[0001] The present invention relates to generally devices and components for milking apparatus,
in particular to components of such devices such as milk extracting devices, and liners.
In particular aspects it relates to a liner comprising an improved teat receiving
flexible sleeve, and optionally a short milk tubing, preferably but not necessarily
integrated with the liner, and made from Thermo Plastic Elastomers, optionally in
combination with other materials.
Background of the Invention
[0002] Machine milking has been available for about a century. The basic construction of
a milking device, which is still in use today is based on an invention patented by
Gillies in 1902, and comprises a double chambered teat cup designed to operate with
a pulsating vacuum. The teat cup comprises a flexible sleeve made of rubber, forming
one flexible wall of a chamber, where the teat cup shell forms the other wall. In
the space between the two walls a pulsating vacuum is applied whereby the sleeve will
expand and contract, thereby causing a massaging action on a teat on which the teat
cup has been applied.
[0003] The flexible sleeve is provided as a part of a so called teat cup liner (or inflation
in US English; in the present specfication and claims the term "liner" will be used
throughout).
[0004] A milking apparatus as a whole comprises a number of different components, many of
which currently are made of different kinds of rubber, e.g. tubing, nozzles, liners
etc.
[0005] As an example, a modern teat cup system is disclosed in
US-6,176,200 (Petterson). It comprises a tubular head portion capable of receiving a teat, and a shaft portion
forming an inner wall of the pulsating vacuum chamber. The shaft portion is flexible
and normally made of a rubber compound.
[0006] In order to be accepted by the market, devices forming the components of milking
apparatus, such as teat cups and liners, must exhibit a number of properties. Examples
that can be mentioned are the following:
Good milking performances, e.g., milk speed, milk yield, slip, strip yield
Good teat treatment
Long lifetime of the device and capability of functioning at the same high level of
performance over the entire lifetime. Uniform quality of the devices.
Chemical and physical endurance
Devices should be easy to clean
Devices should be easy to replace
Devices should be environmentally friendly, e.g., recycling of the material should
be possible
[0007] The product must comply with regulations relating to material and to articles and
products that are intended to come into contact with foodstuff.
[0008] Currently available components of milking apparatus, such as liners and tubing, are
most often made of rubber materials, which do not meet the above requirements to a
totally satisfactorily degree.
Summary of the Invention
[0009] The present invention therefore seeks to provide improved devices and components
usable in milking apparatus and that meet all the requirements listed above. This
is achieved in accordance with the invention by a teat cup liner for a milking apparatus
that comprises a material, thermoplastic elastomer (TPE), as defined in ISO 18064,
and exhibiting a number of selected properties.
[0010] This novel teat cup liner is defined in claim 1.
[0011] Preferably, an improved teat cup liner comprises at least a teat receiving flexible
sleeve, adapted to be positioned on/over a teat, suitably in a close fit.
[0012] The devices according to the invention provides the following advantages: No compounding
or blending of the material is required for the manufacturing process. TPE:s are like
thermoplastics ready for use as delivered. TPE:s are not sensitive to storage compared
to vulcanized rubber. Simpler processing with fewer steps is needed. TPE:s has the
processing simplicity of a thermoplastic giving more efficient processing and thereby
significantly lower processing costs. Shorter fabrication cycles leading to lower
energy consumption and manpower cost.
Recycling of scrap material possible. Scrap resulting from thermoset production is
normally discarded. As with thermoplastics regrind from TPE processing can be recycled
to give same properties as virgin material. Better quality control and closer tolerances
on fabricated parts. In most cases a lower density will result. No low temperature
hardening (crystallisation) occurs as with some thermoset rubbers. Since TPE:s are
recyclable, it facilitates environmentally friendly handling of products made of these
materials as far as recycling is concerned. It is simpler to combine different materials
in one and the same unitary structure, such that different parts are made of different
materials. For example, a first portion can be made of a TPE of one type, and further
portions can be made of TPE's of other types, exhibiting different properties, such
as making layered structures of different materials.
[0013] Further scope of applicability of the present invention will become apparent from
the detailed description given hereinafter. However, it should be understood that
the detailed description and specific examples, while indicating preferred embodiments
of the invention, are given by way of illustration only, since various changes and
modifications within the spirit and scope of the invention will become apparent to
those skilled in the art from this detailed description and the accompanying drawings
which are given by way of illustration only, and thus not limitative of the present
invention, and wherein
Fig. 1 shows an example of a prior art device for a milking apparatus, namely a teat
cup and a liner; and
Fig. 2 schematically shows an embodiment of the invention in the form of a teat cup
liner.
Fig. 3 illustrates styrene polymers suitable for use in the invention.
Fig. 4 illustrates the two-phase structure of Thermoplastic vulcanisates (TPV).
Detailed Description of Preferred Embodiments
[0014] For the purpose of this application, the expression "liner" or "teat cup liner" is
taken to encompass a device usable together with a milking apparatus or system, that
is to be used in the dairy business e.g. in contact with the milk, and therefore must
comply with regulations relating to materials and articles intended to come into contact
with foodstuffs. A liner comprises at least a teat receiving flexible sleeve, adapted
to be positioned on/over a teat, suitably in a close fit. At the end proximal of the
teat receiving end, there can be provided a short milk tube, to be attached to the
teat cup central. It can also comprise a supply tubing for pulsating medium, referred
to as a "pulsation tubing". It is to be noted that the liner according to the invention
may be used for various different animals, e.g. cows, buffalos, sheep and goats and
other ruminant animals.
[0015] "A teat cup" is taken to be a device comprising a housing, "teat cup shell" in which
a liner, as defined above is mounted. In accordance with the invention, by the surprising
flexibility in the employment of the class of materials discussed herein, broadly
defined by the specified material properties, and exemplified by thermoplastic elastomers,
it will in particular become possible to manufacture devices exhibiting different
mechanical and physico-chemical properties in different parts or regions of the device,
thereby enabling a tailoring of properties for specific uses.
