ethane diamine; 1,3-propane diamine, 1,4-butane
diamine, 1,5-pentane diamine, 1,6-hexane diamine, 1,8-octane diamine, and 1,10-decane
diamine; aromatic diamines, such as 1,2-benzene diamine, 1,3-benzene diamine, 1,4-benzene
diamine, 1,5-naphthalene diamine, 1,8-naphthalene diamine, 2,4-toluene diamine, 2,5-toluene
diamine, 3,3'-dimethyl-4,4'-biphenyldiamine, 4,4'-methylene bis(aniline), 4,4'-methylene
bis(2-chloroaniline) and dialkyl toluene diamines in which the alkyl groups each contain
from 1 to 3 carbon atoms, such as 3,5-dimethyl-2,4-toluene diamine, 3,5-dimethyl-2,6-toluene
diamine, 3,5-diethyl-2,4-toluene diamine, 3,5-diethyl-2,6-toluene diamine, 3,5-diisopropyl-2,4-toluene
diamine, and 3,5-diisopropyl-2,6-toluene diamine. The dialkyl toluene diamines typically
are sold as isomeric mixtures, e.g., an isomeric mixture of 3,5-diethyl-2,4-toluene
diamine and 3,5-diethyl-2,6-toluene diamine. Other amines than can be mentioned include
4,4'-methylene-bis(dialkylaniline) in which the alkyl groups each contain from 1 to
3 carbon atoms, such as 4,4'-methylene bis(2,6-dimethylaniline), 4,4'-methylene bis
(2,6-diethylaniline), 4,4'methylene bis(2-ethyl-6-methylaniline), 4,4'-methylene bis(2,6-diisopropylaniline),
4,4'-methylene bis(2-isopropyl-6-methylaniline) and 4,4'-methylene bis(2,6-diethyl-3-chloroaniline).
The polyamines may contain more than two amino groups, such as diethylenetriamine,
triethylenetetramine and tetraethylenepentamine.
[0053] The polyurea urethane can be prepared by casting or compression molding methods.
Typically, it is prepared by reaction injection molding methods, e.g., by injecting
the prepolymer composition and polyamine curing agent into a mold and curing the reaction
mixture. In a contemplated method, the prepolymer is first prepared by reacting the
polyisocyanate(s) and the polyol(s) used in an NCO/OH equivalent ration in the range
of from 1.3:1 to 4.5:1, e.g., 2.4:1 or 2.7:1 to 4:1, at temperatures of from 40 °C
to 145 °C, e.g., 70 °C to 135 °C or 90 °C to 130 °C, under a blanket of nonreactive
gas, such as nitrogen or helium. Inasmuch as the isocyanate compound is used in excess,
the prepolymer is an isocyanate terminated product. Reaction times will vary with
the reaction temperature. Generally, the higher the temperature, the shorter the reaction
times required. Reaction times at the aforedescribed temperatures will generally vary
from 3 minutes to 24 hours, e.g., 10 to 60 minutes. Subsequent to the initial reaction,
the molded polyurea urethane may be post-cured by heating it in an oven for several
hours, e.g., at 90 to 130 °C for 0.5 to 10 hours, e.g., 1 to 5 hours.
[0054] The polyurethane film attached to at least one surface of the transparent optical
substrate is transparent and thermoplastic, i.e., the polyurethane film is formable
by moderate heat and pressure. Typically, the polyurethane film is substantially colorless
and optically clear, as opposed to translucent or opaque. Mildly cross-linked thermoset
polyurethanes, i.e., polyurethanes that are not highly cross-linked, are often termed
pseudo-thermoset materials because they are formable by mild heat and pressure. Such
pseudo-thermoset materials are intended to be included in the definition of "thermoplastic"
for purposes of this disclosure relative to the polyurethane film. When used alone
(or as part of a multi-ply laminate), the polyurethane film will typically have a
thickness of from 1 to 20 mils [0.001 to 0.020 inches] (0.025 to 0.5 mm), more typically
from 2 to 15 mils (0.05 to 0.375 mm), and still more typically from 3 or 3.5 to 10
mils (0.075 or 0.0875 to 0.25 mm), e.g., 7 mils (0.175 mm).
[0055] The average flexural modulus, of the thermoplastic polyurethane film will typically
be less than 2.5 GPa (giga pascals), more typically, less than 1, and still more typically
less than 0.5, e.g., less than 0.05 GPa. The flexural modulus of a material is the
ratio of stress to strain when the material is placed in flexural deformation. The
procedure for measuring the flexural modulus (flex modulus) of a material is described
in the test method ASTM D790 (American Society for Testing Materials). ASTM D790 is
a method to measure the flexural strength of a material; namely, the ability of a
material, i.e., the thermoplastic polyurethane film, to resist deformation under a
load. In this test method, the specimen is placed on two supports and a load is applied
at the center. The specimen is under compressive strength at the concave surface and
tensile stress at the convex surface. For materials that do not break, the load at
yield (the measure of a materials flexural strength or flexural yield) is typically
measured at 5% deformation/strain of the outer surface. Further, the thermoplastic
polyurethane film will have an instantaneous Shore A hardness value of less than 65,
e.g., between 50 and 65. Determination of the Shore A hardness of a material is described
in ASTM D 1706 and D 2240 test methods. These methods use a durometer for measuring
the indentation hardness of a material. In the test, the depth of indentation under
load is measured when a hardened steel indentor is forced into a specimen by means
of a calibrated spring. The scale is graduated and has a value from 0 to 100.
[0056] As is well known in the art, polyurethanes are those materials that are produced
by the catalyzed or uncatalyzed reaction of (a) an organic polyol component having
a nominal functionality of from 2 to 4, (b) an organic glycol component, i.e:, diols
and/or triols, which has a nominal functionality of from 2 to 3, and (c) a polyisocyanate
component having a nominal functionality of from 2 to 3. The organic polyol component
and the organic glycol component can each comprise a mixture of two or more organic
polyols or two or more organic glycols. The polyisocyanate component may also comprise
a mixture of two or more isocyanates. The thermoplastic polyurethane film of the present
invention is prepared from the organic polyol component(s), comprising a polycarbonate
polyol and a mixture of a polyether polyol and a polycarbonate polyol. Minor amounts,
i.e., less than 49 weight percent, more usually less than 35 weight percent, e.g.,
less than 25 weight percent, as for example from 0.5 to 20 weight percent, of polyester
polyol can be included in the organic polyol component, thereby to include polyester-based
polyurethane in the thermoplastic polyurethane film. However, it has been observed
that in the embodiment where the light filtering property is photochromism, the photochromic
materials exhibit an increased rate of fatigue when the principal or primary organic
polyol used to prepare the thermoplastic polyurethane film is a polyester polyol.
Consequently, the amount of polyester polyol included should be insufficient to adversely
affect the fatigue rate of the Photochromic material. As used in this description
and the accompanying claims, the terms polycarbonate-based polyurethane material and
mixture of polyether-based polyurethane and polycarbonate-based polyurethane is intended
to mean that the polyurethane film is prepared using as the principal organic polyol
component one or more and mixtures of polyether polyols and polycarbonate polyols
polycarbonate polyols.
[0057] Polyether polyols and methods for their preparation are well known to those skilled
in the art. Many polyether polyols of various types and molecular weight are commercially
available from various manufacturers. Polyether polyols that can be used to prepare
the thermoplastic polyurethane of the present invention generally have a number average
molecular weight of from 500 to 3000, more usually from 650 to 2000, and preferably
from 650 to 1400, e.g., from 850 to 1000 or 1200. The number average molecular weight
of the polyether polyol can range between any of the enumerated molecular weights.
[0058] Non-limiting examples of polyether polyols include polyoxyalkylene polyols, and polyalkoxylated
polyols. Polyoxyalkylene polyols can be prepared in accordance with well known methods
by condensing an alkylene oxide, or a mixture of alkylene oxides, using acid or base
catalyzed addition with a polyhydric initiator or a mixture of polyhydric initiators,
such as ethylene glycol, propylene glycol, glycerol, sorbitol and the like. Illustrative
alkylene oxides include ethylene oxide, propylene oxide, butylene oxide, amylene oxide,
aralkylene oxides, e.g., styrene oxide, mixtures of ethylene oxide and propylene oxide,
etc. Polyoxyalkylene polyols prepared with mixtures of alkylene oxide can be prepared
using random or step-wise oxyalkylation. Examples of such polyoxyalkylene polyols
include polyoxyethylene, i.e., polyethylene glycol, polyoxypropylene, i.e., polypropylene
glycol.
[0059] Polyalkoxylated polyols may be represented by the following general formula I,

Wherein m and n are each a positive number, the sum of m and n being from 5 to 70,
R
1 and R
2 are each hydrogen, methyl or ethyl, preferably hydrogen or methyl, and A is a divalent
linking group, e.g., a straight or branched chain alkylene (usually containing from
1 to 8 carbon atoms, phenylene, and C
1 to C
9 alkyl substituted phenylene. The chosen values of m and n will, in combination with
the chosen divalent linking group, determine the molecular weight of the polyol. Polyalkoxylated
polyols may be prepared by methods that are will know in the art. One such commonly
used method involves reacting a polyol, e.g., 4,4'-isopropylidenediphenol, with an
oxirane containing substance, e.g., ethylene oxide, propylene oxide, a butylene oxide,
to form what is commonly referred to as an ethoxylated, propoxylated or butoxylated
polyol having hydroxy functionality. Examples of polyols that may be used in preparing
polyalkoxylate polyols include those polyols described in
U.S. Patent 6,187,444 B1 at column 10, lines 1-20.
[0060] As used herein, the term polyether polyols also include the generally known poly(oxytetramethylene)diols
prepared by the polymerization of tetrahydrofuran in the presence of Lewis acid catalysts,
such as boron trifluoride, tin(IV) chloride and sulfonyl chloride. Also included are
the polyethers prepared by the copolymerization of cyclic ethers, such as ethylene
oxide, propylene oxide, trimethylene oxide, and tetrahydrofuran with aliphatic diols
such as ethylene glycol, 1,3-butanediol, 1,4-butanediol, diethylene glycol, dipropylene
glycol, 1,2-propylene glycol and 1,3-propylene glycol. Compatible mixtures of polyether
polyols may also be used. Those skilled in the art will appreciate that the term "compatible"
means that the polyols are mutually soluble in each other so as to form a single phase.
[0061] Polycarbonate polyols are known in the art and are commercially available e.g., Ravecarb
™ 107 (Enichem S.p.A.). These materials may be produced by the reaction of an organic
glycol, e.g., a diol, such as those described hereinafter and in connection with the
glycol component of the polyurethane, and a dialkyl carbonate, as described in
U.S. Patent 4,160,853. Of particular utility is polyhexamethylene carbonate, i.e., H-(O-C(O)-O-(CH
2)
6n-OH, wherein n is a positive number of from 4 to 24, e.g., 4 to 10 or 5 to 7. The
number average molecular weight of the polycarbonate polyols can range from 500 to
3500, e.g., 650 to 1000. The particular value ofn will determine the molecular weight
of the polyhexamethylene carbonate.
[0062] The organic glycol component comprises low molecular weight polyols, i.e., polyols
having a molecular weight of less than 500. These polyols are typically low molecular
weight diols and triols. Mixtures of compatible organic glycols can be used. By compatible
is meant that the glycols are mutually soluble in each other so as to form a single
phase. Care should be taken that the amount of triol used as part of the organic glycol
component avoids a high degree of cross-linking in the polyurethane, with the consequent
preparation of a thermoset polyurethane that is not formable by moderate heat and
pressure. The organic glycol component typically contains from 2 to 16, e.g., 2 to
6 or 10, carbon atoms. Non-limiting examples of such glycols include: ethylene glycol,
propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene
glycol, tripropylene glycol, 1,2-, 1,3- and 1,4-butanediol, 2,2,4-trimethyl-1,3-pentanediol,
2-methyl-1,3-pentanediol, 1,3-, 2,4- and 1,5-pentanediol, 2,5- and 1,6-hexanediol,
2,4-heptanediol, 2-ethyl-1,3-hexanediol, 2,2-dimethyl-1,3-propanediol, 1,8-octanediol,
1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,2-bis(hydroxyethyl)-cyclohexane,
glycerin, tetramethylolmethane, i.e., pentaerythritol, trimethylolethane, and trimethylolpropane.
Other isomers of the foregoing described glycols may also be used. The amount of the
organic glycol component used in relation to the polyether polyol and/or polycarbonate
polyol component may vary from 3 to 20 weight percent.
[0063] The isocyanate component is supplied by one or more organic isocyanates having a
nominal functionality of from 2 to 3, preferably 2. The isocyanate component includes
modified, unmodified and mixtures of modified and unmodified isocyanate compounds
having free, blocked or partially blocked isocyanate groups. The term modified means
that the isocyanate is changed in a known manner to introduce biuret, urea, carbodiimide,
urethane or isocyanurate groups. Fully blocked isocyanates are described in
U.S. Patent 3,984,299 (column 1, line 57 through column 3, line 15). Partially blocked isocyanates are
described in
U.S. Patent 3,947,338 (column 2, line 65 to column 4, line 30). The organic isocyanate may be selected
from aliphatic, cycloaliphatic , and mixed aliphatic-aromatic isocyanates. Mixtures
of such isocyanates may be used.
[0064] The isocyanate component can be selected from aliphatic isocyanates, cycloaliphatic
isocyanates, blocked aliphatic isocyanates, blocked cycloaliphatic isocyanates and
mixtures of such isocyanates. Non-limiting examples of suitable isocyanate components
include tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, 2,2,4-trimethylhexane-1,6-diisocyanate,
cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate,
methyl cyclohexyl diisocyanate, e.g., 2,4- and 2,6-methyl cyclohexyl diisocyanate,
isophorone diisocyanate, the isomers and mixtures of isomers of 4,4'-methylene-bis(cyclohexyl
isocyanate), i.e., the
trans-trans, cis-cis and cis-trans isomers, hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophenylene-1,3-diisocyanate,
hexahydrophenylene-1,4-diisocyanate, hexahydrophenylene-1,4-diisocyanate, and phenyl
cyclohexylmethane diisocyanate,
[0065] The polyurethane-forming components are combined in a ratio typically expressed as
a ratio of the available number of reactive isocyanate groups to the available number
of reactive hydroxyl groups, i.e., an equivalent ratio of NCO:OH. The equivalent ratio
of NCO:OH that can be used to prepare the thermoplastic polyurethane of the present
invention can range between 0.7 and 2.0, usually between 0.9 and 1.2. The NCO in the
NCO:OH ratio represents the free isocyanate of free isocyanate-containing compounds,
and of blocked or partially blocked isocyanate-containing compounds after the release
of the blocking agent.
[0066] Suitable urethane-forming catalysts can be used to enhance the reaction of the polyurethane-forming
components. Suitable urethane-forming catalysts are those catalysts that are highly
specific for the formation of urethane by reaction of the NCO and OH groups and which
have little tendency to accelerate side reactions leading to allophonate and isocyanate
formation. For example, catalysts that may be used to cure polyurethane reaction mixtures
may be selected from the group consisting of Lewis bases, Lewis acids and insertion
catalysts described in
Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, 1992, Volume A21, pp.
673 to 674. Usually the catalyst is a stannous salt of an organic acid, e.g., stannous octoate,
dibutyl tin dilaurate, dibutyl tin diacetate, dibutyl tin mercaptide, dibutyl tin
dimaleate, dimethyl tin diacetate, dimethyl tin dilaurate and 1,4-diazabicyclo[2.2.2]octane.
Mixtures of tin catalysts can be used. Other tin catalysts described in the art may
be used as well.
[0067] The amount of catalyst used for a particular system can be determined routinely by
one skilled in the art. For example, dibutyltin dilaurate is usually employed in amounts
of from 0.0005-0.02 parts per 100 parts of the polyurethane-forming components. The
amount of catalyst needed depends on the curing temperature used. While organotin
catalysts are preferred, other catalysts can be used.
[0068] The thermoplastic polyurethane can be prepared by the one-shot, quasi-prepolymer
or full prepolymer procedures, all of which are well known in the art. In the one-shot
procedure, the isocyanate, polyol and glycol components are mixed together and reacted
simultaneously. In the full prepolymer procedure, the isocyanate is reacted with the
polyol to prepare an isocyanato-terminated prepolymer, which is then reacted with
the glycol component. In the quasi-prepolymer procedure the isocyanate is reacted
with a portion of the polyol component and in a subsequent step the glycol component
and the remaining part of the polyol component are mixed with the prepolymer prepared
in the first step.
[0069] One method of producing the polyurethane film is to introduce the reactants continuously
into a reactor-extruder, which is maintained at reaction temperatures, e.g., 140-210
°C., and extrude the resulting polyurethane continuously in the form of a film. The
film can be calendered to the desired thickness if the extruded film is too thick.
This method can be used with the one-shot, quasi- or full prepolymer methods. Another
method is to prepare the polyurethane in bulk form by reacting the polyurethane-forming
components in a suitable reactor at appropriate reaction temperatures, e.g., from
50 to 150 °C, particularly, 100 to 140 °C, e.g., 120 °C, forming particulates from
the bulk form, and then processing the particulates with a suitable extruder to prepare
the polyurethane film. Conventional rubber mills and conventional extruders can be
employed to prepare particulates of the polyurethane and form the polyurethane into
a film of the desired thickness.
