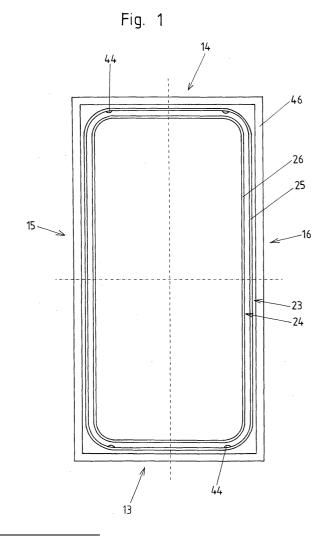
EP 1 568 843 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG


- (43) Veröffentlichungstag:
 - (51) Int CI.7: **E06B 7/23** 31.08.2005 Patentblatt 2005/35
- (21) Anmeldenummer: 04028209.7
- (22) Anmeldetag: 27.11.2004
- (84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR Benannte Erstreckungsstaaten: AL HR LT LV MK YU

- (30) Priorität: 28.01.2004 AT 1132004
- (71) Anmelder: DÄTWYLER AG SCHWEIZERISCHE KABEL-, GUMMI- UND **KUNSTSTOFFWERKE** 6467 Schattdorf (CH)
- (72) Erfinder: Herwegh, Norbert 6467 Schattdorf (CH)
- (74) Vertreter: Hefel, Herbert et al Egelseestrasse 65a, Postfach 61 6806 Feldkirch (AT)

(54)Schiebeelement-Dichtung

(57)Eine als umfangsgeschlossener Dichtungsrahmen mit horizontalen und vertikalen Rahmenschenkeln (13 bis 16) ausgebildete Schiebeelement-Dichtung umfasst mindestens eine Dichtlippe (23, 24) mit horizontalen und vertikalen Abschnitten, deren freies Ende (25, 26) in den Eckbereichen des Dichtungsrahmens bogenförmig verläuft. Der Anlagebereich der mindestens einen Dichtlippe (23, 24) ist zumindest über einen Großteil der Längserstreckung der Dichtlippe (23, 24) mit einer Gleitschicht (27) versehen. Die vertikalen Abschnitte der mindestens einen Dichtlippe (23, 24) sind als Pendeldichtlippen ausgebildet und die horizontalen Abschnitte der mindestens einen Dichtlippe (23, 24) sind zumindest in an ihre freien Enden anschließenden Kopfbereichen (31) im unbelasteten Zustand gegenüber einer Normalen (30) zur Ebene des Dichtungsrahmens um mindestens 10° zur Innenseite des Dichtungsrahmens geneigt.

Beschreibung

[0001] Die Erfindung betrifft eine Schiebeelement-Dichtung zur Abdichtung eines Schiebeelements gegenüber einem feststehenden Schiebeelement-Rahmen, welche als umfangsgeschlossener Dichtungsrahmen mit horizontalen und vertikalen Rahmenschenkeln, die in Eckbereichen miteinander verbunden sind, ausgebildet ist und einen Dichtungsfuß zur Befestigung der Schiebeelement-Dichtung an einem feststehenden Schiebeelement-Rahmen und mindestens eine einen Anlagebereich zur Anlage am Schiebeelement aufweisende elastische Dichtlippe umfasst, die entsprechend den horizontalen und vertikalen Rahmenschenkeln horizontale und vertikale Abschnitte aufweist und deren freies Ende in den Eckbereichen des Dichtungsrahmens einen bogenförmigen Verlauf aufweist,.

[0002] Schiebeelement-Dichtungen für Schiebeelemente wie Schiebefenster, Schiebetüren, Schiebetore u. dgl. werden heute meist als Bürstendichtungen ausgebildet. Diese besitzen eine gute Gleitfähigkeit, sodass ihre oberen und unteren horizontalen Abschnitte, welche beim Öffnen des Schiebeelements zunächst auf die ganze Breite mit dem Schiebeelement Kontakt haben, leicht, d. h. mit geringer Reibungskraft gleiten. Diese Bürstendichtungen können separate Abschnitte zur Abdichtung der Horizontalund Vertikalfugen aufweisen und können in den Eckbereichen, wo die Horizontalabschnitte und Vertikalabschnitte meistens einen Versprung bzw. Versatz zwischen ihren Ebenen aufweisen, auch quer verlaufende Abschnitte zur Abdichtung dieses Versprungs aufweisen.

[0003] Der Nachteil von Bürstendichtungen besteht insbesondere in ihrer Undichtheit. Sie bieten Wind und Schlagregen nur wenig Widerstand. Das Gleiche gilt für den Schalldurchtritt. Auch schützen sie nur wenig gegen Staubdurchtritt und Insekten.

[0004] Neben Schiebeelementen, welche in der Dichtebene verschoben werden, sind auch Schiebeelemente bekannt, welche für ihre Verschiebung von der Dichtung abgehoben werden, sodass sie gegenüber der Schiebeelement-Dichtung berührungsfrei verschoben werden können. Für solche "Hebe-Schiebe-Systeme" sind Schiebeelement-Dichtungen bekannt, welche von elastischen Dichtprofilen gebildet werden. Meist werden die Schiebeelemente in ihrer geschlossenen Endlage abgesenkt und gegen die Schiebeelement-Dichtung gedrückt. In dieser Endlage schaffen Einlegeteile, z. B. aus Moosgummi, eine Verbindung zwischen den unterschiedlichen Dichtebenen der Eckbereiche. Die mechanischen Betätigungen solcher Hebe-Schiebe-Systeme sind sehr kostenaufwändig, wodurch die Verbreitung von Schiebesystemen behindert wird.

[0005] Bekannt sind weiters Schiebeelement-Dichtungen, welche beflockte elastische Dichtprofile aufweisen. Bei diesen sind auf die Oberfläche des elastomeren Werkstoffs von dieser abstehende Textilfasern aufgebracht. Nachteilig an diesen Dichtungen ist unter an-

derem ihre begrenzte Dichtfähigkeit.

[0006] Bekannt sind weiters Dichtungen für heb- und senkbare Seitenfenster von Kraftfahrzeugen. Diese werden heute häufig von elastischen Dichtprofilen gebildet, deren an der Autoscheibe anliegende Oberfläche mit einer Gleitschicht versehen ist. Diese Autoscheibendichtungen weisen zwei Vertikalabschnitte auf, die über einen Horizontalabschnitt an ihrem unteren Ende miteinander verbunden sind, wodurch sich insgesamt eine U-förmige Ausbildung des Dichtungsstrangs ergibt. Häufig werden diese Autofenster-Dichtungen auch als beflockte elastische Dichtprofile ausgebildet.