[0016] In Fig. 1, an exemplary prior art teatcup is disclosed. It is provided with a teatcup
liner 1 which is mounted in a teat cup shell 2. The teatcup liner 1 is essentially
rotationally symmetrical with respect to a longitudinal axis 3 and comprises an upper
tubular head portion 4 and a tubular, flexible teat receiving sleeve portion 5 extending
downwardly from the head portion 4. The head portion 4 comprises a first upper end
6 and a second lower end 7. At the upper end 6, the tubular head portion 4 comprises
a lip 8 extending radially inwardly and defining an essentially circular central opening.
The tubular head portion 4 forms a passage through the head to the inner space of
the teatcup liner for receiving a teat in the sleeve 5. The lower end 7 comprises
an annular recess 9 which is engaged by the upper end portion of the teatcup shell
2. The lower part of the sleeve 5 comprises a peripheral surrounding recess 10 which
is engaged by the lower end portion of the teatcup shell 2. The recesses 9 and 10
are shaped in such a manner that a closed space 11 is formed between the teatcup liner
and the teatcup shell 2, which space 11 forms a pulsating chamber of the teatcup.
In its lower part, the teatcup liner 1 connects to prolongation pieces 12 and 13,
which form a milk conduit which may be connected to a claw (not disclosed). The teatcup
liner 1 is manufactured in an elastic material, for instance natural or synthetic
rubber.
[0017] The invention is based on the finding that thermoplastic elastomers (TPE) can be
made to meet the material requirements for providing devices and components for milking
apparatus and systems. Therefore, a brief introduction to the TPE technology will
be given.
Thermoplastic elastomers (TPE)
Introduction
[0018] Before the development of TPE:s there were generally speaking only rigid or semirigid
articles products that could be manufactured and processed with the new technology
for thermoplastics. The production of thermoplastics are faster, less energy consuming,
cleaner and it is easier to re-use scrap.
[0019] For elastomeric materials there were lack of alternatives for thermoset rubbers.
For applications not exposed to extreme temperatures there is no fundamental need
for temperature resistant crosslinking-sites. The use of thermoset rubbers will have
the accompanying disadvantages of the crosslinking.
[0020] The incentives for developing thermoplastic materials exhibiting elastic properties
without any permanent crosslinking sites have therefore been strong.
[0021] Thermoplastic elastomers (TPE) are materials that combine the processing properties
of a thermoplastic material with the elastomeric properties of a rubber material.
[0022] Thermoplastic elastomers are two-phase systems. One of the phases is a hard polymer
that gives the mechanical strength at service temperatures but becomes fluid when
heated above the melting- or glass transition temperature (Tg). The other phase is
a soft rubbery polymer.
[0023] There are principally two ways to achieve the properties; namely by providing the
material in the form of block copolymers or polymer blends.
[0024] Block copolymers meeting the definition of thermoplastic elastomers consist of two
phases, one hard and one soft, formed from segments in the same chain of a molecule.
The harder segment could be crystalline with a high melting temperature or an amorphous
material with a high glass transition temperature. The soft segment is always amorphous
with a very low glass transition temperature.
[0025] Examples: TPS (amorphous hard phase), TPU, TEEE, TPA (semi-crystalline hard phase).
Abbreviations see below.
[0026] TPE made from polymer blends, are blends of a hard material, almost exclusively semi-crystalline
with a high melting temperature in a continuous phase blended with a softer at least
mainly amorphous material with a very low glass-transition temperature.
Examples: TPO, TPV
Nomenclature
[0027] According to ISO 18064 the classes and abbreviations for TPE:s are (within bracket
other common abbreviations):
TPE: Thermoplastic elastomers in general.
TPS: (SBC) Polystyrene/elastomer block copolymers.
TPO: Polypropylene/ EP copolymers blends.
TPV: Thermoplastic vulcanisates.
TPU: Polyurethane block copolymers.
TEEE (COPE) Polyester block copolymers.
TPA: (COPA) Polyamide block copolymers.
General Properties of TPE-materials
[0028]
Table 1. Comparison of General Properties for TPE Materials
| |
TPS |
TPO |
TPV |
TPU |
TEEE |
TPA |
| Density (kg/dm3) |
0.9-1.1 |
0.89-1.0 |
0.9-1.0 |
1.1-1.3 |
1.1-1.3 |
1.0-1.2 |
| Shore Hardness |
3A-60D |
60A-75D |
35A-50D |
60A-85D |
90A-72D |
60A-75D |
| Low temperature limit °C |
-70 |
-60 |
-60 |
-70 |
-65 |
-40 |
| High temperature limit (continuous)°C |
120 |
120 |
135 |
120 |
125 |
170 |
| Compression set resistance at 100°C |
F |
P |
G |
F/G |
F |
F/G |
| Resistance to hydrocarbon fluids |
F/G |
P |
G/E |
F/E |
G/E |
G/E |
| Resistance to aqueous fluids |
G/E |
G/E |
G/E |
F/G |
P/G |
F/G |
| Price ratios |
1-3.6 |
1.5-2.5 |
2.5-3.0 |
2.0-4.0 |
4.0-6.0 |
4.0-9.0 |
| P=Poor F=Fair G=Good E=Excellent |
Styrenic Block copolymers (TPS or SBC)
[0029] TPS materials include three distinctly different main types:
- Styrene-butadiene-styrene block copolymers (SBS)
- Styrene- isoprene-styrene block copolymers (SIS)
- styrene- ethylene-butylene-styrene block copolymers (SEBS)


SBS and SIS polymers
[0030] Styrene and butadiene (or isoprene) are incompatible and form a two-phase system
with two distinct Tg:s. The stiffer styrene-phase acts as physical crosslinking points
between the more flexible butadiene (or isoprene) phase, see Fig. 3.