[0070] In accordance with an embodiment of the present invention, the polyurethane film
provides the desired light filtering property to the article by incorporating the
material that provides such property into the polyurethane film. For example, when
the light filtering property is photochromism or a tint, organic photochromic substances
and/or dyes are incorporated into the polyurethane film. This may be accomplished
by mixing the photochromic substances and/or coloring dyes with the polyurethane reactants,
e.g., with one or more of the polyol reactants; by mixing the photochromic substances
and/or dyes with particulates of the already formed polyurethane and then extruding
the mixture into a film; or by imbibition, permeation, diffusion or other known dye
transfer methods. Since many organic photochromic substances and dyes decompose under
the reaction conditions used to prepare polyurethanes, it is more advantageous to
incorporate those materials into the bulk polyurethane after it has been prepared
and cooled and prior to its being formed into a film.
[0071] The amount of organic photochromic substance that is incorporated into the polyurethane
film is an amount that is sufficient to provide a sufficient quantity of the organic
photochromic substance to produce a film that exhibits the desired change in optical
density (ΔOD) when the film is exposed to ultraviolet (UV) radiation, i.e., a photochromic
amount. Typically, the change in optical density measured at 22°C (72°F) after 30
seconds is at least 0.05, e.g., at least 0.15, and more typically at least 0.20. The
change in optical density after 15 minutes is typically at least 0.10, more typically
at least 0.50, and still more typically at least 0.70.
[0072] The bleach rate of the photochromic polyurethane film, as reported in terms of the
fading half-life (T ½), is typically not more than 500 seconds, more typically not
more than 190 seconds, and still more typically not more than 115 seconds. The bleach
rate is the time interval in seconds for the change in optical density (ΔOD) of the
activated form of the photochromic film to reach one half the highest ΔOD after removal
of the source of activating light. The aforedescribed values for change in optical
density and bleach rate are measured at 22°C (72°F).
[0073] Stated differently, the amount of active photochromic material used in the photochromic
film can range from 0.2 to 20.0 weight percent, based on the total weight of the polyurethane
film. The relative amounts of photochromic materials used will vary and depend in
part upon the relative intensities of the color of the activated species of the photochromic
compounds, the ultimate color desired, and the solubility or dispersibility of the
photochromic material in the polymeric coating. Care should be taken to avoid use
of an amount of photochromic material, which causes crystals of the photochromic compound
to be formed in the film. Usually, the concentration of active photochromic material
in the photochromic polyurethane film ranges from 0.2 to 10 weight percent, more usually,
from 0.3 to 5 weight percent, and still more usually from 0.5 to 1 weight percent.
The amount of photochromic substance in the film may range between any combination
of these values, inclusive of the recited values.
[0074] Photochromic materials, e.g., photochromic compounds or compositions containing such
photochromic materials, that can be utilized with the polyurethane film are organic
photochromic compounds and/or substances containing such organic photochromic compounds.
The particular photochromic material(s), e.g., compound(s), selected is not critical,
and its/their selection will depend on the ultimate application and the color or hue
desired for that application. When two or more photochromic compounds are used in
combination, they are generally chosen to complement one another to produce a desired
color or hue. Organic photochromic compounds, or substances containing same, used
in the photochromic coating commonly have at least one activated absorption maxima
within the visible spectrum of between 400 and 700 nanometers. The organic photochromic
material is typically incorporated, e.g., dissolved or dispersed, in the polyurethane
film and color when activated, i.e., when exposed to ultraviolet radiation, the photochromic
material(s) changes to the color or hue that is characteristic of the colored form
of such material(s).
[0075] In one contemplated embodiment, the organic photochromic material comprises:
- (a) at least one photochromic organic compound having a visible lambda max of from
400 to less than 550, e.g., from 400 to 525, nanometers; and
- (b) at least one photochromic organic compound having a visible lambda max of greater
than 525 nanometers, e.g., from 525 or 550 to 700 nanometers.
[0076] Non-limiting examples of photochromic compounds that may be used in the photochromic
coating include, but are not limited to, indolino spiropyrans, such as benzopyrans,
naphthopyrans, e.g., naphtho[1,2-b]pyrans, naphtho[2,1-b]pyrans, spiro-9-fluoreno[1,2-b]pyrans,
phenanthropyrans, quinopyrans, and indeno-fused naphthopyrans, such as those disclosed
in
U.S. Patent 5,645,767; indolino spirooxazines, such as, benzoxazines, naphthoxazines, and spiro(indolino)pyridobenzoxazines.
Specific examples of naphthopyrans include, but are not limited to, the naphthopyrans
described in
U.S. Patent 5,658,501, and the complementary organic photochromic substances disclosed in that patent from
column 11, line 57 through column 13, line 36. Other photochromic substances contemplated
for use herein are photochromic metal dithizonates, e.g., mercury dithizonates, which
are described in, for example,
U.S. Patent 3,361,706; fulgides and fulgimides, e.g. the 3-furyl and 3-thienyl fulgides and fulgimides,
which are described in
U.S. Patent 4,931,220 at column 20, line 5 through column 21, line 38; and mixtures of the aforementioned
photochromic materials/compounds.
[0077] In addition, it is contemplated that organic photochromic materials such as photochromic
pigments and photochromic compounds encapsulated in metal oxides can be used in the
photochromic film. See, for example, the materials described in
U.S. Patents 4,166,043 and
4,367,170.
[0078] The polyurethane film can contain one photochromic compound or a mixture of two or
more photochromic compounds, as desired. Mixtures of photochromic compounds can be
used to attain certain activated colors such as a near neutral gray or near neutral
brown. See, for example,
U.S. Patent 5,645,767, column 12, line 66 to column 13, line 19.
[0079] In addition to photochromic materials, the polyurethane film (or precursor physical
form) can contain additional conventional adjuvants that impart desired properties
or characteristics to the film, or which enhance the performance of the film. Such
adjuvants include, but are not limited to, light stabilizers, heat stabilizers, free
radical scavengers, plasticizers, flow additives and other processing aids.
[0080] Further, additional adjuvant materials can be incorporated into the polyurethane
film to enhance the performance of the photochromic material. Such adjuvant materials
can include ultraviolet light absorbers, stabilizers, such as hindered amine light
stabilizers (HALS), antioxidants, e.g., polyphenolic antioxidants, asymmetric diaryloxalamide
(oxanilide) compounds, singlet oxygen quenchers, e.g., a nickel ion complex with an
organic ligand, and mixtures of such photochromic performance enhancing adjuvant materials.
See, for example, the materials described in
U.S. Patents 4,720,356,
5,391,327 and
5,770,115.
[0081] Compatible (chemically and color-wise) tints, i.e., dyes, can be added to the polyurethane
film to obtain a more desired light filtering property. The tint can be added to the
polyurethane film by itself, i.e., without photochromic dyes, to obtain a light filtering
property, for medical reasons or for reasons of fashion, e.g., to achieve a more aesthetic
result. The particular dye selected will depend on the aforesaid need and result to
be achieved. In addition, the tint can be added in combination with the photochromic
compound(s), e.g., the tint can be selected to complement the color resulting from
the activated photochromic materials used, e.g., to achieve a more neutral color or
absorb a particular wavelength of incident light. In another contemplated embodiment,
the dye is selected to provide a desired hue to the film when the photochromic material
is in a non-activated state.
[0082] In a further contemplated embodiment, the tint/dye can be incorporated into the protective
polymeric film or a separate otherwise transparent polymeric film prepared from a
conventional resin and the tinted film affixed to the polyurethane film or placed
in a stack of films comprising the laminate adhered to the surface of the solid substrate.
Suitable conventional resins include polymers and copolymers of various materials,
such as those described herein, and cellulose acetate butyrate, cellulose nitrate,
cellulose triacetate, poly(lower alkyl acrylates and methacrylates), such as poly(methyl
methacrylate) and polyacrylate, polyethylene, polypropylene, poly(acrylonitrile),
poly(vinyl acetate), poly(vinyl chloride), polystyrene and polybutadiene. By lower
alkyl is meant that the alkyl groups contains from 1 to 5 carbon atoms, e.g., methyl,
ethyl, propyl, butyl and pentyl (including isomers of such alkyl groups)
[0083] When light polarization is the light filtering characteristic desired for the optical
article, it is contemplated that the polyurethane film will comprise a laminate of
a polyurethane film and a separate light polarizing film or sheet, which is superposed
on the polyurethane film. It is also contemplated that the optical article provide
a combination of light filtering properties, e.g., photochromism and light polarization,
and photochromism, light polarization and tinting. In such embodiments, the thermoplastic
polyurethane film can contain photochromic materials, or photochromic materials and
tinting dyes (as described above).
[0084] The base resin for the light polarizing film can be selected from a variety of suitable
resins used as a host for dichroic dyes that are used for imparting the property of
light polarization. Non-limiting examples of such resins include poly(vinyl alcohol),
poly(vinyl formal), poly(vinyl acetal), polyethylene terephthalate, and saponified
ethylene/vinyl acetate (EVA) copolymer film. Poly(vinyl alcohol) is a contemplated
resin. The film is commonly stretched (oriented). Typically, the light polarizing
film has a thickness of from 0.1 to 3 mils (0.0025 to 0.076 mm), such as 0.5 to 1.5
mils (0.0125 to 0.0375 mm), e.g., 1 mil (0.025 mm), and contains a linear molecularly
oriented dichroic material, such as iodine. The dichroic substance incorporated into
the base film or resin may either be a single dichroic substance or a mixture that
includes two or more dichroic substances.
[0085] Other examples of suitable dichroic substances, such as dichroic dye, for imparting
the light polarizing property to the base film or resin may be found in
U.S. Patent 5,051,309 to Kawaki et al. Non-limiting examples of dichroic substances include: Chlorantine Fast Red (C.I.
28160), Chrysophenine (C.I. 24895), Sirius Yellow (C.I. 29000), Benzopurpurine (C.I.
23500), Direct Fast Red (C.I. 23630), Brilliant Blue 6B (C.I. 24410), Chlorazol Black
BH (C.I. 22590), Direct Blue 2B (C.I. 22610), Direct Sky Blue (C.I. 24400), Diamine
Green (C.I. 30295), Congo Red (C.I. 22120) and Acid Black (C.I. 20470).
[0086] The polarizing film can be free standing (non-laminated), or have one or more outer
permanent protective coatings or supportive plastic layer. The use of one or more
support sheets can be employed to improve the durability and handling characteristics
of the light polarizing film. Support sheets of cellulose acetate, cellulose acetate-butyrate,
cellulose triacetate, or other transparent polymeric materials, such as those described
above for the dichroic dye and tinting dye, can be used. For example, a supported
polarizing film can be prepared by sandwiching a layer of poly(vinyl alcohol) polarizing
material between a pair of cellulose triacetate films/sheets, each having a thickness
of from 1 to 5 mils (0.025 to 0.125 mem). It is contemplated that the separate support
films/sheets, and carrier sheets for the dichroic dye or tinting dye be transparent,
e.g., optically clear, formable (moldable) with moderate heat and pressure, have low
birefringence and good heat resistance. When the polarizing film is sandwiched between
two support sheets, the polarizing film is superposed on the thermoplastic polyurethane
film with one of the support sheets being juxtaposed to the polyurethane film.
[0087] In accordance with the present invention, a protective film of polymeric material
is superposed on the thermoplastic polyurethane film. This protective polymeric film
is also transparent, except if a tint or dye is incorporated into the polymeric material
for the purpose of filtering light passing through the film or to complement the photochromic
dye(s) incorporated into the polyurethane film material. When a polarizing film (free
standing or supported) is superposed on the polyurethane film, the protective film
can be attached to the polarizing film or a support film/sheet attached to the polarizing
film. In such an embodiment, a laminate comprising, in sequence, the thermoplastic
polyurethane film, polarizing film and protective film is contemplated. However, if
the polarizing film is not pervious to ultraviolet light (UV) radiation, i.e., the
polarizing film (or its support sheet) absorbs a significant amount of UV radiation,
i.e., an amount which interferes with the photochromic function of photochromic materials
(and the polyurethane film contains photochromic material(s), the order of the polarizing
film and photochromic polyurethane film can be reversed, i.e., a laminate comprising,
in sequence, polarizing film, photochromic polyurethane film, and protective film.
Hence, the polarizing film should be compatible with the function of the photochromic
polyurethane film; namely, it should be sufficiently permeable to UV light radiation
to allow such radiation to reach the photochromic material(s) and allow the photochromic
material(s) to change to the colored form. Also contemplated, is a laminate comprising,
in sequence, polyurethane adhesive film, polarizing film, photochromic polyurethane
film, and protective film. A resin film containing a tinting dye can also be contained
within the laminate.
[0088] The transparent protective film is a polymeric material that does not impair the
optical properties or optical quality of the combined optical substrate and laminate
comprising the thermoplastic polyurethane film, is formable by moderate heat and pressure
without producing optical distortion, has a softening.point temperature that is higher
than the glass transition temperature of the polyurethane film and the polarizing
film (or the adjacent supporting film), and can be coated with abrasion-resistant
coatings, i.e., is compatible with such coatings. Advantageously, the protective film
is optically clear. The transparent protective film should exhibit other physical
properties, such as a haze level of less than 2%; and a light transmittance of at
least 70, preferably at least 80, more preferably, at least 85% and most preferably
at least 90%. The melting temperature of the transparent protective film should be
greater than 120°C, and have a flexural modulus of less than 5 GPa, e.g., from 0.1
to 5 GPa, preferably from 0.5 to 3 GPa, and more preferably from 1 to 2 GPa. As described
in connection with the thermoplastic polyurethane film, the flexural modulus of the
protective film can be determined in accordance the ASTM D790 test method. It is contemplated
that the transparent protective film will have an abrasion resistance that is greater
than the thermoplastic polyurethane film, as measured by conventional abrasion tests,
e.g., the Bayer Abrasion Test.
[0089] The transparent protective film will typically have a thickness of from 1 to 20 mils
(0.025 to 0.5 mm), more usually from 5 to 10 mils (0.125 to 0.25 mm). As used herein,
the term "film" has the generally accepted meaning of a layer with a thickness of
not more than 20 mils (0.5 mm), e.g., less than 20 mils (0.5 mm); while the generally
accepted meaning of a "coating" is a layer with a thickness of not more than 4 mils
(0.1 mm). In contrast, the thickness of a "sheet" is generally considered to be greater
than 20 mils (0.5 mm).
[0090] Non-limiting examples of polymeric materials that can be used as the protective film
include nylon, poly(vinyl acetate), vinyl chloride-vinyl acetate copolymers, poly(lower
alkyl acrylates and methacrylates), thermoplastic polycarbonate, annealed or stretched
polycarbonate, styrene-butadiene copolymer resin, e.g., K-resin, lightly cross-linked
thermoplastic polyurethanes and polyurea urethanes By lower alkyl is meant an alkyl
group of from 1 to 4 carbon atoms, e.g., from 1 to 2 carbon atoms. The polyurethane
comprising the lightly cross-linked thermoplastic polyurethane can be a polyether-based
polyurethane, a polycarbonate-based polyurethane or a polyester-based polyurethane.
The polyether- and polycarbonate-based polyurethanes are discussed above and that
discussion is applicable here also.
[0091] With respect to polyester-based polyurethanes, the polyurethane can be prepared using
a polyester polyol as the long chain polyol reactant. All other polyurethane reaction
conditions and reactants, e.g., isocyanate, glycol, catalyst, etc., as described above
with respect to the polyether- and polycarbonate-based polyurethanes can be used to
prepare the polyester-based polyurethane. Polyester polyols are prepared by well-know
esterification techniques of saturated dicarboxylic acids or anhydrides thereof (or
combinations of acids and anhydrides) with polyhydric alcohols. Such polyester polyols
and there method of preparation are well known to the polyester chemist. As used herein,
the term "polyester" is meant to include polylactones, e.g., polycaprolactone and
polyvalerolactone, which can be prepared by polymerizing a lactone, such as epsilon
caprolactone and delta-valerolactone; in the presence of minor amounts of difunctional
active hydrogen compounds, such as water or a low molecular glycol, e.g., 1,4-butane
diol.
[0092] The saturated dicarboxylic acids typically used are those containing from 4 to 10
carbon atoms, preferably from 6 to 9 carbon atoms. Non-limiting examples of such dicarboxylic
acids include: succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid,
azelaic acid and sebacic acid. Adipic and azelaic acids are preferred. Mixtures of
dicarboxylic acids also can be used.
[0093] The polyhydric alcohol used to prepare the polyester polyol are typically aliphatic
alcohols containing at least two and usually only two hydroxy groups, e.g., straight
chain glycols containing from 2 to 10, e.g., 4 to 8, carbon atoms. Non-limiting examples
of such alcohols are described above with respect to the polyether and polycarbonate
polyols, i.e., the organic glycols. Those examples of organic glycols are equally
applicable here. In a contemplated embodiment, 1,4-butane diol is used.
[0094] Polyester polyols are typically prepared by reacting together with heat the carboxylic
acid component and the polyhydric alcohol, e.g., glycol, in a suitable esterification
reactor. The reaction temperature will depend on the boiling point of the glycol used,
but will generally be at 210°C or below. An excess of the polyhydric alcohol is used
so as to produce a hydroxyl-terminated product. Generally, an esterification catalyst,
such as butyl stannoic acid, p-toluene sulfonic acid, stannous octoate, dibutyl tin
dilaurate, is used, as is well known in the art.
