(19)
(11) EP 1 569 297 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
31.08.2005  Bulletin  2005/35

(21) Numéro de dépôt: 05101169.0

(22) Date de dépôt:  16.02.2005
(51) Int. Cl.7H01Q 5/01, H01Q 21/30, H01Q 21/10
(84) Etats contractants désignés:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Etats d'extension désignés:
AL BA HR LV MK YU

(30) Priorité: 27.02.2004 FR 0402039

(71) Demandeur: Thales
92200 Neuilly Sur Seine (FR)

(72) Inventeur:
  • Ngo Bui Hung, Frédéric THALES Intellectual Prop.
    94117 CX, Arcueil (FR)

(74) Mandataire: Lucas, Laurent Jacques 
THALES Intellectual Property, 31-33 avenue Aristide Briand
94117 Arcueil Cedex
94117 Arcueil Cedex (FR)

   


(54) Antenne à très large bande V-UHF


(57) Système antennaire large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences donnée, comprenant au moins deux éléments rayonnants sensiblement colinéaires (11, 12) caractérisé en ce que chaque élément rayonne dans une bande de fréquences, l'élément rayonnant (11) fonctionnant dans la bande de fréquences [Fhinf, Fhsup], l'élément rayonnant (12) fonctionnant dans la bande [Fminf, Fmsup], et en ce que aux fréquences charnières entre deux éléments adjacents, ces deux éléments participent au rayonnement.




Description


[0001] L'invention concerne un système antennaire à très large bande fonctionnant en émission comme en réception sans reprise d'adaptation. Elle est destinée par exemple à la bande de fréquences variant de 30 à 512 MHz, de la VHF très hautes fréquences (en anglo-saxon Very High Frequencies) jusqu'à l'UHF ultra hautes fréquences (Ultra High Frequencies).

[0002] Cette bande englobe en particulier les bandes classiques : la bande VHF-FM usuelle, ou VHF modulation de fréquence de 30 à 88 MHz (ou en anglo-saxon VHF - Frequency Modulation), la bande VHF-AM ou VHF modulation d'amplitude de 100 à 160 MHz (en anglo-saxon VHF - Amplitude Modulation) et la bande UHF-AM de 225 à 400 MHz (UHF - Amplitude Modulation).

[0003] Les postes Emetteur-Récepteur (E/R) modernes sont susceptibles de fonctionner dans toutes les bandes de fréquences variant de 30 à 512 MHz. Par contre, les systèmes antennaires existants qui leur sont associés, en particulier ceux destinés à être installés sur des mobiles, n'assurent un fonctionnement optimal que par sous bandes de fréquence, par exemple, la bande VHF-FM (30-88 MHz) ou la bande VHF-AM (100-160 MHz) ou encore la bande UHF-AM (225-400 MHz). De ce fait, l'exploitation de ces émetteurs/récepteurs nécessite la mise en oeuvre de plusieurs antennes et un dispositif de commutation pour sélectionner l'antenne la mieux adaptée.

[0004] Les systèmes antennaires à très large bande permettant de couvrir sans discontinuité toute la bande de 30 à 512 MHz existent déjà pour d'autres systèmes exploitant les radio-fréquences, par exemple les systèmes antennaires de radiocommunication embarqués sur les aéronefs, les systèmes antennaires d'écoute et de brouillage en guerre électronique, etc.. Cependant ces antennes présentent des inconvénients qui les rendent inadaptées pour une utilisation sur un mobile terrestre. En effet, elles présentent soit une efficacité trop faible pour la portée radio demandée pour les liaisons sol-sol, cas des antennes embarquées sur des aéronefs, soit un encombrement incompatible avec les dimensions du véhicule.

[0005] Les réalisations d'antenne couvrant une bande de fréquences atteignant la décade et ayant un faible encombrement sont nombreuses. Par exemple, les brevets US 4 443 803, US 4 466 003 ou US 4 958 164 décrivent de telles structures. Cependant, ces structures se basent toutes sur la contribution d'éléments résistifs pour élargir artificiellement la bande passante de l'antenne. De ce fait, une grande partie de l'énergie radio-fréquence RF n'est pas rayonnée par l'antenne, mais est transformée en chaleur à l'intérieur de celle-ci. Le rendement de ces types d'antenne s'avère donc très faible. Un autre défaut des structures rayonnantes décrites dans les brevets mentionnés ci-dessus est leur mauvais diagramme de rayonnement dans les fréquences hautes.