Thermoplastic Olefins TPO:s
[0031] Thermoplastic olefins are blends of polypropylene (PP) and ethylene-propylene copolymer
(EPM) or ethylene-propylene-diene polymer (EPDM). The term EP(D)M covers both EPDM
and EPM.
[0032] PP-EP(D)M blends are produced by intensive mixing of PP and EPDM and/or EPM.
[0033] The polypropylene is normally an isotactic homopolymer or an isotactic PP with minor
content of ethylene. The melting point of these semi-crystalline polymers are in the
range 145-165°C.
[0034] A TPO can therefore retain many of it's mechanical properties at high temperatures.
An EP(D)M with 50:50 ratio ethylene and propylene are almost completely amorphous
although both polyethylene and polypropylene are semi-crystalline polymer. Changing
i.e. the ethylene content to a higher ratio gives some crystallinity. The net effect
of a small amount of ethylene crystallinity greatly influences the strength of the
rubber.
Properties:
[0035] Since PP and EP(D)M can be blended in any ratio, there is theoretically a continuous
spectrum from lightly modified thermoplastic PP to EP(D)M reinforced with thermoplastic.
| Table 3. Comparison TPO-grades |
| Property/ TPO |
EP(D)M/PP
80/20 |
EP(D)M/PP
67:33 |
EP(D)M/PP
50/50 |
| Tensile strength (Mpa) |
6 |
9,5 |
12 |
| |
|
|
|
| Shore A Hardness |
77 |
87 |
95 |
| Brittle point |
<-60°C |
<-60°C |
<-60°C |
| TPO Strong points |
Service temperature range -60-125°C, low brittle point, high impact strength, High
E-modulus. Good resistance to polar organic fluids. |
| TPO weak points |
Low elasticity, low elongation at break, high compression set. Poor resistance to
hydrocarbons and halocarbons. Drying needed before processing. |
Polymers based on metallocene technology
[0036] During the 90's new polyolefinic resin based on metallocene catalyst technology were
introduced. These are copolymers, consisting of ethylene and higher olefins such as
1-octene. The metallocene technology makes it possible to design very precisely the
distribution of e.g. 1-octene and ethylene in the polymer chain. When the 1-octene
content is around 30% or more there is no crystallinity in the polymer. If some crystallinity
is desired a polymer with lower amount of 1-octene can be produced.
Thermoplastic Vulcanisates (TPV)
[0037] Thermoplastic vulcanisates (TPV) are two-phase systems consisting of a thermoplastic
continuous phase and a crosslinked rubber as the discontinuous phase. The dominating
system is PP/ EPDM but there are also PP/NBR systems.
[0038] The rubber phase is more vulcanised than TPO:s where the rubbery phase is just partly
or not vulcanised. The vulcanisation of the rubber phase results in numerous property
improvements.
Thermoplastic Polyurethane Elastomers (TPU)
[0039] TPUs are block copolymers with urethane backbone linkages. They are synthesised by
condensation of diisocyanates with short chain diols and polyester and /or polyether
diols.
[0040] The short-chain diols along with diisocyanates form the crystalline hard phase in
the TPU. The crystallites acts as physical crosslinking points and heat resistance
of TPUs are closely related to the melting point of these crystallites. Short chain
diols like 1.4-butanediol and 1.6- hexanediol are commonly used.
[0041] The soft segment is formed from hydroxylterminated polyesters or hydroxylterminated
polyethers.
[0042] The soft segment of TPU will determine the elastic and low-temperature properties.
The hardness and modulus will be determined by ratio of hard and soft segments.
Thermoplastic Copolyesters (TEEE), (COPE)
[0043] Thermoplastic Copolyester materials consist of block copolymers of alternating hard
and soft segments connected by ester and ether linkages, the soft segments can be
polyethers, polyesters or copolyesters. The principal differences between the soft
segments are the same as for TPU:s. The hard segment is almost exclusively polybutylenterephtalate
(PBT)
Polyamide block Copolymers (TPA, COPA)
[0044] Block copolymers of hard and soft segments. The hard segments are polyamides and
soft segments are polyolblocks with a polyether chain or a polyester chain.
[0045] The polyamide block can be any PA 6, PA6/6, PA 11. PA12, PA 6/ 11 or PA 6/12. This
will determine the melting point and influence the density and the chemical resistance.
[0046] The type of soft segment will influence properties like resilience, tear strength,
hydrolytic stability, abrasion resistance, low temperature flexibility, toughness
and microbial resistance non-polar solvents like.
[0047] Polyether chain are most common and are preferred for their low temperature resistance
and hydrolytic stability. Polyester chains are preferred when good solvent resistance
and high temperature stability is preferred.
[0048] Thus, in accordance with the invention, a teat cup liner, as defined previously,
is made of a material including one or more materials in combination selected from
a group of materials including the above discussed.
[0049] A teat cup is a milk extracting device, i.e. a device constituting a part or component
of a milking apparatus that acts on the teat of an animal, or cooperates with other
parts of the milking apparatus, such that the udder will release milk in a controlled
manner. A teat comprises a liner, which in its turn comprises at least a flexible
teat receiving sleeve, adapted to be positioned on/over a teat in a close fit.
[0050] In a particular embodiment of the present invention, there is provided a teat cup
liner wherein it is specifically the flexible teat receiving sleeve portion of the
liner that is made of such a material or material combination. A liner 20 according
to the invention is schematically illustrated in Fig. 2, as mounted in a likewise
schematically represented teat cup shell 21. The liner comprises a head portion 22,
a flexible sleeve portion 24 for receiving a teat 25 in a substantially close fit.