[0095] The polyester polyol will generally have a number average molecular weight of from
1000 to 3000, preferably from 1000 to 2000. Non-limiting examples of polyester polyols
include poly(butane diol-1,4-adipate), poly(butane diol-1,4-succinate), poly(butane
diol-1,4-glutarate), poly(butane diol-1,4-pimelate), poly(butane diol-1,4 suberate);
poly(butane diol-1,4-azelate), poly(butane diol-1,4-sebacate) and poly(epsilon caprolactone).
[0096] When necessary or desired, a thin adhesive coating can be used to adhere the thermoplastic
polyurethane film to the optical substrate, the polarizing film (supported or free
standing) to the optical substrate or the polyurethane film, the tinting film to the
polyurethane film or the polarizing film, and/or the protective film to the polyurethane
film or the polarizing film. The adhesive should cure to a transparent, e.g., optically
clear, thin layer, not yellow significantly upon exposure to sunlight, be compatible
with the surfaces it joins together, not craze or exhibit excessive shrinkage during
the process used to adhere the thermoplastic polyurethane film (or laminate comprising
the polyurethane film) to the substrate, have a sufficiently high bonding strength
to provide bonding between the surfaces and a sufficiently high cohesive strength
to resist separation under mechanical stress to which the article may be subjected.
Typically, the thin adhesive coating will be less than 25 microns thick, e.g., less
than 10 or 5 microns thick, such as 1 micron thick. Light-, thermal- and UV-curable
adhesives can be used. Non-limiting examples of such adhesives include those such
as Dymax 469 and 492, Electro-Lite Corporation 4M12, LOCTTTE® 3321, 3311, FMD 207,
FMD 338, and FMD 436 (Loctite Corp.), Master Bond UV 15-7 and 15X-2, and Lite-Fast
Adhesive A-109 from Micro-Lite Technology. Other adhesives that can be used include
cyanoacrylates, UV-cured acrylic-type adhesives, urethane-type adhesives and epoxy-type
adhesives.
[0097] In a further contemplated embodiment, an abrasion-resistant coating is applied to
the exposed surface of the protective film. A conventional type of abrasion-resistant
coating is the organo silane type abrasion-resistant coatings used to protect plastic
surfaces from abrasions, scratches, etc. Organo-silane abrasion-resistant coatings,
often referred to as hard coats or silicone-based hard coatings, are well known in
the art, and are commercially available from various manufacturers, such as SDC Coatings,
Inc. and PPG Industries, Inc. Reference is made to
U.S. Patent 4,756,973 at column 5, lines 1-45; and to
U.S. Patent 5,462,806 at column 1, lines 58 through column 2, line 8, and column 3, line 52 through column
5, line 50. Reference is also made to
U.S. Patents 4,731,264,
5,134,191,
5,231,156 and International Patent Publication
WO 94/20581 for disclosures of organo-silane hard coatings.
[0098] Other coatings known in the art that provide abrasion and scratch resistance, such
as polyfunctional acrylic hard coatings, melamine-based hard coatings, urethane-based
hard coatings, alkyd-based coatings, silica sol-based hard coatings or other organic
or inorganic/organic hybrid hard coatings can be used as the abrasion-resistant coating.
In a particular contemplated embodiment, the coating that provides abrasion and scratch
resistance comprises an organo-silane type hard coating.
[0099] By use of the term "compatible" with respect to the abrasion resistant coating (hard
coat)", is meant that the protective film is capable of having a hard coat, e.g.,
an organo-silane hard coat, deposited on its surface and that the hard coating adheres
to the protective film under ordinary handling/wear conditions, as determined by the
conventional cross-hatch tape peel adhesion test. Further, by the term abrasion-resistant
organo-silane containing coating (or other such similar meaning terms) is meant that
the abrasion-resistant coating is prepared from a composition comprising at least
one organo-silane.
[0100] In one embodiment, the hard coat may be prepared from a composition comprising from
35 to 95 weight percent, as calculated solids, of at least one silane monomer represented
by the following empirical formula II:
R
1SiW
3 II
wherein R
1 may be glycidoxy(C
1-C
20)alkyl, preferably glycidoxy(C
1-C
10)alkyl, and most preferably, glycidoxy (C
1-C
4)alkyl; W may be hydrogen, halogen, hydroxy, C
1-C
5 alkoxy, C
1-C
5 alkoxy(C
1-C
5)alkoxy, C
1-C
4 acyloxy, phenoxy, C
1-C
3 alkylphenoxy, or C
1-C
3 alkoxyphenoxy, said halogen being bromo, chloro or fluoro. Typically, W is hydrogen,
halogen, hydroxy, C
1-C
3 alkoxy, C
1-C
3 alkoxy(C
1-C
3)alkoxy, C
1-C
2 acyloxy, phenoxy, C
1-C
2 alkylphenoxy, or C
1-C
2 alkoxyphenoxy, and the halogen is chloro or fluoro. More typically, W is hydroxy,
C
1-C
3 alkoxy, C
1-C
3 alkoxy(C
1-C
3)alkoxy, C
1-C
2 acyloxy, phenoxy, C
1-C
2 alkylphenoxy, or C
1-C
2 alkoxyphenoxy.
[0101] The weight percent, as calculated solids, of the silane monomers represented by empirical
formula II in the hard coat composition is usually from 40 to 90, more usually from
45 to 85, and still more usually from 50 to 70 weight percent calculated solids. The
weight percent calculated solids is calculated as the percent of the silanol that
theoretically forms during the hydrolysis of the orthosilicate.
[0102] Suitable silane monomers represented by general formula II include glycidoxymethyltriethoxysilane,
glycidoxymethyltrimethoxysilane, alpha-glycidoxyethyltrimethoxysilane, alpha-glycidoxyethyltriethoxysilane,
alpha-glycidoxypropyltrimethoxysilane, alpha-glycidoxypropyltriethoxysilane, alpha-glycidoxypropyltrimethoxysilane,
alpha-glycidoxypropyltriethoxysilane, beta-glycidoxyethyltrimethoxysilane, beta-glycidoxyethyltriethoxysilane,
beta-glycidoxypropyltrimethoxysilane, beta-glycidoxypropyltriethoxysilane, beta-glycidoxybutyltrimethoxysilane,
beta-glycidoxybutyltriethoxysilane, gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropyltriethoxysilane,
gamma-glycidoxypropyltripropoxysilane, gamma-glycidoxypropyltributoxysilane, gamma-glycidoxypropyltrimethoxysilane,
gamma-glycidoxypropyltriphenoxysilane, gamma-glycidoxybutyltrimethoxysilane, gamma-glycidoxybutyltriethoxysilane,
delta-glycidoxybutyltrimethoxysilane, delta-glycidoxybutyltriethoxysilane, hydrolyzates
of such silane monomers, and mixtures of such silane monomers and hydrolyzates thereof.
[0103] The hard coat composition can further include from 5 to 65 weight percent, as calculated
solids, of: (a) silane monomers represented by empirical formula III; (b) metal alkoxides
represented by empirical formula IV; or (c) a mixture thereof in a weight ratio of
(a):(b) of from 1:100 to 100:1. Typically, the hard coat composition includes from
10 to 60 weight percent calculated solids, more typically from 15 to 55, and still
more typically from 30 to 50 weight percent calculated solids of the aforementioned
materials (a), (b) or (c).
[0104] The hard coat composition can include at least one silane monomer represented by
the following empirical formula III:
R
2b(R
3)cSiZ
4-(b+c) III
wherein R
2 may be C
1-C
20 alkyl, C
1-C
20 haloalkyl, C
2-C
20 alkenyl, C
2-C
20 haloalkenyl, phenyl, phenyl(C
1-C
20)alkyl, C
1-C
20 alkylphenyl, phenyl(C
2-C
20)alkenyl, C
2-C
20 alkenylphenyl, morpholino, amino(C
1-C
20)alkyl, amino(C
2-C
20)alkenyl, mercapto(C
1-C
20)alkyl, mercapto(C
2-C
20)akenyl, cyano(C
1-C
20)alkyl, cyano(C
2-C
20)akenyl, acryloxy, methacryloxy, or halogen. The halo or halogen may be bromo, chloro,
or fluoro. Typically, R
2 is a C
1-C
10 alkyl, C
1-C
10 haloalkyl, C
2-C
10 alkenyl, phenyl, phenyl(G
1-C
10)alkyl, C
1-C
10 alkylphenyl, morpholino, amino(C
1-C
10) alkyl, amino(C
2-C
10) alkenyl, mercapto(C
1-C
10)alkyl, mercapto(C
2-C
10) alkenyl, cyano(C
1-C
10) alkyl, cyano(C
2-C
10)alkenyl, or halogen and the halo or halogen is chloro or fluoro.
[0105] In formula III, R
3 may be C
1-C
20 alkylene, C
2-C
20 alkenylene, phenylene, C
1-C
20 alkylenephenylene, amino(C
1-C
20)alkylene, amino(C
2-C
20)alkenylene; Z maybe hydrogen, halogen, hydroxy, C
1-C
5 alkoxy, C
1-C
5 alkoxy(C
1-C
5)alkoxy, C
1-C
4 acyloxy, phenoxy, C
1-C
3 alkylphenoxy, or C
1-C
3 alkoxyphenoxy, said halo or halogen being bromo, chloro or fluoro; b and c are each
an integer of from 0 to 2; and the sum ofb and c is an integer of from 0 to 3. Typically,
R
3 is C
1-C
10 alkylene, C
2-C
10 alkenylene, phenylene, C
1-C
10 alkylenephenylene, amino(C
1-C
10)alkylene, amino(C
2-C
10)alkenylene, Z is hydrogen, halogen, hydroxy, C
1-C
3 alkoxy, C
1-C
3 alkoxy(C
1-C
3)alkoxy, C
1-C
2 acyloxy, phenoxy, C
1-C
2 alkylphenoxy, or C
1-C
2 alkoxyphenoxy, and the halo or halogen is chloro or fluoro.
[0106] Suitable silane monomers represented by general formula III include methyltrimethoxysilane,
methyl-triethoxysilane, methyltrimethoxyethoxysilane, methyltri-acetoxysilane, methyltripropoxysilane,
methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, gamma-methacryloxypropyl
trimethoxysilane, gamma-aminopropyltrimethoxysilane, gamma-aminopropyltriethoxysilane,
gamma-mercaptopropyltrimethoxysilane, chloromethyltrimethoxysilane, chloromethyltriethoxysilane,
dimethyldiethoxysilane, gamma-chloropropylmethyldimethoxysilane, gamma-chloropropylmethyldiethoxysilane,
tetramethylorthosilicate, tetraethylorthosilicate, hydrolyzates of such silane monomers,
and mixtures of such silane monomers and hydrolyzates thereof.
[0107] The hard coat composition can include at least one compound represented by empirical
formula IV:
M(T)
q IV
wherein M is a metal selected from the group consisting of aluminum, antimony, tantalum,
titanium and zirconium; T is C
1-C
10 alkoxy and q is an integer equivalent to the valence of M. Typically, M is selected
from aluminum, titanium and zirconium and T is C
1-C
5 alkoxy, e.g., propoxy.
[0108] The hard coat composition can also include from 0 to 20 weight percent, based on
the total weight of the composition, of a metal oxide selected from the group consisting
of silica, i.e., silicon dioxide, aluminum oxide, antimony oxide, tin oxide, titanium
oxide, zirconium oxide and mixtures thereof. The metal oxide may be in the form of
a sol. As used in the present specification, by the term sol is meant a colloidal
dispersion of finely divided solid inorganic metal oxide particles in an aqueous or
an organic liquid. The average size of such particles may range from 1 to 200 nanometers,
preferably from 2 to 100 nanometers, and more preferably, from 5 to 50 nanometers.
[0109] Such metal oxide sols can be prepared by hydrolyzing a metal salt precursor for a
time sufficient to form the desired particle size or such sols may be purchased commercially.
Examples of commercially available metal oxide sols that may be used in the hard coat
composition include NALCO® colloidal sols (available from NALCO Chemical Co.), REMASOL®
colloidal sols (available from Remet Corp.) and LUDO® colloidal sols (available from
E. I. du Pont de Nemours Co., Inc.). Stable acidic and alkaline metal oxide sols are
commercially available as aqueous dispersions. Preferably, the metal oxide is silica
or alumina supplied in the form of an acid stabilized colloidal silica, acid stabilized
colloidal alumina, e.g., NALCO® 8676, or an acid stabilized alumina coated silica
sol, e.g., NALCO® 1056. Metal oxide sols may also be obtained as dispersions in organic
liquids, e.g., ethanol, isopropyl alcohol, ethylene glycol and 2 propoxyethanol.
[0110] The hard coat composition also contains a catalytic amount of a water-soluble acid
catalyst. A catalytic amount is that amount which is sufficient to cause polycondensation
of the silane monomer(s). Typically, the catalytic amount of acid catalyst will range
from 0.01 to 10 weight percent, based on the total weight of the hard coat composition.
The water-soluble acid catalyst may be an organic carboxylic acid or an inorganic
acid. Examples of suitable catalysts include acetic acid, formic acid, glutaric acid,
maleic acid, nitric acid, sulfuric acid and hydrochloric acid.
[0111] Organic solvents present in the hard coat composition may be added or formed
in situ by the hydrolysis of the silane monomer(s). Suitable organic solvents are those that
will dissolve or disperse the solid components of the coating composition. The minimum
amount of solvent present in the coating composition is a solvating amount, i.e.,
an amount that is sufficient to solubilize or disperse the solid components in the
coating composition. For example, the amount of solvent present may range from 20
to 90 weight percent based on the total weight of the coating composition and depends,
in part, on the amount of silane monomer present in the coating composition. Suitable
solvents include, but are not limited to, the following: benzene, toluene, methyl
ethyl ketone, methyl isobutyl ketone, acetone, ethanol, tetrahydrofurfuryl alcohol,
propyl alcohol, propylene carbonate, N-methylpyrrolidinone, N-vinylpyrrolidinone,
N-acetylpyrrolidinone, N-hydroxymethylpyrrolidinone, N-butyl-pyrrolidinone, N-ethylpyrrolidinone,
N-(N-octyl)-pyrrolidinone, N-(n-dodecyl)pyrrolidinone, 2-methoxyethyl ether, xylene,
cyclohexane, 3-methylcyclohexanone, ethyl acetate, butyl acetate, tetrahydrofuran,
methanol, amyl propionate, methyl propionate, diethylene glycol monobutyl ether, dimethyl
sulfoxide, dimethyl formamide, ethylene glycol, mono- and dialkyl ethers of ethylene
glycol and their derivatives, which are sold under the trade name
CELLOSOLVE industrial solvents, propylene glycol methyl ether and propylene glycol methyl ether
acetate, which are sold under the trade name
DOWANOL® PM and
PMA solvents, respectively, and mixtures of such solvents.
[0112] A leveling amount of nonionic surfactant(s) may be present as a component in the
hard coat composition. A leveling amount is that amount which is sufficient to allow
the coating to spread evenly or to level the hard coat composition on the surface
of the AB film to which it is applied. Typically, the nonionic surfactant is a liquid
at the conditions of use and is used in amounts from about 0.05 to about 1.0 weight
percent based on the amount of the silane monomer(s). Suitable nonionic surfactants
are described in the
Kirk Othmer Encyclopedia of Chemical Technology, 3rd Edition, Volume 22, pages 360
to 377. Other potential nonionic surfactants include the surfactants described in
U.S. Patent 5,580,819, column 7, line 32 to column 8, line 46.
[0113] Examples of nonionic surfactants that may be used in the hard coat composition include
ethoxylated alkyl phenols, such as the
IGEPAL® DM surfactants or octylphenoxypolyethoxyethanol, which is sold as
TRITON® X-100, an acetylenic diol such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol, which is
sold as
SURFYNOL® 104, ethoxylated acetylenic diols, such as the
SURFYNOL® 400 surfactant series, fluoro-surfactants, such as the
FLUORAD® fluorochemical surfactant series, and capped nonionics, such as the benzyl capped
octyl phenol ethoxylates, which is sold as
TRITON® CF87, the propylene oxide capped alkyl ethoxylates, which are available as the
PLURAFAC® RA series of surfactants, octylphenoxyhexadecylethoxy benzyl ether, polyether modified
dimethylpolysiloxane copolymer in solvent, which is sold as
BYK®-306 additive by Byk Chemie and mixtures of such recited surfactants.
[0114] Water is also present in the hard coat composition in an amount sufficient to form
hydrolyzates of the silane monomer(s). This amount of water may be supplied by the
water present in the optional metal oxide sol. If not, additional water may be added
to the coating composition to provide the required additional amount necessary to
hydrolyze the silane monomer(s).
[0115] The abrasion-resistant coating may be applied to the protective film using conventional
film application techniques, e.g., spin coating, spray coating, spread coating, curtain
coating, dip coating, casting or roll-coating. The abrasion resistant film may be
applied in thickness of from 0.5 to 10 microns. Prior to applying the hard coat, e.g.,
the organo silane hard coat, to the AB film, the film may be treated to enhance its
receptivity of and adhesion of the hard coat. Such treatments, e.g., plasma treatments,
as are described above with respect to pretreatment of the photochromic coating prior
to application of the AB film may be used.
