(19)
(11) EP 1 577 423 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
21.09.2005  Patentblatt  2005/38

(21) Anmeldenummer: 05003729.0

(22) Anmeldetag:  22.02.2005
(51) Internationale Patentklassifikation (IPC)7C25B 9/00, C25B 1/00
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR LV MK YU

(30) Priorität: 19.03.2004 DE 102004013593
03.07.2004 DE 102004032260

(71) Anmelder: Perma-Tec GmbH & Co. KG
97717 Euerdorf (DE)

(72) Erfinder:
  • Graf, Walter, Dipl.-Ing.
    97717 Euerdorf (DE)
  • Weigand, Michael, Dipl.-Ing.
    97725 Elfershausen (DE)
  • Glier, Robert
    97520 Röthlein (DE)
  • Glier, Renate
    97520 Röthlein (DE)

(74) Vertreter: Albrecht, Rainer Harald et al
Patentanwälte Andrejewski, Honke & Sozien, Theaterplatz 3
45127 Essen
45127 Essen (DE)

   


(54) Elektrolytische Zelle zur Gaserzeugung


(57) Die Erfindung betrifft eine Zelle zur Gaserzeugung, insbesondere für den Betrieb eines Schmierstoffspenders, mit zwei Elektroden (1, 1') zum Anschluss an einen eine Stromquelle (2) enthaltenden Stromkreis (3) und einer zwischen den beiden Elektroden (1, 1') befindlichen, ein Azid der Formel XN3 enthaltenden, wässrigen Elektrolytflüssigkeit (4) zur elektrochemischen Erzeugung eines Stickstoff (N2) enthaltenden Gases. Erfindungsgemäß enthält die Elektrolytflüssigkeit (4) ein Magnesiumsalz als Zusatz zur chemischen Bindung von bei der elektrochemischen Reaktion entstehenden Hydroxid-Ionen.




Beschreibung


[0001] Die Erfindung betrifft eine Zelle zur Gaserzeugung, insbesondere für den Betrieb eines Schmierstoffspenders, mit
   zwei Elektroden zum Anschluss an einen eine Stromquelle enthaltenden Stromkreis und
   einer zwischen den beiden Elektroden befindlichen, ein Azid der Formel XN3 enthaltenden, wässrigen Elektrolytflüssigkeit zur elektrochemischen Erzeugung eines Stickstoff (N2) enthaltenden Gases.

[0002] In der Praxis ist es bekannt, die von einem Schmierstoffspender abgegebene Schmierstoffmenge mittels einer ein Gas erzeugenden Zelle zu dosieren, wobei der mit Hilfe des Gases erzeugte Druck einen entsprechenden Austritt von Schmierstoff aus dem Spender verursacht. In diesem Zusammenhang ist beispielsweise die Erzeugung von Wasserstoff oder Sauerstoff an den Elektroden einer galvanischen Zelle bekannt (DE 35 32 335 C2). Die Zelle kann ggf. mit einer Zinkanode zur Erzeugung von Wasserstoff oder mit einer Mangandioxidkathode zur Erzeugung von Sauerstoff selbst eine ausreichend große Spannung liefern, um über einen äußeren regelbaren Widerstand den zwischen den Elektroden fließenden Elektrolysestrom einzustellen. Zusätzlich kann auch eine Batterie vorgesehen sein, welche eine bessere Regelung der Stromstärke ermöglicht.

[0003] Aus der Druckschrift DE 692 26 770 T2 ist eine Gaszelle bekannt, bei der durch Elektrolyse aus einer Natriumazidlösung Stickstoff gebildet wird. Bei der Elektrolyse einer wässrigen Natriumazidlösung fällt die Gaserzeugungsrate mit zunehmender Stickstoffbildung schnell ab, da die bei der Reaktion entstehenden Hydroxid-lonen zu einem starken Anstieg des pH-Wertes in der Lösung führen, wie die nachfolgende Reaktionsgleichung zeigt:



[0004] Bei hohen pH-Werten unterbleibt die Bildung von freiem Stickstoff, und es wird lediglich Wasser zersetzt. Übliche Puffersubstanzen, z. B. Phosphate sind zur Lösung dieses Problems ungeeignet, da deren Pufferkapazität zu klein ist.