By "close fit" is meant that there will be no significant amounts of air leaking in
from between the teat and the sleeve in operation, i.e. during milking. The sleeve
extends from the head portion 22 to a transition region 27 where a short milk tube
26 connects to the sleeve 24. This milk tube 26 can be integrated with the sleeve
or, as in the prior art device in Fig. 1, be a separate member connectable to the
sleeve.
[0051] Suitably the transition region 27 is made stiffer in order that the liner can be
rigidly attached to the teat cup shell 21, so as not to cause leakage. It is important
that the sleeve be fixed in a defined and particular position in the shell. The provision
of a stiffer portion is possible by employing a combination of materials in accordance
with the invention, as will be discussed further below.
[0052] Furthermore, the teat cup shell is to be connected to a supply of pulsating medium
in order that the sleeve of the liner be able to perform its function. This supply
is provided via a pulsation tubing 28 connectable to the teat cup shell 21 at an inlet
connector 23, such that the pulsation can act on the sleeve 24.
[0053] The most important element of a liner is the flexible sleeve 24, in the sense that
it is this element that performs the function by alternatingly collapsing and opening/expanding,
caused by the pulsating vacuum applied. Thus, in order that the liner be able to fulfil
its technical function, at least the flexible sleeve must meet certain criteria with
respect to material properties.
[0054] The following list contains examples of properties that a liner having a flexible
sleeve based on TPE, and that is connectable to the teat/animal and to the overall
milking system should exhibit.
- It must be capable to remove milk from the udder of an animal by means of vacuum means
- It should be capable of transporting milk within closed systems
- It should be connectable via an interface to the overall milking system
- The teat should be subjected to massage
- The flexible sleeve should stimulate the animal
- The flexible sleeve should comply with regulations relating to materials and articles
intended to come into contact with foodstuffs
- The flexible sleeve should be able to act as a barrier and should not be influenced
by the milk
- The flexible sleeve should have a tension or compression being constant or variable
- It should exhibit a sealing function
- The flexible sleeve should be attachable to the teat automatically or manually
- The flexible sleeves functionality should be controllable
- The flexible sleeve is based on a material that should withstand the milking environment
- The flexible sleeve is based on a material that should be processable
- The flexible sleeve should be possible to fix and seal against an outer hard shell
- The flexible sleeve should fit teats of all sizes
- Preferably the flexible sleeve should consist of one or many material or combinations
thereof
- The flexible sleeve is based on a material that consists of TPE or TPE in combination
with other materials
- Smooth milk-transport should be allowed
[0055] The above criteria are met with a liner having at least a flexible sleeve made of
a material that comprises a TPE, as defined in ISO 18064.
[0056] The elastomeric material of the milking device according to the invention, should
exhibit (at least) the following properties:
- A hardness between 25 shore A and 50 shore D
- A Young's modulus between 0.1 MPa and 50 MPa
- A tensile strength typically above 0.5 MPa
- A minimum elongation of 50% without breakage
[0057] Optionally the milking device should exhibit
- A service temperature typically between -60C and +200C
[0058] Suitably the material is resistant to acids, in particular formic acid, propionic
acid, peracetic acid, and/or H
2O
2. The material is also preferably resistant to alkali, in particular to ammonia, NaOH
and KOH. Suitable concentrations are those commonly used in washing or cleaning procedures
used in the dairy industry.
[0059] The material should also be resistant to chlorine, ozone and to UV irradiation and
thermal oxidation.
[0060] In preferred embodiments, the material exhibits a tear strength between 5 and 50
kN/m, preferably 15-35 kN/m.
[0061] In preferred embodiments, the material exhibits a tensile strength of 0.5-40 MPa,
preferably 5-20 MPa.
[0062] It should also in preferred embodiment exhibit an elongation which is more than 200%
before breakage, preferably more than 300%.
[0063] The material is preferably a thermoplastic vulcanisate (TPV), comprising two phases
consisting of a thermoplastic continuous phase and a cross-linked rubber as a discontinuous
phase, wherein the thermoplastic elastomer comprises a rubber selected from butadiene
rubber; silicone; EPDM; NBR optionally grafted with acrylates or anhydrides.
[0064] Other possible polymers are nitrile rubber, styrene-butadiene rubber, butyl rubber,
halo-butyl rubber, ethylene-propylene rubber, polyisoprene, polychloroprene, polybutene
copolymers, chlorosulfonated polyethylene.
[0065] The thermoplastic elastomer preferably also comprises a crystalline polyolefin selected
from polyethylene (HDPE, LDPE or LCDPE), polypropylene, or mixtures thereof, for example
copolymers. By virtue of the excellent processability of the materials selected in
accordance with the invention, it becomes possible to tailor liners to a large number
of different applications or needs within the field of automated milking. Thus, it
is possible to manufacture liners in a simple molding process to high dimensional
accuracy, while combining different materials in different parts of the product. E.g.
it is possible to provide the head portion and milk tube with a higher rigidity than
the flexible sleeve has.
[0066] Below a number of possible embodiments based on material selections and material
combinations will be described. All variations and modifications are applicable to
all devices within the generic definition of the device according to the invention.
[0067] Thus, it is possible to make a device according to the invention (e.g. a liner, possibly
comprising a short milk tubing and/or a short pulsation tubing) by using several variations
or modifications in terms of material combinations, to provide for suitable properties
for each specific use or application of the device according to the invention. Also,
different parts of a device may be provided with different properties, adapted to
the kind of environment that the specific part or portion of the device will come
into contact with.
[0068] Particularly preferred TPE's for use with liners, in accordance with the invention,
which give major and unexpected advantages over prior art materials, are TPV's (Thermo
Plastic Vulcanisates).
[0069] This class of materials will provide a lower weight due to a density that is around
20% lower than prior art rubbers.
[0070] The resistance to fatigue is higher than expected. This means that a liner can be
used for a longer time without having to be exchanged. The risk of hygienic problems
is reduced. In the prior art devices cracks would appear much sooner, collecting bacteria
and thereby creating a source for contamination.