[0116] In a further embodiment of the present invention, additional coatings, such as antireflective
coatings, can be applied to the hard coat layer. Examples of antireflective coatings
are described in
U.S. Patent 6,175,450 and International Patent Publication
WO 00/33111.
[0117] An optical article of the present invention can be prepared in several ways. In one
contemplated method, a laminate comprising a ply of the transparent thermoplastic
polyurethane film and a ply of the protective film is placed on a surface of the selected
optical substrate, and the laminate press formed against the substrate to adhere the
laminate to the substrate. The laminate is of a sufficient size (area) to either cover
completely the optical substrate, or only that portion of the substrate for which
it is desired to impart the light filtering function.
[0118] If required and if appropriate, it is common to clean and/or treat the surface of
the optical substrate to which the laminate is to be adhered by methods known to those
skilled in the art. Such treatments are designed to improve the adhesion and/or compatibility
of the substrate surface with the ply of the laminate bonded to it. Cleaning methods
can include ultrasonic cleaning; washing with an aqueous mixture of organic solvent,
e.g., a 50:50 mixture of isopropanol and water or ethanol and water. Surface treatments
include, but are not limited to, activated gas treatments such as plasma discharge,
corona discharge, glow discharge, ionizing radiation, UV radiation, and chemical treatment,
e.g., hydroxylation by etching of the surface with an aqueous solution of caustic,
e.g., sodium or potassium hydroxide, that may also contain a fluorosurfactant. See,
for example,
U.S. Patent 3,971,872, column 3, lines 13-25;
U.S. Patent 4,904,525, column 6, lines 10 to 48; and
U.S. Patent 5,104,692, column 13, lines 10-59, which describe surface treatments of organic polymeric materials.
[0119] Methods used to clean glass substrates will depend on the type of dirt present on
the glass surface, but are well known to those skilled in the art. For example, washing
the glass with an aqueous solution that may contain a low foaming, easily rinsed detergent,
followed by rinsing and drying with a lint-free cloth; and ultrasonic bath treatment
in heated (about 50 °C) wash water, followed by rinsing and drying. The glass surface
may be chemically treated to enhance the adhesion of the thermoplastic polyurethane
film (or other film) to the glass element, as is well known to those skilled in the
art. Non-limiting examples of chemicals used for this purpose include monofunctional
alkoxysilanes such as glycidoxypropyl trimethoxysilane, aminopropyl trimethoxysilane,
3,4-epoxycyclohexylethyl trimethoxysilane, and aminoethyl trimethoxysilane. As a variant
to treating the glass surface, the monofunctional silane may be incorporated into
the thermoplastic polyurethane film.
[0120] For purposes of convenience, the methods used to prepare an optical article of the
present invention will be described in connection with an ophthalmic optical article,
e.g., a lens. Thus, the laminate comprising the transparent thermoplastic polyurethane
film (preferably containing at least one photochromic material) and the polymeric
protective film is placed on the convex side of a pre-formed solid optical lens element
having a convex side and a concave side (with or without pre-treatment to enhance
adhesion). The polyurethane side of the laminate is positioned so that it is adjacent
to the surface of the lens, e.g., against and in contact with the lens (or an adhesive
placed on the surface of the lens). The laminate is then press formed against the
surface of the substrate under conditions that conforms the laminate to the shape
of the convex surface of the substrate. In cases where the curvature of the lens is
large, e.g., greater than 4-base, the laminate is placed on the surface of the lens
and then conformed to the shape of the lens before press forming the laminate against
the surface of the substrate. Typically, a mold (glass or metal) having the same curvature
as the convex surface of the lens is placed against the laminate before the press
forming operation to assist in conforming the laminate to the curved surface of the
optical substrate.
[0121] When used in connection with a described film, sheet or layer, the term "adjacent"
or terms of like import, such as contiguous, next to, abutting, juxtaposed to, or
appended to, are intended to have their ordinary and conventional meanings. The described
film, sheet or layer can be positioned directly against the surface of the solid substrate
or separated slightly from the surface of the substrate by, for example, a transparent
adhesive film, transparent polyurethane adhesive film or other such compatible transparent,
e.g., optically clear, film. In one embodiment, the described film, sheet or layer
adheres directly to the surface of the solid substrate, but does not become thermally
fused to the optical article; namely, the adhering described film, sheet or layer
does not penetrate significantly the subsurface of the substrate so as to form an
interpenetrating molecular network with the subsurface of the solid substrate. The
described film, sheet or layer can be separated from the surface of the solid substrate
by an adhesive film and/or other non-functional film (a film that does not provide
any light filtering property), which adhesive or non-functional film is typically
less than 20 mils (0.5 mm), usually less than 10 mils (0.25 mm), e.g., 5 mils (0.125
mm) or less, in thickness.
[0122] Conditions under which the laminate can be formed against the solid substrate include
temperatures of from 250 to 350 °F (121 to 177 °C), e.g., 275 to 300 °F (135 to 149
°C), and pressures of from 150 to 400 pounds per square inch (psi) (1034 to 2758 kPa),
e.g., 275 psi (1896 kPa). Sub-atmospheric pressures, i.e., a vacuum, can be applied
to draw down and conform the laminate to the shape of the substrate. Sub-atmospheric
pressures in the range of from 0.001 mm Hg to 20 mm Hg (0.13 Pa to 2.7 kPa) may be
used. Either positive pressure (and heat) in the form of a rigid or flexible mold
can be used alone, or sub-atmospheric pressure (and heat) can be used alone. In one
embodiment, a combination of positive pressure and vacuum are used. For example, the
combined substrate and laminate are placed in a suitable bag within an autoclave;
sub-atmospheric pressure is applied to conform the laminate to the surface of the
substrate on which the laminate is placed and to exclude air from between the laminate
and the substrate. Thereafter, positive pressure in the form of a mold or platen in
the shape of the substrate surface is then applied to the exposed surface of the laminate
with simultaneous heating to force the substrate and laminate together, thereby forming
an optical substrate and a superstrate having light filtering properties. A rigid
or flexible mold may be used. Processing times for preparing the article can vary,
but will generally be between 1 and 20 minutes.
[0123] If an adhesive is used to adhere the film, sheet or layer to the surface of the solid
substrate, heat is generally not required to adhere the film, sheet or layer against
the substrate surface unless the adhesive is a thermally cured adhesive. In that case,
such heat as is required to cure the chosen adhesive would be required. UV cured adhesives
also would not require additional heat. However, heat is required to thermo form the
sheet, film, layer, e.g., a laminate, to the shape of the substrate.
[0124] Another contemplated method, e.g., the so-called film insert molding method, involves
providing a laminate comprising a ply of the transparent thermoplastic polyurethane
film and a ply of the protective film, i.e., a multi-plied laminate, and a mold having
a first element, a second element and a cavity between such elements. In the case
of an optical mold, the two sides of the mold comprise a convex element, a concave
element and a peripheral gasket joining the mold elements. The laminate is placed
within the mold so that the protective film is against the surface, e.g., the concave
surface, of the mold element, i.e., the polyurethane ply faces the cavity, and polymerizable
resin capable of forming a transparent plastic substrate is injected into the cavity
of the optical mold. The resin is then cured within the mold, thereby forming a solid
transparent plastic molded substrate having a first, e.g., concave, surface and a
second, e.g., convex, surface with the laminate attached to one surface, e.g., the
convex surface, of the substrate as a superstrate. The laminate can be of a size that
covers the entire working surface of the mold against which it is placed, or it can
be of a size that covers only the portion of the surface of the mold for which it
is desired to impart light filtering properties to the substrate. The laminate can
be placed against one or both of the mold surfaces. In either case, the protective
film is placed against the mold surface.
[0125] In both described methods, the laminate can comprise a single ply or be comprised
of multiple plies, which plies provide one or more of the desired light filtering
properties, e.g., (1) photochromism, (2) photochromism and tinting, (3) photochromism
and light polarization, and (4) photochromism, light polarization, and tinting. Other
combinations of the foregoing will be readily apparent to those skilled in the art.
[0126] The present invention is more particularly described in the following examples, which
are intended as illustrative only, since numerous modifications and variations therein
will be apparent to those skilled in the art. In the examples, percentages are reported
as weight percent, unless otherwise specified.
EXAMPLE 1
[0127] A homogenous mixture of 62 grams of 4,4'-methylene-bis(cyclohexyl isocyanate) [DESMODUR
W from Bayer Corporation], 2.65 grams of 1,4-butane diol [purchased from Aldrich]
and 135 grams of polytetramethylene ether glycol [Terathane 1000, purchased from Aldrich]
was prepared in a NALGENE® beaker and cured in an oven for 24 hours at 250 °F (121°C).
The resulting thermoplastic polyether-based polyurethane resin was removed from the
beaker, pressed into a flat sheet with a hydraulic press and then cut into small pieces.
The platens of the hydraulic press measured 24 inches x 24 inches (61 cm x 61 cm).
50 grams of the particulate polyurethane resin, and 0.50 grams of Irganox 1010 antioxidant
[BASF Corporation] were mixed and placed into the mixing bowl of a Plasti-Corder mixer
[C. W. Brabender Instruments, Inc.]. The mixture was blended at 98 rpm for 2 minutes
at 150 °C, which resulted in a molten homogenous mixture. To this molten mixture was
added 0.27 grams of a mixture of naphtho[1,2-b]pyrans and indeno-fused naphtho[1,2-b]pyran
photochromic dyes and the resultant mixture blended for an additional 2 minutes at
98 rpm and 150° C to provide a homogenous mixture of photochromic resin. The mixture
of photochromic dyes was designed to provide a gray color when the photochromic resin
was activated with ultraviolet (UV) light. The molten mixture of photochromic resin
was removed from the Plasti-Corder mixer and placed between two TEFLON sheets [purchased
from McMaster Carr Supply Co., Cleveland, Ohio]. The TEFLON sheets were inserted into
a hydraulic press that had been heated to 325 °F (163 °C), allowed to warm for 1 minute
and then pressed to an applied pressure of 5 tons (17 psi, 120 kPa) for 1 minute.
After the sheet cooled, a square section (approximately 3 to 5 grams) was cut from
the sheet and placed between two 6 inch x 6 inch (15.2 x 15.2 cm) glass plates [purchased
from McMaster Carr Supply Co.] that were treated with RELISSE® mold release agent
[nanoFILM LTD]. The glass plates were placed into the heated (163 °C) hydraulic press,
allowed to warm for 1 minute and pressed to an applied pressure of 10 tons (34.7 psi,
239 kPa) for 1 minute, thereby to produce a smooth film. Aluminum shims [7 mil (0.175
mm)] were used to produce a uniformly thick film.
[0128] The 7 mil (0.175 mm) photochromic film was removed from between the glass plates
and evaluated for photochromic performance. The initial percent transmission of the
film, as measured by a Hunter spectrophotometer, was 86%. The film was exposed to
a 360 nm UV lamp for 10 minutes, after which it was removed from under the lamp. The
film was observed to change color, darkening to a percent transmission of 16% and
bleaching to a percent transmission of 70% in 4 minutes.
[0129] The photochromic film was laminated to a 10 mil (0.25 mm) polycarbonate film (gloss/gloss
finish grade) [purchased from McMaster Carr Supply Co.] using the hydraulic press
(163 °C, 239 kPa). The resulting laminate was placed onto the convex side of semi-finished,
single vision 2-base polycarbonate lens [Gentex Optics, Inc.] and a glass mold matching
the curvature of the lens surface was placed on top of the polycarbonate surface of
the laminate. The resultant stack was placed in an autoclave for 15 minutes. Conditions
in the autoclave were 280 °F (137.7 °C) and 275 pounds per square inch (psi) (1896
kPa). The stack was removed from the autoclave and the composite lens tested for photochromic
performance. The % transmission of the lens when exposed to a 360 nm UV lamp for 10
minutes mirrored the photochromic performance of the polyurethane film before lamination
to the polycarbonate film. When observed against a grid background, there was no observed
optical distortion, i.e., distortion of the grid lines was not observed when looking
through the composite lens.
EXAMPLE 2
[0130] The laminate of the photochromic polyether-based polyurethane film and polycarbonate
film of Example 1 was placed on top of the convex surface of a 2-base polycarbonate
lens [Gentex Optics, Inc.] and the lens/laminate combination placed onto a vacuum
table operating at 280 °F (137.7 °C) and 0.1 mm mercury (13 Pa) for 20 minutes. The
resulting composite lens was tested for optical distortion as in Example 1. No optical
distortion was observed.
EXAMPLE 3
[0131] A homogenous mixture of 124.56 grams of 4,4'-methylene -bis(cyclohexyl isocyanate)
[DESMODUR W from Bayer Corporation], 243.76 grams of poly (1,4-butylene adipate) polyol
having a number average molecular weight of approximately 2000, and 31.72 grams of
1,4-butane diol was prepared in a beaker and cured in a conventional oven for 24 hours
at 250 °F (121 °C). The resulting thermoplastic polyester-based polyurethane resin
was removed from the beaker, pressed into a flat sheet with a hydraulic press and
then cut into small pieces. To 50 grams of the particulate polyester-based polyurethane
was added 1 weight percent of Irganox 1010 antioxidant and 0.5 weight percent of TINUVIN
144 hindered amine light stabilizer [Ciba-Geigy Corp.]. The mixture of resin and stabilizers
were placed into the mixing bowl of a Plasti-Corder mixer and blended at 98 rpm for
2 minutes at 150 °C, which resulted in a molten homogeneous mixture. To this molten
mixture was added 0.27 grams of the photochromic dye mixture described in Example
1 and the resultant mixture blended for an additional 2 minutes at 98 rpm and 150
°C to provide a homogenous mixture of photochromic resin. The molten mixture of photochromic
resin was removed from the Plasti-Corder mixer and processed in the same manner as
described in Example 1 to produce a 7 mil (0.175) mm) thermoplastic polyester polyurethane
film.
[0132] The polyester polyurethane film was tested for photochromic performance. The initial
percent transmission of the film, as measured by a Hunter spectrophotometer, was 86
%. The film was exposed to a 360 nm UV lamp for 10 minutes, after which it was removed
from under the lamp. The film was observed to change color, darkening to a percent
transmission of 15%, and bleaching to a percent transmission of 70% in 6 minutes.
EXAMPLE 4
[0133] A homogenous mixture of 62.38 grams of 4,4'-methylene-bis(cyclohexyl isocyanate)
[DESMODUR W], 122.85 grams of hexane carbonate diol [PC 1122 from Stahl USA ] (number
average molecular weight of 650) and 15.27 grams of 1,4-butane diol (Aldrich) was
prepared in a NALGENE beaker and cured in an oven for 24 hours at 250 °F (121 °C).
The resulting thermoplastic polycarbonate-based polyurethane was removed from the
beaker, pressed into a flat sheet with a hydraulic press and then cut into small pieces,
as described in Example 1. To 50 grams of the particulate polycarbonate-based polyurethane
were added 1 weight percent of IRGANOX 1010 antioxidant and 0.5 weight percent of
TINUVIN 144 hindered amine light stabilizer. The mixture of resin and stabilizers
was placed into the mixing bowl of a Plasti-Corder mixer and blended at 98 rpm for
2 minutes at 150 °C, which resulted in a homogenous mixture. To this molten mixture
was added 0.27 grams of the photochromic dye mixture described in Example 1 and the
resultant mixture blended for an additional 2 minutes at 98 rpm and 150 °C to provide
a homogenous mixture of photochromic resin. The molten mixture of photochromic resin
was removed from the Plasti-Corder mixer and processed in the same manner as described
in Example 1 to produce a 7 mil (0.175 mm) thermoplastic polycarbonate polyurethane
film.
[0134] The polycarbonate polyurethane film was tested for photochromic performance. The
initial percent transmission of the film, as measured by a Hunter spectrophotometer,
was 86 %. The film was exposed to a 360 nm UV lamp for 10 minutes, after which it
was removed from under the lamp. The film was observed to change color, darkening
to a percent transmission of 17%, and fading to a percent transmission of 70% in 7
minutes.
EXAMPLE 5
[0135] A thermoplastic polyether-based polyurethane film of the type described in Example
1 was produced in the same manner described in Example 1 except that 1 weight percent
of TINUVIN-144 hindered amine light stabilizer was added to the resin. This polyether-based
polyurethane film, the polyester-based polyurethane film of Example 3 and the polycarbonate-based
polyurethane film of Example 4 were tested in a Xenon weatherometer for 66 hours (1
hour at 40 °C and 45% relative humidity with no UV exposure; and 65 hours at 55 °C,
70% relative humidity and 0.25W/square meter of UV exposure).
[0136] The films were tested on an optical bench before and after weatherometer testing.
The difference in Optical Density (Δ OD) was measured and recorded as % Fatigue of
the photochromic film. The color values were also measured on a Hunter spectrophotometer
before and after weatherometer testing. The delta b* and delta a* values reflect the
changes in color of the photochromic films; namely, (+b) yellow, (-b) blue, (+a) red,
and (-a) green. The percent fatigue and delta b* and delta a* values are reported
in Table I.
TABLE I
| Film Material |
Fatigue |
Δb* |
Δa* |
| Polyether Polyurethane |
7% |
1.6 |
-0.4 |
| Polycarbonate Polyurethane |
5% |
1.5 |
-1.4 |
| Polyester Polyurethane |
12% |
5.5 |
7.5 |
[0137] The values in Table I show that the polyester polyurethane film had a significantly
increased fatigue rate (roughly 70%) and a significantly larger color shift upon fatigue
towards the yellow-red compared to the polyether polyurethane and polycarbonate polyurethane
films.