[0006] Les brevets DE 3 826 777 ou FR 2 758 012 proposent des structures dites multi-bande, qui couvrent plusieurs bandes de fréquences et qui ne présentent pas les défauts précédemment énoncés. Cependant, les bandes de fréquence couvertes par ces types d'antennes doivent impérativement être disjointes.

[0007] L'idée de la présente invention est de proposer une antenne unique susceptible de fonctionner sans discontinuité au moins dans toute la bande de fréquences de 30 à 512 MHz, soit dans plus d'une décade, et ayant des dimensions telles qu'elle puisse être installée en lieu et place d'une antenne de radiocommunication VHF-FM classique, c'est-à-dire ayant la forme d'un fouet tout en présentant un rendement suffisant pour garantir des portées radioélectriques au moins équivalentes à celles des équipements existants. Une représentation d'une telle antenne est schématisée sur la figure 1. Le fouet a une hauteur par exemple de l'ordre de 3 mètres.

[0008] L'invention concerne un système antennaire large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences donnée, comprenant au moins deux éléments rayonnants sensiblement colinéaires. Il est caractérisé en ce que chaque élément rayonne dans une bande de fréquences, un premier élément rayonnant fonctionnant dans la bande de fréquences [Fhinf, Fhsup], un deuxième élément rayonnant fonctionnant dans la bande [Fminf, Fmsup], et en ce que aux fréquences charnières ces deux éléments participent au rayonnement.

[0009] La fréquence Fmsup est par exemple supérieure ou égale à la fréquence Fhinf.

[0010] L'antenne peut comporter un troisième élément rayonnant fonctionnant dans la bande de fréquence [Fbinf, Fbsup].

[0011] La fréquence Fbsup est par exemple supérieure ou égale à la fréquence Fminf, et la fréquence Fmsup est par exemple supérieure ou égale à la fréquence Fhinf.

[0012] L'antenne selon l'invention présente notamment les avantages suivants :

o Elle présente un gain supérieur aux systèmes antennaires connus, de même encombrement et couvrant la même bande de fréquences.

o Elle permet de disposer d'une antenne unique, à très large bande, couvrant sans discontinuité plus d'une décade, en particulier de 30 à 512 MHz, et ceci avec un rendement et un gain supérieur aux antennes connues ayant la même bande de fréquences de fonctionnement.



[0013] D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit d'un exemple de réalisation annexé des figures qui représentent :

o La figure 1 le schéma d'une antenne selon l'invention,

o La figure 2 le schéma synoptique et le principe de fonctionnement d'une telle antenne,

o Les figures 3a et 3b un exemple détaillé de réalisation d'antenne,

o La figure 4 un détail de réalisation du dispositif d'alimentation et de sa liaison avec l'antenne.



[0014] La figure 1 représente un exemple d'antenne A installée sur un véhicule V. Cette antenne est constituée par exemple d'un élément rayonnant 1 qui se présente sous la forme d'un fouet, d'une embase 2 qui permet de fixer l'antenne sur le véhicule porteur et qui comporte usuellement un réseau d'alimentation permettant le transfert maximal de puissance de l'émetteur/récepteur vers l'ensemble rayonnant 1. Afin de protéger l'antenne des impacts accidentels contre des obstacles, un élément flexible 3 est intercalé à sa base. Cet élément flexible connu de l'Homme du métier ne sera pas détaillé pour des raisons de simplification.

[0015] La figure 2 présente le schéma synoptique et le principe de fonctionnement d'une antenne selon l'invention, fonctionnant dans la bande de 30 à 512 MHz. Les valeurs de cette bande sont données à titre illustratif et nullement limitatifs. L'antenne A comporte par exemple :

o Un ensemble rayonnant 1 constitué de deux dipôles colinéaires 11 et 12 et d'un monopôle 13,

o Un réseau d'alimentation 14 ayant une entrée 15 et trois sorties 16, 17, 18 qui sont connectées respectivement aux dipôles 11, 12 et au monopôle 13 par trois lignes de transmission respectivement 21, 22, 23.



[0016] Le premier dipôle 11 placé au sommet de l'ensemble rayonnant 1 est conçu pour fonctionner dans la partie haute [Fhinf à Fhsup] de la bande utile, pour cet exemple de 200 à 512 MHz. Pour faciliter la compréhension de l'invention, le circuit d'adaptation et les artifices d'élargissement de bande passante connus de l'Homme du métier pour accorder ce dipôle dans la bande 200 à 512 MHz ne sont pas détaillés.

