Field of the Invention
[0001] The present invention relates to a cell for the electrowinning of a metal from a
compound thereof dissolved in a molten electrolyte. The cell is fitted with a device
for feeding particulate of the metal compound over to the molten electrolyte.
Background of the Invention
[0002] The feed device of the invention can be used in various molten salt electrolysis
cells in particular for aluminium electrowinning.
[0003] The technology for the production of aluminium by the electrolysis of alumina, dissolved
in molten cryolite containing salts, at temperatures around 950°C is more than one
hundred years old and has not undergone any great change or improvement, in particular
in the way in which alumina is fed to the molten electrolyte for its subsequent dissolution
and electrolysis.
[0004] Conventional cells are usually operated with a crust of frozen electrolyte above
the molten electrolyte. This crust needs to be periodically broken to form an opening
for feeding alumina into the molten electrolyte situated underneath. Various systems
have been provided to locally break the frozen electrolyte crust and feed alumina
into the molten electrolyte, for instance as described in US Patents 3'664,946 (Schaper/Springer/Kyburz),
4,049,529 (Golla), 4,437,964 (Gerphagnon/Wolter), 5,045,168 (Dalen/Kvalavag/Nagell),
5,108,557 (Nordquist), 5,299,318 (Grant/Kristoff), 5,324,408 and 5,423,968 (both in
the name of Kissane).
[0005] One drawback of feeding alumina to the molten electrolyte by initially breaking the
electrolyte crust resides in the introduction of a mass of frozen electrolyte into
the molten electrolyte which generates a thermal shock therein. Moreover, after the
crust is broken cold alumina is added to the molten electrolyte which freezes the
bath, forming dense alumina and/or electrolyte aggregates increasing the chance of
sludging.
[0006] With the trend towards automated systems, the frequency of feeding alumina has been
increased. Feeding may take place every 20 to 90 min., sometimes even shorter, for
instance every 1 to 5 min. as described in US Patent 3,673,075 (Kibby), while smaller
amounts of alumina are introduced with each feed. The advantages are in particular
maintaining a more constant concentration of dissolved alumina in the electrolyte
and reducing the temperature variation in the electrolyte. A typical automated break
and feed system comprises a pneumatically-operated crust breaker beam and an ore bin
capable of discharging a fixed amount of alumina (K. Grjotheim & B. J. Welsh, "Aluminium:
Smelter Technology ", 1988, 2
nd Edition, Aluminium Verlag GmbH, D-4000 Düsseldorf 1, pp. 231-232).
[0007] US Patent 5,476,574 (Welsh/Stretch/Purdie) discloses a feeder arranged to continuously
feed alumina to an aluminium electrowinning cell. The feeder is associated with a
point breaker which is operated to maintain a hole in a frozen electrolyte crust on
the surface of the molten electrolyte.
[0008] In order to enhance dispersion, dissolution and control of the amount of fine particulate
alumina fed to the electrolytic bath, various alumina feed devices have been developed
involving fluidisation of alumina powder by using compressed gas such as compressed
air, for instance as disclosed in US Patents 3,901,787 (Niizeki/Watanabe/Yamamoto/Takeuchi/Kubota),
4,498,818 (Gudmundur/Eggertsson) and 4,525,105 (Jaggi).
[0009] Despite substantial efforts to enhance the feeding of alumina as described above,
feeding is still locally limited to one or more feeding points over the electrolytic
bath between suspended carbon anode blocks using vertical point feeders. Furthermore,
the above described processes still necessitate to periodically form or continuously
maintain as many holes in the frozen electrolyte crust above the molten bath as there
are feeding points.
[0010] WO03/006717 (Berclaz/Duruz) discloses a device for feeding alumina to a thermally
insulated aluminium electrowinning cell in which metered quantities of alumina are
dropped from a dosing system onto a divider that divides the metered quantities into
batches and that directs these batches into a plurality of feeding tubes which guide
the batches to different areas of the cell's molten electrolyte.
[0011] Dispersive spraying of alumina has been proposed for crustless aluminium production
cells. WO00/63464 (de Nora/Berclaz) discloses an aluminium electrowinning cell with
a thermally insulated crustless molten electrolyte and inter-alia an alumina feeding
tube extending horizontally above the molten electrolyte. The feeding tube has a series
of openings along its length for spraying sideways alumina fed along the tube.
[0012] Despite the improvement of the different alumina spraying systems disclosed in WO00/63464
and WO03/006717, there is still a need to simplify and enhance the spraying of a particulate
feed, e.g. alumina, over the molten electrolyte of a cell for the electrowinning of
a metal, such as aluminium.
Objects of the Invention
[0013] It is an object of the invention to provide a cell for the electrowinning of a metal,
such as aluminium, fitted with a simple feeder of a compound of the metal, such as
alumina, designed to deliver, in particular dispersing, the compound as a particulate
over the cell's molten electrolyte.
[0014] A further object of the invention is to provide a cell for the electrowinning a metal,
such as aluminium, fitted with a feeder of a compound of the metal, such as alumina,
designed to operate with a substantially crustless molten electrolyte.
[0015] Another object of the invention is to provide a cell for the electrowinning of a
metal, such as aluminium, fitted with a feeder of a compound of the metal, such as
alumina, designed to deliver the pre-heated compound to the molten electrolyte to
minimise the risk of sludging and enhance dissolution of the delivered particulate.
[0016] Yet another object of the invention is to provide a cell for the electrowinning of
a metal, such as aluminium, fitted with a feeder of a compound of the metal, such
as alumina, designed to continuously or intermittently deliver the compound as a particulate
to the molten electrolyte.