EXAMPLE 6
[0138] A photochromic polyether polyurethane/polycarbonate laminate of the type described
in Example 1 was prepared. The laminate was applied to the front side of 2-base semi-finished,
single vision LENSCO
™glass lens [The Lens Co.] in the manner described in Example 1 to produce composite
glass/laminate lenses. The lenses were ground to a 2.3 mm center thickness and tested
by the standard FDA drop ball impact test. (21 CFR 801.410). A 16 gram ball dropped
from a height of 50 inches (127 cm) shattered a standard (not laminated) glass lens;
however, the composite lens of this Example passed this ball drop (16 gram) test,
with no cracks across the lens and no material loss of glass from the backside. The
composite lens cracked across the lens when a 24 gram ball was used, but no glass
material was lost off of the backside.
EXAMPLE 7
[0139] The polycarbonate polyurethane/polycarbonate laminate of Example 2 was applied to
the front surface of a 2-base semi-finished, high index, single vision Seiko MR-7
organic resin lens having a refractive index of 1.67 using the vacuum table and method
described in Example 2. The lens was place under a 360 nm UV lamp to observe if any
interference fringes resulted from the difference in refractive index between the
lens and the laminate. (The refractive index of the polyurethane film was approximately
1.54, and the refractive index of the polycarbonate film was approximately 1.58.)
No interference fringes for the composite lens were observed.
[0140] A 1.67 refractive index Seiko 2-base semi-finished, single vision lens was spin coated
with a 25 micron photochromic polycarbonate-based polyurethane coating that had been
prepared in a manner similar to that described in Example 2 of
U.S. Patent 6,187,444 B1, and similarly compared for interference fringes. A significant amount of interference
fringes was observed for the photochromic polyurethane coated lens.
EXAMPLE 8
[0141] A 7 mil (0.175 mm) thermoplastic photochromic polyether-based polyurethane film was
prepared in the manner described in Example 1 except that 0.27 grams of a blend of
naphthopyrans different from that used in Example 1 was used. The blend of naphthopyrans
was selected so as to produce an activated gray lens. The polyurethane film was laminated
to a 10 mil (0.25 mm) polycarbonate film in the manner described in Example 1 to produce
a laminate of the thermoplastic photochromic polyurethane film and the polycarbonate
film (the "laminate"). The laminate was applied to the front side (concave) of a glass
mold used to produce a semi-finished, single vision ophthalmic 0.5 base lens using
a temporary adhesive (ReMount™ from 3M Company). The mold included convex (back side)
and concave (front side) elements spaced apart by a peripheral gasket to provide a
cavity of the size and shape of the desired lens.
[0142] A two-component liquid formulation for preparing a polyurea urethane; namely, a polyurethane
prepolymer and diamine curing agent, available commercially from PPG Industries, Inc.
as TRIVEX AH resin, was introduced into the cavity by means of a reaction injection
molding machine (Max Machinery) in a ratio of 100 parts of prepolymer to 26.2 parts
of diamine. The polyurethane prepolymer had a free NCO content of 13%. The diamine
curing agent was Ethacure Curative 100 LC diamino diethyl toluene (Albermarle Corp.)
Following the initial polymerization reaction, the mold (including the lens) was placed
in a 130 °C oven for 5 hours to post cure the lens.
[0143] After cooling, the fabricated composite lens was removed from the mold and inspected.
The laminate was observed to have very good adhesion to the lens. The initial (unactivated)
transmission of the lens was 87 %. The photochromic lens was activated by exposing
it to a 360 nm UV lamp for 10 minutes. The activated transmission of the lens was
35 %. It faded to 70% transmission in 50 seconds and completely faded to its original
unactivated state in 2 minutes.
[0144] Although the present invention has been described with reference to specific details
of certain embodiments thereof, it is not intended that such details should be regarded
as limitations upon the scope of the invention except insofar as they are included
in the accompanying claims.
1. An article comprising, in combination:
(a) a transparent solid substrate having a front surface and a back surface,
(b) transparent thermoplastic polyurethane film adjacent to at least one surface of
said optical substrate, said polyurethane film having a flexural modulus of less than
2.5 GPa, said polyurethane film further providing at least one desired light filtering
property to said optical article and being formed from polyurethane material selected
from polycarbonate-based polyurethane, and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane, and
(c) transparent protective film of polymeric material superposed on said polyurethane
film.
2. The article of claim 1 wherein the substrate is selected from thermoset substrates
prepared from polymerizable compositions comprising allyl glycol carbonate monomer(s),
substrates prepared from thermoplastic polycarbonate, substrates prepared from polyurea
urethane, substrates prepared from compositions comprising the reaction product of
polyfunctional isocyanate(s) and polythiol or polyepisulfide monomer(s), and substrates
prepared from optical quality mineral glass.
3. The article of claims 1 wherein the light filtering property is selected from tinting,
light polarization and photochromism.
4. The article of any of the preceding claims wherein the protective film of polymeric
material is selected from nylon, poly(vinyl acetate), vinyl chloride-vinyl acetate
copolymer, poly (lower alkyl) acrylates, poly (lower alkyl) methacrylates, styrene-butadiene
copolymer resin, polyurea urethane, lightly cross-linked thermoplastic polyurethane
and thermoplastic polycarbonate material.
5. The article of any of the preceding claims wherein the polyurethane film and the protective
film of polymeric material each have a thickness of from 25.4 µm to 508 µm (1 to 20
mils).
6. The article of any of the preceding claims further comprising an abrasion resistant
coating superposed onto said protective film.
7. The article of claim 6 wherein the abrasion resistant coating is selected from polyfunctional
acrylic hard coatings, melamine-based hard coatings, urethane-based hard coatings,
alkyd-based hard coatings, silica sol-based hard coatings and organo-silane type hard
coatings.
8. The article of claim 7 wherein the abrasion resistant coating comprises an organo-silane
type abrasion resistant coating or a silica-sol-based hard coating..
9. The article of claim 6 further comprising an anti-reflective coating superposed onto
said abrasion resistant coating.
10. The article of claim 3 wherein the light filtering property is photochromism and the
photochromism property is provided by at least one organic photochromic material.
11. The article of claim 10 wherein the organic photochromic material is selected from
benzoxazines, naphthoxazines, spiro(indolino)pyridobenzoxazines, benzopyrans, naphthopyrans,
spiro-9-fluorenopyrans, phenanthropyrans, quinopyrans, indeno-fused naphthopyrans,
fulgides, metal dithizonates, fulgimides and mixtures of such photochromic materials.
12. The article of claim 11 wherein the organic photochromic material comprises (a) at
least one organic photochromic material having a visible lambda max of from 400 to
less than 550 nanometers, and (b) at least one organic photochromic material having
a visible lambda max of from 550 to 700 nanometers.
13. The article of claim 10 further comprising at least one additive selected from ultraviolet
light absorbers, hindered amine light stabilizers, antioxidants, oxanilides, and singlet
oxygen quenchers in association with the organic photochromic material.
14. The article of claim 10 wherein the organic photochromic material(s) is homogeneously
distributed throughout the polyurethane film.
15. The article of claim 10 wherein the organic photochromic material(s) is present in
the polyurethane film in amounts of from 0.2 to 20 weight percent.
16. The article of any of the preceding claims wherein the article is an optical article.
17. The optical article of claim 16 wherein the optical article is a lens having a refractive
index of from 1.48 to 1.90.
18. The optical article of claim 16 comprising, in combination:
(a) a transparent solid optical substrate having a front surface and a back surface,
said optical substrate being selected from thermoset substrates prepared from polymerizable
compositions comprising allyl glycol carbonate monomer(s), substrates prepared from
thermoplastic polycarbonate, substrates prepared from polyurea urethane, substrates
prepared from compositions comprising the reaction product of polyfunctional isocyanate(s)
and polythiol or polyepisulfide monomer(s), and substrates prepared from optical quality
mineral glass,
(b) transparent thermoplastic photochromic polyurethane film adjacent to at least
one surface of said optical substrate, said polyurethane film containing from 0.2
to 10 weight percent of at least one organic photochromic material, said polyurethane
film having a flexural modulus of less than 2.5 GPa and being formed from polyurethane
material from polycarbonate-based polyurethane, and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane, and
(c) transparent protective film of polymeric material superposed on said polyurethane
film, said polymeric protective film being selected from nylon, poly(vinyl acetate),
vinyl chloride-vinyl acetate copolymer, poly (lower alkyl)acrylates, poly (lower alkyl)
methacrylates, styrene-butadiene copolymer resin, polyurea urethanes, lightly cross-linked
thermoplastic polyurethane and thermoplastic polycarbonate material.
19. The optical article of claim 18 wherein the optical substrate is a lens having a refractive
index of from 1.48 to 1.75, the thermoplastic photochromic polyurethane film has a
thickness of from 50.8 to 381 µm (2 to 15 mils) and a flexural modulus of less than
1.0 GPa, and the polymeric protective film has a thickness of from 25.4 to 508 µm
(1 to 20 mils) and a flexural modulus of from 0.1 to 5 GPa.
20. An ophthalmic photochromic article comprising, in combination:
(a) a transparent solid optical polymeric substrate having a front surface and a back
surface, wherein the solid optical substrate is selected from thermoset substrates
prepared from polymerizable compositions comprising allyl glycol carbonate monomer(s),
substrates prepared from thermoplastic polycarbonate, substrates prepared from polyurea
urethane and substrates prepared from compositions comprising the reaction product
of polyfunctional isocyanate(s) and polythiol or polyepisulfide monomer(s),
(b) transparent thermoplastic polyurethane film contiguous to one surface of said
substrate, said polyurethane film having a light transmission of at least 80%, a flexural
modulus of less than 1.0 GPa, a thickness of from 25.4 to 508 µm (1 to 20 mils), and
being formed from polyurethane material selected from polycarbonate-based polyurethane,
and mixtures of polyether-based polyurethane and polycarbonate-based polyurethane,
said polyurethane film further containing a photochromic amount of at least one organic
photochromic material, and
(c) transparent thermoplastic protective film of polymeric material superposed on
said polyurethane film, said polymeric protective film having a light transmission
of at least 80%, a thickness of from 25.4 to 508 µm (1 to 20 mils) and a flexural
modulus of from 0.5 to 3 GPa.
21. The ophthalmic article of claim 20 wherein the substrate is a lens having a refractive
index of from 1.48 to 1.75.
22. The ophthalmic article of claim 21 wherein the lens is a plano lens, a single vision
lens, a multi-focal lens, an aspheric lens, an aspheric multi-focal lens, or a semi-finished
single vision lens.
23. The ophthalmic article of claim 22 wherein the allyl glycol carbonate monomer is diethylene
glycol bis(allyl carbonate).
24. The ophthalmic article of claim 20 wherein the organic photochromic material, the
amount of the organic photochromic material, the protective film, and the abrasion
resistant coating is defined as in any of claims 4, 6, 7, 11 and 15.
25. A photochromic optical lens comprising, in combination:
(a) a transparent solid optical polymeric lens substrate having a refractive index
of from 1.50 to 1.67, said substrate having a convex surface and a concave surface,
and being selected from thermoset substrates prepared from polymerizable compositions
comprising allyl glycol carbonate monomer(s), substrates prepared from thermoplastic
polycarbonates, and substrates prepared from polyurea urethanes,
(b) transparent thermoplastic photochromic polyurethane film attached to the convex
surface of the lens substrate, said polyurethane film having a thickness of from 50.8
to 381 µm (2 to 15 mils), a flexural modulus of less than 1.0 GPa, contains a photochromic
amount of at least one organic photochromic material, and is formed from polyurethane
material from polycarbonate-based polyurethane, and mixtures of polyether-based polyurethane
and polycarbonate-based polyurethane, and
(c) transparent thermoplastic protective film of polymeric material attached to the
polyurethane film, said protective film having a thickness of from 127 to 254 µm(5
to 10 mils).
26. The photochromic article of any of claims 20 and 25 wherein the polyurethane material
that forms the transparent thermoplastic photochromic polyurethane film further comprises
a minor amount of polyester-based polyurethane.
27. The photochromic lens of claim 25 wherein the organic photochromic material is present
in amounts of from 0.3 to 5 weight percent, the organic photochromic material is selected
from naphthoxazines, spiro(indolino)pyridobenzoxazines, naphthopyrans, spiro-9-fluorenopyrans,
phenanthropyrans, indeno-fused naphthopyrans and mixtures of such photochromic materials,
and the polymeric protective film is selected from nylon, polyurea urethanes, lightly
cross-linked thermoplastic polyurethane and thermoplastic polycarbonate material.
28. The photochromic lens of claim 27 wherein the lens substrate and the protective film
each comprise thermoplastic polycarbonate material.
29. The photochromic lens of claim 27 wherein the protective film of polymeric material
has a melting temperature of greater than 120 °C, a light transmission value of greater
than 80%, a flexural modulus of from 0.5 to 3 GPa, and an abrasion resistance that
is greater than the polyurethane film.
30. The photochromic lens of claim 27 wherein an abrasion resistant coating is appended
to the polymeric protective film and the abrasion resistant coating is selected from
coatings comprising an organo-silane type hard coating and a silica sol-based hard
coating.
31. The photochromic lens of claim 30 wherein an antireflective coating is appended to
the abrasion resistant coating.
32. A high index photochromic optical lens comprising, in combination:
(a) a transparent solid optical polymeric substrate having a front surface, a back
surface and a refractive index of at least 1.60,
(b) transparent thermoplastic photochromic polyurethane film appended to at least
one surface of said lens, said polyurethane film having a thickness of from 25.4 to
508 µm (1 to 20 mils), a flexural modulus of less than 2.5 GPa, and being formed from
polyurethane material from polycarbonate-based polyurethane, and mixtures of polyether-based
polyurethane and polycarbonate-based polyurethane, said polyurethane film further
containing a photochromic amount of at least one organic photochromic material, and
(c) transparent thermoplastic protective film of polymeric material superposed on
said polyurethane film,
said optical lens being substantially free of interference fringes.
33. The high index lens of claim 32 wherein the polyurethane film has a thickness of from
50.8 to 381 µm (2 to 15 mils) and contains from 0.3 to 5 weight percent of at least one organic
photochromic material selected from naphthoxazines, spiro(indolino)pyridobenzoxazines,
naphthopyrans, spiro-9-fluorenopyrans, phenanthropyrans, indeno-fused naphthopyrans
and mixtures of such photochromic materials, and wherein the protective polymeric
film has a thickness of from 127 to 254 µm (5 to 10 mils) and is selected from nylon, polyurea urethanes, lightly cross-linked
thermoplastic polyurethane and thermoplastic polycarbonate.
34. The high index lens of claim 33 wherein an abrasion resistant coating is appended
to the protective polymeric film, and the abrasion resistant coating is selected from
organo-silane type abrasion resistant coatings and silica sol-based hard coatings.
35. The high index lens of claim 34 wherein an antireflective coating is appended to the
abrasion resistant coating.
36. A method of forming an optical article, comprising the steps of:
(a) providing a pre-formed transparent solid optical polymeric substrate having a
convex surface and a concave surface,
(b) providing a transparent laminate comprising a ply of transparent photochromic
polyurethane film and a ply of transparent protective polymeric film, said polyurethane
film being formed from polyurethane material selected from polycarbonate-based polyurethane,
and mixtures of polyether-based polyurethane and polycarbonate-based polyurethane,
said polyurethane film further having a flexural modulus of less than 1.0 GPa and
containing a photochromic amount of at least one organic photochromic material, said
protective polymeric film having a melting temperature of greater than 120 °C and
a flexural modulus of from 0.5 to 3 GPa, said laminate being of a size sufficient
to cover at least a selected portion of at least one of the convex and concave surfaces
of said optical substrate,
(c) placing said laminate on the selected portion of at least one of said convex and
concave surfaces of said substrate, the polyurethane film of said laminate being adjacent
to the surface of said optical substrate, and
(d) forming said laminate against said optical substrate under conditions such that
the laminate adheres to the selected surface of the substrate.
37. The method of claim 36 wherein the laminate has a size that is sufficient to cover
the convex surface of said optical substrate, and the laminate is placed against said
convex surface in step (c).
38. The method of claim 36 wherein the laminate is formed against the substrate using
temperatures of from 121 to 177°C (250 to 350 °F).
39. The method of claim 38 wherein sub-atmospheric pressure is used to first conform the
laminate against the surface of the substrate, and then positive pressure is applied
against the laminate to adhere the laminate to the substrate.
40. The method of claim 39 wherein the applied positive pressure ranges from 1.03 x 106 Pa to 2.8 x 106 Pa (150 to 400 pounds per square inch).