[0005] Eine Verbesserung ist möglich, durch Zusatz von Kaliumjodid und Kaliumthiocyanat, jedoch handelt es sich hierbei um Substanzen, die sich gegenüber Metallen aggressiv verhalten, so dass entsprechend edle Metalle oder Graphitelektroden eingesetzt werden müssen.

[0006] Der Erfindung liegt die Aufgabe zu Grunde, eine Zelle mit den eingangs beschriebenen Merkmalen anzugeben, die sich durch eine gute Gaserzeugungsrate auszeichnet.

[0007] Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Elektrolytflüssigkeit ein Magnesiumsalz als Zusatz zur chemischen Bindung von bei der elektrochemischen Reaktion entstehenden Hydroxid-Ionen enthält. Die Erfindung beruht auf der Erkenntnis, dass das aus dem Magnesiumsalz und den Hydroxid-lonen gebildete Magnesiumhydroxid lediglich ein sehr kleines Löslichkeitsprodukt aufweist und entsprechend dem Reaktionsgleichgewicht in der Elektrolytflüssigkeit entzogen wird. Zudem ist Magnesium in seinen Verbindungen elektrochemisch indifferent und auch das ausgefallene wasserhaltige Hydroxidgel beeinflusst die lonenwanderung in der Elektrolytflüssigkeit nicht merklich. Mit Hilfe der erfindungsgemäßen Lehre ist es möglich, den pH-Wert der Elektrolytflüssigkeit auch mit zunehmender Stickstoffbildung in einem engen Bereich konstant zu halten. Da die aus dem Azid zunächst gebildete Stickstoffwasserstoffsäure eine schwache und gleichzeitig leicht flüchtige Säure darstellt, ist die Lösung von Anfang an schwach alkalisch eingestellt. Die Elektrolytflüssigkeit kann einen pH-Wert zwischen 8 und 10 aufweisen. Vorzugsweise beträgt der pH-Wert 8 - 9,5. Während das Azid zweckmäßigerweise aus Natriumazid besteht, wird als Magnesiumsalz vorzugsweise Magnesiumsulfat oder Magnesiumperchlorat verwendet. Um einen ausreichenden Entzug der entstehenden Hydroxid-lonen aus der Elektrolytflüssigkeit zu gewährleisten, ist das Magnesiumsalz im Verhältnis zur Azidmenge stöchiometrisch oder im Überschuss zugesetzt.

[0008] Der Elektrolytflüssigkeit kann ein Frostschutzmittel zugesetzt sein, welches vorzugsweise aus Ethylenglykol und/oder Dimethylsulfoxid besteht. Hierdurch ist auch bei tiefen Temperaturen ein ordnungsgemäßer Betrieb der Gaszelle gewährleistet. Zur Vermeidung einer Wasserstoffüberspannung der die Kathode bildenden Elektrode kann die Elektrolytflüssigkeit Nickelsulfat als Zusatz enthalten. Bei der erfindungsgemäßen Lehre ist die direkte Oxidation von Azid nicht nur an Edelmetallelektroden möglich, sondern ebenso gut auch an Elektroden aus Stahl, vorzugsweise Chrom-Nickel-Stahl oder Graphit. Alternativ können die Elektroden auch aus Kunststoff mit eingebettetem Graphitpulver bestehen.

[0009] Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlich erläutert. Es zeigen schematisch:
Fig. 1
die Gasentwicklung aus einer reinen Natriumazid-Lösung in Abhängigkeit vom Gehalt an freier Natronlauge,
Fig. 2
den Aufbau einer erfindungsgemäßen Zelle zur Gaserzeugung,
Fig. 3
den Einfluss von Nickel auf die Zellspannung und
Fig. 4
die Zellspannung in Abhängigkeit vom Zellstrom bei unterschiedlichen Temperaturen.