Summary of the Invention
[0017] The invention relates to a cell for the electrowinning of a metal from a compound
thereof dissolved in a molten electrolyte. The cell comprises: a thermally insulated
cell trough and a thermally insulated cell cover which are arranged to contain an
electrolyte and maintain it in a substantially crustless molten state; means for feeding
a particulate of the metal compound to the molten electrolyte comprising at least
one feeding tube extending into the cell trough and having a tubular end portion which
is located between the molten electrolyte and the insulating cell cover and which
has a substantially horizontal axial direction, these means being arranged to feed
the particulate into the feeding tube, along the feeding tube and through an opening
in the tubular end portion from where it is delivered over the molten electrolyte.
[0018] In accordance with the invention, the opening is located at an end of the tubular
end portion and is arranged to deliver the particulate from the feeding tube over
the molten electrolyte substantially along the axial direction of the tubular end
portion. The end opening may be coaxial with the tubular end portion or it may be
off-axis. The feeding tube can be substantially linear or gradually curved. As explained
blow, feeding tubes whose shape cause the particulate to be driven around corners
or other sharp angles should be avoided along the feeding tube.
[0019] The axial direction of the tubular end portion is usually horizontal or at an angle
of up to ± 15° to the horizontal. In average, the particulate exits the tubular end
portion along its axial direction or at a small angle thereto, typically up to 15°
or 20°.
[0020] The feeding means of the invention can be used to disperse the particulate of the
metal compound over an entire expanse of the surface of the electrolyte, which facilitates
dissolution of the particulate in the electrolyte by avoiding or reducing local saturation
of the electrolyte with the metal compound.
[0021] In other words, the particulate is delivered over at least an entire portion of the
surface of the electrolyte (hereinafter sometimes referred to as the "feeding area")
whose size is substantially greater than that with conventional point feeders. Thus,
the particulate fed with this feeder is spread over a substantially greater surface
of molten electrolyte and can much easier dissolve. Typically, the expanse of this
portion is of at least 0.1 m
2, usually 0.5 or 1 or 2 m
2 to 6 or 10 m
2 or more.
[0022] According to the invention, the particulate delivered from the feeding tube over
the molten electrolyte is driven along the tube and exits the tube through the end
opening over the electrolyte substantially along the axial direction of the tube.
This provides an improvement over the abovementioned WO00/63464's feeding device regarding
the simplified tube design and the straight delivering of the particulate as it is
not fed like in WO00/63464 through lateral openings in a direction orthogonal to the
tube's horizontal axis, which leads to a loss of velocity of the particulate as it
exits the tube and increases the risk of clogging the lateral openings.
[0023] Especially for large or industrial cells in which alumina is preferably delivered
at several different locations, the feeding means may comprise a plurality of tubular
end portions, each end portion having a substantially horizontal axial direction and
an end opening arranged to deliver the particulate from the feeding tube over the
molten electrolyte substantially along the axial direction of the tubular end portion.
Several tubular end portions, in particular fan-shaped end portions, can be part of
the same feeding tube.
[0024] For the same reason, the feeding means can comprise a plurality of feeding tube,
each having a tubular end portion with an end opening for delivering the particulate.
[0025] The feeding means usually comprise a gas flow generator to fluidise the particulate
in the feeding tube and to feed the fluidised particulate through the end opening
of the end portion over the molten electrolyte. Fluidising the particulate enhances
its flow along the feeding tube and its dispersion when delivered over the molten
electrolyte.
[0026] Advantageously, the feeding means are arranged to feed and disperse the particulate
over substantially the entire molten electrolyte, if necessary using feeding means
with several tubular end portions and optionally several feeding tubes.
[0027] The cell cover above the molten electrolyte is placed and spaced above the surface
of the molten electrolyte, for instance as disclosed in WO99/02763 (de Nora/Sekhar),
WO02/070784 and US2003/0102228 (both de Nora/Berclaz). Such cover thermally insulates
the surface of the molten electrolyte and substantially prevents formation of an electrolyte
crust on the molten electrolyte. The thermally insulated cavity thereby created between
the molten electrolyte and the cover serves to house the feeding means.
[0028] Furthermore, there is no need to remove the feeding means from under the cell cover.
Normally the means is permanently located under the cover which can remain sealed
off while the particulate is fed to the molten electrolyte to avoid thermic losses.
Conversely, conventional feeders are located above the crust of molten electrolyte,
the crust being periodically broken to permit alumina feeding from above the crust
into the molten electrolyte.
[0029] The feeding tube can extend into the cell trough through a cell sidewall or through
the cell cover. In the latter case, the feeding tube preferably extends through a
fixed section of the cell cover, or between a movable cover section and a fixed cover
section, or between movable cover sections, so that the feeding tube which extends
through the cover does not require to be removed when movable cover sections are moved
away to uncover the molten electrolyte, as disclosed in the abovementioned US2003/0102228.
[0030] The cell cover is normally arranged to inhibit formation of an electrolyte crust
on the surface of the molten electrolyte during operation. However, the surface of
the electrolyte does not need to be entirely crust free, but at least the feeding
area should be free from any frozen electrolyte crust for optimal operation.
[0031] Usually, the feeding means comprise a fan or a blower for driving the particulate
along the feeding tube and through the end opening with gas, in particular hot gas,
e.g. air such as hot dry air.