[0071] TPV's will yield less "break in" problems, i.e. the change of properties during the
very first hours of use is reduced to a low level. As an example the hysteresis phenomenon
is much less outspoken. This means that the pulsation behaviour will become more predictable.
[0072] Among the possible variations and modifications suggested above, a first alternative
would be to use a combination of two soft materials. Such a combination would be applicable
for a device exhibiting different types of chemical resistance. As an example, the
inside of the device may be subjected to milk, which requires certain properties,
such as fat resistance and ability to withstand exposure to water and washing agents
(primarily the short milk tube), and the outside may be exposed to the environment
in a cowshed or barn, or an outdoor environment, which places other requirements on
the material, e.g resistance to ammonia, UV light, ozone.
[0073] This particular type of device could be composed of an NBR based TPV for the inner
side of the device, in combination with an EPDM based TPV for the outside, the latter
being ozone and weather resistant.
[0074] Another modification of this type of combination is to provide a device with a barrier
surface (inner and/or outer) coating on a core or bulk material, the latter providing
the mechanical properties. The barrier properties could be e.g. fat and detergent
resistance on the inner surfaces, and weather and barn environment resistance on the
outer surface of the device. The properties of the core or bulk material could be
e.g. high elasticity and low damping in order to achieve rapid milking, and/or high
creep resistance in order to provide for non-changing milking behaviour/properties
over time. The damping is quantified by the tan δ of the material, which is a measure
of the non-elasticity of the material. In this case tan δ should be < 0,20.
[0075] An example of a suitable material combination would be SBS, SEBS or SIS in the bulk,
and an EPDM or NBR based TPV in the surface layer, both on the inside and the outside
of the device.
[0076] A second alternative is a combination of a soft and a hard material.
[0077] A liner as it is designed today, has different parts performing different functions.
The sleeve will work dynamically, whereas the connection to the claw will work statically
and has the function of a sealing. In one embodiment it is suggested according to
the invention that the short milk tubing and the attachment against the teat cup central
be made from a stiff/rigid material. This would render the attachment simpler by means
of a quick coupling, in a broad sense, which is much easier to achieve with a rigid
material than with soft rubbery material. The sleeve, on the other hand, is made from
a soft rubbery material for the purpose of achieving optimal massaging and milking
properties.
[0078] Examples of materials suitable for the latter application are various hardness grades
of EPDM or NBR based TPV. It is also possible to employ soft EPDM based TPV in combination
with TPU (urethane based TPE), TPA (amide based TPE) or TEEE (ester based TPE).
[0079] For the particular application of the inventive concept to (teat cup) liners, there
are a number of specific and unexpected advantages of using TPV.
[0080] Namely, production related advantages are e.g.: the production cost will be more
attractive; it will become easier to obtain closer tolerances in the produced items,
thus it will become easier to predict the properties of the final product; the material
spillage can be reduced; less variations in the production process gives more uniform
product properties from batch to batch; use of the materials according to the invention
will make welding possible as a production means. However, the most unexpected property
is the high resistance to fatigue.
[0081] Environmental advantages to be mentioned are: recycling of production scrap material
is possible directly back into production by granulating the spillage; lesser amounts
of potentially harmful additives, thereby making handling will become less hazardous
for staff, e.g. no vulcanization gases will be present.
[0082] Suitably the devices described above are manufactured by injection molding of one
or more materials according to the desired properties. Alternatively, if the structure
is more complicated, injection molding or other molding techniques are preferred.
Thus, devices comprising two or more materials in combination, i.e. forming a composite
material, can be joined together in several ways. Dual injection of two (or more)
materials in sequence in one and the same mold can be used. Another option is to make
a "precursor" from one material in a first mold, and then move the "precursor" to
a second mold in which a one or more further materials are injected. It is also possible
to injection mold or extrude the different components separately using different materials,
and then weld the components together. Certain components or parts, can be coupled
by simply putting one together with the other.
[0083] However, it will pertain to the field of the skilled man to design the molding processes
in detail to obtain the desired structures and the set ups necessary to obtain them,
and such methods will therefore not be discussed in further herein.
1. A milking device comprising at least a teat receiving flexible sleeve, adapted to
be positioned on/over a teat,
characterized in that at least a first portion thereof comprises a thermoplastic elastomer (TPE) material,
as defined in ISO 18064, said material exhibiting the following properties:
a) a hardness between 25 shore A and 50 shore D;
b) a Young's modulus between 0.1 MPa and 50 MPa;
c) a tensile strength above 0.5 MPa; and
d) a minimum elongation of 50% without breakage.
2. A milking device as claimed in claim 1,
wherein the material is a thermoplastic vulcanisate (TPV), comprising two phases,
namely a thermoplastic continuous phase and a cross-linked rubber as a discontinuous
phase.
3. A milking device as claimed in claim 2,
wherein the discontinuous phase comprises a butadiene rubber; silicone; EPDM; or NBR
optionally grafted with acrylates or anhydrides, or a combination of any or all of
these.
4. A milking device as claimed in claim 2,
wherein the rubber is selected from nitrile rubber, styrene-butadiene rubber, butyl
rubber, halo-butyl rubber, ethylene-propylene rubber, polyisoprene, polychloroprene,
polybutene copolymers, chlorosulfonated polyethylene.
5. A milking device as claimed in claim 2, 3 or 4,
wherein the continuous phase comprises a crystalline polyolefin that can be selected
from polyethylene (HDPE, LDPE or LLDPE), polypropylene, or copolymers or mixtures
thereof.
6. A milking device as claimed in any preceding claim,
having at least a further portion comprising a TPE material different from that of
the first portion.
7. A milking device as claimed in claim 6,
wherein said first portion comprises a core material, and wherein said further portion
is at least a partial surface coating on said core material.
8. A milking device as claimed in claim 7,
wherein the core material has a tan δ < 0,20.