[0007] Aus der US 4,150,509 A1 ist eine Schiebeelement-Dichtung zur Abdichtung einer Schiebetür bekannt, welche einen umlaufenden Dichtungsrahmen mit
horizontalen und vertikalen Rahmenschenkeln aufweist. Die Schiebeelement-Dichtung besitzt einen Dichtungsfuß und einen Dichtungsabschnitt, der als (flache
und breite) Dichtlippe angesehen werden kann. In den
Eckbereichen des Dichtungsrahmens weist der Dichtungsabschnitt einen bogenförmigen Verlauf auf. Durch
diese Dichtung kommt es zu einer relativ hohen Reibung und die Abdichtung wird erst durch die Anpressung der Schiebetür an den Türrahmen erreicht.

[0008] Aufgabe der Erfindung ist es, eine Schiebeelement-Dichtung, insbesondere für horizontal verschiebbare Schiebeelemente, bereitzustellen, welche bei einer einfachen Konstruktion des Schiebesystems eine sehr gute Abdichtung ermöglicht. Erfindungsgemäß gelingt dies durch eine Schiebeelement-Dichtung mit den Merkmalen des Anspruchs 1.

[0009] Durch die Gleitschicht, mit der der zur Anlage am Schiebelement dienende Anlagebereich der mindestens einen elastischen Dichtlippe versehen ist, kann eine geringe Reibung bei der Verschiebung des Schiebelements erreicht werden, ohne dass das Schiebelement hierbei von der Schiebeelement-Dichtung abgehoben wird.

[0010] Vorzugsweise weist der Dichtungsrahmen mindestens zwei umlaufende Dichtlippen zur Anlage am Schiebeelement auf, deren horizontalen und vertikalen Abschnitte jeweils bogenförmig miteinander verbunden sind.

[0011] Die vertikalen Abschnitte der zur Anlage am Schiebeelement vorgesehenen Dichtlippen (wobei zumindest eine solche Dichtlippe vorhanden ist) sind als Pendeldichtlippen ausgebildet, d. h. sie bewegen sich entsprechend der Richtung der Schiebebewegung des Schiebeelements hin und her, wobei sie gegenüber einer Normalen zur Ebene, in der der Dichtrahmen liegt, in beide Richtungen abwechselnd geneigt sind. Vorzugsweise sind die Kopfbereiche der vertikalen Abschnitte der mindestens einen zur Anlage am Schiebeelement vorgesehenen Dichtlippe im unbelasteten Zustand im Wesentlichen parallel zur Normalen auf die Dichtebene ausrichtet.

[0012] Die horizontalen Abschnitte der mindestens einen zur Anlage am Schiebeelement vorgesehenen

Dichtlippe können dagegen bei der Verschiebung des Schiebeelements ihre Neigung gegenüber der Normalen zur Ebene des Dichtrahmens beibehalten. Sie sind hierbei schräg nach innen (=in Richtung zum Zentrum des Dichtungsrahmens) gerichtet, wobei sie im unbelasteten Zustand vorzugsweise einen Winkel von weniger als 45° mit der Normalen zur Ebene des Dichtrahmens einschließen. Der untere schräg gegen das Dichtelement gerichtete horizontale Abschnitt leitet dadurch herablaufendes Wasser dachartig ab.

[0013] Weitere Vorteile und Einzelheiten der Erfindung werden im Folgenden anhand der beiliegenden Zeichnung dargestellten Ausführungsbeispiels der Erfindung erläutert. In dieser zeigen:

Fig. 1	eine Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen Schiebeelement-Dichtung auf die Dichtungsseite der Schiebe-
	element-Dichtung;
Fig. 2	eine Ansicht der Schiebeelement- Dichtung von Fig. 1 auf die gegen-
	überliegende Befestigungsseite;
die Fig. 3 und 4	vergrößerte Ausschnitte der Fig. 1 und 2 in Eckbereichen des Dich-
	tungsrahmens;
Fig. 5	einen Schnitt entlang der Linie A-A
1 ig. 0	von Fig. 3 (wobei nur die in der
	Schnittebene liegenden Teile darge-
	stellt sind);
Fig. 6	einen Schnitt entlang der Linie B-B
	von Fig. 3 (wobei nur die in der
	Schnittebene liegenden Teile darge-
	stellt sind);
Fig. 7	eine perspektivische Darstellung
	der entlang der Linie C-C in Fig. 3 geschnittenen Schiebeelement-
	Dichtung;
Fig. 8	einen Schnitt entlang der Linie D-D
g. 0	von Fig. 3;
Fig. 9	eine vereinfachte perspektivische
	Darstellung einer Form zur Herstel-
	lung eines Eckbereichs der Schie-
	beelement-Dichtung;
Fig. 10	einen vereinfachten Horizontal-
	schnitt eines Schiebesystems mit ei-
	ner erfindungsgemäßen Schiebe-
Eig. 11	element-Dichtung und einen vereinfachten Vertikalschnitt
Fig. 11	(Schnittlinie E-E von Fig. 10).
	(

[0014] Eine erfindungsgemäße Schiebeelement-Dichtung dient zur Abdichtung eines Schiebeelements, wie einem Schiebefenster, einer Schiebetür, einem Schiebetor o. dgl. gegenüber einem feststehenden Schiebeelement-Rahmen im geschlossenen Zustand des Schiebeelements, wobei die Schiebeelement-Dichtung auf der Wetterseite des Schiebeelements angeordnet ist. Ein Ausführungsbeispiel eines solchen Schiebesystems ist in den Fig. 10 und 11 vereinfacht und teilweise schematisiert dargestellt. Das hier als Schiebefenster ausgebildete Schiebeelement 1 ist gegenüber dem feststehenden Schiebeelement-Rahmen 2 verschiebbar gelagert, zu welchem Zweck Laufrollen 3 im Bereich des unteren Endes des Schiebeelements 1 an diesem drehbar gelagert sind, die auf einem Laufsteg 4 des Schiebeelement-Rahmens 2 abrollen. Am oberen Ende des Schiebeelements 1 können für dessen Führung gegenüber dem Schiebeelement-Rahmen 2 ebenfalls Laufrollen oder in Führungsnuten geführte Führungszapfen vorhanden sein (nicht sichtbar in den Fig. 10 und 11). In Fig. 10 ist die geschlossene Endlage des Schiebeelements 1 dargestellt. Mittels des Handgriffs 5 kann das Schiebelement 1 in Öffnungsrichtung 6 verschoben werden, wodurch die Rahmenöffnung 7 freigegeben wird.