[0017] Le deuxième dipôle 12 placé en dessous du premier dipôle 11, couvre la bande adjacente [Fminf à Fmsup] de 100 à 200 MHz. Pour la même raison, son circuit d'adaptation n'est pas décrit.

[0018] Le monopole 13 situé dans la partie basse de l'antenne (en dessous des deux autres) assure le fonctionnement dans la bande basse [Fbinf à Fbsup] de 30 à 100 MHz. Le choix d'une structure de type monopôle peut être remplacé par une structure dipolaire. Le monopole permet notamment d'obtenir une taille d'antenne plus limitée.

[0019] Le réseau d'alimentation 14 a notamment pour fonction de diriger :

o les signaux Sbh de la bande haute [Fhinf à Fhsup] provenant de l'entrée 15 vers la sortie 16 qui alimente l'élément rayonnant 11,

o les signaux Sbm de la bande moyenne [Fminf à Fmsup] provenant de l'entrée 15 vers la sortie 17 qui alimente l'élément rayonnant 12,

o les signaux Sbb de la bande basse [Fbinf à Fbsup] provenant de l'entrée 15 vers la sortie 18 qui alimente l'élément rayonnant 13.



[0020] La taille de chaque élément rayonnant 11, 12 et 13 est par exemple dimensionnée de façon telle que :

o A la fréquence de recouvrement Fhinf, choisie égale ou sensiblement égale à Fmsup (pour l'exemple, fréquence de 200 MHz) entre la bande haute et la bande moyenne, le dipôle 11 présente un rayonnement de type demi onde alors que le dipôle 12 présente un rayonnement de type onde entière et en phase avec celui du dipôle 11. Cette mise en phase est obtenue par exemple dans l'exemple donné, en appariant radioélectriquement les longueurs des lignes de transmissions 21 et 22. La répartition de courant sur ces éléments rayonnants est représentée au schéma de la figure 2a.

o A la fréquence de recouvrement Fminf choisie égale ou sensiblement égale à Fbsup (pour l'exemple, fréquence de 100 MHz) entre la bande moyenne et la bande basse, le dipôle 12 présente un rayonnement de type demi-onde alors que le monopôle 13 présente un rayonnement de type onde entière et en phase avec celui du dipôle 12. Cette mise en phase est obtenue dans l'exemple donné en appairant radioélectriquement les longueurs des lignes de transmission 22 et 23. La répartition de courant sur ces éléments rayonnants est représentée au schéma de la figure 2b.



[0021] Cette disposition permet ainsi à l'ensemble rayonnant 1 de fonctionner de la fréquence la plus basse Fbinf (dans l'exemple donné 30 MHz) jusqu'à la fréquence la plus haute Fhsup (dans cet exemple 512 MHz) sans qu'aux alentours des fréquences charnières (Fhinf, Fmsup) et (Fminf, Fbsup) le rayonnement soit perturbé interdisant ainsi l'utilisation de ces fréquences comme dans les antennes connues de l'art antérieur.

[0022] La figure 3a représente un exemple de réalisation d'une antenne selon l'invention et la figure 3b une vue en coupe correspondante. Afin de mieux visualiser la constitution de l'antenne, des ouvertures sont aménagées expressément à la figure 3a dans certains éléments composant l'antenne. Dans cet exemple, les dipôles sont des dipôles à jupe, les références 11, 12, 13 de la figure 2 ayant été conservées pour des raisons de simplification.

[0023] L'antenne comporte un premier dipôle à jupe 11 situé dans sa partie supérieure, un deuxième dipôle à jupe 12 colinéaire ou sensiblement colinéaire au premier et un monopôle 13 placé à la partie inférieure de l'antenne.

[0024] Le dipôle à jupe 11 est constitué d'un premier élément rayonnant 11a, pouvant être réalisé à partir d'un tronçon tubulaire et d'un deuxième élément rayonnant 11b qui est réalisé à partir d'un élément tubulaire creux de longueur sensiblement identique à la longueur de l'élément 11a et dans lequel est enfilé le câble d'alimentation 21 de l'antenne. Ces deux éléments rayonnants sont alimentés au point 11c en connectant l'extrémité supérieure de l'âme 21a (Fig.3b) du câble coaxial d'alimentation 21 à la base de l'élément 11a et en raccordant le blindage 21b (Fig.3b) de ce câble 21 au pourtour de l'extrémité supérieure 11bs de l'élément 11b pour former ce qui est habituellement désigné une jupe. Afin d'optimiser le fonctionnement de l'antenne, un quadripôle d'adaptation d'impédance, non représenté pour des raisons de clarté de figure, peut être intercalé au niveau du point 11c.