9. A milking device as claimed in claim 7 or 8,
wherein the core material is an SBS or SEBS, and the surface coating is an EPDM based
TPV or NBR.
10. A milking device as claimed in claim 6, wherein said first portion is made from a
material exhibiting a higher stiffness/hardness than said further portion.
11. A milking device as claimed in claim 10,
wherein the material exhibiting a higher stiffness/hardness is a hard EPDM based TPV
or a hard NBR based TPV, TPU, TPA or TEEE, and the softer part is a soft EPDM based
TPV or a soft NBR based TPV.
12. A milking device as claimed in any preceding claim,
exhibiting a service temperature between -60 and +200°C.
13. A milking device as claimed in any preceding claim,
wherein said material is resistant to acids in the concentrations commonly used in
washing or cleaning procedures for milking equipment in the dairy industry.
14. A milking device as claimed in claim 13,
wherein the material is resistant to formic acid propionic acid, peracetic acid, and/or
H2O2.
15. A milking device as claimed in any preceding claim,
wherein said material is resistant to alkali in the concentrations commonly used in
washing or cleaning procedures for milking equipment in the dairy industry.
16. A milking device as claimed in claim 15,
wherein said material is resistant to ammonia, NaOH, and KOH.
17. A milking device as claimed in any preceding claim,
wherein said material is resistant to chlorine, ozone and to UV irradiation and thermal
oxidation.
18. A milking device as claimed in any preceding claim,
wherein said material exhibits a tear strength between 5 and 50 kN/m, preferably 15-35
kN/m.
19. A milking device as claimed in any preceding claim,
wherein the tensile strength of said material is 0.5-40 MPa, preferably 5-20 MPa.
20. A milking device as claimed in any preceding claim,
wherein the elongation of said material is more than 200% before breakage, preferably
more than 300%.
21. A milking device as claimed in any preceding claim,
which is a teat cup liner, adapted to be positioned on/over a teat in a close fit.
22. A milking device as claimed in claim 21,
comprising a head portion (22), a sleeve (24) and a milk tube (26) integrated in a
unitary structure.
23. A milking device as claimed in claim 21,
comprising a head portion (22), a sleeve (24) and a separate milk tube (26), connectable
with the sleeve (24).
24. A teat cup assembly comprising a milking device as claimed in any preceding claim.
25. Use of a thermoplastic elastomer (TPE) material as defined in ISO 18064, said material
exhibiting the following properties:
a) a hardness between 25 shore A and 50 shore D;
b) a Young's modulus between 0.1 MPa and 50 MPa;
c) a tensile strength above 0.5 MPa; and
d) a minimum elongation of 50% without breakage,
in the manufacture of a teat cup liner.
26. Use of a thermoplastic elastomer (TPE) material as defined in ISO 18064, said material
exhibiting the following properties:
a) a hardness between 25 shore A and 50 shore D;
b) a Young's modulus between 0.1 MPa and 50 MPa;
c) a tensile strength above 0.5 MPa; and
d) a minimum elongation of 50% without breakage,
in the manufacture of a teat receiving sleeve for a teat cup liner.
27. Use of a thermoplastic elastomer (TPE) material as defined in ISO 18064, said material
exhibiting the following properties:
a) a hardness between 25 shore A and 50 shore D;
b) a Young's modulus between 0.1 MPa and 50 MPa;
c) a tensile strength above 0.5 MPa; and
d) a minimum elongation of 50% without breakage,
in the manufacture of a short milk tubing connectable to a teat cup liner.
1. Melkvorrichtung, umfassend mindestens eine flexible Hülse zum Aufnehmen einer Zitze,
die auf/über einer Zitze positioniert wird,
dadurch gekennzeichnet, dass mindestens ein erster Abschnitt davon ein thermoplastisches Elastomermaterial (TPE)
umfasst, wie es in der ISO 18064 definiert ist, wobei das Material die folgenden Eigenschaften
aufweiset:
a) eine Härte zwischen 25 Shore A und 50 Shore D;
b) ein Elastizitätsmodul zwischen 0,1 MPa und 50 MPa;
c) eine Zugfestigkeit oberhalb 0,5 MPa; und
d) eine minimale Ausdehnung von 50% ohne Bruch.
2. Melkvorrichtung nach Anspruch 1, wobei das Material ein thermoplastisches Vulkanisat
(TPV) ist, das zwei Phasen umfasst, nämlich eine thermoplastische kontinuierliche
Phase und einen vernetzten Kautschuk als diskontinuierliche Phase.
3. Melkvorrichtung nach Anspruch 2, wobei die diskontinuierliche Phase einen Butadienkautschuk
Silikon; EPDM; oder NBR umfasst, wahlweise mit Pfropfacrylaten oder -anhydriden, oder
eine Kombination beliebiger oder sämtlicher dieser Stoffe.
4. Melkvorrichtung nach Anspruch 2, wobei der Kautschuk ausgewählt ist aus Nitrilkautschuk,
Styrol-Butadien-Kautschuk, Butylkautschuk, Halobutylkautschuk, Ethylen-Propylen-Kautschuk,
Polyisopren, Polychloropren, Polybuten-Copolymeren, chlorsulfoniertem Polyethylen.
5. Melkvorrichtung nach Anspruch 2, 3 oder 4, wobei die kontinuierliche Phase ein kristallines
Polyolefin umfasst, das ausgewählt werden kann aus Polyethylen (HDPE, LDPE oder LLDPE),
Polypropylen oder Copolymeren oder Mischungen davon.
6. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei mindestens ein weiterer
Abschnitt ein TPE-Material umfasst das sich von demjenigen des ersten Abschnittes
unterscheidet.
7. Melkvorrichtung nach Anspruch 6, wobei der erste Abschnitt ein Kernmaterial umfasst
und wobei der weitere Abschnitt mindestens eine teilweise Oberflächenbeschichtung
auf dem Kernmaterial ist.