[0015] Das in den Fig. 10 und 11 dargestellte Schiebeelement 1 weist einen Scheibenhalterrahmen 8 auf, von dem in herkömmlicher Weise eine Verglasung 11 (beispielsweise ein Isolierglas) mittels elastischen Dichtungsprofilen 9, 10 gehalten wird. Der Schiebeelement-Rahmen 2 kann in einem gegenüber dem in Fig. 10 dargestellten Ausschnitt weiter rechts liegenden Bereich, vor welchem das Schiebeelement 1 in seiner geöffneten Endlage liegt, ebenfalls mit einer Verglasung versehen sein

[0016] Bei dem in den Fig. 10 und 11 dargestellten Schiebesystem ist das Schiebeelement horizontal verschiebbar. Die Abdichtung in der geschlossenen Endlage erfolgt in einer Dichtungsebene 12 (d. h. ohne Versprung bzw. Versatz zwischen vertikalen und horizontalen Abschnitten der Dichtung). Die Verschiebung des Schiebeelements 1 erfolgt in der Dichtungsebene 12 ohne eine Absenkung oder Anhebung zwischen der geschlossenen Endlage und einer mehr oder weniger geöffneten Lage des Schiebeelements 1.

[0017] Ein Ausführungsbeispiel einer erfindungsgemäßen Schiebeelement-Dichtung wird im Folgenden anhand der Fig. 1 bis 8 genauer erläutert. Die Schiebeelement-Dichtung ist als umfangsgeschlossener Dichtungsrahmen mit horizontalen und vertikalen Rahmenschenkeln 13 bis 16 ausgebildet, welche in Eckbereichen des Dichtungsrahmens miteinander verbunden sind. Zur Befestigung der Schiebeelement-Dichtung im Schiebeelement-Rahmen dient der umlaufende Dichtungsfuß 17, der im gezeigten Ausführungsbeispiel einen in Längsrichtung verlaufenden inneren Kanal 18 und seitliche Verankerungsschultern 19 zur Verankerung gegenüber Haltenasen 20 (Fig. 10 und 11) in einer Verankerungsnut des Schiebeelement-Rahmens 2 aufweist. In den Eckbereichen des Dichtungsrahmens weist der Dichtungsfuß 17 einen rechtwinklig abgewinkelten Verlauf auf, wie dies insbesondere aus den Fig. 2 und 4 ersichtlich ist. In diesen Eckbereichen ist der Dichtungsfuß 17 mit einem parallel zur Ebene des Dichtungsrahmens (die parallel zur Dichtungsebene 12 liegt)

nach innen abstehenden Verbindungssteg 21 versehen, wie dies insbesondere aus Fig. 7 ersichtlich ist. Der innere Rand 22 des Verbindungssteges 21 weist einen bogenförmigen, insbesondere kreisbogenförmigen Verlauf auf.

[0018] Im gezeigten Ausführungsbeispiel besitzt die erfindungsgemäße Schiebeelement-Dichtung eine erste und eine zweite Dichtlippe 23, 24 zur Anlage am Schiebelement 1, welche umfangsgeschlossen um den Dichtrahmen verlaufen. Hierbei können sie wie dargestellt über ihren gesamten Verlauf etwa den gleichen Abstand voneinander aufweisen. Jede der beiden Dichtlippen 23, 24 besitzt somit zwei — bezogen auf die Montagelage - horizontale und zwei vertikale Abschnitte, welche über Verbindungsabschnitte in den Eckbereichen des Dichtungsrahmens miteinander verbunden sind. Die freien Enden 25, 26 der Dichtlippen 23, 24 haben über die Verbindungsabschnitte, also in den Eckbereichen des Dichtungsrahmens, einen bogenförmigen, insbesondere kreisbogenförmigen, Verlauf. Die Dichtlippen 23, 24 sind in im Bereich ihrer freien Enden 25, 26 liegenden Anlagebereichen zumindest über einen Großteil ihrer Längserstreckung jeweils mit einer Gleitschicht 27 versehen. Die Gleitschicht 27 erstreckt sich hierbei um das freie Ende 25, 26 der Dichtlippe 23, 24 herum. Der mit der Gleitschicht versehene Bereich der Dichtlippe 23, 24 wird im Folgenden als Kopfbereich bezeichnet.

[0019] Die Gleitschicht 27 einer jeweiligen Dichtlippe 23, 24 erstreckt sich bevorzugterweise über zumindest 95% der Längsausdehnung der Dichtlippe 23, 24. Wie weiter unten noch genauer erläutert wird, sind in einem bevorzugten Ausführungsbeispiel der Erfindung nur sehr kurze Übergangsabschnitte der Dichtlippen 23, 24 ohne eine solche Gleitschicht 27 vorhanden.

[0020] Die vertikalen Abschnitte der Dichtlippen 23, 24 sind im an ihre freien Enden 25, 26 anschließenden Kopfbereichen 28 im unbelasteten Zustand um weniger als 10°, vorzugsweise um weniger als 5° gegenüber einer Normalen 30 zur Ebene des Dichtungsrahmens geneigt. Die Kopfbereiche 28 dieser vertikalen Abschnitte besitzen maximale Dicken D, welche um mindestens 50% größer als die minimalen Dicken d der an die Kopfbereich 28 in Richtung zum Dichtungsfuß 17 anschließenden Halsbereiche 29 sind, vorzugsweise beträgt die maximale Dicke D des Kopfbereichs 28 mindestens den zweifachen Wert der minimalen Dicke d des Halsbereichs 29.

[0021] Die vertikalen Abschnitte der Dichtlippen 23, 24 sind als Pendeldichtlippen ausgebildet. Im das Schiebelement 1 dichtenden Zustand können sie hierbei in beide Richtungen gegenüber der Normalen 30 geneigte Stellungen einnehmen (wobei sie unter elastischer Verformung verschwenkt werden), je nachdem in welche Richtung sich das Schiebeelement 1 zuletzt bewegt hat. Bei der in Fig. 10 dargestellten Lage wurde das Schiebeelement 1 zuletzt geschlossen. Beim Öffnen des Schiebeelements 1 können die vertikalen Ab-

schnitte der Dichtlippen 23, 24 in die bezüglich der Normalen 30 entgegengesetzte Neigung verkippt werden. Es wird dadurch in beide Bewegungsrichtungen des Schiebeelements 1 eine geringe Reibung bei guter Abdichtung erreicht.

[0022] Die horizontalen Abschnitte der Dichtlippen 23, 24 sind zumindest in ihren an ihre freien Enden 25, 26 anschließenden Kopfbereichen 31 im unbelasteten Zustand gegenüber der Normalen 30 zur Ebene des Dichtungsrahmens um einen Winkel 32 von mindestens 10° nach innen geneigt. Im das Schiebeelement 1 dichtenden Zustand vergrößert sich dieser Neigungswinkel, wobei die horizontalen Abschnitte der Dichtlippen 23, 24 unter elastischer Verformung verschwenkt werden. Für die ordnungsgemäße Abdichtung des Schiebelements ist ebenso wie bei den vertikalen Abschnitten der Dichtlippen 23, 24 ein vorgegebener minimaler Wert der Vorspannung erforderlich. Dieser minimale erforderliche Wert der Vorspannung liegt vor, wenn die freien Enden 25, 26 gegenüber ihrer Stellung im unbelasteten Zustand um mindestens 1 mm, vorzugsweise um mindestens 2mm, in Richtung zum Dichtungsfuß 17 verschoben werden.