[0025] La longueur des éléments rayonnants 11a et 11b est par exemple de l'ordre du quart de la longueur d'onde de la fréquence charnière Fhinf=Fmsup afin que le dipôle puisse rayonner en demi-onde à cette fréquence. Pour l'exemple donné, Fhinf=Fmsup = 200 MHz et la longueur théorique du quart d'onde en mètre est donnée par la relation connue 300/4F (Mhz) soit 0.375 mètre dans cet exemple, où F est le fréquence exprimée en MHz. Afin de tenir compte de l'effet de bord connu de l'Homme du métier, un facteur de raccourcissement de 0.8 est pris ici et la longueur effective des éléments 11a et 11b est de 0.375*0.8 = 0.3 mètre.

[0026] Le dipôle à jupe colinéaire 12 est par exemple composé d'une contre jupe ou jupe retournée 12a et d'une jupe 12b, qui constituent à eux deux, les deux éléments rayonnants du dipôle. Selon l'invention, la longueur de ces jupes est approximativement le double de celui du dipôle 11, soit dans cet exemple environ 0.6 mètre afin que ce dipôle rayonne en onde entière à la fréquence charnière Fhinf=Fmsup. Pour isoler radio-électriquement la contre jupe 12a du câble coaxial 21 qui la traverse, une jupe 12d ayant le rôle d'un dispositif d'isolation habituellement désigné par le mot « stub » est intercalée entre ces deux éléments. Le pourtour de l'extrémité supérieure 12ds de la jupe 12d est raccordé au blindage 21b, alors que son autre extrémité 12di est raccordée à la partie inférieure de la contre jupe 12a. L'alimentation de ce dipôle est réalisée au niveau 12c en connectant l'extrémité supérieure de l'âme 22a du câble coaxial d'alimentation 22 au bord inférieur du dispositif d'isolation ou « stub » 12d au point 12e et en raccordant le blindage 22b de ce câble 22 et le blindage 21b du câble 21 au pourtour de l'extrémité supérieure 12bs de la jupe 12b. Comme évoqué précédemment, il est possible d'utiliser un quadripôle d'adaptation d'impédance.

[0027] Le monopôle 13 se présente par exemple sous la forme d'une contre jupe. Son extrémité inférieure 13i est raccordée sur son pourtour aux blindages 21b et 22b des câbles coaxiaux 21 et 22. Selon l'invention, la longueur de cette contre jupe est approximativement le double de celle des jupes du dipôle 12, soit environ 1.2 mètres dans cet exemple, afin que ce monopôle rayonne en onde entière à la fréquence charnière Fminf= Fbsup=100 MHz.

[0028] Pour isoler radio-électriquement ce monopôle 13 du plan de masse M au-dessus duquel l'antenne est installée, les câbles 21 et 22 sont bobinés autour d'un noyau en matériau magnétique 24 connu, tel que de la ferrite, de la poudre de fer, etc. Ceci permet de constituer une self 25 dont l'impédance présentée dans la bande de fréquences [Fbinf à Fbsup], soit une impédance nettement supérieure à l'impédance propre du monopôle 13 dans la même bande de fréquences. L'alimentation de ce monopôle est réalisée en connectant l'extrémité supérieure de l'âme 23a du câble 23 à une des spires du bobinage 25 au point 26 déterminé pour obtenir la meilleure adaptation d'impédance dans la bande de fréquences [Fbinf à Fbsup].

[0029] De manière usuelle, afin d'améliorer le découplage entre les éléments rayonnants 11, 12, 13, des dispositifs d'isolation jouant le rôle de self de choc, tel que des dispositifs à base de perles de ferrites, de tores ou de tubes de ferrite sont intercalés entre ces éléments.