[0032] Also, to overcome a prior art prejudice when electrolysis is carried out at high
temperature which is for instance the case for aluminium electrowinning, it is preferred
to supply preheated particulate to the molten electrolyte to minimise electrolyte
freezing caused by contact with "cold" solid particulate and by the possibly endothermic
dissolution reaction of the particulate in the molten electrolyte which for instance
happens with the dissolution of alumina. Ideally, the fed particulate supplies at
least part of the energy needed for its dissolution. Heat may be provided to the particulate
during the feeding process by contact with hot air, by using a heater or possibly
with a burner providing a flame which may also be used to drive the particulate along
the feeding tube. The particulate may be preheated before feeding, for instance by
heating a reservoir in which it is stored and from which it is delivered through the
feeding tube to the molten electrolyte. More generally, the particulate may be heated
before and/or during delivery.
[0033] Therefore, the feeding means preferably associated with a heater arranged to heat
the particulate before it is delivered from the end opening over the molten electrolyte.
[0034] In one embodiment, the cell of the invention is an aluminium electrowinning cell
and the molten electrolyte is a fluoride-based electrolyte. The aluminium electrowinning
cell can have one or more oxygen-evolving anodes, in particular metal-based or ceramic-based
anodes, or possibly consumable carbon anodes.
[0035] An oxygen-evolving anode of the aluminium production cell may comprise an active
anode structure having through-openings for the flow of alumina-depleted electrolyte
from below to above the anode and/or through-openings for the flow of alumina-enriched
electrolyte from above to below the anode.
[0036] In this case, the feeding means can be arranged to deliver and disperse alumina over
an expanse which includes at least part of the perpendicular projection onto the molten
electrolyte surface of an active anode structure. The size of the expanse may be at
least a tenth or a fifth of the surface area of the anode structure, in particular
from a quarter to a half of the full surface area. Typically, the size of the expanse
is at least 0.1 m
2, usually 0.5 or 1 or 2 m
2 to 6 or 10 m
2 or more.
[0037] Conveniently, the size of this expanse corresponds approximately to the perpendicular
projection on the surface of the molten electrolyte of the active anode surface. For
example, the expanse covers entirely or at least partly the perpendicular projection
onto the molten electrolyte surface of an active anode structure. The alumina feeding
area may correspond to the feeding area on the surface of the molten electrolyte of
one anode or several anodes.
[0038] In one embodiment, the anode feeding area corresponds to a projection onto the surface
of the electrolyte of the active anode surfaces, this projection possibly being smaller
or greater than the corresponding area(s) of the active anode surfaces. This anode
feeding area is usually, but not necessarily, situated directly above the active anode
surfaces.
[0039] The alumina feeding area typically occupies an expanse of the molten electrolyte
surface which can be about the same size as the surface area of the corresponding
active anode surfaces. However, when anodes co-operate with special electrolyte circulation
means, for instance as disclosed in co-pending application WO00/40782 (de Nora), the
size of the feeding area may be smaller than the actual size of the active anode surfaces.
In practice, powder alumina may even be supplied over substantially the entire surface
of the molten electrolyte. This is particularly advantageous in configurations where
at least part of the alumina-rich electrolyte flows through the open anode structures
to the inter-electrode gap.
[0040] At least part of the alumina-rich electrolyte may flow down around the open anode
structures into the inter-electrode gap to be electrolysed and then alumina-depleted
electrolyte can rise to the feeding area through the open anode structures.
[0041] Whether or not alumina flows around the anodes, alumina dissolution is improved with
such an alumina feeding device. The improvement is not bound to a specific electrolyte
circulation path. Either alumina-rich electrolyte flows from the feeding area down
through the anode structure, or alumina-depleted electrolyte flows through the anode
structure up to the feeding area, or both flow patterns are combined.
[0042] The concept of this invention may be adapted to any aluminium electrowinning cell
and is particularly suitable for cells operating with metal-based anodes at reduced
temperatures, typically below 940°C, such as in the range of 730° to 910°C or 850°
to 880°C, for instance cells as disclosed in WO00/40781, WO00/40782 and WO03/006716
(all in the name of de Nora) operating with metal-based oxygen-evolving grid-like
anodes provided with vertical through openings for the circulation of electrolyte
and the escape of anodically produced oxygen.
[0043] Suitable materials for oxygen-evolving anodes include iron and nickel based alloys
which may be heat-treated in an oxidising atmosphere as disclosed in WO00/06802, WO00/06803
(both in the name of Duruz/de Nora/Crottaz), WO00/06804 (Crottaz/Duruz), WO01/42534
(Duruz/de Nora) WO01/42535 (de Nora/Duruz) WO01/42536 (Duruz/Nguyen/de Nora), WO02/083991
and WO03/078695 (both Nguyen/de Nora). Further oxygen-evolving anode materials are
disclosed in WO99/36593, WO99/36594, WO00/06801, WO00/06805, WO00/40783 (all in the
name of de Nora/Duruz), WO00/06800 (Duruz/de Nora), WO99/36591, WO99/36592 (both in
the name of de Nora) and WO03/087435 (Nguyen/de Nora).
[0044] The anode can comprise an applied cerium oxyfluoride-based outermost coating, for
example as disclosed in WO02/070786 (Nguyen/de Nora) and WO02/083990 (de Nora/Nguyen).
Such a coating may be applied before or during use and maintained during use by the
presence of cerium species in the electrolyte.
[0045] Advantageously, the aluminium electrowinning cell comprises an aluminium-wettable
cathode, in particular a carbon cathode covered with an aluminium-wettable coating
to increase the lifetime of the cathode. The cathode may be a drained cathode whereby
the anode-cathode gap and the voltage drop though the electrolyte can be reduced.