[0023] Die maximale Dicke des Kopfbereichs 31 der Horizontalabschnitte der Dichtlippen 23, 24 ist vorzugsweise um mindestens 30% größer als die minimale Dikke des an den Kopfbereich 31 in Richtung zum Dichtungsfuß anschließenden Halsbereichs 33. Vorzugsweise beträgt die maximale Dicke des Kopfbereichs 31 weniger als den doppelten Wert der minimalen Dicke des Halsbereichs 33.

[0024] Die freien Enden 25, 26 der Dichtlippen 23, 24 weisen in den Eckbereichen des Dichtungsrahmen einen bogenförmigen Verlauf auf, wie dies unter anderem aus Fig. 3 ersichtlich ist. Hierbei geht zumindest die zweite Dichtlippe 24, welche die innere Dichtlippe des Dichtrahmens darstellt, im Eckbereich vom Verbindungssteg 21 aus. In den von den Eckbereichen abgelegenen Bereichen des Dichtungsrahmens gehen beide Dichtlippen 23, 24 vom Dichtungsfuß 17 aus. Die freien Enden 25, 26 der Dichtlippen 23, 24 liegen zumindest in den Eckbereichen des Dichtungsrahmens, vorzugsweise über den gesamten Umfang des Dichtungsrahmens, innerhalb des Außenrandes 34 des Dichtungsfußes 17. Das freie Ende 26 der zweiten Dichtlippe 24 liegt in Ansicht gesehen zumindest in den Eckbereichen des Dichtungsrahmens, vorzugsweise über den gesamten Umfang des Dichtungsrahmens, innerhalb des Innenrandes 35 des Dichtungsfußes 17.

[0025] Im unbelasteten Zustand der Dichtlippen 23, 24 beträgt der Krümmungsradius der freien Enden 25, 26 der Dichtlippen 23, 24 in den Eckbereichen des Dichtungsrahmens mindestens den doppelten Wert, vorzugsweise mindestens den fünffachen Wert, des Verformungsweges s der Dichtlippen 23, 24. Der Verformungsweg s ist die maximale Strecke, über welche die Dichtlippe 23, 24 zur Abdichtung des Schiebeelements 1 in Richtung der Normalen 30 verschiebbar ist. Der

50

größte Überstand der Dichtlippe 23, 24 über den Dichtungsfuß 17 liegt im unbelasteten Zustand der Dichtlippe 23, 24 vor, während der kleinste Überstand im vollständig gegen den Dichtungsfuß verschränkten Zustand bzw. im parallel zur Dichtungsebene 12 liegenden Zustand der Dichtlippe 23, 24 erreicht wird.

[0026] Der für einen jeweiligen konkreten Anwendungsfall erforderliche Verformungsweg s hängt von der Breite b (Fig. 10) des Spalts zwischen dem Schiebeelement-Rahmen 2 und dem Schiebeelement 1 im Dichtbereich und dessen Toleranzen sowie der auf die Dichtlippe 23, 24 aufzubringende Vorspannung ab. Wenn beispielsweise der Spalt eine Breite b von 5mm +/- 2mm aufweist und die Dichtlippe 23, 24 zur Aufbringung der erforderlichen Vorspannung um 2mm (bezogen auf die Normale 30) in Richtung zum Dichtungsfuß 17 verschoben werden muss, so muss die Dichtlippe 23, 24 einen Verformungsweg von mindestens 7mm aufweisen (im entspannten Zustand muss sie mindestens 9mm über den Dichtungsfuß vorstehen und im dichten Zustand ist sie minimal auf 3mm an den Dichtungsfuß angedrückt, jeweils bezogen auf die Richtung der Nor-

[0027] Der gleiche Krümmungsradius wie das freie Ende 25, 26 wird auch vom an das freie Ende anschließenden Bereich der Dichtlippe 23, 24 eingenommen, zumindest über den Kopfbereich der Dichtlippe, vorzugsweise über die gesamte Dichtlippe 23, 24. Im belasteten Zustand der Dichtlippe 23, 24 kann sich der Krümmungsradius verändern, wobei vorzugsweise keine Abknickungen auftreten.

[0028] Vorzugsweise beträgt der Krümmungsradius des freien Endes 25, 26 der Dichtlippe 23, 24 (in ihrem unbelasteten Zustand) im Eckbereich mindestens 10mm, wobei ein Wert von mindestens 25mm besonders bevorzugt ist.

[0029] Durch die beschriebene Ausgestaltung können die pendelnden vertikalen Abschnitte der Dichtlippen 23, 24 und die federnden horizontalen Abschnitte der Dichtlippen 23, 24 so verbunden werden, dass die Dichtfunktion auch im Eckbereich des Dichtungsrahmens erhalten bleibt, wobei auch Toleranzen in der Spaltbreite b aufgenommen werden. Durch die verdickte Ausbildung des Kopfbereichs 28, 31 insbesondere der vertikalen Abschnitte der Dichtlippen 23, 24 erhalten die Dichtlippen in Längsrichtung eine verbesserte Steifigkeit. Diese Steifigkeit kann weiters durch die Gleitschicht 27 noch erhöht werden, welche aus einem härteren Werkstoff als das übrige Material der Dichtlippen 23, 24 bestehen kann. Durch die Erhöhung der Steifigkeit im Kopfbereich 28, 31 wird einem Abknicken der Dichtlippen 23, 24 entgegengewirkt.

[0030] Vorteilhafterweise wird die Gleitschicht 27 durch Koextrusion mit dem restlichen Material der Dichtlippen 23, 24 ausgebildet. Anstelle einer Koextrusion mit den Dichtlippen 23, 24 wäre auch eine nachträgliche Beschichtung der Dichtlippen 23, 24 zur Ausbildung der Gleitschicht 27 denkbar und möglich.

[0031] Die Dichtlippen 23, 24 bestehen bevorzugterweise aus einem Elastomer, beispielsweise EPDM. Die Gleitschicht 27 kann ebenfalls aus einem Elastomer bestehen, welches gegenüber dem restlichen Elastomer der Dichtlippen 23, 24 eine höhere Gleitfähigkeit aufweist und härter ist. Der Dichtungsfuß 17 besteht ebenfalls aus einem Elastomer, vorzugsweise aus dem gleichen Elastomer wie die Dichtlippen (abgesehen von der Gleitschicht). Der Dichtungsfuß 17 und die Dichtlippen 23, 24 können einstückig ausgebildet sein, insbesondere durch Extrusion.