[0010] In der Fig. 1 ist ein Diagramm dargestellt, welches die Gasentwicklung aus einer reinen Natriumazid-Lösung gemäß dem Stand der Technik in Abhängigkeit vom Gehalt an freier Natronlauge darstellt. Die bei dem Zerfall des Azids gemäß der Gleichung

entstehende Natronlauge verursacht bereits in geringen Konzentrationen einen deutlichen Abfall der Gaserzeugungsrate, so dass mit zunehmender Gasproduktion die Wirksamkeit der Zelle sehr schnell nachlässt.

[0011] Die Fig. 2 zeigt schematisch den Aufbau einer erfindungsgemäßen Zelle zur Gaserzeugung, die insbesondere für den Betrieb eines Schmierstoffspenders geeignet ist. Die Zelle weist zwei Elektroden 1, 1' zum Anschluss an einen eine Stromquelle 2 enthaltenden Stromkreis 3 auf. Die Stromquelle 2 kann beispielsweise aus einer handelsüblichen Batterieknopfzelle bestehen. Zwischen den beiden Elektroden 1, 1' befindet sich eine Natriumazid (NaN3) enthaltende, wässrige Elektrolytflüssigkeit 4, die zur elektrochemischen Erzeugung eines Stickstoff (N2) enthaltenden Gases dient. Zur Aufnahme der Elektrolytflüssigkeit 4 ist ein geeigneter Aufnahmekörper 5 vorgesehen, z. B. in Form eines porösen Körpers oder eines mit Bohrungen versehenen Behälters, wobei in dem Behälter auch ein Schwamm, Vlies oder ähnliches Speichermedium angeordnet sein kann. Durch die angelegte Spannung wird an der Anode 1 die folgende Reaktion hervorgerufen:

während an der Kathode 1' eine entsprechende Reduktion von Wasserstoffionen erfolgt:



[0012] Da bei der Reaktion gemäß der für die Kathode 1' geltenden Reaktionsgleichung Wasserstoffionen verbraucht werden, steigt die Konzentration der Hydroxid-lonen während der Stickstofferzeugung deutlich an. Um einen damit einhergehenden Anstieg des pH-Wertes in der Elektrolytflüssigkeit 4 zu vermeiden, ist der Elektrolytflüssigkeit 4 ein Magnesiumsalz zur chemischen Bindung der bei der elektrochemischen Reaktion entstehenden Hydroxid-lonen zugesetzt. Magnesiumhydroxid besitzt ein sehr geringes Löslichkeitsprodukt, so dass das aus dem Magnesiumsalz und den Hydroxid-lonen gebildete Magnesiumhydroxid entsprechend der Gleichung

welches an der Kathode 1' gebildet wird, aus der Elektrolytflüssigkeit 4 ausfällt. Die erfindungsgemäße Elektrolytflüssigkeit erlaubt es, dass für die Elektroden 1, 1' herkömmliche Materialien, wie z. B. Stahl, vorzugsweise Chrom-Nickel-Stahl, oder Graphit verwendet werden können. Alternativ können die Elektroden 1, 1' auch aus Kunststoff mit eingebettetem Graphitpulver bestehen.

Beispiel:



[0013] Es wurden die folgenden Elektrolytflüssigkeiten hergestellt:

a) 15,0 g Natriumazid
   31,0 g Magnesiumperchlorat, Gehalt 83 Gew.-%, wasserhaltig 100 ml Wasser.

b) Zusammensetzung wie unter a), jedoch mit Zusatz von 0,25 g Nickelsulfat * 6 H2O.



[0014] Das Magnesiumperchlorat bindet die bei der Reaktion entstehende Natronlauge durch Bildung von schwer löslichem Magnesiumhydroxid. Dieses fällt als Niederschlag aus und wird dadurch dem Reaktionsgleichgewicht entzogen.

