
Printed by Jouve, 75001 PARIS (FR)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(19)

E
P

1 
57

7 
79

6
A

1
*EP001577796A1*
(11) EP 1 577 796 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.09.2005 Bulletin 2005/38

(21) Application number: 05101969.3

(22) Date of filing: 14.03.2005

(51) Int Cl.7: G06F 17/30

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Designated Extension States:
AL BA HR LV MK YU

(30) Priority: 18.03.2004 US 803443

(71) Applicant: MICROSOFT CORPORATION
Redmond, WA 98052 (US)

(72) Inventors:
• Rathakrishnan, Balaji

98052, Redmond (US)

• Galindo-Legaria, Cesar A.
98052, Redmond (US)

• Blakeley, Jose A.
98052, Redmond (US)

• Seeliger, Oliver N.
98052, Redmond (US)

• Barrera, Renato
98052, Redmond (US)

(74) Representative: Grünecker, Kinkeldey,
Stockmair & Schwanhäusser Anwaltssozietät
Maximilianstrasse 58
80538 München (DE)

(54) Improved Query Optimizer Using Implied Predicates

(57) Improved query optimizer using implied predi-
cates. The system facilitates allowing a query optimizing
component to introduce into a query, extra predicates
that facilitate the following: render the same results as
the original query; are used as dictated by rules passed
to the optimizing component - these rules specify wheth-

er the new predicate is an equivalence (that will substi-
tute the old predicate) or an implication (in which the old
predicate is preserved); are considered as cost-based
alternatives, and discarded if not useful; are tied to index
utilization; and can consider both standard and multi-
valued indices.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

2

Description

TECHNICAL FIELD

[0001] This invention is related to database systems, and more specifically, query optimization for such systems.

BACKGROUND OF THE INVENTION

[0002] Queries in database systems are posed in high level, declarative (non-procedural) languages that need to be
translated into a procedural execution plan. The purpose of query optimization is to explore the manners in which this
declarative request can be translated into procedural plans and to select the most efficient plan among those explored.
The desired query execution plan can consist of a series of primitive database operators, and is typically selected
according to a least estimated execution cost. One drawback of traditional query optimization systems involves a
comparison on column values of a limited size. Database indexes have practical limits on the size of the fields used
as search keys to the index. This presents a limitation on the columns that can be used as search keys of an index.
In one implementation, indexes cannot have keys whose length is greater than 900 bytes. For example, columns of
types VARCHAR(X), where X > 900 cannot be indexed. These data types are denoted as non-indexable types. Another
drawback relates to computational complexity of the optimization process and the execution efficiency of the chosen
plan. Furthermore, in addition to these hindrances, the standard approach to index selection is hampered by considering
only predicates that compare a column proper against other values (in contrast to comparing, for example, a function
of a column against other values).
[0003] What is needed is an improved query optimization mechanism to leverage indexes over expressions implied
by query predicates.

SUMMARY OF THE INVENTION

[0004] The following presents a simplified summary of the invention in order to provide a basic understanding of
some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify
key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some
concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
[0005] The present invention disclosed and claimed herein, in one aspect thereof, is a system that facilitates allowing
a query optimizing component to infer a simple comparison on an indexed column from another predicate condition.
This occurs by introducing into a query, extra predicates that facilitate at least the following. The extra predicates render
the same results as the original query, and are used as dictated by rules passed to the optimizing component. These
rules specify whether the new predicate is an equivalence (that will substitute the old predicate) or an implication (in
which the old predicate is preserved). The extra predicates are further considered as cost-based alternatives, and
discarded if not useful. The predicates can also be tied to index utilization, and can be considered both standard and
multi-valued indices.
[0006] In support thereof, the invention comprises a system that facilitates query optimization in a data repository,
comprising a query component that receives a query to be processed against data of the data repository, which query
includes an original predicate. The system also comprises a predicate component that transforms the original predicate
into one or more new predicates that include at least one of an implied predicate, an equivalent predicate, and a residual
predicate, either of the implied predicate or the equivalent predicate is processed against the data to return a best
solution such that a total evaluation cost is significantly reduced.
[0007] In another aspect of the present invention, the system employs artificial intelligence in the form of a classifier
to automate one or more aspects thereof
[0008] In another aspect thereof, a process is provided for estimating cardinality on the simple comparison thereby
improving the accuracy. This is more cost effective than performing such estimations on complex conditions or predi-
cates.
[0009] To the accomplishment of the foregoing and related ends, certain illustrative aspects of the invention are
described herein in connection with the following description and the annexed drawings. These aspects are indicative,
however, of but a few of the various ways in which the principles of the invention can be employed and the present
invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the
invention will become apparent from the following detailed description of the invention when considered in conjunction
with the drawings.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

3

BRIEF DESCRIPTION OF THE DRAWINGS

[0010]