[0032] Zur Abdichtung der Schiebeelement-Dichtung gegenüber dem Schiebelement-Rahmen ist bevorzugter Weise eine auf der Außenseite des Dichtungsfußes von diesem abstehende Dichtlippe 46 aus Elastomer angeordnet. Diese verläuft annähernd parallel zur Ebene des Dichtungsrahmens und ist vorzugsweise leicht gebogen (mit der gewölbten Seite zum Schiebeelement 1 hin gerichtet).

[0033] Zur Herstellung einer erfindungsgemäßen Schiebeelement-Dichtung können zunächst die horizontalen und vertikalen Rahmenschenkel des Dichtungsrahmens ausgebildet werden, insbesondere mittels eines Extrusionsverfahrens. In der Folge werden die die horizontalen und vertikalen Rahmenschenkel verbindenden Eckbereiche hergestellt. Hierzu kann eine Form eingesetzt werden, wie sie beispielsweise in Fig. 9 schematisch dargestellt ist. Die Form weist ein Formunterteil 36 und ein Formoberteil 37 auf. In das Formunterteil 36 sind Leisten 38, 39, 40 eingesetzt, welche zusammen mit dem Formunterteil 36 und Formoberteil 37 im geschlossenen Zustand der Form einen Formhohlraum 41 definieren. Ausgehend von den Seitenrändern dieses Formhohlraums werden ein horizontaler und ein vertikaler Rahmenschenkel der Schiebelement-Dichtung eingeschoben und in der Folge wird der verbleibende Formhohlraum mit unvulkanisiertem, vorzugsweise synthetischen, Kautschuk gefüllt, der sich in einem fließfähigen Zustand befindet und den Formhohlraum ausfüllt. Beispielsweise kann der Kautschuk unter einem Druck von 60 bis 120bar eingespritzt werden. Nach der Vulkanisation können die beiden über einen solcherart hergestellten Eckbereich miteinander verbundenen Rahmenschenkel aus der Form entnommen werden.

[0034] Vorzugsweise weist der in den Formhohlraum einzusetzende horizontale Rahmenschenkel verlängerte Dichtlippen 23, 24 auf, die in Längsrichtung über den Dichtungsfuß 17 überstehen und die in den Formhohlraum eingelegt werden, wobei sie über den gekrümmten Eckverlauf geführt werden und stirnseitig an das Ende des in den Formhohlraum randseitig von der andern Seite her eingeschobenen vertikalen Rahmenschenkel stoßen. Diese überstehenden Dichtlippenabschnitte des horizontalen Rahmenschenkels können vorzugsweise dadurch ausgebildet werden, dass der Dichtungsfuß 17 über die gewünschte Länge entfernt wird. Beim Einspritzen des Kautschuks in den Formhohlraum

dringt dieser in den Spalt zwischen den stirnseitigen Enden der überstehenden Dichtlippenabschnitte des horizontalen Rahmenschenkels und dem stirnseitigen Ende des vertikalen Rahmenschenkels. Es bildet sich ein kurzer Übergangsabschnitt, beispielsweise mit einer Länge zwischen 0,5 und 2mm. Über diesen Übergangsabschnitt besitzen die fertiggestellten Dichtlippen 23, 24 der Schiebeelement-Dichtung keine Gleitschicht 27. Diese Übergangsabschnitte 42, 43 der Dichtlippen 23, 24 sind in Fig. 3 durch strichlierte Linien angedeutet. Der Vorteil dieser Vorgehensweise besteht insbesondere bei den unteren Eckbereichen darin, dass die Dichtlippen 23, 24 nahtlos bis zu einem oberhalb des horizontalen Rahmenschenkels 14 liegenden Bereich geführt sind, wo im Einsatz kein Stauwasser mehr vorliegen kann. Allfällige Undichtheiten, die an Verbindungsnähten zwischen einem extrudierten und einem angespritzten Teil möglich sind, sind dadurch zu einem weniger kritischen Bereich verlegt.

[0035] Um in den Bereich zwischen die beiden Dichtlippen 23, 24 eindringendes Wasser abzuleiten, sind insbesondere im unteren horizontalen Rahmenschenkel, vorzugsweise auch im oberen horizontalen Rahmenschenkel in der Nähe der Ecken Entwässerungskanäle 44 angeordnet, wie dies insbesondere aus Fig. 8 ersichtlich ist. Es führt hierzu eine Bohrung durch den Dichtungsfuß 17 bis in den Bereich zwischen den beiden Dichtlippen 23, 24. Diese Bohrung ist durch einen Stutzen 45 nach außen hin verlängert.

[0036] Unterschiedliche Modifikationen des gezeigten Ausführungsbeispiels einer Schiebeelement-Dichtung sind denkbar und möglich, ohne den Bereich der Erfindung zu verlassen. So wäre es beispielsweise denkbar und möglich, die Schiebeelement-Dichtung mit nur einer einzigen Dichtlippe zur Anlage am Schiebeelement 1 auszubilden, auch mehr als zwei solcher Dichtlippen könnten vorhanden sein. Der längs verlaufende Kanal 18 könnte entfallen. Die Form des Dichtungsfußes 17 und/oder der Dichtlippen 23, 24 könnte auch anders gewählt werden.

Legende zu den Hinweisziffern:

[0037]

- Schiebeelement 1
- 2 Schiebeelement-Rahmen
- 3 Laufrolle
- 4 Laufsteg
- 5 Handgriff
- 6 Öffnungsrichtung
- 7 Rahmenöffnung
- 8 Scheibenhalterrahmen
- 9 elastisches Dichtungsprofil
- 10 elastisches Dichtungsprofil
- 11 Verglasung
- 12 Dichtungsebene
- horizontaler Rahmenschenkel 13

- horizontaler Rahmenschenkel 14
- 15 vertikaler Rahmenschenkel
- 16 vertikaler Rahmenschenkel
- 17 Dichtungsfuß
- 18 Kanal
 - 19 Verankerungsschulter
 - 20 Haltenase
 - 21 Verbindungssteg
 - 22 innerer Rand
 - 23 erste Dichtlippe
 - 24 zweite Dichtlippe
 - 25 freies Ende
 - 26 freies Ende
 - 27 Gleitschicht

 - 28 Kopfbereich
 - 29 Halsbereich
 - 30 Normale
 - 31 Kopfbereich
 - 32 Winkel
- 33 Halsbereich
 - 34 Außenrand
 - 35 Innenrand
 - 36 Formunterteil
 - 37 Formoberteil
- 38 Leiste
- 39 Leiste
- 40 Leiste
- 41 Formhohlraum
- 42 Übergangsabschnitt
- 43 Übergangsabschnitt
 - 44 Entwässerungskanal
 - 45 Stutzen
 - 46 Dichtlippe