[0015] Die Verwendung von Magnesiumperchlorat besitzt den Vorteil, dass die Elektrolytflüssigkeit bis unter - 20 °C dünnflüssig bleibt, so dass ein Zusatz von Frostschutzmitteln nicht erforderlich ist und die Elektrolytflüssigkeit leicht in einem Schwamm aufgenommen werden kann. Hierdurch ist im praktischen Betrieb eine einfache von der Lage unabhängige Trennung von Gas und Elektrolytflüssigkeit gegeben. Die Entsorgung einer die Elektrolytflüssigkeit enthaltenen Zelle (s. Fig. 2) kann durch Verbrennung erfolgen. Das Magnesiumperchlorat ist im Wasser leicht löslich, so dass das Elektrolytvolumen klein gehalten werden kann. Auch bei Temperaturen von - 20 °C weist die Flüssigkeit eine ausreichende Leitfähigkeit auf. Perchlorsäure ist ferner eine stabile Verbindung, die sich unter den gegebenen Bedingungen inert verhält. Die Bildung von elementarem Stickstoff erfolgt gemäß der folgenden Reaktionsgleichung:



[0016] Die Lösung ist schwach alkalisch, hygroskopisch, geruchlos, nicht aggressiv und unzersetzt haltbar. 1 ml dieser Lösung kann je nach Versuchsbedingungen 75 bis 100 ml Gas (N2 und H2) liefern.

[0017] Die Fig. 3 veranschaulicht die Wirkung eines Zusatzes von Nickelsulfat gemäß Beispiel b) auf die gesamte Zellspannung in Abhängigkeit von der Elektrolysestromstärke. Hierbei wurden Graphitelektroden 10 x 10 mm verwendet. Aus der Fig. 3 ist ersichtlich, dass durch den Zusatz von Nickelsulfat die Wasserstoffüberspannung der die Kathode bildenden Elektrode reduziert werden kann und sich bei gleichem Zellstrom im Vergleich zur Lösung a) eine entsprechend niedrigere Zellspannung einstellt.

[0018] Die Fig. 4 veranschaulicht den Verlauf der Zellspannung in Abhängigkeit von der Stromstärke bei + 20 °C und - 20 °C. Es ist erkennbar, dass die Absenkung der Temperatur bei gleichem Zellstrom eine höhere Zellspannung erfordert. Das in Fig. 4 dargestellte Diagramm wurde für die Elektrolytflüssigkeit gemäß dem Beispiel b) erstellt, welche auch bei -20 °C noch ausreichend große Zellströme gewährleistet, die einen Einsatz der erfindungsgemäßen Zelle ermöglichen.


Ansprüche

1. Zelle zur Gaserzeugung, insbesondere für den Betrieb eines Schmierstoffspenders, mit
   zwei Elektroden (1,1') zum Anschluss an einen eine Stromquelle (2) enthaltenden Stromkreis (3) und
   einer zwischen den beiden Elektroden (1, 1') befindlichen, ein Azid der Formel XN3 enthaltenden, wässrigen Elektrolytflüssigkeit (4) zur elektrochemischen Erzeugung eines Stickstoff (N2) enthaltenden Gases,
dadurch gekennzeichnet, dass die Elektrolytflüssigkeit (4) ein Magnesiumsalz als Zusatz zur chemischen Bindung von bei der elektrochemischen Reaktion entstehenden Hydroxid-lonen enthält.
 
2. Zelle nach Anspruch 1, dadurch gekennzeichnet, dass das Azid aus Natriumazid besteht.
 
3. Zelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Magnesiumsalz aus Magnesiumsulfat besteht.
 
4. Zelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Magnesiumsalz aus Magnesiumperchlorat besteht.
 
5. Zelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Magnesiumsalz im Verhältnis zur Azidmenge stöchiometrisch oder im Überschuss zugesetzt ist.
 
6. Zelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Elektrolytflüssigkeit (4) ein Frostschutzmittel zugesetzt ist.
 
7. Zelle nach Anspruch 6, dadurch gekennzeichnet, dass das Frostschutzmittel aus Ethylenglykol und/oder Dimethylsulfoxid besteht.
 
8. Zelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Elektrolytflüssigkeit (4) Nickelsulfat als Zusatz zur Vermeidung einer Wasserstoffüberspannung der die Kathode bildenden Elektrode (1') enthält.
 
9. Zelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Elektroden (1, 1') aus Stahl, vorzugsweise Chrom-Nickel-Stahl, Graphit oder aus Kunststoff mit eingebettetem Graphitpulver bestehen.
 




Zeichnung