[0046] Suitable cell bottoms for aluminium production are for example disclosed in WO00/63463
(de Nora), WO01/31086 (de Nora/Duruz), WO01/31087 (Duruz/de Nora), WO01/42168 (de
Nora/Duruz), WO01/42531 (Nguyen/Duruz/de Nora), WO02/096831 (Nguyen/de Nora), EP 1
146 146 (de Nora), WO02/070783, WO02/070785, WO02/097169, WO03/023091, WO02/097168
(all de Nora) and WO03/083176 (de Nora/Nguyen).
[0047] Another aspect of the invention relates to a method of electrowinning a metal from
a compound thereof dissolved in a substantially crustless molten electrolyte. This
method comprises: feeding particulate of the metal compound into and along a feeding
tube having a substantially horizontally tubular end portion extending over the substantially
crustless molten electrolyte, and delivering the particulate through an opening in
the tubular end portion over the molten electrolyte where it is dissolved and then
electrolysed to produce said metal.
[0048] In accordance with the invention, the particulate is delivered over the substantially
crustless molten electrolyte from the feeding tube substantially along the axial direction
of the tubular end portion through the opening which is located at an end of the tubular
end portion. The particulate can be delivered continuously or in batches to the electrolyte.
[0049] In one embodiment, the particulate is alumina and the produced metal is aluminium.
[0050] Bayer-process alumina or other suitable grades of alumina, may be utilised. For instance,
partly dehydrated alumina particles, modified alumina, and alumina particles of different
shapes and sizes may be used. To enhance dispersion of the alumina powder above the
molten electrolyte surface, and to facilitate its dissolution into the molten electrolyte,
the alumina powder is preferably composed of particles in the range of 20 to 200 micron,
preferably from 30 to 50 micron.
[0051] As discussed above, aluminium production cells operated at reduced temperatures should
have an insulating cover above the molten electrolyte, since at such temperatures,
the molten electrolyte does not usually form a rigid crust but a gel-like layer.
[0052] However, in a modification of the invention in which the molten electrolyte of a
metal electrowinning cell is not crustless, for instance when an aluminium production
cell is operated at a conventional temperature (i.e. around 950°C), the cell cover
can include or be made of an electrolyte crust formed by electrolyte freezing. The
crust should be sufficiently spaced from the molten electrolyte to permit the insertion
of the feeding means between the molten electrolyte and the crust. This can be achieved
for example by removing part of the molten electrolyte from the cell after formation
of the crust to form a cavity for the feeding means between the remaining molten electrolyte
and the crust.
[0053] The invention also relates to a cell for the electrowinning of a metal, such as aluminium,
from a compound thereof, e.g. alumina, dissolved in a molten electrolyte. The cell
comprises means for feeding a particulate of the metal compound to the molten electrolyte.
These feeding means comprise at least one feeding tube having a tubular end portion
which is located above the molten electrolyte and which has a substantially horizontal
axial direction. Such means are arranged to feed the particulate into the feeding
tube, along the feeding tube and through an opening in the tubular end portion from
where it is delivered over the molten electrolyte.
[0054] In accordance with the invention, this opening is located at an end of the tubular
end portion and is arranged to deliver the particulate from the feeding tube over
the molten electrolyte substantially along the axial direction of the tubular end
portion. The cell of the invention may incorporate any of the above described cell
feature or combination of features.
Brief Description of the Drawings
[0055] The invention will be further described by way of example with reference to the accompanying
schematic drawing, in which Figure 1 illustrates a drained-cathode cell having an
aluminium collection reservoir in accordance with the invention.
Detailed Description
[0056] The aluminium electrowinning cell shown in Figure 1 comprises a cathodic bottom 10,
thermally insulated cell sidewalls 20 and a thermally insulated cell cover 30 which
are arranged to contain an electrolyte 40 and maintain it in a substantially crustless
molten state, and alumina feeders 50 for feeding alumina 60 to the molten electrolyte
40.
[0057] Each alumina feeder 50 has at least one feeding tube 51 extending through a sidewall
20 into the cell trough and having a horizontal tubular end portion 52 which is located
between the molten electrolyte 40 and the insulating cell cover 30. The feeder 50
is arranged to feed particulate alumina 60 into the feeding tube 51, along the feeding
tube 51 and through an opening 53 in the tubular end portion 52 from where it is delivered
over the molten electrolyte 40.
[0058] According to the invention, the opening 53 is located at the end of the tubular end
portion 52 and is arranged to deliver the particulate alumina 60 from the feeding
tube 51 over the molten electrolyte 40 substantially along the axial direction of
the tubular end portion 51.
[0059] The feeder 50 comprises an alumina reservoir 54 which is connected to the feeding
pipe 51 through a supply pipe 56 in which a vertical Archimedes' screw 55 doses the
particulate alumina 60 fed from the reservoir to the feeding pipe 51.
[0060] The feeding pipe 51 is also connected to a compressed hot gas source 57, such as
a fan or blower, for driving particulate alumina 60 along the feeding tube 51 and
through the opening 53 at the end of tubular end portion 52.
[0061] The cathode bottom 10 is drained with the cathodic surface coated with a slurry-applied
aluminium-wettable layer 11, for instance as disclosed in the abovementioned WO01/42168,
WO01/42531 and WO02/096831. The aluminium-wettable cathode layer 11 forms a drained
cathode surface on the cathode bottom 10.
[0062] Furthermore, the cathode bottom has a recessed groove 12 for collecting and storing
product aluminium 70 that is drained on the aluminium-wettable cathode layer 11. The
collected product aluminium 70 can be periodically tapped from the recessed groove
12 by using a conventional tapping system.