Patentansprüche

1. Schiebeelement-Dichtung zur Abdichtung eines Schiebeelements (1) gegenüber einem feststehenden Schiebeelement-Rahmen (2), welche als umfangsgeschlossener Dichtungsrahmen mit horizontalen und vertikalen Rahmenschenkeln (13 bis 16), die in Eckbereichen miteinander verbunden sind, ausgebildet ist und einen Dichtungsfuß (17) zur Befestigung der Schiebeelement-Dichtung an einem feststehenden Schiebeelement-Rahmen (2) und mindestens eine einen Anlagebereich zur Anlage am Schiebeelement (1) aufweisende elastische Dichtlippe (23, 24) umfasst, die entsprechend den horizontalen und vertikalen Rahmenschenkeln (13-16) horizontale und vertikale Abschnitte aufweist und deren freies Ende (25, 26) in den Eckbereichen des Dichtungsrahmens einen bogenförmigen Verlauf aufweist, dadurch gekennzeichnet, dass der Anlagebereich der mindestens einen Dichtlippe (23, 24) zumindest über einen Großteil der Längserstreckung der Dichtlippe (23, 24) mit einer Gleitschicht (27) versehen ist und dass die ver-

40

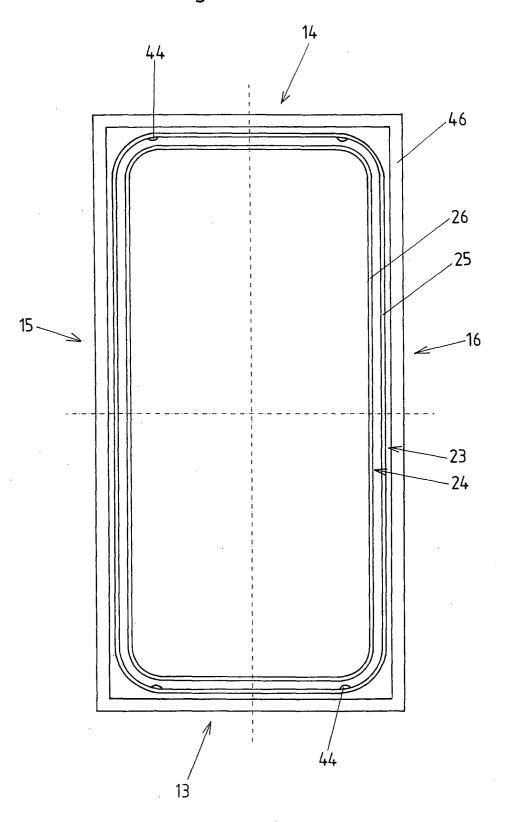
45

50

55

tikalen Abschnitte der mindestens einen Dichtlippe (23, 24) als Pendeldichtlippen ausgebildet sind und die horizontalen Abschnitte der mindestens einen Dichtlippe (23, 24) zumindest in an ihre freien Enden anschließenden Kopfbereichen (31) im unbelasteten Zustand gegenüber einer Normalen (30) zur Ebene des Dichtungsrahmens um mindestens 10° zur Innenseite des Dichtungsrahmens geneigt sind

- Schiebeelement-Dichtung nach Anspruch 1, dadurch gekennzeichnet, dass das freie Ende (25, 26) der mindestens einen Dichtlippe (23, 24) in Ansicht gesehen zumindest in den Eckbereichen des Dichtungsrahmens, vorzugsweise über den gesamten Umfang des Dichtungsrahmens, innerhalb des Außenrandes (34) des Dichtungsfußes (17) liegt.
- 3. Schiebeelement-Dichtung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass mindestens eine Dichtlippe (23, 24) zur Anlage am Schiebeelement (1) vorhanden ist, deren freies Ende (25, 26) in Ansicht gesehen zumindest in den Eckbereichen des Dichtungsrahmens, vorzugsweise über den gesamten Umfang des Dichtungsrahmens, innerhalb des Innenrandes (35) des Dichtungsfußes (17) liegt.
- 4. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Krümmungsradius des freien Endes (25, 26) der mindestens einen Dichtlippe (23, 24) in den Eckbereichen des Dichtungsrahmens mindestens dem doppelten Wert, vorzugsweise mindestens dem fünffachen Wert, des Verformungsweges (s) der Dichtlippe (23, 24) beträgt.
- 5. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Krümmungsradius des freien Endes (25, 26) der mindestens einen Dichtlippe (23, 24) in den Eckbereichen des Dichtungsrahmens mindestens 10mm, vorzugsweise mindestens 25mm beträgt.
- 6. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das freie Ende (25, 26) der mindestens einen Dichtlippe (23, 24) über mindestens 95% der Längserstrekkung der Dichtlippe (23, 24) mit einer Gleitschicht (27) versehen ist.
- Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die vertikalen Abschnitte der mindestens einen Dichtlippe (23, 24) zumindest in an ihre freien Enden (25, 26) anschließenden Kopfbereichen (28) im unbelasteten Zustand gegenüber einer Normalen (30) zur


- Ebene des Dichtungsrahmens um weniger als 10° geneigt sind.
- 8. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die maximale Dicke (D) des an das freie Ende (25, 26) der Dichtlippe (23, 24) anschließenden Kopfbereichs (28) des vertikalen Abschnitts der Dichtlippe (23, 24) um mindestens 50%, vorzugsweise um mindestens 100%, größer ist als die minimale Dicke (d) eines an den Kopfbereich (28) in Richtung zum Dichtungsfuß (17) anschließenden Halsbereichs (29).
- 9. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die maximale Dicke des an das freie Ende (25, 26) der Dichtlippe (23, 24) anschließenden Kopfbereichs (31) der horizontalen Abschnitte der Dichtlippe (23, 24) um mindestens 30% größer als die minimale Dicke eines an den Kopfbereich (31) in Richtung zum Dichtungsfuß (17) anschließenden Halsbereichs (33) ist, wobei die maximale Dicke des Kopfbereichs (31) vorzugsweise weniger als doppelt so groß wie die minimale Dicke des Halsbereichs (33) ist.
 - 10. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sich die Gleitschicht (27) über die Kopfbereiche (28, 31) der vertikalen und horizontalen Abschnitte der Dichtlippen (23, 24) erstreckt.
- 11. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mindestens zwei Dichtlippen (23, 24) zur Anlage am Schiebeelement (1) vorhanden sind.
- 12. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass weiters mindestens eine vom Dichtungsfuß (17) nach außen abstehende Dichtlippe (46) zur Anlage am Schiebelementrahmen (2) vorhanden ist.
- 45 13. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die mindestens eine Dichtlippe (23, 24) zur Anlage am Schiebelement (1) zumindest abgesehen von der Gleitschicht (27) aus einem Elastomer besteht, wobei die Gleitschicht (27) vorzugsweise aus einem demgegenüber härteren und einen geringeren Reibungskoeffizienten aufweisenden Elastomer besteht.
- 55 14. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass im Dichtungsfuß (17) ein in Längsrichtung des Dichtungsrahmens verlaufender Kanal (18) angeordnet

35

ist.