FIG. 1 illustrates a system in accordance with the present invention.
FIG. 2 illustrates a flow chart of one process of the present invention.
FIG. 3 illustrates a system in accordance with the present invention.
FIG. 4 illustrates a flow chart for a method of processing standard indices in accordance with the present invention.
FIG. 5 illustrates an initial operator tree and a final operator tree for a query with an implied predicate generated
by a rewrite rule, according to the present invention.
FIG. 6 illustrates a block diagram of a system that processes multi-valued indices in accordance with the present
invention.
FIG. 7 illustrates a flow chart of the method of processing multi-valued indices in accordance with the present
invention.
FIG. 8 illustrates a system that employs artificial intelligent in accordance with the present invention.
FIG. 9 illustrates a block diagram of a computer operable to execute the disclosed architecture.
FIG. 10 illustrates a schematic block diagram of an exemplary computing environment in accordance with the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0011] The present invention is now described with reference to the drawings, wherein like reference numerals are
used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however,
that the present invention can be practiced without these specific details. In other instances, well-known structures
and devices are shown in block diagram form in order to facilitate describing the present invention.
[0012] As used in this application, the terms "component" and "system" are intended to refer to a computer-related
entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a
component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable,
a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server
and the server can be a component. One or more components can reside within a process and/or thread of execution,
and a component can be localized on one computer and/or distributed between two or more computers.
[0013] As used herein, the term to "infer" or "inference" refer generally to the process of reasoning about or inferring
states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference
can be employed to identify a specific context or action, or can generate a probability distribution over states, for
example. The inference can be probabilistic-that is, the computation of a probability distribution over states of interest
based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-
level events from a set of events and/or data. Such inference results in the construction of new events or actions from
a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity,
and whether the events and data come from one or several event and data sources.
[0014] Referring now to FIG. 1, there is illustrated a system 100 in accordance with the present invention. There is
provided an optimizing component 102 for optimizing searches against a data repository 104. The optimizing compo-
nent 102 can be a query optimizer associated with the data repository 104, which optimizer is provided with enhance-
ments in accordance with the present invention. The invention can be carried out by means of a portion of a DBMS
(Database Management System) compiler called the optimizer. The optimizer is a process component of a DBMS
compiler that initially evaluates a search query and generates key expressions for a DBMS Executor. The optimizing
component 102 receives a query 106 that is to be processed against data of the data repository 104. The following
description deals with a query that cannot be processed directly against the data repository, in that, search terms do
not directly align with table data of the repository. Thus, further processing is needed to obtain a search result.
[0015] In support thereof, the optimizing component 102 further comprises a query component that 108 that receives
the query 106. The query component 108 extracts one or more query predicates from the query 106 and communicates
the one or more predicates to a predicate component 110. In this description, a predicate is an expression that asserts
a fact about values. If the expression evaluates to TRUE, then the associated condition is satisfied. If the expression
evaluates to FALSE, then the condition is not satisfied. Here, the predicate was initially applied against the data with
no results. In accordance with the present invention, the predicate component 110 analyzes the unmatchable predicate,
and introduces one or more new predicates 112 that significantly increase the prospect of a successful search. The
one or more new predicates 112 can include one or any combination of the following: an implied predicate 114, an
equivalent predicate 116, and a residual predicate 118.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

4

[0016] The invention allows the optimizing component 102 to introduce into a query the one or more extra (or new)
predicates 112 that facilitate the following: render the same results as the original query; can be used as dictated by
rules passed to the optimizing component 102, which rules specify whether the new predicate is an equivalence (that
will substitute the old predicate) or an implication (in which the old predicate is preserved); are considered as cost-
based alternatives, and discarded if not useful; are tied to index utilization; and can consider both standard and multi-
valued indices. A cost-basis optimizer 120 is included as part of the optimizing component to facilitate determining
whether the one or more new predicates 112 reduce the cost associated with accomplishing a successful search.
[0017] Traditional limitations on the exploitability of indices can reduce the performance of queries. One workaround
to solving this problem that still has shortcomings is the following. Suppose, for instance, that two columns of type
VARCHAR(MAX) called T1.c_charmax and T2.c_charmax exist, respectively, on tables T1, T2. None of the columns
is indexable, but there is an index on a computed column T1.c_ccolumn, that is computed by HASH(T1.c_charmax).
Since T1.c_charmax = T2.c_charmax implies HASH(T1.c_charmax) = HASH(T2.c_charmax), and thus, T1.c_ccolumn
= HASH(T2.c_charmax), the latter predicate could be explicitly included in the query, and the results of this explicitly
rewritten query should be the two queries below, and should be equivalent in that each yields the same result.

[0018] This approach indicates that when a column is of a non-indexable type, it may be possible to define an index
on some function (e.g., HASH, prefix) of the column whose type is indexable. Once such an index is defined, it becomes
possible to take advantage of an index on T1.c_ccolumn. It has, however, several drawbacks. It goes against the "non-
procedurality" of the query language, by forcing the programmer to write extra predicates based upon physical con-
siderations. The plan involving the index on T1.c_ccolumn may not be optimal, or the index on T1.c_ccolumn may be
dropped unbeknownst to the programmer, or there may be other ways of rewriting this predicate. In any of these cases,
query execution will be saddled with evaluating an extra and unnecessary term.
[0019] Referring now to FIG. 2, there is illustrated a flow chart of one process of the present invention. While, for
purposes of simplicity of explanation, the one or more methodologies shown herein, e.g., in the form of a flow chart,
are shown and described as a series of acts, it is to be understood and appreciated that the present invention is not
limited by the order of acts, as some acts may, in accordance with the present invention, occur in a different order and/
or concurrently with other acts from that shown and described herein. For example, those skilled in the art will under-
stand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events,
such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance
with the present invention.
[0020] At 200, an unmatched query is received that is not directly searchable. At 202, the optimizing component
reduces the query predicate to conjuncts, one of which can potentially be used by an existing rule. At 204, the optimizing
component analyzes the conjuncts with existing rules and chooses a most compatible rule. At 206, the optimizing
component returns an implied or equivalent predicate that matches the most compatible rule. At 208, the query is
processed based on the implied or equivalent rule. At 210, the search results are processed, and it is determined if
the results are acceptable. If No, flow is to 212 to drop the query. The process then reaches a Stop block.
[0021] If the initial results are acceptable, flow is from 210 to 214 to determine if further refinement in the search is
needed. If No, flow is to 216 to determine if the results are acceptable. If No, at 212, the query can be dropped. If Yes,
the process ends at the Stop block. Alternatively, if further refinement is desired, flow is from 214 to 218, where a
residual predicate is introduced and processed on the results returned for the implied or equivalent predicate. At 216,
the results are checked for acceptability, as before.
[0022] Referring now to FIG. 3, there is illustrated a system 300 in accordance with the present invention. System
operation will be described in accordance with implication rules for standard indices. Here, the optimizing component
102 further interacts with a metadata engine 302 that has associated therewith a rules component 304 having a set of
rules. The optimizing component 102 takes the query predicate and breaks it into conjuncts. The individual conjuncts
set for comparison are analyzed during index selection. The optimizing component 102 requests the metadata engine
302 for the existence of an implication rule for a given column, or for a function on a given column. In order to provide
this information, the optimizing component 102 sends the engine 302 the expression to which the column (or function
on a column) is to be compared, and a list of standard indices that can be exploited. The metadata engine 302 accesses
the rules component 304 and responds with a list of tentative substitutes (or implied comparison predicates). The
optimizing component 102, in turn, attempts to add the implied predicates to the original predicate, and searches for