[0063] The anodes 15 comprise an electrochemically active structure 16 made of oxygen-evolving
material, as disclosed above. The active anode structure 16 is provided with a series
of vertical through openings for the fast release of anodically produced oxygen and
for the down flow of alumina-rich electrolyte into the anode-cathode gap for electrolysis,
for example as described in the abovementioned WO00/40781, WO00/40782 and WO03/006716.
[0064] The thermally insulating cover 30 is fitted on the cell and maintains the surface
of the electrolyte 40 at a sufficient temperature to inhibit formation of a crust
thereon, for instance as disclosed in WO99/02763 (de Nora/Sekhar) and USSN2003/0102228
(de Nora/Berclaz). Cover 30 can be made of ceramic-based materials, such as alumina,
for instance as disclosed in WO02/070784 (de Nora/Berclaz).
[0065] The ceramic cell cover 30 comprises a support section 31 which extends centrally
along the cell and lateral movable sections 34 which rest on the sidewalls 20 and
the support section 31. The lateral cover sections 34 can be moved whenever access
is needed to the molten electrolyte 40, e.g. for tapping, to the anodes 15, e.g. when
they need to be replaced, or for any other reason. The lateral cover sections 34 can
be made of a plurality of side-by-side sections which are individually movable so
that whenever the area below the cover must be accessed, only a small section of the
cover 30 can be removed which permits a reduction of the thermal losses.
[0066] The central support section 31 is suspended from horizontal beams 33 through suspension
elements 32 made of ceramic materials, e.g. alumina, resistant to electrolyte fumes
present above the molten electrolyte. Each suspension element 32 has a bottom part
that extends through the support section 31 and is shaped such that the support section
31 rests thereon. As shown in Figure 1, the bottom part of the suspension member 32
is upwardly tapered, e.g. generally conical or pyramidal, so that the components can
be easily assembled or disassembled. The suspension members 32 can have various shapes.
[0067] The cell is covered with a steel shell 35 located above the insulating cover 30.
The steel shell 35 is fitted with a gas exhaust pipe 36. The steel shell 30 collects
gases, such as oxygen and electrolyte fumes, produced during electrolysis which gases
are then evacuated through the exhaust pipe 36.
[0068] During operation, a continuous or intermittent controlled supply of particulate alumina
60 is provided from the alumina reservoir 54 to the feeding pipe 51 by rotating Archimedes'
screw 55. Alumina 60 is then fluidised and driven by compressed gases supplied by
gas source 57 along feeding pipe 51 to tubular end portion 52 and through end opening
53 where it exits substantially along the horizontal axial direction of tubular end
portion 52 and is dispersed while falling under the effect of gravity over the molten
electrolyte 40. In a variation, a deflector can be placed at the end opening 53 to
raise or lower slightly the average alumina path.
[0069] The delivered alumina 60 enters electrolyte 40 where it dissolves to enrich it. The
alumina-rich electrolyte flows down the through-openings of the active anodes structures
16 to the gap between the active anode structures 16 and the cathode bottom 10 where
it is electrolysed to produce oxygen on the active anode structures 16 and molten
aluminium 70 on the aluminium-wettable cathode layer 11. The produced molten aluminium
70 drains into the aluminium collection groove 12. The alumina-depleted electrolyte
resulting from electrolysis is driven up by anodically released oxygen from under
and through the active anode structures 16 towards the surface of the molten electrolyte
40 where it is enriched with dissolving alumina 60. Such an electrolyte circulation
is described in greater detail in the abovementioned WO00/40781, WO00/40782 and WO03/006716.
1. A cell for the electrowinning of a metal from a compound thereof dissolved in a molten
electrolyte, comprising:
- a thermally insulated cell trough and a thermally insulated cell cover which are
arranged to contain an electrolyte and maintain it in a substantially crustless molten
state; and
- means for feeding a particulate of the metal compound to the molten electrolyte
comprising at least one feeding tube extending into the cell trough and having a tubular
end portion which is located between the molten electrolyte and the insulating cell
cover and which has a substantially horizontal axial direction, the feeding means
being arranged to feed said particulate into the feeding tube, along the feeding tube
and through an opening in the tubular end portion from where it is delivered over
the molten electrolyte,
characterised in that said opening is located at an end of the tubular end portion and is arranged to deliver
the particulate from the feeding tube over the molten electrolyte substantially along
the axial direction of the tubular end portion.
2. The cell of claim 1, wherein the end opening is coaxial with the tubular end portion.
3. The cell of claim 1, wherein the end opening is off-axis.
4. The cell of any preceding claim, wherein the feeding tube is substantially linear
or gradually curved.
5. The cell of any preceding claim, wherein the feeding means comprise a plurality of
tubular end portions, in particular end portions that are part of the same feeding
tube, each end portion having a substantially horizontal axial direction and an end
opening arranged to deliver the particulate from the feeding tube over the molten
electrolyte substantially along the axial direction of the tubular end portion.
6. The cell of any preceding claim, wherein the feeding means comprise a plurality of
feeding tube, each having a tubular end portion with an end opening for delivering
the particulate.
7. The cell of any preceding claim, wherein the feeding means are arranged to fluidise
the particulate in the feeding tube and to feed the fluidised particulate through
the end opening of the end portion over the molten electrolyte.
8. The cell of any preceding claim, wherein the feeding means are arranged to feed and
disperse the particulate over substantially the entire molten electrolyte.
9. The cell of any preceding claim, wherein the feeding tube extends into the cell trough
through a cell sidewall or trough through the cell cover.
10. The cell of any preceding claim, wherein the feeding means comprise a fan or a blower
for driving the particulate along the feeding tube and through the end opening.
11. The cell of any preceding claim, wherein the feeding means comprise a heater arranged
to heat the particulate before it is delivered from the end opening over the molten
electrolyte.