[0030] Au niveau du plan de masse M, les blindages 21b, 22b, 23b et la masse du réseau d'alimentation 14, sont raccordés à celui-ci par l'ensemble de connexion 30. Les extrémités inférieures des âmes des câbles coaxiaux 21, 22 et 23 sont connectées respectivement aux sorties 16, 17 et 18 du réseau d'alimentation 14 dont un exemple de réalisation est détaillé à la figure 4. Suivant cette figure, le signal radio-fréquence provenant de l'entrée 15 est divisé en deux par un hybride 27 vers les deux voies 27a et 27b. La première voie 27a est filtrée par un filtre passe-bande [Fminf - Fmsup] 28, pour l'exemple de réalisation [100MHz - 200MHz] et constitue après le filtrage la sortie 17. L'autre voie 27b est séparée par un duplexeur 29 en deux sous-bandes, l'une basse [Fbinf - Fbsup], soit [30MHz - 100MHz] pour l'exemple de réalisation et l'autre haute [Fhinf - Fhsup], soit [200MHz - 512MHz]. La sous-bande basse est reliée à la sortie 18 et la sous-bande haute est reliée à la sortie 16.

[0031] L'exemple donné aux figures 1 à 4 s'applique aussi à une antenne large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences [Fminf, Fhsup], comprenant deux éléments rayonnants sensiblement colinéaires (11, 12). L'élément rayonnant (11) fonctionne dans la bande de fréquences [Fhinf, Fhsup], l'élément rayonnant (12) fonctionne dans la bande [Fminf, Fmsup], et aux fréquences charnières entre ces deux éléments ils participent tous les deux au rayonnement.

[0032] La fréquence Fmsup est supérieure ou égale à la fréquence Fhinf.


Revendications

1. Système antennaire large bande pouvant rayonner ou recevoir des signaux radio-fréquence dans une bande de fréquences donnée, comprenant au moins deux éléments rayonnants sensiblement colinéaires (11, 12) caractérisé en ce que chaque élément rayonne dans une bande de fréquences, l'élément rayonnant (11) fonctionnant dans la bande de fréquences [Fhinf, Fhsup], l'élément rayonnant (12) fonctionnant dans la bande [Fminf, Fmsup], et en ce que aux fréquences charnières entre deux éléments adjacents, ces deux éléments participent au rayonnement.
 
2. Système antennaire selon la revendication 1 caractérisé en ce que la fréquence Fmsup est supérieure ou égale à la fréquence Fhinf.
 
3. Système antennaire selon la revendication 1 caractérisé en ce qu'il comporte un troisième élément rayonnant (13) fonctionnant dans la bande de fréquences [Fbinf, Fbsup].
 
4. Système antennaire selon la revendication 3 caractérisé en ce que la fréquence Fbsup est supérieure ou égale à la fréquence Fminf, et la fréquence Fmsup est supérieure ou égale à la fréquence Fhinf.
 
5. Système antennaire selon la revendication 3 caractérisé en ce que les éléments rayonnants (11, 12, 13) sont connectés à un réseau d'alimentation (14) comprenant une entrée (15) et trois sorties (16, 17, 18) connectées respectivement aux éléments (11, 12, 13) par trois lignes de transmission (21, 22, 23).
 
6. Système antennaire selon la revendication 5 caractérisé en ce que le réseau d'alimentation (14) comporte au moins un filtre passe-bande (28), un duplexeur (29) dont l'écart duplex correspond à la bande du filtre (28) et un hybride 3dB diviseur de puissance (27).
 
7. Système antennaire selon la revendication 5 caractérisé en ce que les longueurs des lignes de transmission (21, 22, 23) sont choisies de façon telle que les signaux RF aux fréquences Fhinf à Fmsup alimentent en phase les éléments rayonnants (11, 12) et en ce que les signaux RF aux fréquences Fminf à Fbsup alimentent en phase les éléments rayonnants (12, 13).
 
8. Système antennaire selon la revendication 7 caractérisé en ce que aux fréquences Fhinf à Fmsup l'élément rayonnant (11) rayonne en demi-onde.
 
9. Système antennaire selon la revendication 7 caractérisé en ce que aux fréquences Fminf à Fbsup l'élément rayonnant (12) rayonne en demi-onde.
 
10. Système selon la revendication 7 caractérisé en ce que l'élément (12) rayonne en onde entière pour Fhinf à Fmsup et l'élément (13) rayonne en onde entière pour Fminf à Fbsup.
 
11. Système selon la revendication 1 caractérisé en ce que les éléments rayonnants (11, 12) sont des dipôles et l'élément rayonnant (13) est un monopole.
 




Dessins
















Rapport de recherche