ORIGINAL QUERY NEW EXPLICIT QUERY

SELECT T1.c_charmax SELECT T1.c_charmax
FROM T1, T2 FROM T1, T2

WHERE T1.c_charmax= T2.c_charmax WHERE T1.c_charmax= T2.c_charmax
AND T1.c_ccolumn= HASH(T2.c_charmax)



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

5

the best index solution. If a given implied predicate exploits an index, the result is returned for further processing.
However, if the implied predicate does not exploit an index, the optimizing component 102 removes it, so that it does
not cause additional overhead.
[0023] Referring now to FIG. 4, there is illustrated a flow chart for a method of processing standard indices in ac-
cordance with the present invention. At 400, the optimizing component of the present invention is employed. At 402,
the query original predicate is reduced to conjuncts. At 404, the conjuncts are analyzed during index selection. At 406,
a request is placed or the metadata engine for an implication rule for a given column or function on a given column.
At 408, before the response can be received from the engine, an expression is transmitted to the engine to which the
column (or function on a column) can be compared. Additionally, at 410, a list of standard indices that can be exploited
is transmitted to the engine. At 412, the engine responds with a list of tentative predicate substitutes (or implied com-
parison predicates). At 414, the optimizing component attempts to add the implied predicate(s) to the original predicate.
At 416, the optimizing component searches of a best search solution. At 418, the optimizing component checks if given
implied predicate exploits an index. At 420, the system determines if an index can be exploited. If Yes, at 424, the
predicate is employed, and flow is to a Stop block. If, however, the index cannot be exploited, flow is to 422, where the
optimizing component removes the implied predicate so as not to cause additional overhead. The process then reaches
the Stop block.
[0024] Referring now to FIG. 5, there is illustrated an initial operator tree 500 and a final operator tree 502 for a query
with an implied predicate generated by a rewrite rule, according to the present invention. Consider in this example,
that there is an implication rule for standard indices, called Rule1, that recites, if p1=@p then Prefix(p1, n) = Prefix
(@p,n). Consider also, that there is a table created by:

[0025] This is reflected in the initial operator tree 500 where Project (ID) branches to a Select node, which node
braches to a Table1 node and EQ node. The EQ node further branches to P1 and @P2 nodes.
[0026] The generation of the implication for the predicate, p1 = @p2, is done in three steps. Firstly, explore the
conjunct to determine if the conjunct above compares with either a non-indexable column of Table1, or a function or
method of a column of Table1. The column in question (p1) will be called the candidate column. Secondly, search of
indexed columns. Build a list of the indexed computed columns that utilize the candidate. If the candidate is indexable,
also include those indices. In the example, this will yield that there are indices on columns PrfxCompCol and Another-
CompCol, since both exploit p1. The corresponding expressions are Prefix (p1,10) and AnotherFunct (p1). Thirdly,
search for substitutions. Use an ad-hoc metadata function to get the possible implied predicates, using the following
parameters.

[0027] The metadata function will return zero or more expressions of implied predicates. In the example, it will be

Parameter Value

cmpType (an enumerator. Says that this is an equality comparison)

pexprAnalyzed an expression corresponding to Table1.p1

pexprBound the expression corresponding to @p.1

pdrgCid an array with the table columns PrfxCompCol and AnotherCompCol

pdrgExprIdxCols an array with the expressions for PrfxCompCol and AnotherCompCol

dbi the database of Table.p1



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

6

the single expression PrfxCompCol= Prefix (@p2, 10). Note that this expression is the same as the expression in the
"then" part of Rule1.