12. The cell of any preceding claim, which is an aluminium electrowinning cell and wherein
the molten electrolyte is a fluoride-based electrolyte, said cell optionally comprising
one or more oxygen-evolving anodes, in particular metal-based or ceramic-based anodes.
13. The cell of claim 12, comprising one or more oxygen evolving anodes, wherein the or
each oxygen-evolving anode comprises an active anode structure having through-openings
for the flow of alumina-depleted electrolyte from below to above the anode and/or
through-openings for the flow of alumina-enriched electrolyte from above to below
the anode, optionally the feeding means being arranged to deliver and disperse alumina
over an expanse which includes at least part of the perpendicular projection onto
the molten electrolyte surface of an active anode structure.
14. The cell of any one of claims 12 or 13, comprising an aluminium-wettable cathode,
in particular is a drained cathode.
15. A method of electrowinning a metal from a compound thereof dissolved in a substantially
crustless molten electrolyte comprising:
feeding particulate of the metal compound into and along a feeding tube having a tubular
end portion with an axial direction extending substantially horizontally over the
substantially crustless molten electrolyte and delivering the particulate through
an opening in the tubular end portion over the molten electrolyte where it is dissolved
and then electrolysed to produce said metal,
said method being characterised by delivering the particulate over the substantially crustless molten electrolyte from
the feeding tube substantially along said axial direction of the tubular end portion
through said opening which is located at an end of the tubular end portion.
16. The method of claim 15, comprising delivering a particulate comprising particles,
the sizes of which are in the range of 20 to 200 micron, in particular 30 to 50 micron.
17. The method of claim 15 or 16, wherein said particulate is alumina and said metal is
aluminium.
18. A cell for the electrowinning of a metal from a compound thereof dissolved in a molten
electrolyte, comprising means for feeding a particulate of the metal compound to the
molten electrolyte, the feeding means comprising at least one feeding tube having
a tubular end portion which is located above the molten electrolyte and which has
a substantially horizontal axial direction, said feeding means being arranged to feed
said particulate into the feeding tube, along the feeding tube and through an opening
in the tubular end portion from where it is delivered over the molten electrolyte,
characterised in that said opening is located at an end of the tubular end portion and is arranged to deliver
the particulate from the feeding tube over the molten electrolyte substantially along
the axial direction of the tubular end portion.
1. Cellule pour l'extraction électrolytique d'un métal à partir d'un composé de celui-ci
dissous dans un électrolyte fondu, comprenant :
- une cuvette de cellule thermiquement isolée et un couvercle de cellule thermiquement
isolé qui sont agencés pour contenir un électrolyte et le maintenir dans un état fondu
sensiblement sans croûte ; et
- des moyens pour amener un particulat du composé métallique à l'électrolyte fondu,
comprenant au moins un tube d'alimentation s'étendant dans la cuvette de la cellule
et ayant une partie d'extrémité tubulaire qui est située entre l'électrolyte fondu
et le couvercle isolant de la cellule et qui a une direction axiale sensiblement horizontale,
les moyens d'alimentation étant agencés pour amener ledit particulat dans le tube
d'alimentation, le long du tube d'alimentation et à travers une ouverture dans la
partie d'extrémité tubulaire d'où il est délivré sur l'électrolyte fondu,
caractérisée en ce que ladite ouverture est située à une extrémité de la partie d'extrémité tubulaire et
est agencée pour délivrer le particulat à partir du tube d'alimentation sur l'électrolyte
fondu sensiblement le long de la direction axiale de la partie d'extrémité tubulaire.
2. Cellule de la revendication 1, dans laquelle l'ouverture - d'extrémité est coaxiale
à la partie d'extrémité tubulaire.
3. Cellule de la revendication 1, dans laquelle l'ouverture d'extrémité est décalée axialement.
4. Cellule d'une quelconque revendication précédente, dans laquelle le tube d'alimentation
est sensiblement linéaire ou progressivement courbé.
5. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
comprennent une pluralité de parties d'extrémité tubulaires, en particulier des parties
d'extrémité qui appartiennent au même tube d'alimentation, chaque partie d'extrémité
ayant une direction axiale sensiblement horizontale et une ouverture d'extrémité agencée
pour délivrer le particulat à partir du tube d'alimentation sur l'électrolyte fondu
sensiblement le long de la direction axiale de la partie d'extrémité tubulaire.
6. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
comprennent une pluralité de tubes d'alimentation, chacun ayant une partie d'extrémité
tubulaire avec une ouverture d'extrémité pour délivrer le particulat.
7. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
sont agencés pour fluidiser le particulat dans le tube d'alimentation et pour amener
le particulat fluidisé à travers l'ouverture d'extrémité de la partie d'extrémité
sur l'électrolyte fondu.
8. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
sont agencés pour amener et disperser le particulat sur sensiblement la totalité de
l'électrolyte fondu.
9. Cellule d'une quelconque revendication précédente, dans laquelle le tube d'alimentation
s'étend dans la cuvette de la cellule via une paroi latérale de la cellule ou la cuvette
via le couvercle de la cellule.
10. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
comprennent un ventilateur ou une soufflante pour entraîner le particulat le long
du tube d'alimentation et à travers l'ouverture d'extrémité.
11. Cellule d'une quelconque revendication précédente, dans laquelle les moyens d'alimentation
comprennent un dispositif de chauffage agencé pour chauffer le particulat avant sa
délivrance à partir de l'ouverture d'extrémité sur l'électrolyte fondu.