- 15. Schiebeelement-Dichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass zumindest der untere horizontale Rahmenschenkel (13), vorzugsweise auch der obere horizontale Rahmenschenkel (14), mindestens einen in den Bereich zwischen die beiden Dichtlippen (23, 24) reichenden Entwässerungskanal (44) aufweist, der vorzugsweise durch einen Stutzen (45) verlängert ist, der vom Dichtungsfuß (17) auf der vom Schiebelement (1) abgewandten Seite absteht.
- **16.** Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 15, **dadurch gekennzeichnet**, **dass** am Dichtungsfuß (17) Verankerungsschultern (19) angeordnet sind.
- 17. Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass in den Eckbereichen des Dichtungsrahmens der Dichtungsfuß (17) einen rechtwinklig abgewinkelten Verlauf aufweist und in den Eckbereichen mit einem parallel zur Ebene des Dichtungsrahmens zur Innenseite des Dichtungsrahmens hin abstehenden Verbindungssteg (21) versehen ist, von dem zumindest eine Dichtlippe (24) ausgeht.
- 18. Schiebeelement (1), welches in einem Schiebelement-Rahmen (2) verschiebbar, insbesondere horizontal verschiebbar, geführt ist, wobei am Schiebeelement-Rahmen (2) eine Schiebeelement-Dichtung zur Abdichtung des Schiebeelements (1) gegenüber dem Schiebeelement-Rahmen (2) in der geschlossenen Endlage des Schiebeelements (1) angebracht ist, dadurch gekennzeichnet, dass die Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 17 ausgebildet ist
- 19. Verfahren zur Herstellung einer Schiebeelement-Dichtung nach einem der Ansprüche 1 bis 17, wobei zur Verbindung eines horizontalen und eines vertikalen Rahmenschenkels (13 bis 16) über einen Eckbereich diese in einen Formhohlraum (41) eine Form eingelegt werden, in welche zur Ausbildung des Eckbereichs Kautschuk eingefüllt wird, dadurch gekennzeichnet, dass mindestens eine zur Anlage am Schiebelement (1) vorgesehene Dichtlippe (23, 24) des horizontalen Rahmenschenkels (13, 14) über das Ende des Dichtungsfußes (17) hinaus verlängert ist und in die Form (36, 37) über zumindest einen Teil eines bogenförmigen Abschnitts des Formhohlraums (41) eingelegt wird, wobei die mindestens eine überstehende Dichtlippe vorzugsweise bis zum in den Randbereich der 55 Form eingelegten vertikalen Rahmenschenkel (15, 16) reicht.