with the differences that Prefix (p1,n) has been changed by its equivalent column PrfxCompCo1, and that the
right-side term of the rule has picked the length of the prefix (n=10) from computed column's expression.
[0028] This is reflected in the final operator tree 502 where the implied predicate includes the AND node, the right
EQ node, and child node of PrfxCompCol and Prefix (@P2, 10). Note that PrfxCompCal (p1, 10), which corresponds
to an indexed computed column, has been substituted by the corresponding computed column (PrfxComCol), Note
also that Prefix (@p2, 10) has taken the length of the prefix (i.e., 10) from the expression of PrfxComCol.
[0029] Referring now to FIG. 6, there is illustrated a block diagram of a system 600 that processes multi-valued
indices in accordance with the present invention. Here, the optimizing component 102 includes a rules component 602
that facilitates introducing new, ad-hoc, exploratory rules for individual operators (e.g., Select, Join, etc.). Inside these
ad-hoc rules, the individual conjuncts will be analyzed. The optimizing component 102 will ask the metadata engine
302 for the existence of rules, passing the engine 302 information very similar to the above. That is, the optimizing
component 102 sends the engine 302 the expression to which the column (or function on a column) is to be compared,
and a list of multi-valued indices to be exploited. The metadata engine 302 responds with a list of tentative substitutes
(with predicates involving nested queries). Finally, the optimizing component 102 includes the substitutes into the query
and, after simplifying the new expression and remove nested queries, will generate new alternatives to the Select (or
Join, etc.)
[0030] Referring now to FIG. 7, there is illustrated a flow chart of the method of processing multi-valued indices in
accordance with the present invention. At 700, the optimizing component of the present invention is employed. At 702,
the query original predicate is reduced to conjuncts. At 704, the conjuncts are analyzed during index selection. At 706,
the optimizing component provides ad-hoc exploratory rules for individual operators. At 708, individual conjuncts are
analyzed with the ad-hoc rules. At 710, the optimizing component also asks the metadata engine for the existence of
rules. Before the response can be received from the engine, however, an expression is transmitted to the engine to
which the column (or function on a column) can be compared. Additionally, at 712, a list of multi-valued indices that
can be exploited is transmitted to the engine. At 714, the engine responds with a list of tentative predicate substitutes
(with predicates that involve nested queries). At 716, the optimizing component includes substitutes into the query,
and simplifies the expression. At 718, the optimizing component removes nested queries. At 720, the optimizing com-
ponent generates new alternatives. The process then reaches the Stop block.
[0031] Applications dealing with complex data types such as spatial data types often have specialized indexing re-
quirements which are not met by regular indexes. This invention enables users to build on top of a server's B-Tree
indexes (e.g., those associate with SQL Server) by relaxing certain aspects and assumptions about indexes, and allows
users to create extended indexes. It also provides a way to map predicates or operators to expressions that use the
extended index.
[0032] With respect to extended indices, applications like spatial, full-test, or temporal databases present ad-hoc
indexing needs that cannot be readily satisfied by B-Trees, and that require the creation of some intermediate structures
on which, in turn, standard indices can be built. Standard indices have at most one entry per table row. The applications
above require more than one index-entry per row-the multiple entries being generated by a Table-Valued UDF. An
extended index designed for Full Text may, for instance, use a Table-Valued UDF that, when applied to a text field,
returns a table whose entries correspond to each of the words in the text. The definition of an extended query requires,
in addition to the description of the column on which it is being created, the identification of the Table-Valued UDF using
its generation and, sometimes, the specification of a set of application-dependent parameters to be included in the Tab
UDF. Informally, extended indices are equivalent to indexing a table-valued computed column.
[0033] With respect to Query Rewrite rules, these are rules that (1) are connected to a comparison operator that
involves a table column of a certain data type or a specific UDF and (2) prescribe a new Boolean expression that is
either a consequence of (or equivalent to) the original comparison expression. The new expression may successfully
exploit the existence of indices (extended or not), and will be used by the optimizer to generate alternatives. This,
Query Rewrite rules apply either to UDFs or types, can be associated to standard or extended indices, and can represent
either implications or equivalences.
[0034] The expression power of query-rewrite rule depends on whether they can be associated to a standard or an
extended index. While an extended-index rewrite-rule can be any Boolean expression, a standard-index rule is much
more limited.
[0035] Rewrite rules for standard indices can be included in the code of existing query optimizer rules that explore
the utilization of index-lookup (and index-join) in Selects and Joins. Rewrite rules for extended indices can be consid-

If p1=@p then Prefix(p1, n) = Prefix(@p,n),



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

7

ered by new exploratory rules in the query optimizer.
[0036] As indicated herein, the rules that explore the use of index-lookup in Selects and Joins use a class that breaks
up the comparison expression of the Select (or Join) into conjuncts. Next, each native conjunct is analyzed to determine
whether it can be used as a part of an index-lookup operation. Finally, all indices are analyzed and, for each index,
lists the conjuncts that could be used in index-seek operations, or that are covered by the contents of an index. When
the class finds an index-solution that involves a certain set of indices, it generates index expressions for each of the
indices, keeping track of the conjuncts generated initially that can be exploited by each of these indices. At the end of
the tasks, a residual predicate will be generated for all conjuncts that could not be taken care of by an index.
[0037] The list of extensions that comprise this invention are the following:

Index Extension scheme: Support is provided for creating an index extension scheme, and then allow the creation
of indexes based on that extension scheme. The index extension scheme specifies the following: the key column
data type corresponding to the data type being indexed; a set of parameters (which are typically domain-specific);
and a table-valued function name that should be used by index generation and maintenance mechanisms to gen-
erate the index entries for each value of the column being indexed. The main relaxation of the assumptions with
indexes here is that each column value being indexed may generate one or more index rows with one or more
columns, hence the table-valued function to generate the index values.
Extended indexes: The capability to create indexes on columns using an index extension scheme that has been
defined as above.
Transformation Rules: Indexes are useful to efficiently evaluate certain operators. The standard indexes allow
efficient evaluation of comparison operations. Similarly, extended indexes can be used to efficiently evaluate do-
main-specific operators or comparisons that are applicable to complex data types. In order to support this, SQL
Server supports the ability to map a predicate (or Boolean-valued function) against the indexed data type into an
expression that can be evaluated using the indexed values (i.e., the result of the table-valued function applied on
the indexed value).
In terms of extensibility, this invention is limited by what can be expressed by (i) mapping the indexed value into
a tabular value and (ii) mapping the predicate to an alternate tabular expression expressible in SQL against the
corresponding tabular value.

Extended Indexes

[0038] Conventional secondary indexes have the following sets of columns:

- The columns being indexed (e.g., IC) and the set of columns that uniquely identify the row in the base table to
which this index row corresponds. There is one row in the index for each row of the base table.

- Columns that uniquely identify the base-row either using the clustering key columns of the base table or using a
physical identifier of the base-row for tables without clustered indexes.

[0039] In extended indexes, the former set, i.e., columns being indexed are different in the sense that they are gen-
erated using a user-specified function of the column(s) being indexed. Further, since the user-specified function is a
table-valued function, there could be more than one row in the index for each row of the base table.

Creating/Maintaining Extended Index Schemes

[0040] Creating extended indexes is a two-step process. The first step is to create an index extension scheme that
encapsulates the following definitions:

- The data type of the column being indexed.
- Additional parameters that are useful in creating the index that are typically domain-specific.
- The table-valued function that should be used to generate the index and the mapping of the index-inputs (the

column being indexed and the additional parameters) to the parameters of the table-valued function.
- The columns of the table-valued index that should be indexed in addition to the main index the query optimizer

creates on the primary key columns of the base table.