8. Melkvorrichtung nach Anspruch 7, wobei das Kernmaterial einen tan δ < 0,20 hat.
9. Melkvorrichtung nach Anspruch 7 oder 8, wobei das Kernmaterial ein SBS oder SEBS ist
und wobei die Oberflächenbeschichtung ein EPDM-basiertes TPV oder NBR ist.
10. Melkvorrichtung nach Anspruch 6, wobei der erste Abschnitt aus einem Material hergestellt
ist, das eine höhere Steifigkeit/Härte hat als der weitere Abschnitt.
11. Melkvorrichtung nach Anspruch 10, wobei das Material mit einer höheren Steifigkeit/Härte
ein Hart-EPDM-basiertes TPV oder ein Hart-NBR-basiertes TPV, TPU, TPA oder TEEE ist
und wobei der weichere Teil ein Weich-EPDM-basiertes TPV oder ein Weich-NBR-basiertes
TPV ist.
12. Melkvorrichtung nach einem der vorangegangenen Ansprüche mit einer Gebrauchstemperatur
zwischen -60 und+200°C.
13. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei das Material bei solchen
Konzentrationen säurebeständig ist, wie sie gewöhnlich bei Wasch- oder Reinigungsprozeduren
für Melkausrüstungen in der Molkereiindustrie verwendet werden.
14. Melkvorrichtung nach Anspruch 14, wobei das Material gegen Ameisensäure, Propionsäure,
Peressigsäure und/oder H2O2 beständig ist.
15. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei das Material in solchen
Konzentrationen alkalibeständig ist, wie sie gewöhnlich bei Wasch- oder Reinigungsprozeduren
für Melkausrüstungen in der Molkereiindustrie verwendet werden.
16. Melkvorrichtung nach Anspruch 15, wobei das Material gegen Ammoniak, NaOH und KOH
beständig ist.
17. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei das Material gegen
Chlor, Ozon und UV-Strahlung sowie thermische Oxidation beständig ist.
18. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei das Material eine
Reißfestigkeit zwischen 5 und 50 kN/m hat, vorzugsweise 15-35 kN/m.
19. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei die Zugfestigkeit
des Materials 0,5-40 MPa beträgt, vorzugsweise 5-20 MPa.
20. Melkvorrichtung nach einem der vorangegangenen Ansprüche, wobei die Dehnung des Materials
größer als 200% ist, bevor Brüche auftreten, vorzugsweise mehr als 300%.
21. Melkvorrichtung nach einem der vorangegangenen Ansprüche, bei der es sich um einen
Zitzengummi handelt, der eng anliegend auf/über einer Zitze positioniert wird.
22. Melkvorrichtung nach Anspruch 21, umfassend einen Kopfabschnitt (22), eine Hülse (24)
und einen Milchschlauch (26), die in einer einheitlichen Struktur integriert sind.
23. Melkvorrichtung nach Anspruch 21, umfassend einen Kopfabschnitt (22), eine Hülse (24)
und einen getrennten Milchschlauch (26), der mit der Hülse (24) verbunden werden kann.
24. Zitzenbecheranordnung, umfassend eine Melkvorrichtung nach einem der vorangegangenen
Ansprüche.
25. Verwendung eines thermoplastischen Elastomermaterials (TPE), wie es in der ISO 18064
definiert ist, wobei das Material die folgenden Eigenschaften aufweist:
a) eine Härte zwischen 25 Shore A und 50 Shore D;
b) ein Elastizitätsmodul zwischen 0,1 MPa und 50 MPa;
c) eine Zugfestigkeit oberhalb 0,5 MPa; und
d) eine minimale Ausdehnung von 50% ohne Bruch,
bei der Herstellung eines Zitzengummis.
26. Verwendung eines thermoplastischen Elastomermaterials (TPE), wie es in der ISO 18064
definiert ist, wobei das Material die folgenden Eigenschaften aufweist:
a) eine Härte zwischen 25 Shore A und 50 Shore D;
b) ein Elastizitätsmodul zwischen 0,1 MPa und 50 MPa;
c) eine Zugfestigkeit oberhalb 0,5 MPa; und
d) eine minimale Ausdehnung von 50% ohne Bruch,
bei der Herstellung einer Hülse zum Aufnehmen einer Zitze für einen Zitzengummi.
27. Verwendung eines thermoplastischen Elastomermaterials (TPE), wie es in der ISO 18064
definiert ist, wobei das Material die folgenden Eigenschaften aufweist:
a) eine Härte zwischen 25 Shore A und 50 Shore D;
b) ein Elastizitätsmodul zwischen 0,1 MPa und 50 MPa;
c) eine Zugfestigkeit oberhalb 0,5 MPa; und
d) eine minimale Ausdehnung von 50% ohne Bruch,
bei der Herstellung eines kurzen Milchschlauchs, der mit einem Zitzengummi verbunden
werden kann.
1. Dispositif de traite comprenant au moins une gaine flexible de réception de trayon,
adaptée pour être positionnée sur un trayon ou par-dessus de lui,
caractérisé en ce qu'au moins une première partie de celui-ci comprend un matériau élastomère thermoplastique
(ETP), tel que le définit l'ISO 18064, ledit matériau manifestant les propriétés suivantes
:
a) une dureté comprise entre 25 Shore A et 50 Shore D,
b) un module de Young compris entre 0,1 et 50 MPa,
c) une résistance à la traction supérieure à 0,5 MPa, et
d) un allongement minimal valant 50 % sans rupture.
2. Dispositif de traite selon la revendication 1, dans lequel le matériau est un vulcanisat
thermoplastique (VTP) comprenant deux phases, à savoir une phase continue thermoplastique
et un caoutchouc réticulé en tant que phase discontinue.