41. The method of claim 36 wherein:
(a) the pre-formed solid optical substrate is a thermoset substrate prepared from
polymerizable compositions comprising allyl glycol carbonate monomer(s), a substrate
prepared from polyurea urethane, a substrate prepared from thermoplastic polycarbonate,
or a substrate prepared from compositions comprising the reaction product of polyfunctional
isocyanate(s) and polythiol or polyepisulfide monomer(s), said substrate having a
refractive index of from 1.48 to 1.90;
(b) the ply of transparent photochromic polyurethane film has a thickness of from
25.4 to 508 µm (1 to 20 mils), and the organic photochromic material is selected from
naphthoxazines, spiro(indolino)pyridobenzoxazines, naphthopyrans, spiro-9-fluorenopyrans,
phenanthropyrans, indeno-fused naphthopyrans and mixtures of such photochromic materials;
and
(c) the ply of transparent protective polymeric film has a thickness of from 25.4
to 508 µm (1 to 20 mils) and is selected from nylon, poly(vinyl acetate), vinyl chloride-vinyl
acetate copolymer, poly(lower alkyl)acrylates, poly(lower alkyl)methacrylates, styrene-butadiene
copolymer resin, polyurea urethane, lightly cross-linked thermoplastic polyurethane
and thermoplastic polycarbonate material.
42. The method of claim 41 wherein the pre-formed solid optical substrate has a refractive
index of from 1.48 to 1.75, the photochromic polyurethane film has a thickness of
from 50.8 to 381 µm (2 to 15 mils), the polymeric protective film has a thickness
of from 127 to 254 µm (5 to 10 mils), the polyether-based polyurethane is prepared
from a composition comprising a polyether polyol having a number average molecular
weight of from 650 to 1400, and the polycarbonate-based polyurethane is prepared from
a composition comprising a polycarbonate polyol having a number average molecular
weight of from 650 to 1000.
43. A method of producing a photochromic optical element comprising a transparent plastic
lens substrate and a transparent superstrate comprising a photochromic polyurethane
film, said method comprising the steps of:
(a) providing a multi-ply transparent laminate comprising a ply of a transparent photochromic
polyurethane film and a ply of a transparent protective polymeric film, said polyurethane
film being formed from polyurethane material selected from polycarbonate-based polyurethane,
and mixtures of polyether-based polyurethane and polycarbonate-based polyurethane,
said polyurethane film further having a flexural modulus of less than 1.0 GPa and
containing a photochromic amount of at least one organic photochromic material, said
protective polymeric film having a melting temperature of greater than 120 °C and
a flexural modulus of from 0.5 to 3 GPa, said transparent laminate being of sufficient
durability to withstand the curing conditions present in steps (d) and (e)
(b) providing an optical mold having a concave element, a convex element, and a peripheral
gasket joining the mold elements, said concave and convex elements forming a cavity;
(c) placing the laminate within the optical mold with the protective polymeric film
against the concave surface of the optical mold and the photochromic polyurethane
film facing the cavity, said laminate having a size sufficient to cover a desired
portion of the concave surface;
(d) injecting polymerizable optical resin capable of forming a transparent solid plastic
lens substrate into the cavity of the optical mold, and
(e) curing said optical resin, thereby to form a transparent plastic lens having a
concave surface and a convex surface and having said multi-ply transparent laminate
attached to the convex surface of said plastic lens.
44. The method of claim 43 wherein the polyurethane film has a thickness of from 25.4
to 508 µm (1 to 20 mils), and the organic photochromic material is selected from naphthoxazines,
spiro(indolino)pyridobenzoxazines, naphthopyrans, spiro-9-fluorenopyrans, phenanthropyrans.
indeno-fused naphthopyrans, and mixtures of such photochromic materials; and the transparent
protective polymeric film has a thickness of from 25.4 to 508 µm (1 to 20 mils) and
is selected from nylon, poly(vinyl acetate), vinyl chloride-vinyl acetate copolymer,
poly(lower alkyl)acrylates, poly(lower alkyl)methacrylates, styrene-butadiene copolymer
resin, polyurea urethane, lightly cross-linked thermoplastic polyurethane and thermoplastic
polycarbonate material.
45. The method of claim 44 wherein the polymerizable optical resin is selected from polyurea
urethane and thermoplastic polycarbonate.
46. The method of any of claims 36 and 45 wherein the protective polymeric film is thermoplastic
polycarbonate.
1. Gegenstand enthaltend in Kombination:
(a) ein transparentes festes Substrat mit einer Frontoberfläche und einer rückseitigen
Oberfläche,
(b) einen transparenten thermoplastischen Polyurethanfilm, angrenzend an wenigstens
einer Oberfläche dieses optischen Substrats, wobei dieser Polyurethanfilm einen Biegemodul
von weniger als 2,5 GPa aufweist, dieser Polyurethanfilm weiterhin diesem optischen
Gegenstand wenigstens eine gewünschte Lichtfiltereigenschaft verleiht und aus einem
Polyurethanmaterial gebildet ist, ausgewählt aus einem Polyurethan auf Polycarbonatbasis
und Mischungen von Polyurethan auf Polyetherbasis und Polyurethan auf Polycarbonatbasis,
und
(c) einen transparenten Schutzfilm aus polymerem Material, der auf diesem Polyurethanfilm
angeordnet ist.
2. Gegenstand nach Anspruch 1, wobei das Substrat ausgewählt ist aus wärmegehärteten
Substraten, die aus polymerisierbaren Zusammensetzungen, die Allylglykolcarbonatmonomer(e)
enthalten, hergestellt sind, Substraten, die aus thermoplastichem Polycarbonat hergestellt
sind, Substraten, die aus Polyharnstoffurethan hergestellt sind, Substraten, die aus
Zusammensetzungen hergestellt sind, die das Reaktionsprodukt von polyfunktionellem(n)
Isocyanat(en) und Polythiol- oder Polyepisulfidmonomer(en) enthalten, und Substraten,
die aus Mineralglas optischer Qualität hergestellt sind.
3. Gegenstand nach Anspruch 1, wobei die Lichtfiltereigenschaft ausgewählt ist aus Einfärbung,
Lichtpolarisation und Photochromie.
4. Gegenstand nach einem der vorstehenden Ansprüche, wobei der Schutzfilm aus polymerem
Material ausgewählt ist aus Nylon, Poly(vinylacetat), Vinylchlorid-Vinylacetat-Copolymer,
Polymeren von niedrigen Alkylacrylaten, Polymeren von niedrigen Alkylmethacrylaten,
Styrol-Butadien-Copolymerharz, Polyharnstoffurethan, leicht vernetztem thermoplastischen
Polyurethan- und thermoplastischem Polycarbonatmaterial.
5. Gegenstand nach einem der vorstehenden Ansprüche, wobei der Polyurethanfilm und der
Schutzfilm aus polymerem Material jeweils eine Dicke von 25,4 µm bis 508 µm (1 bis
20 Mil) aufweisen.
6. Gegenstand nach einem der vorstehenden Ansprüche, der weiterhin auf diesem Schutzfilm
angeordnet eine abriebbeständige Beschichtung aufweist.
7. Gegenstand nach Anspruch 6, wobei die abriebbeständige Beschichtung ausgewählt ist
aus polyfunktionellen Acrylhartbeschichtungen, Hartbeschichtungen auf Melaminbasis,
Hartbeschichtungen auf Urethanbasis, Hartbeschichtungen auf Alkydbasis, Hartbeschichtungen
auf Siliciumdioxidsolbasis und Hartbeschichtungen des Organosilantyps.
8. Gegenstand nach Anspruch 7, wobei die abriebbeständige Beschichtung eine abriebbeständige
Beschichtung des Organosilantyps oder eine Hartbeschichtung auf Siliciumdioxidsolbasis
aufweist.
9. Gegenstand nach Anspruch 6, der weiterhin eine antireflektierende Beschichtung aufweist,
die auf dieser abriebbeständigen Beschichtung aufgebracht ist.
10. Gegenstand nach Anspruch 3, wobei die Lichtfiltereigenschaft Photochromie ist und
die Photochromieeigenschaft durch wenigstens ein organisches photochromes Material
bereitgestellt wird.
11. Gegenstand nach Anspruch 10, wobei das organische photochrome Material ausgewählt
ist aus Benzoxazinen, Naphthoxazinen, Spiro(indolino)pyridobenzoxazinen, Benzopyranen,
Naphthopyranen, Spiro-9-fluorenopyranen, Phenanthropyranen, Chinopyranen, indenokondensierten
Naphthopyranen, Fulgiden, Metalldithizonaten, Fulgimiden und Mischungen solcher photochromen
Materialien.
12. Gegenstand nach Anspruch 11, wobei das organische photochrome Material (a) wenigstens
ein organisches photochromes Material mit einem sichtbaren Lambda max von 400 bis
weniger als 550 nm und (b) wenigstens ein organisches photochromes Material mit einem
sichtbaren Lambda max von 550 bis 700 nm enthält.
13. Gegenstand nach Anspruch 10, der zusätzlich wenigstens ein Additiv, ausgewählt aus
UV-Lichtabsorbern, auf Basis gehinderter Amine, Lichtstabilisatoren, Antioxidantien,
Oxaniliden und Singulett-Sauerstoff-Quenchern, zusammen mit dem organischen photochromen
Material enthält.
14. Gegenstand nach Anspruch 10, wobei das (die) organische photochrome Material(ien)
homogen in dem Polyurethanfilm verteilt ist.
15. Gegenstand nach Anspruch 10, wobei das (die) organische photochrome Material(ien)
in dem Polyurethanfilm in Mengen von 0,2 bis 20 Gew.-% vorhanden ist (sind).
16. Gegenstand nach einem der vorstehenden Ansprüche, wobei der Gegenstand ein optischer
Gegenstand ist.
17. Optischer Gegenstand nach Anspruch 16, wobei der optische Gegenstand eine Linse mit
einem Brechungsindex von 1,48 bis 1,90 ist.
18. Optischer Gegenstand nach Anspruch 16 enthaltend in Kombination:
(a) ein transparentes festes optisches Substrat mit einer Frontoberfläche und einer
rückseitigen Oberfläche, wobei dieses optische Substrat ausgewählt ist aus wärmegehärteten
Substraten, die aus polymerisierbaren Zusammensetzungen hergestellt sind, die Allylglykolcarbonatmonomer(e)
enthalten, Substraten, die aus thermoplastischem Polycarbonat hergestellt sind, Substraten,
die aus Polyharnstoffurethan hergestellt sind, Substraten, die aus Zusammensetzungen
hergestellt sind, die das Reaktionsprodukt von polyfunktionalem(n) Isocyanat(en) und
Polythiol- oder Polyepisulfidmonomer(en) enthalten, und Substraten, die aus Mineralglas
optischer Qualität hergestellt sind.
(b) einen transparenten thermoplastischen photochromen Polyurethanfilm, angrenzend
an wenigstens einer Oberfläche dieses optischen Substrats, wobei dieser Polyurethanfilm
0,2 bis 10 Gew.-% wenigstens eines organischen photochromen Materials enthält, dieser
Polyurethanfilm ein Biegemodul von weniger als 2,5 GPa aufweist und aus einem Polyurethanmaterial
gebildet ist, ausgewählt aus Polyurethan auf Polycarbonatbasis und Mischungen von
Polyurethan auf Polyetherbasis und Polyurethan auf Polycarbonatbasis, und
(c) einen transparenten Schutzfilm aus polymerem Material, der auf diesem Polyurethanfilm
aufgebracht ist, wobei dieser polymere Schutzfilm ausgewählt ist aus Nylon, Poly(vinylacetat),
Vinylchlorid-Vinylacetat-Copolymer, Polymeren von niedrigen Alkylacrylaten, Polymeren
von niedrigen Alkylmethacrylaten, Styrol-Butadien-Copolymerharz, Polyharnstoffurethanen,
leicht vernetztem thermoplastischen Polyurethan- und thermoplastischem Polycarbonatmaterial.
19. Optischer Gegenstand nach Anspruch 18, wobei das optische Substrat eine Linse mit
einem Brechungsindex von 1,48 bis 1,75 ist, der thermoplastische photochrome Polyurethanfilm
eine Dicke von 50,8 bis 381 µm (2 bis 15 Mil) und einen Biegemodul von weniger als
1,0 GPa aufweist und der polymere Schutzfilm eine Dicke von 25,4 bis 508 µm (1 bis
20 Mil) und einen Biegemodul von 0,1 bis 5 GPa aufweist.
20. Photochromer ophthalmischer Gegenstand enthaltend in Kombination:
(a) ein transparentes festes optisches polymeres Substrat mit einer Frontoberfläche
und einer rückseitigen Oberfläche, wobei das feste optische Substrat ausgewählt ist
aus wärmegehärteten Substraten hergestellt aus polymerisierbaren Zusammensetzungen,
die Allylglykolcarbonatmonomer(e) enthalten, Substraten, die aus thermoplastischen
Polycarbonaten hergestellt sind, Substraten, die aus Polyharnstoffurethan hergestellt
sind und Substraten, die aus Zusammensetzungen hergestellt sind, die das Reaktionsprodukt
von polyfunktionellem(n) Isocyanat(en) und Polythiol- oder Polyepisulfidmonomer(en)
enthalten,
(b) einen transparenten thermoplastischen Polyurethanfilm, angrenzend an einer Oberfläche
dieses Substrats, wobei dieser Polyurethanfilm eine Lichtdurchlässigkeit von wenigstens
80%, einen Biegemodul von weniger als 1,0 GPa, eine Dicke von 25,4 bis 508 µm (1 bis
20 Mil) aufweist und aus Polyurethanmaterial gebildet ist, ausgewählt aus Polyurethan
auf Polycarbonatbasis und Mischungen von Polyurethan auf Polyetherbasis mit Polyurethan
auf Polycarbonatbasis, und wobei dieser Polyurethanfilm weiterhin eine photochrome
Menge wenigstens eines organischen photochromen Materials enthält, und
(c) einen transparenten thermoplastischen Schutzfilm aus polymerem Material, der auf
diesem Polyurethanfilm aufgebracht ist, wobei dieser polymere Schutzfilm eine Lichtdurchlässigkeit
von wenigstens 80%, eine Dicke von 25,4 bis 508 µm (1 bis 20 Mil) und einen Biegemodul
von 0,5 bis 3 GPa aufweist.
21. Photochromer Augengegenstand nach Anspruch 20, wobei das Substrat eine Linse mit einem
Brechungsindex von 1,48 bis 1,75 ist.
22. Augengegenstand nach Anspruch 21, wobei die Linse eine Planlinse, eine unifokale Linse,
eine multifokale Linse, eine aspherische Linse, eine aspherische multifokale Linse
oder eine halbfertige unifokale Linse ist.
23. Augengegenstand nach Anspruch 22, wobei das Allylglykolcarbonatmonomer Diethylenglykolbis(allylcarbonat)
ist.
24. Augengegenstand nach Anspruch 20, wobei das organische photochrome Material, die Menge
an organischem photochromen Material, der Schutzfilm und die abriebbeständige Beschichtung
wie in einem der Ansprüche 4, 6, 7, 11 und 15 definiert sind.
25. Photochrome optische Linse enthaltend in Kombination:
(a) ein transparentes festes optisches polymeres Linsensubstrat mit einem Brechungsindex
von 1,50 bis 1,67, wobei dieses Substrat eine konvexe Oberfläche und eine konkave
Oberfläche aufweist und ausgewählt ist aus wärmegehärteten Substraten, die aus polymerisierbaren
Zusammensetzungen, die Allylglykolcarbonatmonomer(e) enthalten, hergestellt sind,
Substraten, die aus thermoplastischen Polycarbonaten hergestellt sind, und Substraten,
die aus Polyharnstoffurethanen hergestellt sind,
(b) einen transparenten thermoplastischen photochromen Polyurethanfilm, der auf die
konvexe Oberfläche des Linsensubstrats aufgebracht ist, wobei dieser Polyurethanfilm
eine Dicke von 50,8 bis 381 µm (2 bis 15 Mil), einen Biegemodul von weniger als 1,0
GPa aufweist, eine photochrome Menge von wenigstens einem organischen photochromen
Material enthält und aus einem Polyurethanmaterial gebildet wird, das ausgewählt ist
aus Polyurethan auf Polycarbonatbasis und Mischungen aus Polyurethan auf Polyetherbasis
und Polyurethan auf Polycarbonatbasis, und
(c) einen transparenten thermoplastischen Schutzfilm aus polymerem Material, der auf
dem Polyurethanfilm aufgebracht ist, wobei dieser Schutzfilm eine Dicke von 127 bis
254 µm (5 bis 10 Mil) aufweist.
26. Photochromer Gegenstand nach einem der Ansprüche 20 und 25, wobei das Polyurethanmaterial,
das den transparenten thermoplastischen photochromen Polyurethanfilm bildet, zusätzlich
eine geringe Menge an Polyurethan auf Polyesterbasis enthält.
27. Photochrome Linse nach Anspruch 25, wobei das organische photochrome Material in Mengen
von 0,3 bis 5 Gew.-% vorhanden ist, das organische photochrome Material ausgewählt
ist aus Naphthoxazinen, Spiro(indolino)pyridobenzoxazinen, Naphthopyranen, Spiro-9-fluorenopyranen,
Phenanthropyranen, indenokondensierten Naphthopyranen und Mischungen solcher photochromen
Materialien und der polymere Schutzfilm ausgewählt ist aus Nylon, Polyharnstoffurethanen,
leicht vernetztem thermoplastischen Polyurethan- und thermoplastischem Polycarbonatmaterial.
28. Photochrome Linse nach Anspruch 27, wobei das Linsensubstrat und der Schutzfilm jeweils
thermoplastisches Polycarbonatmaterial enthalten.