[0041] A new CREATE INDEX EXTENSION statement is used for creating index extensions.
[0042] Once, the index extension scheme is created, actual indexes, which are nothing but instances of this extension
scheme, can be created through an enhancement to the CREATE INDEX statement.
[0043] The following represents syntax and semantics for the CREATE INDEX EXTENSION statement.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

8

Rules

[0044]

column_param_name specifies the primary index parameter which is the data value that is being indexed.
column_data_type is the data type of this parameter. column_data_type can be any of the scalar data types sup-
ported by SQL Server (except timestamp) or a user-defined type. column_type_schema can be optionally specified
for UDTs.
@param_name specifies the names of additional parameters and param_data_type specifies their corresponding
data types. The specified data types can either be scalar type (except timestamp) supported by SQL Server or a
user-defined type.
[table_function_schema.]table_function_name should specify an existing table-valued function in the same data-
base where the index extension is being created. This table-valued function is deterministic.

[0045] All the parameter names in the argument-list of the USING clause come from the list of parameter names
defined in the FOR clause (as @column_param_name) or the WITH PARAMETERS clause (as @param_name). This
sets up the binding as to how the table-valued function is invoked, given the column data value and the additional
parameters of the index extension.
[0046] The creation of the index extension scheme generates an implicit schema binding on the table-valued function.
Hence the table-valued function cannot be dropped or altered as long as there is an index extension scheme that uses
it exists.
[0047] The list of columns specified after the ON clause should be column names returned by the result of the table-
valued function specified. This list specifies an additional index on these columns in addition to indexes always created
on the primary-keys of the base-table by the query processor.

Example 1

[0048] For the spatial case in the spatial data type spec.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

9

Dropping Index Extension Schemes

Syntax

[0049]

Rules

[0050] If there are any extended indexes in the database that are based on this index extension scheme, then it
cannot be dropped.

Creating/Managing Extended Indexes

[0051] Once an index extension scheme is created, one or more indexes can be created using the index extension
scheme thus created. The CREATE INDEX specifies the column being indexed and also supplies the values of the
additional parameters to be supplied to the table-valued function specified as part of the index extension scheme.

Syntax

[0052]

Rules

[0053] The data type of the column should be the same as the data type of the @column_param_name of the index
extension.
[0054] The parameter values supplied in the PARAMETERS index_option are T-SQL literals and should have a one-
to-one correspondence in terms of order and data type compatibility with the parameters specified in the PARAMETERS
clause of the corresponding index extension.
[0055] Scalar UDFs (User-Defined Functions) can also be permitted in the index extension scheme, in which case
the value indexed will be the result of that UDF instead of the column value itself

Implementation Notes

[0056] The index can be generated by creating and maintaining an indexed view as if the following statements were



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

10

executed:

[0057] The above view will be indexed using a non-unique clustered index.

[0058] Given this <system-generated-view>, note that the following equivalence is true:

where t. <primary-key> is the reference to the primary key of the base-table.
[0059] In addition to the above index, the query processor will also create an additional index as specified by the ON
clause.

Example 1 (cont'd.)

[0060]

[0061] As per above implementation notes, this will cause SQL Server to generate the following indexed view:



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

11

Dropping Extended Indexes

[0062] Extended indexes can be dropped using the DROP INDEX statement as it exists today as long as there are
no rules that use that index.

Implication/Equivalence Rules

[0063] Rules are supported that specify the logical implication or equivalence of a complex predicate function in
terms of another Boolean-valued expression, that uses the same table-valued function that has been used to create
an extended index as above. In this case, the Query Processor (QP) can evaluate this Boolean-expression using the
precomputed table-valued function (as persisted in the extended index). The original predicate function needs to be
evaluated only if the rule is an implication rule and if the Boolean-valued expression is true.

Syntax

[0064]

Rules

[0065] A scalar user-defined function as specified by [original_function_schema.]original_function_name should ex-
ist in the current database.

@index_argument should match one of the arguments in argument_list.
boolean-expression can contain references to arguments (identifiers with an '@' prefix) which should match either
the arguments in argument_list or the parameters (defined in the PARAMETERS clause) of the index extension
scheme specified.
boolean_expression should reference the table-valued-function that is used by the specified
index_extension_scheme.

[0066] If TYPE EQUIVALENCE is specified, then the rule expresses a complete equivalence and the query optimizer
need not call the original function at the end. If TYPE IMPLICATION is specified, the query processor needs to call the
original function at the end even if the specified boolean-expression is true.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

12

Query-Rewrite Logic

[0067] The QP uses the implication rule for a given invocation of a user-defined scalar function if the following con-
ditions are met. An extended index of the type specified in the WITH INDEX TYPE clause exists for the column that
is an argument of this function and the argument's position matches that specified by the @index_argument.
[0068] If the implication rule is used it rewrites the function invocation as follows:

original-function-name (...,T.col,...)

where T.col is the indexed column on which an extended index exists, then the above function is rewritten as the
boolean_expression corresponding to the rule, where each occurrence of the table-valued function inside
boolean_expression is replaced by the following table expression against the corresponding extended index:

[0069] The query optimizer will consider all the alternatives individually (and not use more than one in the same
substitution) and pick the cheapest one.

Example 1 (cont'd.)

[0070]

User query:

[0071]

is rewritten as



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

13

Example 2

[0072] Consider a full-text indexing scheme that relies on indexing the results of a table-valued function
ft_IndexGentextval) and returns a set of rows of the form (word, frequency, location) where there is an entry for each
occurrence of each word in textval. Each row contains information about the word, its frequency, which is the number
of occurrences in the document and location, which is an offset in textval where that occurrence of word is located.
The table-valued function can be created as follows:

[0073] The index extension will be created as follows:

[0074] Consider the predicate CONTAINS(@textval, <phrase>) which returns true only if all the words in <phrase>
appear at least once in @textval. The logic of the following rule is that CONTAINS(@textval, @phrase) is TRUE only
if there are no words in @phrase that do not occur in @textval, as well.