12. Cellule d'une quelconque revendication précédente, qui est une cellule d'extraction
électrolytique d'aluminium et dans laquelle l'électrolyte fondu est un électrolyte
à base de fluorure, ladite cellule comprenant éventuellement une ou plusieurs anodes
à dégagement d'oxygène, en particulier des anodes particulières à base de métal ou
à base de céramique.
13. Cellule de la revendication 12, comprenant une ou plusieurs anodes à dégagement d'oxygène,
dans laquelle l'anode ou chaque anode à dégagement d'oxygène comprend une structure
anodique active ayant des ouvertures traversantes pour l'écoulement de l'électrolyte
appauvri en alumine du dessous vers le dessus des ouvertures traversantes et/ou de
l'anode pour l'écoulement de l'électrolyte enrichi en alumine du dessus vers le dessous
de l'anode, éventuellement les moyens d'alimentation étant agencés pour délivrer et
disperser de l'alumine sur une étendue qui comprend au moins une partie de la projection
perpendiculaire sur la surface électrolytique fondue d'une structure anodique active.
14. Cellule d'une quelconque des revendications 12 ou 13, comprenant une cathode mouillable
par l'aluminium, en particulier une cathode drainée.
15. Procédé d'extraction électrolytique d'un métal à partir d'un composé de celui-ci dissous
dans un électrolyte fondu sensiblement sans croûte consistant à :
amener un particulat du composé métallique dans et le long d'un tube d'alimentation
ayant une partie d'extrémité tubulaire avec une direction axiale s'étendant sensiblement
horizontalement sur l'électrolyte fondu sensiblement sans croûte et délivrer le particulat
à travers une ouverture dans la partie d'extrémité tubulaire sur l'électrolyte fondu
où il est dissous et ensuite électrolysé pour produire ledit métal,
ledit procédé étant caractérisé en ce qu'il consiste à délivrer le particulat sur l'électrolyte fondu sensiblement sans croûte
depuis le tube d'alimentation sensiblement le long de ladite direction axiale de la
partie d'extrémité tubulaire à travers ladite ouverture qui est située à une extrémité
de la partie d'extrémité tubulaire.
16. Procédé de la revendication 15, consistant à délivrer un particulat comprenant des
particules, dont les dimensions sont dans la plage de 20 à 200 micromètres, en particulier
30 à 50 micromètres.
17. Procédé de la revendication 15 ou 16, dans lequel ledit particulat est de l'alumine
et ledit métal est de l'aluminium.
18. Cellule pour l'extraction électrolytique d'un métal à partir d'un composé de celui-ci
dissous dans un électrolyte fondu, comprenant des moyens pour amener un particulat
du composé métallique à l'électrolyte fondu, les moyens d'alimentation comprenant
au moins un tube d'alimentation ayant une partie d'extrémité tubulaire qui est située
au-dessus de l'électrolyte fondu et qui présente une direction axiale sensiblement
horizontale, lesdits moyens d'alimentation étant agencés pour amener ledit particulat
dans le tube d'alimentation, le long du tube d'alimentation et à travers une ouverture
dans la partie d'extrémité tubulaire d'où il est délivré sur l'électrolyte fondu,
caractérisée en ce que ladite ouverture est située à une extrémité de la partie d'extrémité tubulaire et
est agencée pour délivrer le particulat depuis le tube d'alimentation sur l'électrolyte
fondu sensiblement le long de la direction axiale de la partie d'extrémité tubulaire.
1. Zelle für die elektrolytische Gewinnung eines Metalls aus einer Metallverbindung,
die in einem geschmolzenen Elektrolyten gelöst ist, mit:
einer thermisch isolierten Zellenwanne und einem thermisch isolierten Deckel, die
dazu ausgestaltet sind, um den Elektrolyten aufzunehmen und ihn in einem im Wesentlichen
krustenfreien, geschmolzenen Zustand zu erhalten, und
Mitteln zur Zufuhr der Metallverbindung in Teilchenform zu dem geschmolzenen Elektrolyten
mit wenigstens einem Zufuhrrohr, das in die Zellenwanne hinein verläuft und einen
röhrenförmigen Endbereich aufweist, der zwischen dem geschmolzenen Elektrolyten und
dem isolierenden Zellendeckel angeordnet ist und der eine im Wesentlichen horizontale
axiale Richtung hat, wobei die Zufuhrmittel dazu ausgestaltet sind, das teilchenförmige
Material in das Zufuhrrohr, entlang des Rohres und durch eine Öffnung in dem röhrenförmigen
Endbereich zu fördern, von wo es über den geschmolzenen Elektrolyten verteilt wird,
dadurch gekennzeichnet, dass die Öffnung an einem Ende des röhrenförmigen Endbereichs liegt und dazu ausgestaltet
ist, um das teilchenförmige Material aus dem Zufuhrrohr über den geschmolzenen Elektrolyten
im Wesentlichen entlang der axialen Richtung des röhrenförmigen Endbereichs auszugeben.
2. Zelle nach Anspruch 1, wobei die Endöffnung koaxial mit dem röhrenförmigen Endbereich
ist.
3. Zelle nach Anspruch 1, wobei die Endöffnung gegen die Achse versetzt ist.
4. Zelle nach einem der vorhergehenden Ansprüche, wobei das Zufuhrrohr im Wesentlichen
gerade oder stetig gekrümmt ist.
5. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel eine Mehrzahl
von röhrenförmigen Endbereichen aufweisen, insbesondere Endbereiche, die Teile des
selben Zufuhrrohres sind, wobei jeder Endbereich eine im Wesentlichen horizontale
axiale Richtung und eine Endöffnung hat, die dazu ausgestaltet ist, um das teilchenförmige
Material aus dem Zufuhrrohr über den geschmolzenen Elektrolyten im Wesentlichen entlang
der axialen Richtung des röhrenförmigen Endbereichs auszugeben.
6. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel eine Mehrzahl
von Zufuhrrohren aufweisen, von denen jedes einen röhrenförmigen Endbereich mit einer
Endöffnung zur Ausgabe des teilchenförmigen Materials hat.
7. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel dazu ausgestaltet
sind, das teilchenförmige Material in dem Zufuhrrohr zu fluidisieren und das fluidisierte
teilchenförmige Material durch die Endöffnung des Endbereichs über den geschmolzenen
Elektrolyten zu fördern.
8. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel so ausgestaltet
sind, das teilchenförmige Material zu fördern und im Wesentlichen über den ganzen
geschmolzenen Elektrolyten zu verteilen.
9. Zelle nach einem der vorhergehenden Ansprüche, wobei das Zufuhrrohr durch eine Zellenseitenwand
oder durch den Zellendeckel in die Zellenwanne hinein verläuft.
10. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel einen Ventilator
oder ein Gebläse zum Fördern des teilchenförmigen Materials entlang des Zufuhrrohres
und durch die Endöffnung aufweisen.
11. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zufuhrmittel eine Heizeinrichtung
aufweisen, die dazu ausgestaltet ist, um das teilchenförmige Material vor seiner Abgabe
aus der Öffnung über den geschmolzenen Elektrolyten zu erhitzen.
12. Zelle nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Zelle zur elektrolytischen
Gewinnung von Aluminium ist und wobei der geschmolzene Elektrolyt ein Elektrolyt auf
Fluoridbasis ist, wobei die Zelle eine oder mehrere Sauerstoff entwickelnde Anoden
aufweist, insbesondere Anoden auf Metallbasis oder Keramikbasis.
13. Zelle nach Anspruch 12, mit einer oder mehreren Sauerstoff entwickelnden Anoden, wobei
die oder jede Sauerstoff entwickelnde Anode eine aktive Anodenstruktur mit hindurchgehenden
Öffnungen für den Durchfluss von an Aluminiumoxid verarmtem Elektrolyten von der Unterseiten
zur Oberseite der Anode und/oder mit hindurchgehenden Öffnungen für den Durchfluss
von mit Aluminiumoxid angereichertem Elektrolyten von der Oberseite zur Unterseite
der Anode aufweist,
wobei die Zufuhrmittel optional dazu ausgestaltet sind, das Aluminiumoxid über eine
Fläche zuzuführen und zu verteilen, die wenigstens einen Teil der senkrechten Projektion
einer aktiven Anodenstruktur auf die geschmolzene Elektrolytoberfläche umfasst.
14. Zelle nach einem der Ansprüche 12 oder 13, mit einer aluminiumbenetzbaren Kathode,
insbesondere mit einer Abflusskathode.
15. Verfahren zur elektrolytischen Gewinnung eines Metalls aus einer Metallverbindung,
die in einem im Wesentlichen krustenfreien, geschmolzenen Elektrolyten gelöst ist,
bei dem:
die Metallverbindung in Teilchenform in und entlang eines Zufuhrrohres transportiert
wird, das einen röhrenförmigen Endbereich mit einer axialen Richtung hat, der sich
im Wesentlichen horizontal über den im Wesentlichen krustenfreien, geschmolzenen Elektrolyten
erstreckt und der das teilchenförmige Material durch eine Öffnung in dem röhrenförmigen
Endbereich über den geschmolzenen Elektrolyten ausgibt, wo es gelöst und dann elektrolysiert
wird, um das Metall zu erzeugen,
wobei das Verfahren
dadurch gekennzeichnet ist, dass das teilchenförmige Material über den im Wesentlichen krustenfreien, geschmolzenen
Elektrolyten aus dem Zufuhrrohr im Wesentlichen entlang der axialen Richtung des röhrenförmigen
Endbereichs durch die Öffnung ausgegeben wird, die an einem Ende des röhrenförmigen
Endbereichs angeordnet ist.
16. Verfahren nach Anspruch 15, bei dem teilchenförmiges Material mit Teilchen ausgegeben
wird, deren Größen im Bereich von 20 bis 200 Mikrometer, insbesondere 30 bis 50 Mikrometer
liegen.
17. Verfahren nach Anspruch 15 oder 16, wobei das teilchenförmige Material Aluminiumoxid
ist und das Metall Aluminium ist.
18. Zelle für die elektrolytische Gewinnung eines Metalls aus einer Metallverbindung,
die in einem geschmolzenen Elektrolyten gelöst ist, mit Mitteln zur Zufuhr der Metallverbindung
in Teilchenform zu dem geschmolzenen Elektrolyten, wobei die Zufuhrmittel wenigstens
ein Zufuhrrohr aufweisen, das einen röhrenförmigen Endbereich hat, der über dem geschmolzenen
Elektrolyten liegt und eine im Wesentlichen horizontale axiale Richtung hat, wobei
die Zufuhrmittel dazu ausgestaltet sind, um das teilchenförmige Material in das Zufuhrrohr,
entlang des Zufuhrrohres und durch eine Öffnung in dem röhrenförmigen Endbereich zu
fördern, von wo es über den geschmolzenen Elektrolyten ausgegeben wird, dadurch gekennzeichnet, dass die Öffnung an einem Ende des röhrenförmigen Endbereichs liegt und dazu ausgestaltet
ist, um das teilchenförmige Material aus dem Zufuhrrohr über den geschmolzenen Elektrolyten
im Wesentlichen entlang der axialen Richtung des röhrenförmigen Endbereichs auszugeben.