29. Photochrome Linse nach Anspruch 27, wobei der Schutzfilm aus polymerem Material eine
Schmelztemperatur von mehr als 120 °C, einen Lichtdurchlässigkeitswert von mehr als
80%, einen Biegemodul von 0,5 bis 3 GPa und eine Abriebbeständigkeit aufweist, die
größer ist als die des Polyurethanfilms.
30. Photochrome Linse nach Anspruch 27, wobei eine abriebbeständige Beschichtung auf dem
polymeren Schutzfilm angebracht ist und die abriebbeständige Beschichtung ausgewählt
ist aus Beschichtungen, die eine Hartbeschichtung des Organosilan-Typs und eine Hartbeschichtung
auf Siliciumdioxidsolbasis enthält.
31. Photochrome Linse nach Anspruch 30, wobei eine antireflektierende Beschichtung mit
der abriebbeständigen Beschichtung angebracht ist.
32. Hochbrechende photochrome optische Linse enthaltend in Kombination:
(a) ein transparentes festes optisches polymeres Substrat mit einer Frontoberfläche,
einer rückseitigen Oberfläche und einem Brechungsindex von wenigstens 1,60,
(b) einen transparenten thermoplastischen photochromen Polyurethanfilm, angrenzend
an wenigstens einer Oberfläche dieser Linse, wobei dieser Polyurethanfilm eine Dicke
von 25,4 bis 508 µm (1 bis 20 Mil), einen Biegemodul von weniger als 2,5 GPa aufweist
und aus einem Polyurethanmaterial gebildet ist, das ausgewählt ist aus einem Polyurethan
auf Polycarbonatbasis und Mischungen von Polyurethan auf Polyetherbasis mit Polyurethan
auf Polycarbonatbasis, WOBEI dieser Polyurethanfilm weiterhin eine photochrome Menge
wenigstens eines organischen photochromen Materials enthält, und
(c) einen transparenten thermoplastischen Schutzfilm aus polymerem Material, der auf
diesem Polyurethanfilm angeordnet ist,
wobei die optische Linse im Wesentlichen frei von Interferenzstreifen ist.
33. Hochbrechende Linse nach Anspruch 32, wobei der Polyurethanfilm eine Dicke von 50,8
bis 381 µm (2 bis 15 Mil) aufweist und 0,3 bis 5 Gew.-% wenigstens eines organischen
photochromen Materials enthält, das ausgewählt ist aus Naphthoxazinen, Spiro(indolino)pyridobenzoxazinen,
Naphthopyranen, Spiro-9-fluorenopyranen, Phenanthropyranen, indenokondensierten Naphthopyranen
und Mischungen solcher photochromen Materialien, und wobei der polymere Schutzfilm
eine Dicke von 127 bis 254 µm (5 bis 10 Mil) aufweist und ausgewählt ist aus Nylon,
Polyharnstoffurethanen, leicht vernetztem thermoplastischen Polyurethan und thermoplastischem
Polycarbonat.
34. Hochbrechende Linse nach Anspruch 33, wobei eine abriebbeständige Beschichtung auf
dem polymeren Schutzfilm angebracht ist und die abriebbeständige Beschichtung ausgewählt
ist aus abriebbeständigen Beschichtungen des Organosilan-Typs und Hartbeschichtungen
auf Siliciumdioxidsolbasis enthält.
35. Hochbrechende Linse nach Anspruch 34, wobei eine antireflektierende Beschichtung auf
der abriebbeständigen Beschichtung angebracht ist.
36. Verfahren zur Ausbildung eines optischen Gegenstands, umfassend die Schritte:
(a) Bereitstellen eines vorgeformten transparenten festen optischen polymeren Substrats
mit einer konvexen Oberfläche und einer konkaven Oberfläche,
(b) Bereitstellen eines transparenten Laminats enthaltend eine Lage eines transparenten
photochromen Polyurethanfilms und eine Lage eines transparenten polymeren Schutzfilms,
wobei dieser Polyurethanfilm aus einem Polyurethanmaterial gebildet ist, das ausgewählt
ist aus Polyurethan auf Polycarbonatbasis und Mischungen von Polyurethan auf Polyetherbasis
mit Polyurethan auf Polycarbonatbasis, wobei dieser Polyurethanfilm weiterhin einen
Biegemodul von weniger als 1,0 GPa aufweist und eine photochrome Menge wenigstens
eines organischen photochromen Materials enthält, dieser polymere Schutzfilm eine
Schmelztemperatur von mehr als 120 °C und einen Biegemodul von 0,5 bis 3 GPa aufweist
und dieses Laminat eine Größe aufweist, die ausreicht, um wenigstens einen ausgewählten
Bereich wenigstens einer von der konvexen und konkaven Oberfläche dieses optischen
Substrats abzudecken,
(c) Plazieren dieses Laminats auf dem ausgewählten Bereich wenigstens einer von dieser
konvexen und konkaven Oberfläche dieses Substrats, wobei der Polyurethanfilm dieses
Laminats angrenzend an die Oberfläche dieses optischen Substrats ist, und
(d) Formen dieses Laminats gegen dieses optische Substrat unter Bedingungen, so dass
das Laminat an der ausgewählten Oberfläche des Substrats haftet.
37. Verfahren nach Anspruch 36, wobei das Laminat eine Größe aufweist, die ausreichend
ist, um die konvexe Oberfläche dieses optischen Substrats abzudecken und das Laminat
auf der konvexen Oberfläche in Schritt (c) angeordnet wird.
38. Verfahren nach Anspruch 36, wobei das Laminat gegen das Substrat unter Verwendung
von Temperaturen von 121 bis 177°C (250 bis 350°F) geformt wird.
39. Verfahren nach Anspruch 38, wobei unteratmosphärischer Druck verwendet wird, um zuerst
das Laminat gegen die Oberfläche des Substrats anzuformen, und dann positiver Druck
gegen das Laminat verwendet wird, um das Laminat mit dem Substrat zu verkleben.
40. Verfahren nach Anspruch 39, wobei der verwendete positive Druck von 1,03 x 106 Pa bis 2,8 x 106 Pa (150 bis 400 Ib/in2) reicht.
41. Verfahren nach Anspruch 36, wobei
(a) das vorgeformte feste optische Substrat ein gehärtetes Substrat, hergestellt aus
polymerisierbaren Zusammensetzungen, die Allylglykolcarbonatmonomer(e) enthalten,
ein Substrat, hergestellt aus Polyharnstoffurethan, ein Substrat, hergestellt aus
thermoplastischem Polycarbonat, oder ein Substrat, hergestellt aus Zusammensetzungen,
die das Reaktionsprodukt von polyfunktionellem(n) Isocyanat(en) und Polythiol- oder
Polyepisulfidmonomer(en) enthalten, ist und dieses Substrat einen Brechungsindex von
1,48 bis 1,90 aufweist,
(b) die Lage des transparenten photochromen Polyurethanfilms eine Dicke von 25,4 bis
508 µm (1 bis 20 Mil) aufweist und das organische photochrome Material ausgewählt
ist aus Naphthoxazinen, Spiro(indolino)pyridobenzoxazinen, Naphthopyranen, Spiro-9-fluorenopyranen,
Phenanthropyranen, indenokondensierten Naphthopyranen und Mischungen solcher photochromen
Materialien und
(c) die Lage des transparenten polymeren Schutzfilms eine Dicke von 25,4 bis 508 µm
(1 bis 20 Mil) aufweist und ausgewählt ist aus Nylon, Poly(vinylacetat), Vinylchlorid-Vinylacetat-Copolymer,
Polymeren niedriger Alkylacrylate, Polymeren niedriger Alkylmethacrylate, Styrol-Butadien-Copolymerharz,
Polyharnstoffurethan, leicht vernetztem thermoplastischen Polyurethan- und thermoplastischem
Polycarbonatmaterial.
42. Verfahren nach Anspruch 41, wobei das vorgeformte feste optische Substrat einen Brechungsindex
von 1,48 bis 1,75, der photochrome Polyurethanfilm eine Dicke von 50,8 bis 381 µm
(2 bis 15 Mil), der polymere Schutzfilm eine Dicke von 127 bis 254 µm (5 bis 10 Mil)
aufweist, das Polyurethan auf Polyetherbasis aus einer Zusammensetzung hergestellt
ist, die ein Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von 650 bis
1400 enthält, und das Polyurethan auf Polycarbonatbasis aus einer Zusammensetzung
hergestellt ist, die ein Polycarbonatpolyol mit einem zahlenmittleren Molekulargewicht
von 650 bis 1000 enthält.
43. Verfahren zur Herstellung eines photochromen optischen Elements enthaltend ein transparentes
Kunststofflinsensubstrat und ein transparentes Superstrat, das einen photochromen
Polyurethanfilm aufweist, wobei dieses Verfahren die Schritte umfasst:
(a) Bereitstellen eines mehrlagigen transparenten Laminats, enthaltend eine Lage eines
transparenten photochromen Polyurethanfilms und eine Lage eines transparenten polymeren
Schutzfilms, wobei dieser Polyurethanfilm aus einem Polyurethanmaterial gebildet ist,
das ausgewählt ist aus Polyurethan auf Polycarbonatbasis und Mischungen von Polyurethan
auf Polyetherbasis mit Polyurethan auf Polycarbonatbasis, dieser Polyurethanfilm weiterhin
einen Biegemodul von weniger als 1,0 GPa aufweist und eine photochrome Menge wenigstens
eines organischen photochromen Materials enthält, dieser polymere Schutzfilm eine
Schmelztemperatur von mehr als 120°C und einen Biegemodul von 0,5 bis 3 GPa aufweist,
wobei dieses transparente Laminat ausreichend beständig ist, um den Härtungsbedingungen,
die in den Schritten (d) und (e) vorliegen, standzuhalten,
(b) Bereitstellen einer optischen Form mit einem konkaven Element, einem konvexen
Element und einer peripheren Dichtung, die die beiden Formelemente verbindet, wobei
dieses konkave und dieses konvexe Element einen Hohlraum bilden,
(c) Anordnen des Laminats innerhalb der optischen Form mit dem polymeren Schutzfilm
gegen die konkave Oberfläche der optischen Form und mit dem photochromen Polyurethanfilm
in Richtung des Hohlraums, wobei das Laminat eine Größe aufweist, die ausreicht, um
einen gewünschten Teil der konkaven Oberfläche abzudecken,
(d) Injizieren eines polymerisierbaren optischen Harzes, das in der Lage ist, ein
transparentes festes Kunststofflinsensubstrat zu bilden, in den Hohlraum der optischen
Form und
(e) Härten dieses optischen Harzes, um dadurch eine transparente Kunststofflinse mit einer konkaven Oberfläche und einer konvexen
Oberfläche zu bilden, wobei dieses mehrlagige transparente Laminat auf der konvexen
Oberfläche dieser Kunststofflinse angeordnet ist.
44. Verfahren nach Anspruch 43, wobei der Polyurethanfilm eine Dicke von 25,4 bis 508
µm (1 bis 20 Mil) aufweist und das organische photochrome Material ausgewählt ist
aus Naphthoxazinen, Spiro(indolino)pyridobenzoxazinen, Naphthopyranen, Spiro-9-fluorenopyranen,
Phenanthropyranen, indenokondensierten Naphthopyranen und Mischungen solcher photochromer
Materialien und der transparente polymere Schutzfilm eine Dicke von 25,4 bis 508 µm
(1 bis 20 Mil) aufweist und ausgewählt ist aus Nylon, Poly(vinylacetat), Vinylchlorid-Vinylacetat-Copolymer,
Polymeren niedriger Alkylacrylate, Polymeren niedriger Alkylmethacrylate, Styrol-Butadien-Copolymerharz,
Polyharnstoffurethan, leicht vernetztem thermoplastischen Polyurethan- und thermoplastischem
Polycarbonatmaterial.
45. Verfahren nach Anspruch 44, wobei das polymerisierbare optische Harz ausgewählt ist
aus Polyharnstoffurethan und thermoplastischem Polycarbonat.
46. Verfahren nach einem der Ansprüche 36 und 45, wobei der polymere Schutzfilm thermoplastisches
Polycarbonat ist.
1. Article comprenant, en combinaison :
(a) un substrat solide transparent possédant une surface avant et une surface arrière,
(b) un film polyuréthane thermoplastique transparent adjacent à au moins une surface
dudit substrat optique, ledit film polyuréthane possédant un module d'élasticité en
flexion inférieur à 2,5 GPa, ledit film polyuréthane offrant en outre au moins une
propriété de filtre optique souhaitée audit article optique et étant formé à partir
d'un matériau polyuréthane choisi parmi un polyuréthane à base de polycarbonate, et
des mélanges de polyuréthane à base de polyéther et de polyuréthane à base de polycarbonate,
et
(c) un film protecteur transparent en matériau polymère superposé sur ledit film polyuréthane.
2. Article selon la revendication 1, dans lequel le substrat est choisi parmi les substrats
thermodurcis préparés à partir de compositions polymérisables comprenant un ou plusieurs
monomères de carbonate d'allylglycol, les substrats préparés à partir de polycarbonate
thermoplastique, les substrats préparés à partir de polyurée-uréthane, les substrats
préparés à partir de compositions comprenant le produit réactionnel d'un ou plusieurs
isocyanates polyfonctionnels et d'un ou plusieurs monomères de polythiol ou de polyépisulfure,
et les substrats préparés à partir de verre minéral de qualité optique.
3. Article selon la revendication 1, dans lequel la propriété de filtre optique est choisie
parmi la coloration, la polarisation de la lumière et le photochromisme.
4. Article selon l'une quelconque des revendications précédentes, dans lequel le film
protecteur en matériau polymère est choisi parmi un nylon, un acétate de polyvinyle,
un copolymère de chlorure de vinyle-acétate de vinyle, les polyacrylates d'alkyle
inférieur, les polyméthacrylates d'alkyle inférieur, une résine de copolymère de styrène-butadiène,
un polyurée-uréthane, un polyuréthane thermoplastique légèrement réticulé et matériau
polycarbonate thermoplastique.
5. Article selon l'une quelconque des revendications précédentes, dans lequel le film
polyuréthane et le film protecteur en matériau polymère ont chacun une épaisseur comprise
dans la plage allant de 25,4 µm à 508 µm (1 à 20 mils).
6. Article selon l'une quelconque des revendications précédentes, comprenant en outre
un revêtement résistant à l'abrasion superposé sur ledit film protecteur.
7. Article selon la revendication 6, dans lequel le revêtement résistant à l'abrasion
est choisi parmi les revêtements durs à base d'acrylique polyfonctionnel, les revêtements
durs à base de mélamine, les revêtements durs à base d'uréthane, les revêtements durs
à base d'alkyde, les revêtements durs à base de sol de silice et les revêtements durs
de type organosilane.
8. Article selon la revendication 7, dans lequel le revêtement résistant à l'abrasion
comprend un revêtement résistant à l'abrasion de type organosilane ou un revêtement
dur à base de sol de silice.
9. Article selon la revendication 6, comprenant en outre un revêtement antireflet superposé
sur ledit revêtement résistant à l'abrasion.
10. Article selon la revendication 3, dans lequel la propriété de filtre optique est le
photochromisme et la propriété de photochromisme est fournie par au moins un matériau
photochrome organique.
11. Article selon la revendication 10, dans lequel le matériau photochrome organique est
choisi parmi les benzoxazines, les naphtoxazines, les spiro(indolino)pyrido-benzoxazines,
les benzopyranes, les naphtopyranes, les spiro-9-fluorénopyranes, les phénanthropyranes,
les quinopyranes, les naphtopyranes indéno-condensés, les fulgides, les dithizonates
métalliques, les fulgimides et des mélanges de ces matériaux photochromes.
12. Article selon la revendication 11, dans lequel le matériau photochrome organique comprend
(a) au moins un matériau photochrome organique possédant un lambda visible maximum
compris dans la plage allant de 400 à moins de 550 nanomètres, et (b) au moins un
matériau photochrome organique possédant un lambda visible maximum compris dans la
plage allant de 550 à 700 nanomètres.
13. Article selon la revendication 10, comprenant en outre au moins un additif choisi
parmi les absorbants de lumière ultraviolette, les photostabilisants de type amine
encombrée, les antioxydants oxanilides et les neutraliseurs d'oxygène singulet, en
association avec le matériau photochrome organique.
14. Article selon la revendication 10, dans lequel le ou les matériaux photochromes organiques
sont distribués de manière homogène sur tout le film polyuréthane.
15. Article selon la revendication 10, dans lequel le ou les matériaux photochromes organiques
sont présents dans le film polyuréthane en des quantités comprises dans la plage allant
de 0,2 à 20 % en poids.
16. Article selon l'une quelconque des revendications précédentes, dans lequel l'article
est un article optique.
17. Article optique selon la revendication 16, dans lequel l'article optique est une lentille
possédant un indice de réfraction compris dans la plage allant de 1,48 à 1,90.