[0075] Now consider the table Candidates(CandidateID, LastName, FirstName, ContactPhone, Resume) and that



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

14

the Resume column has an index created on it using the FulltextIndexScheme.
[0076] A query that looks for all Candidates with the words 'distributed database' in their resume is the following:

[0077] The above query, given the extended index and the implication rule on the CONTAINS function will be re-
written by the optimizer as follows:

[0078] Referring now to FIG. 8, there is illustrated a system 800 that employs artificial intelligent component (a clas-
sifier 802) in accordance with the present invention. The subject invention (e.g., in connection with selection) can
employ various artificial intelligence based schemes for carrying out various aspects of the subject invention. For ex-
ample, a process for determining how and when to weight implication rules according to the user can be facilitated via
an automatic classifier system and process. Such a process can be enforced by using constraints.
[0079] A classifier is a function that maps an input attribute vector, x = (x1, x2, x3, x4, xn), to a confidence that the
input belongs to a class, that is, f(x) = confidence(class). Such classification can employ a probabilistic and/or statistical-
based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to
be automatically performed.
[0080] A support vector machine (SVM) is an example of a classifier that can be employed. The SVM operates by
finding a hypersurface in the space of possible inputs, which hypersurface attempts to split the triggering criteria from
the non-triggering events. Intuitively, this makes the classification correct for testing data that is near, but not identical
to training data. Other directed and undirected model classification approaches include, e.g., naïve Bayes, Bayesian
networks, decision trees, and probabilistic classification models providing different patterns of independence can be
employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of
priority.
[0081] As will be readily appreciated from the subject specification, the subject invention can employ classifiers that
are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior,
receiving extrinsic information). For example, SVM's are configured via a learning or training phase within a classifier
constructor and feature selection module. Thus, the classifier(s) can be used to automatically perform a number of
functions. For example, independent of whether the application is to data types that are non-indexable types, the
classifier 802 can be employed to determine that if the original predicate is too complex or expensive to run, as deter-
mined alone or in combination with the cost-basis optimizer 120, but the implied to equivalent predicate is much cheaper
to run, the classifier 802 can first evaluate the search and results using the implied or equivalent predicates. Thereafter,
the complex search can be refined accordingly, before running the more complex or expensive search.
[0082] The classifier 802 can also be employed to use additional information on selectivity and/or cardinality esti-
mation. Thus, the implication rules can be used to narrow the search, but also by using estimations, e.g., cardinality
estimations. These estimations can then be dropped thereafter to not be executed.
[0083] The implied predicate can be used to improve cardinality estimation. In the end, this leads to a more efficient
execution plan. Accurate cardinality estimation further support estimating a more reliable execution cost, and therefore,
choose a more robust execution plan. For example, if by the implication rule it is known that P1 is equivalent to P2,
and P2 is simpler to estimate, then robustness has been gained. Moreover, if P1 implies P2, but is not equivalent to



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

15

it, then by estimating the rows satisfying P2, an upper bound can be determined on the rows that satisfy P1. This is
valuable information as well.
[0084] The classifier 802 can also be employed to make inferences based on parameters related to the type of data
being searched, the time of the search, the size of data being searched, whether the data is distributed or not, and the
complexity of the query expression, to name but only a few.
[0085] Referring now to FIG. 9, there is illustrated a block diagram of a computer operable to execute the disclosed
architecture. In order to provide additional context for various aspects of the present invention, FIG. 9 and the following
discussion are intended to provide a brief, general description of a suitable computing environment 900 in which the
various aspects of the present invention can be implemented. While the invention has been described above in the
general context of computer-executable instructions that may run on one or more computers, those skilled in the art
will recognize that the invention also can be implemented in combination with other program modules and/or as a
combination of hardware and software.
[0086] Generally, program modules include routines, programs, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the
inventive methods can be practiced with other computer system configurations, including single-processor or multi-
processor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held com-
puting devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be
operatively coupled to one or more associated devices.
[0087] The illustrated aspects of the invention may also be practiced in distributed computing environments where
certain tasks are performed by remote processing devices that are linked through a communications network. In a
distributed computing environment, program modules can be located in both local and remote memory storage devices.
[0088] A computer typically includes a variety of computer-readable media. Computer-readable media can be any
available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable
and non-removable media. By way of example, and not limitation, computer readable media can comprise computer
storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for storage of information such as computer
readable instructions, data structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital video disk (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired information and which can be accessed by the computer.
[0089] Communication media typically embodies computer-readable instructions, data structures, program modules
or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any
information delivery media. The term "modulated data signal" means a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, com-
munication media includes wired media such as a wired network or direct-wired connection, and wireless media such
as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within
the scope of computer-readable media.
[0090] With reference again to FIG. 9, there is illustrated an exemplary environment 900 for implementing various
aspects of the invention that includes a computer 902, the computer 902 including a processing unit 904, a system
memory 906 and a system bus 908. The system bus 908 couples system components including, but not limited to, the
system memory 906 to the processing unit 904. The processing unit 904 can be any of various commercially available
processors. Dual microprocessors and other multi-processor architectures may also be employed as the processing
unit 904.
[0091] The system bus 908 can be any of several types of bus structure that may further interconnect to a memory
bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially
available bus architectures. The system memory 906 includes read only memory (ROM) 910 and random access
memory (RAM) 912. A basic input/output system (BIOS) is stored in a non-volatile memory 910 such as ROM, EPROM,
EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the com-
puter 902, such as during start-up. The RAM 912 can also include a high-speed RAM such as static RAM for caching
data.
[0092] The computer 902 further includes an internal hard disk drive (HDD) 914 (e.g., EIDE, SATA), which internal
hard disk drive 914 may also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk
drive (FDD) 916, (e.g., to read from or write to a removable diskette 918) and an optical disk drive 920, (e.g., reading
a CD-ROM disk 922 or, to read from or write to other high capacity optical media such as the DVD). The hard disk
drive 914, magnetic disk drive 916 and optical disk drive 920 can be connected to the system bus 908 by a hard disk
drive interface 924, a magnetic disk drive interface 926 and an optical drive interface 928, respectively. The interface
924 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394
interface technologies.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