3. Dispositif de traite selon la revendication 2, dans lequel la phase discontinue comprend
un caoutchouc butadiène, du silicone, de l'EPDM ou du NBR éventuellement greffé avec
des acrylates ou des anhydrides, ou une combinaison de tous ou n'importe lesquels
d'entre eux.
4. Dispositif de traite selon la revendication 2, dans lequel le caoutchouc est choisi
parmi du caoutchouc nitrile, du caoutchouc styrène-butadiène, du caoutchouc butyl,
du caoutchouc halo-butyl, du caoutchouc éthylène-propylène, du polyisoprène, du polychloroprène,
des copolymères de polybutène, du polyéthylène chlorosulfoné.
5. Dispositif de traite selon la revendication 2, 3 ou 4, dans lequel la phase continue
comprend une polyoléfine cristalline que l'on peut choisir parmi du polyéthylène (PEHD,
PEBD ou PELBD), du polypropylène ou des copolymères ou des mélanges de ceux-ci.
6. Dispositif de traite selon l'une quelconque des revendications précédentes, comportant
au moins une partie supplémentaire comprenant un matériau de type ETP différant de
celui de la première partie.
7. Dispositif de traite selon la revendication 6, dans lequel ladite première partie
comprend un matériau central, et dans lequel ladite partie supplémentaire est au moins
un revêtement partiel de surface sur ledit matériau central.
8. Dispositif de traite selon la revendication 7, dans lequel le matériau central présente
une valeur de tan δ inférieure à 0,20.
9. Dispositif de traite selon la revendication 7 ou 8, dans lequel le matériau central
est du SBS ou du SEBS, et le revêtement de surface est un VTP à base d'EPDM ou un
NBR.
10. Dispositif de traite selon la revendication 6, dans lequel ladite première partie
est constituée d'un matériau présentant une rigidité/dureté plus élevée que ladite
partie supplémentaire.
11. Dispositif de traite selon la revendication 10, dans lequel le matériau manifestant
une rigidité/dureté supérieure est un EPDM dur à base de VTP ou un NBR dur à base
de VPT, de l'UTP, de l'ATP ou du TEEE, et où la partie plus molle est un EPDM mou
à base de VPT ou un NBR mou à base de VPT.
12. Dispositif de traite selon l'une quelconque des revendications précédentes, dont la
température de service est comprise entre - 60 et + 200 °C.
13. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau résiste aux acides aux concentrations couramment mises en oeuvre lors
de procédures de lavage ou de nettoyage destinées à un équipement de traite dans l'industrie
laitière.
14. Dispositif de traite selon la revendication 13, dans lequel le matériau résiste à
l'acide formique, à l'acide propionique, à l'acide peracétique et/ou au peroxyde d'hydrogène
H2O2.
15. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau résiste aux bases aux concentrations couramment mises en oeuvre lors
de procédures de lavage ou de nettoyage destinées à un équipement de traite dans l'industrie
laitière.
16. Dispositif de traite selon la revendication 15, dans lequel ledit matériau résiste
à l'ammoniac, à la soude NaOH et à l'hydroxyde de potassium KOH.
17. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau résiste au chlore, à l'ozone et au rayonnement UV et à l'oxydation
thermique.
18. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau manifeste une résistance au cisaillement comprise entre 5 et 50 kN/m,
entre 15 et 35 kN/m de préférence.
19. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau manifeste une résistance à la traction comprise entre 0,5 et 40 MPa,
entre 5 et 20 MPa de préférence.
20. Dispositif de traite selon l'une quelconque des revendications précédentes, dans lequel
ledit matériau développe un allongement supérieur à 200 % avant rupture, supérieur
à 300 % de préférence.
21. Dispositif de traite selon l'une quelconque des revendications précédentes, qui est
un manchon-trayeur, adapté pour être positionné sur un trayon ou par-dessus d'un trayon
selon un ajustement serré.
22. Dispositif de traite selon la revendication 21, comprenant une partie (22) de tête,
une gaine (24) et un tube (26) de traite intégrés suivant une structure unitaire.
23. Dispositif de traite selon la revendication 21, comprenant une partie (22) de tête,
une gaine (24) et un tube séparé (26) de traite, que l'on peut raccorder à la gaine
(24).
24. Ensemble formant un gobelet-trayeur comprenant un dispositif de traite selon l'une
quelconque des revendications précédentes.
25. Emploi d'un matériau élastomère thermoplastique (ETP), tel que le définit l'ISO 18064,
ledit matériau manifestant les propriétés suivantes :
a) une dureté comprise entre 25 Shore A et 50 Shore D,
b) un module de Young compris entre 0,1 et 50 MPa,
c) une résistance à la traction supérieure à 0,5 MPa, et
d) un allongement minimal valant 50 % sans rupture,
lors de la fabrication d'un manchon-trayeur.
26. Emploi d'un matériau élastomère thermoplastique (ETP), tel que le définit l'ISO 18064,
ledit matériau manifestant les propriétés suivantes :
a) une dureté comprise entre 25 Shore A et 50 Shore D,
b) un module de Young compris entre 0,1 et 50 MPa,
c) une résistance à la traction supérieure à 0,5 MPa, et
d) un allongement minimal valant 50 % sans rupture,
lors de la fabrication d'une gaine de réception de trayon destinée à un manchon-trayeur.
27. Emploi d'un matériau élastomère thermoplastique (ETP), tel que le définit l'ISO 18064,
ledit matériau manifestant les propriétés suivantes :
a) une dureté comprise entre 25 Shore A et 50 Shore D,
b) un module de Young compris entre 0,1 et 50 MPa,
c) une résistance à la traction supérieure à 0,5 MPa, et
d) un allongement minimal valant 50 % sans rupture,
lors de la fabrication d'un tuyau court de traite que l'on pourra raccorder à un manchon-trayeur.