18. Article optique selon la revendication 16, comprenant, en combinaison :
(a) un substrat optique solide transparent possédant une surface avant et une surface
arrière, ledit substrat optique étant choisi parmi les substrats thermodurcis préparés
à partir de compositions polymérisables comprenant un ou plusieurs monomères de carbonate
d'allylglycol, les substrats préparés à partir de polycarbonate thermoplastique, les
substrats préparés à partir de polyurée-uréthane, les substrats préparés à partir
de compositions comprenant le produit réactionnel d'un ou plusieurs isocyanates polyfonctionnels
et d'un ou plusieurs monomères de polythiol ou de polyépisulfure, et les substrats
préparés à partir de verre minéral de qualité optique,
(b) un film polyuréthane photochrome thermoplastique transparent adjacent à au moins
une surface dudit substrat optique, ledit film polyuréthane contenant de 0,2 à 10
% en poids d'au moins un matériau photochrome organique, ledit film polyuréthane possédant
un module d'élasticité en flexion inférieur à 2,5 GPa et étant formé à partir d'un
matériau polyuréthane choisi parmi un polyuréthane à base de polycarbonate, et des
mélanges de polyuréthane à base de polyéther et de polyuréthane à base de polycarbonate,
et
(c) un film protecteur transparent d'un matériau polymère superposé sur ledit film
polyuréthane, ledit film protecteur polymère étant choisi parmi un nylon, un acétate
de polyvinyle, un copolymère de chlorure de vinyle-acétate de vinyle, les polyacrylates
d'alkyle inférieur, les polyméthacrylates d'alkyle inférieur, une résine de copolymère
de styrène-butadiène, les polyurée-uréthanes, un polyuréthane thermoplastique légèrement
réticulé et matériau polycarbonate thermoplastique.
19. Article selon la revendication 18, dans lequel le substrat optique est une lentille
possédant un indice de réfraction compris dans la plage allant de 1,48 à 1,75, le
film polyuréthane photochrome thermoplastique possède une épaisseur comprise dans
la plage allant de 50,8 à 381 µm (2 à 15 mils) et un module d'élasticité en flexion
inférieur à 1,0 GPa, et le film protecteur polymère possède une épaisseur comprise
dans la plage allant de 25,4 à 508 µm (1 à 20 mils) et un module d'élasticité en flexion
compris dans la plage allant de 0,1 à 5 GPa.
20. Article photochrome ophtalmique comprenant, en combinaison :
(a) un substrat polymère optique solide transparent possédant une surface avant et
une surface arrière, ledit substrat optique solide étant choisi parmi les substrats
thermodurcis préparés à partir de compositions polymérisables comprenant un ou plusieurs
monomères de carbonate d'allylglycol, les substrats préparés à partir de polycarbonate
thermoplastique, les substrats préparés à partir de polyurée-uréthane et les substrats
préparés à partir de compositions comprenant le produit réactionnel d'un ou plusieurs
isocyanates polyfonctionnels et d'un ou plusieurs monomères de polythiol ou de polyépisulfure,
(b) un film polyuréthane thermoplastique transparent adjacent à une surface dudit
substrat, ledit film polyuréthane possédant une transmission de lumière d'au moins
80 %, un module d'élasticité en flexion inférieur à 1,0 GPa, une épaisseur comprise
dans la plage allant de 25,4 à 508 µm (1 à 20 mils) et étant formé à partir d'un matériau
polyuréthane choisi parmi un polyuréthane à base de polycarbonate, et des mélanges
de polyuréthane à base de polyéther et de polyuréthane à base de polycarbonate, ledit
film polyuréthane comprenant en outre une quantité photochrome d'au moins un matériau
photochrome organique, et
(c) un film protecteur thermoplastique transparent d'un matériau polymère superposé
sur ledit film polyuréthane, ledit film protecteur polymère possédant une transmission
de lumière d'au moins 80 %, une épaisseur comprise dans la plage allant de 25,4 à
508 µm (1 à 20 mils) et un module d'élasticité en flexion compris dans la plage allant
de 0,5 à 3 GPa.
21. Article ophtalmique selon la revendication 20, dans lequel le substrat est une lentille
possédant un indice de réfraction compris dans la plage allant de 1,48 à 1,75.
22. Article ophtalmique selon la revendication 21, dans lequel la lentille est une lentille
plan, une lentille de vue unique, une lentille multifocale, une lentille asphérique,
une lentille multifocale asphérique, ou une lentille de vue unique semi-finie.
23. Article ophtalmique selon la revendication 22, dans lequel le monomère de carbonate
d'allylglycol est le bis(carbonate d'allyle) de diéthylène glycol.
24. Article ophtalmique selon la revendication 20, dans lequel le matériau photochrome
organique, la quantité du matériau photochrome organique, le film protecteur et le
revêtement résistant à l'abrasion sont tels que définis selon l'une quelconque des
revendications 4, 6, 7, 11 et 15.
25. Lentille optique photochrome comprenant, en combinaison :
(a) un substrat de lentille polymère optique solide transparent possédant un indice
de réfraction compris dans la plage allant de 1,50 à 1,67, ledit substrat possédant
une surface convexe et une surface concave, et étant choisi parmi les substrats thermodurcis
préparés à partir de compositions polymérisables comprenant un ou plusieurs monomères
de carbonate d'allylglycol, les substrats préparés à partir de polycarbonate thermoplastique
et les substrats préparés à partir de polyurée-uréthane,
(b) un film polyuréthane photochrome thermoplastique transparent attaché à la surface
convexe du substrat de lentille, ledit film polyuréthane possédant une épaisseur comprise
dans la plage allant de 50,8 à 381 µm (2 à 15 mils), un module d'élasticité en flexion
inférieur à 1,0 GPa, contenant une quantité photochrome d'au moins un matériau photochrome
organique, et étant formé à partir d'un matériau polyuréthane choisi parmi un polyuréthane
à base de polycarbonate, et des mélanges de polyuréthane à base de polyéther et de
polyuréthane à base de polycarbonate, et
(c) un film protecteur thermoplastique transparent d'un matériau polymère attaché
audit film polyuréthane, ledit film protecteur possédant une épaisseur comprise dans
la plage allant de 127 à 254 µm (5 à 10 mils).
26. Article photochrome selon l'une quelconque des revendications 20 et 25, dans lequel
le matériau polyuréthane qui forme le film polyuréthane photochrome thermoplastique
transparent comprend en outre une quantité mineure d'un polyuréthane à base de polyester.
27. Lentille photochrome selon la revendication 25, dans laquelle le matériau photochrome
organique est présent en des quantités comprises dans la plage allant de 0,3 à 5 %
en poids, le matériau photochrome organique est choisi parmi les naphtoxazines, les
spiro(indolino)pyridobenzoxazines, les naphtopyranes, les spiro-9-fluorénopyranes,
les phénanthropyranes, les naphtopyranes indéno-condensés et des mélanges de ces matériaux
photochromes, et le film protecteur polymère est choisi parmi le nylon, les polyurée-uréthanes,
un matériau polyuréthane thermoplastique légèrement réticulé et polycarbonate thermoplastique.
28. Lentille photochrome selon la revendication 27, dans laquelle le substrat de lentille
et le film protecteur comprennent chacun un matériau polycarbonate thermoplastique.
29. Lentille photochrome selon la revendication 27, dans laquelle le film protecteur en
matériau polymère a une température de fusion supérieure à 120 °C, une transmission
de lumière supérieure à 80 %, un module d'élasticité en flexion compris dans la plage
allant de 0,5 à 3 GPa, et une résistance à l'abrasion qui est supérieure à celle du
film polyuréthane.
30. Lentille photochrome selon la revendication 27, dans laquelle un revêtement résistant
à l'abrasion est apposé sur le film protecteur polymère et le revêtement résistant
à l'abrasion est choisi parmi les revêtements comprenant un revêtement dur de type
organosilane et un revêtement dur à base de sol de silice.
31. Lentille photochrome selon la revendication 30, dans laquelle un revêtement antireflet
est apposé sur le revêtement résistant à l'abrasion.
32. Lentille optique photochrome d'indice élevé comprenant, en combinaison :
(a) un substrat polymère optique solide transparent possédant une surface avant, une
surface arrière et un indice de réfraction d'au moins 1,60,
(b) un film polyuréthane photochrome thermoplastique transparent apposé sur au moins
une surface de ladite lentille, ledit film polyuréthane possédant une épaisseur comprise
dans la plage allant de 25,4 à 508 µm (1 à 20 mils), un module d'élasticité en flexion
inférieur à 2,5 GPa, et étant formé à partir d'un matériau polyuréthane choisi parmi
un polyuréthane à base de polycarbonate, et des mélanges de polyuréthane à base de
polyéther et de polyuréthane à base de polycarbonate, ledit film polyuréthane contenant
en outre une quantité photochrome d'au moins un matériau photochrome organique, et
(c) un film protecteur thermoplastique transparent en matériau polymère superposé
sur ledit film polyuréthane, ladite lentille optique étant sensiblement exempte de
franges d'interférence.
33. Lentille d'indice élevé selon la revendication 32, dans laquelle le film polyuréthane
possède une épaisseur de 50,8 à 381 µm (2 à 15 mils) et comprend de 0,3 à 5 % en poids
d'au moins un matériau photochrome organique choisi parmi les naphtoxazines, les spiro(indolino)pyridobenzoxazines,
les naphtopyranes, les spiro-9-fluorénopyranes, les phénanthropyranes, les naphtopyranes
indéno-condensés et des mélanges de ces matériaux photochromes, et dans laquelle le
film polymère protecteur possède une épaisseur comprise dans la plage allant de 127
à 254 µm (5 à 10 mils) et est choisi parmi le nylon, les polyurée-uréthanes, un polyuréthane
thermoplastique légèrement réticulé et polycarbonate thermoplastique.
34. Lentille d'indice élevé selon la revendication 33, dans laquelle un revêtement résistant
à l'abrasion est apposé sur le film polymère protecteur, et le revêtement résistant
à l'abrasion est choisi parmi les revêtements résistant à l'abrasion de type organosilane
et les revêtements durs à base de sol de silice.
35. Lentille d'indice élevé selon la revendication 34, dans laquelle un revêtement antireflet
est apposé sur le revêtement résistant à l'abrasion.
36. Procédé de formation d'un article optique comprenant les étapes consistant à :
(a) utiliser un substrat polymère optique solide transparent préformé possédant une
surface convexe et une surface concave,
(b) utiliser un stratifié transparent comprenant une couche de film polyuréthane photochrome
transparent et une couche de film polymère protecteur transparent, ledit film polyuréthane
étant formé à partir d'un matériau polyuréthane choisi parmi un polyuréthane à base
de polycarbonate, et des mélanges de polyuréthane à base de polyéther et de polyuréthane
à base de polycarbonate, ledit film polyuréthane possédant en outre un module d'élasticité
en flexion inférieur à 1,0 GPa et contenant une quantité photochrome d'au moins un
matériau photochrome organique, ledit film polymère protecteur ayant une température
de fusion supérieure à 120 °C et un module d'élasticité en flexion compris dans la
plage allant de 0,5 à 3 GPa, ledit stratifié étant d'une taille suffisante pour couvrir
au moins une partie sélectionnée d'au moins une des surfaces convexe et concave dudit
substrat optique,
(c) placer ledit stratifié sur la partie sélectionnée d'au moins une desdites surfaces
convexe et concave, le film polyuréthane dudit stratifié étant adjacent à la surface
dudit substrat optique, et
(d) former ledit stratifié contre ledit substrat optique dans des conditions telles
que le stratifié adhère à la surface sélectionnée du substrat.
37. Procédé selon la revendication 36, dans lequel le stratifié possède une taille qui
est suffisante pour couvrir la surface convexe dudit substrat optique, et le stratifié
est placé contre ladite surface convexe dans l'étape (c).
38. Procédé selon la revendication 36, dans lequel le stratifié est formé contre le substrat
en utilisant des températures comprises dans la plage allant de 121 à 177°C (250 à
350°F).
39. Procédé selon la revendication 38, dans lequel une pression subatmosphérique est utilisée
d'abord pour adapter le stratifié contre la surface du substrat, puis une pression
positive est appliquée contre le stratifié pour faire adhérer le stratifié au substrat.
40. Procédé selon la revendication 39, dans lequel la pression positive appliquée est
comprise dans la plage allant de 1,03 × 106 Pa à 2,8 × 106 Pa (150 à 400 livres par pouce carré).
41. Procédé selon la revendication 36, dans lequel :
(a) le substrat optique solide préformé est un substrat thermodurci préparé à partir
de compositions polymérisables comprenant un ou plusieurs monomères de carbonate d'allylglycol,
un substrat préparé à partir de polyurée-uréthane, un substrat préparé à partir de
polycarbonate thermoplastique, et un substrat préparé à partir de compositions comprenant
le produit réactionnel d'un ou plusieurs isocyanates polyfonctionnels et d'un ou plusieurs
monomères de polythiol ou de polyépisulfure, ledit substrat possédant un indice de
réfraction compris dans la plage allant de 1,48 à 1,90 ;
(b) la couche de film polyuréthane photochrome transparent possède une épaisseur comprise
dans la plage allant de 25,4 à 508 µm (1 à 20 mils), et le matériau photochrome organique
est choisi parmi les naphtoxazines, les spiro(indolino)pyridobenzoxazines, les naphtopyranes,
les spiro-9-fluorénopyranes, les phénanthropyranes, les naphtopyranes indéno-condensés
et des mélanges de ces matériaux photochromes ; et
(c) la couche de film polymère protecteur transparent possède une épaisseur comprise
dans la plage allant de 25,4 à 508 µm (1 à 20 mils) et est choisie parmi un nylon,
un acétate de polyvinyle, un copolymère de chlorure de vinyle-acétate de vinyle, les
polyacrylates d'alkyle inférieur, les polyméthacrylates d'alkyle inférieur, une résine
de copolymère de styrène-butadiène, un polyurée-uréthane, un polyuréthane thermoplastique
légèrement réticulé et matériau polycarbonate thermoplastique.
42. Procédé selon la revendication 41, dans lequel le substrat optique solide préformé
possède un indice de réfraction compris dans la plage allant de 1,48 à 1,75, le film
polyuréthane photochrome possède une épaisseur comprise dans la plage allant de 50,8
à 381 µm (2 à 15 mils), le film protecteur polymère possède une épaisseur comprise
dans la plage allant de 127 à 254 µm (5 à 10 mils), le polyuréthane à base de polyéther
est préparé à partir d'une composition comprenant un polyol de polyéther ayant un
poids moléculaire moyen en nombre compris dans la plage allant de 650 à 1400, et le
polyuréthane à base de polycarbonate est préparé à partir d'une composition comprenant
un polyol de polycarbonate ayant un poids moléculaire moyen en nombre compris dans
la plage allant de 650 à 1000.
43. Procédé de production d'un élément optique photochrome comprenant un substrat de lentille
plastique transparent et une couche sous-jacente transparente comprenant un film polyuréthane
photochrome, ledit procédé comprenant les étapes consistant à :
(a) utiliser un stratifié transparent multicouche comprenant une couche de film polyuréthane
photochrome transparent et une couche de film polymère protecteur transparent, ledit
film polyuréthane étant formé à partir d'un matériau polyuréthane choisi parmi un
polyuréthane à base de polycarbonate, et des mélanges de polyuréthane à base de polyéther
et de polyuréthane à base de polycarbonate, ledit film polyuréthane possédant en outre
un module d'élasticité en flexion inférieur à 1,0 GPa et contenant une quantité photochrome
d'au moins un matériau photochrome organique, ledit film polymère protecteur ayant
une température de fusion supérieure à 120 °C et un module d'élasticité en flexion
compris dans la plage allant de 0,5 à 3 GPa, ledit stratifié transparent possédant
une durabilité suffisante pour supporter les conditions de durcissement des étapes
(d) et (e) ;
(b) utiliser un moule optique comprenant un élément concave, un élément convexe et
un joint d'étanchéité périphérique pour joindre les éléments du moule, lesdits éléments
concave et convexe formant une cavité ;
(c) placer le stratifié dans le moule optique avec le film polymère protecteur contre
la surface concave du moule optique et le film polyuréthane photochrome faisant face
à la cavité, ledit stratifié possédant une taille suffisante pour couvrir une partie
souhaitée de la surface concave ;
(d) injecter une résine optique polymérisable susceptible de former un substrat de
lentille plastique solide transparente dans la cavité du moule optique, et
(e) durcir ladite résine optique, formant ainsi une lentille plastique transparente
possédant une surface concave et une surface convexe et comprenant ledit stratifié
transparent multicouche attaché à la surface convexe de ladite lentille plastique.
44. Procédé selon la revendication 43, dans lequel le film polyuréthane possède une épaisseur
comprise dans la plage allant de 25,4 à 508 µm (1 à 20 mils), et le matériau photochrome
organique est choisi parmi les naphtoxazines, les spiro(indolino)pyridobenzoxazines,
les naphtopyranes, les spiro-9-fluorénopyranes, les phénanthropyranes, les naphtopyranes
indéno-condensés et des mélanges de ces matériaux photochromes, et dans lequel le
film polymère protecteur transparent possède une épaisseur comprise dans la plage
allant de 25,4 à 508 µm (1 à 20 mils) et est choisi parmi un nylon, un acétate de
polyvinyle, un copolymère de chlorure de vinyle-acétate de vinyle, les polyacrylates
d'alkyle inférieur, les polyméthacrylates d'alkyle inférieur, une résine de copolymère
de styrène-butadiène, un polyurée-uréthane, un polyuréthane thermoplastique légèrement
réticulé et matériau polycarbonate thermoplastique.
45. Procédé selon la revendication 44, dans lequel la résine optique polymérisable est
choisie parmi un polyurée-uréthane et un polycarbonate thermoplastique.
46. Procédé selon l'une quelconque des revendications 36 et 45, dans lequel le film polymère
protecteur est un polycarbonate thermoplastique.