16

[0093] The drives and their associated computer-readable media provide nonvolatile storage of data, data structures,
computer-executable instructions, and so forth. For the computer 902, the drives and media accommodate the storage
of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD,
a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by
those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic
cassettes, flash memory cards, cartridges, and the like, may also be used in the exemplary operating environment,
and further, that any such media may contain computer-executable instructions for performing the methods of the
present invention.
[0094] A number of program modules can be stored in the drives and RAM 912, including an operating system 930,
one or more application programs 932, other program modules 934 and program data 936. All or portions of the op-
erating system, applications, modules, and/or data can also be cached in the RAM 912.
[0095] It is appreciated that the present invention can be implemented with various commercially available operating
systems or combinations of operating systems.
[0096] A user can enter commands and information into the computer 902 through one or more wired/wireless input
devices, e.g., a keyboard 938 and a pointing device, such as a mouse 940. Other input devices (not shown) may
include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and
other input devices are often connected to the processing unit 904 through an input device interface 942 that is coupled
to the system bus 908, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a
game port, a USB port, an IR interface, etc.
[0097] A monitor 944 or other type of display device is also connected to the system bus 908 via an interface, such
as a video adapter 946. In addition to the monitor 944, a computer typically includes other peripheral output devices
(not shown), such as speakers, printers etc.
[0098] The computer 902 may operate in a networked environment using logical connections via wired and/or wire-
less communications to one or more remote computers, such as a remote computer(s) 948. The remote computer(s)
948 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based
entertainment appliance, a peer device or other common network node, and typically includes many or all of the ele-
ments described relative to the computer 902, although, for purposes of brevity, only a memory storage device 950 is
illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 952 and/
or larger networks, e.g., a wide area network (WAN) 954. Such LAN and WAN networking environments are common-
place in offices, and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may
connect to a global communication network, e.g., the Internet.
[0099] When used in a LAN networking environment, the computer 902 is connected to the local network 952 through
a wired and/or wireless communication network interface or adapter 956. The adaptor 956 may facilitate wired or
wireless communication to the LAN 952, which may also include a wireless access point disposed thereon for com-
municating with the wireless adaptor 956. When used in a WAN networking environment, the computer 902 can include
a modem 958, or is connected to a communications server on the LAN, or has other means for establishing commu-
nications over the WAN 954, such as by way of the Internet. The modem 958, which can be internal or external and a
wired or wireless device, is connected to the system bus 908 via the serial port interface 942. In a networked environ-
ment, program modules depicted relative to the computer 902, or portions thereof, can be stored in the remote memory/
storage device 950. It will be appreciated that the network connections shown are exemplary and other means of
establishing a communications link between the computers can be used.
[0100] The computer 902 is operable to communicate with any wireless devices or entities operatively disposed in
wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, commu-
nications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the com-
munication can be a predefined structure as with conventional network or simply an ad hoc communication between
at least two devices.
[0101] Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a bed in a hotel room or
a conference room at work, without wires. Wi-Fi is a wireless technology like a cell phone that enables such devices,
e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks
use radio technologies called IEEE 802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi
network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3
or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, with an 11 Mbps (802.11b) or 54
Mbps (802.11a) data rate or with products that contain both bands (dual band), so the networks can provide real-world
performance similar to the basic 10BaseT wired Ethernet networks used in many offices.
[0102] Referring now to FIG. 10, there is illustrated a schematic block diagram of an exemplary computing environ-
ment 1000 in accordance with the present invention. The system 1000 includes one or more client(s) 1002. The client
(s) 1002 can be hardware and/or software (e.g., threads, processes, computing devices). The client(s) 1002 can house



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

17

cookie(s) and/or associated contextual information by employing the present invention, for example. The system 1000
also includes one or more server(s) 1004. The server(s) 1004 can also be hardware and/or software (e.g., threads,
processes, computing devices). The servers 1004 can house threads to perform transformations by employing the
present invention, for example. One possible communication between a client 1002 and a server 1004 can be in the
form of a data packet adapted to be transmitted between two or more computer processes. The data packet may
include a cookie and/or associated contextual information, for example. The system 1000 includes a communication
framework 1006 (e.g., a global communication network such as the Internet) that can be employed to facilitate com-
munications between the client(s) 1002 and the server(s) 1004.
[0103] Communications cab be facilitated via a wired (including optical fiber) and/or wireless technology. The client
(s) 1002 are operatively connected to one or more client data store(s) 1008 that can be employed to store information
local to the client(s) 1002 (e.g., cookie(s) and/or associated contextual information). Similarly, the server(s) 1004 are
operatively connected to one or more server data store(s) 1010 that can be employed to store information local to the
servers 1004.
[0104] What has been described above includes examples of the present invention. It is, of course, not possible to
describe every conceivable combination of components or methodologies for purposes of describing the present in-
vention, but one of ordinary skill in the art may recognize that many further combinations and permutations of the
present invention are possible. Accordingly, the present invention is intended to embrace all such alterations, modifi-
cations and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the
term "includes" is used in either the detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term "comprising" as "comprising" is interpreted when employed as a transitional word in a claim.

Claims

1. A system that facilitates query optimization in a data repository, comprising:

a query component that receives a query to be processed against data of the data repository, which query
includes an original predicate; and
a predicate component that processes the original predicate into one or more new predicates that include an
implied predicate, the implied predicate processed against the data to return a best solution such that a total
evaluation cost is significantly reduced.

2. The system of claim 1, the predicate component processes the original predicate to obtain an equivalent predicate.

3. The system of claim 1, the predicate component processes the original predicate to obtain a residual predicate.

4. The system of claim 1, the query is a previously processed query that is unmatched.

5. The system of claim 1, the one or more new predicates can be used for standard indices and multi-valued indices.

6. The system of claim 1, the one or more new predicates are considered cost-based alternatives that are utilized
only of the evaluation cost is reduced, otherwise, they are discarded.