Fig. 1

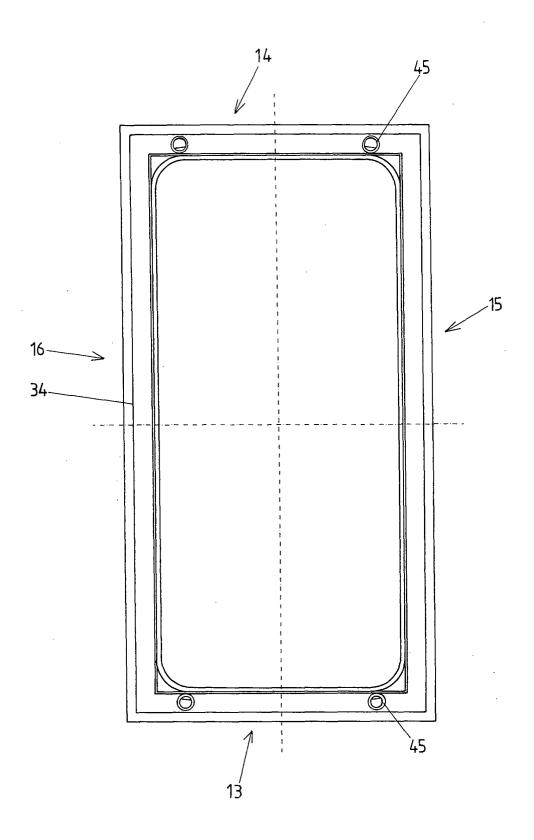
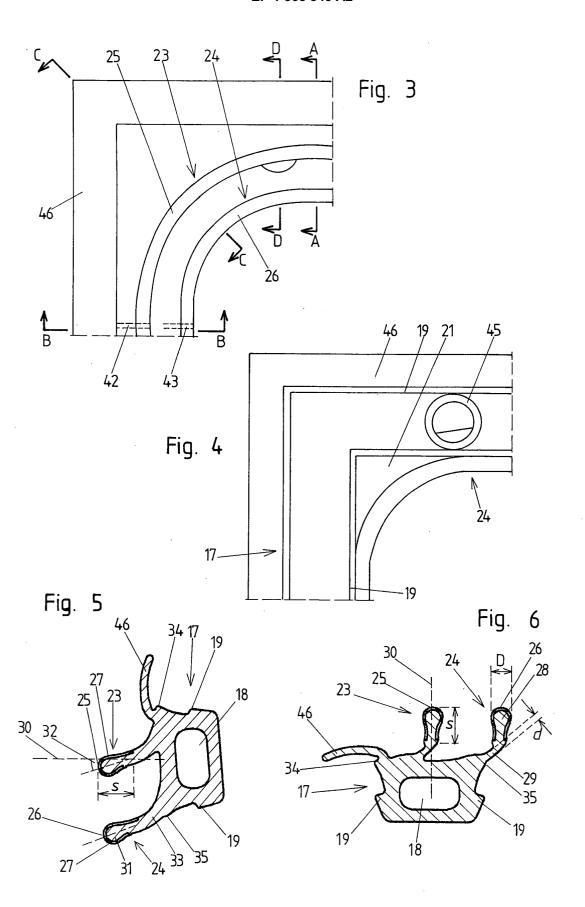
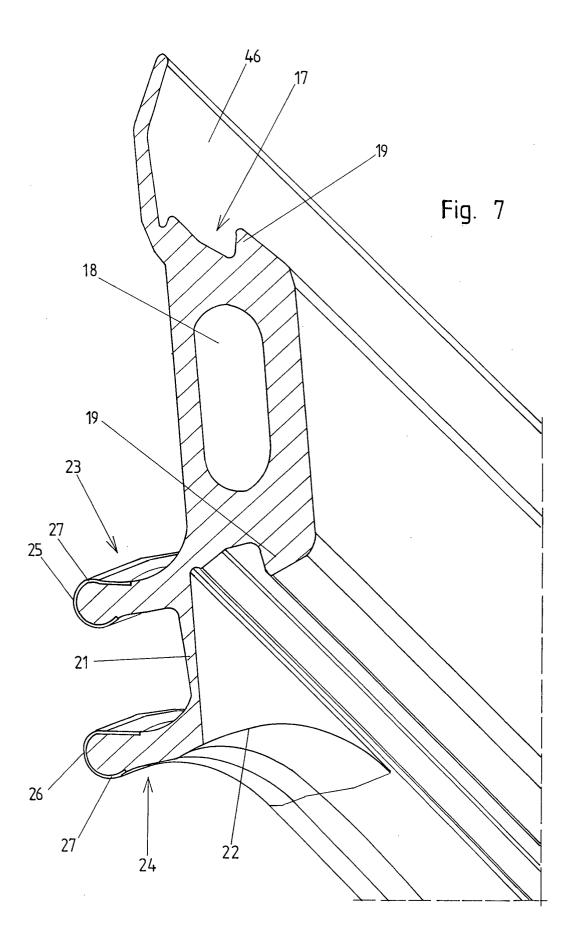
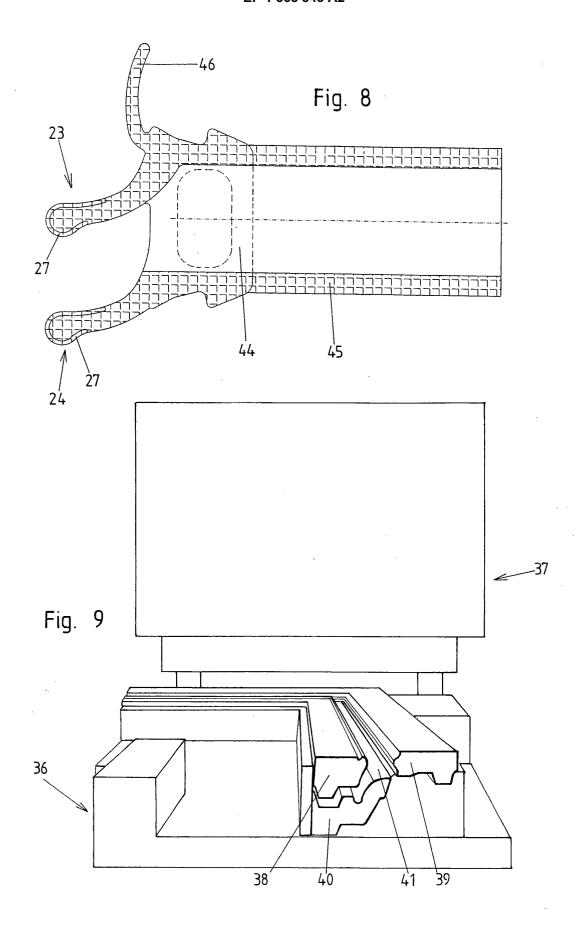
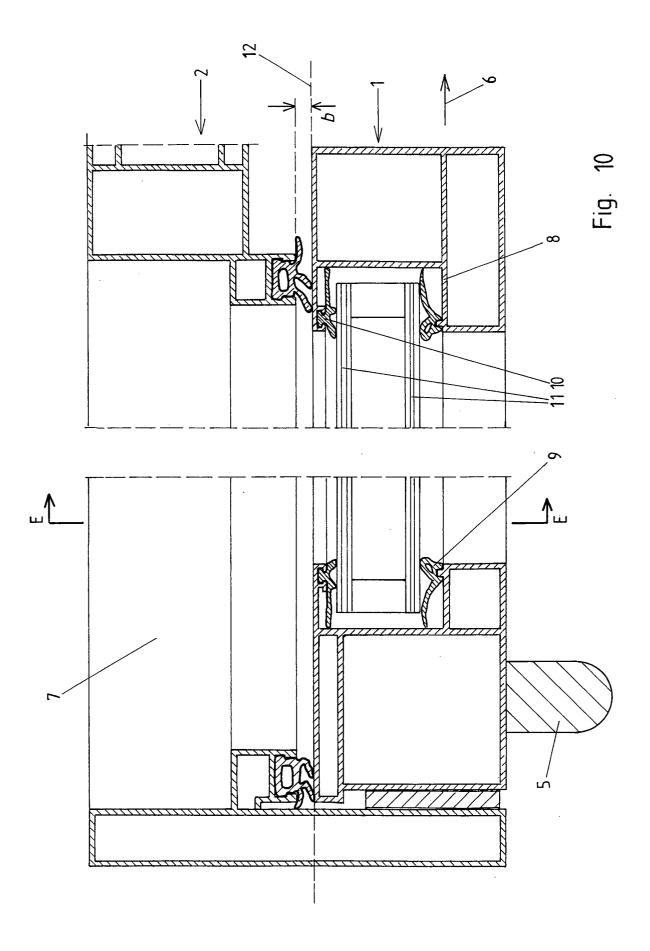






Fig. 2

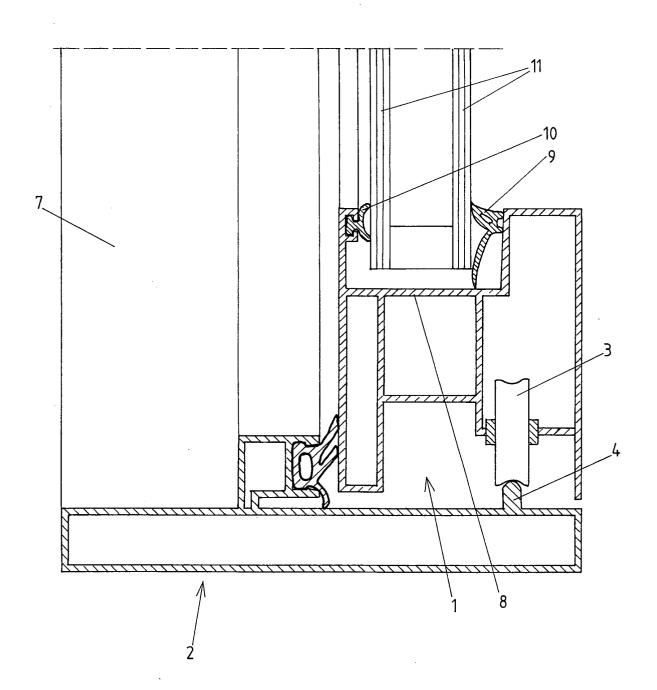


Fig. 11