7. The system of claim 1, the one or more new predicates are associated with index utilization.

8. The system of claim 1, the query is processed against a data type that is a non-indexable type.

9. A data repository optimizer according to the system of claim 1.

10. A system that facilitates query optimization in a data repository, comprising:

a query component that receives a query to be processed against data of the data repository, which query
includes an original predicate; and
a predicate component that processes the original predicate into one or more new predicates that include at
least one of an implied predicate, an equivalent predicate, and a residual predicate, either of the implied pred-
icate or the equivalent predicate is processed against the data to return a best solution such that a total eval-
uation cost is significantly reduced.



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

18

11. The system of claim 10, the implied predicate and the equivalent predicate are considered cost-based alternatives
that are discarded if the evaluation cost is not reduced.

12. A computer readable medium having stored thereon computer executable instructions for carrying out the system
of claim 10.

13. A server that employs the system of claim 10.

14. The system of claim 10, the predicate component generates an expression using the one or more new predicates,
which expression is used to obtain an implication rule that is associated with at least one of a given column and
a function on a given column.

15. The system of claim 14, the predicate component requests the implication rule in response to providing the ex-
pression to which at least one of the given column and the function on a given column is to be compared, and a
list of standard indices that can be exploited.

16. The system of claim 10, the one or more new predicates is analyzed during index selection.

17. The system of claim 10, further comprising a classifier that facilitates automating one or more feature thereof by
makes an inference based on one or more parameters related to at least one of a cost-basis evaluation, cardinality
estimation, and complexity of the query.

18. The system of claim 10, the total evaluation cost includes employing the one or more new predicates only if opti-
mization is increased.

19. The system of claim 10, the query is one for which there is no exact match between search predicates and index
keys.

20. The system of claim 10, the implied predicate exactly matches an index key.

21. A computer-readable medium having computer-executable instructions for performing a method for optimizing a
search query, the method comprising:

receiving a query for whose original predicate there is no exact match to an index key;
reducing the original predicate into at least one of an implied predicate and an equivalent predicate;
processing at least one of the implied predicate and the equivalent predicate against data of a data repository
to obtain search results; and
analyzing the search results for a best solution.

22. The computer-readable medium of claim 21, further comprising instructions for requesting an implication rule for
a column or function on a column.

23. The computer-readable medium of claim 21, further comprising instructions for transmitting at least one of an
expression to which a column or function on a column is to be compared and a list of standard indices or multi-
valued indices that could be exploited.

24. The computer-readable medium of claim 21, further comprising instructions for removing the implied predicate if
the implied predicate does not exploit one of the standard or multi-value indices.

25. The computer-readable medium of claim 21, further comprising instructions for employing a new ad-hoc exploratory
rule for an individual operator of the original predicate.

26. The computer-readable medium of claim 25, further comprising instructions for analyzing at least one of the implied
predicate and the equivalent predicate with the exploratory rule.

27. The computer-readable medium of claim 21, further comprising instructions for performing the acts of:

requesting a list of tentative substitutes with predicates that involve nested queries;



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

19

including the substitutes into the query to form a new expression;
simplifying the new expression;
removing nested queries; and
generating new alternatives for the search.

28. The computer-readable medium of claim 21, further comprising instructions for processing the original predicate
to generate a residual predicate the refines the search.

29. The computer-readable medium of claim 28, further comprising instructions for processing the residual predicate
after the act of processing at least one of the implied predicate and the equivalent predicate.

30. The computer-readable medium of claim 21, further comprising instructions for adding the implied predicate to the
original predicate and searching for the best solution.

31. The computer-readable medium of claim 21, further comprising instructions for replacing the original predicate
with the equivalent predicate and searching for the best solution.

32. The computer-readable medium of claim 21, further comprising instructions for performing a cardinality estimation
using at least one of the implied predicate and the equivalent predicate.

33. The computer-readable medium of claim 21, further comprising instructions for creating an index based on an
index extension scheme, which scheme includes at least one of,

providing a key column of a data type that corresponds to a data type being indexed;
providing a set of parameters; and
providing a table-valued function name that is used to generate an index entry for a value of the column

being indexed.

34. A system that facilitates query optimization in a data repository; comprising:

means for receiving a query for whose original predicate there is no exact match to an index key;
means for reducing the original predicate into at least one of an implied predicate and an equivalent predicate;
means for requesting an implication rule for a column or function on a column;
means for transmitting at least one of an expression to which a column or function on a column is to be com-
pared and a list of standard indices or multi-valued indices that could be exploited.
means for processing at least one of the implied predicate and the equivalent predicate against data of a data
repository to obtain search results;
means for analyzing the search results for a best solution; and
means for removing the implied predicate if the implied predicate does not exploit one of the standard or multi-
value indices.

35. The system of claim 34, further comprising means for employing a new ad-hoc exploratory rule for an individual
operator of the original predicate.

36. The system of claim 34, further comprising means for analyzing at least one of the implied predicate and the
equivalent predicate with the exploratory rule.

37. The system of claim 34, further comprising at least one of:

means for requesting a list of tentative substitutes with predicates that involve nested queries;
means for including the substitutes into the query to form a new expression;
means for simplifying the new expression;
means for removing nested queries; and
means for generating new alternatives for the search.

38. The system of claim 34, further comprising means for processing the original predicate to generate a residual
predicate the refines the search.

39. The system of claim 38, further comprising means for processing the residual predicate after processing at least



EP 1 577 796 A1

5

10

15

20

25

30

35

40

45

50

55

20

one of the implied predicate and the equivalent predicate.

40. The system of claim 34, further comprising means for estimating cardinality using at least one of the implied pred-
icate and the equivalent predicate, where use of the implied predicate facilitates defining an upper bound on a
number of rows that can satisfy the original predicate.



EP 1 577 796 A1

21



EP 1 577 796 A1

22



EP 1 577 796 A1

23



EP 1 577 796 A1

24



EP 1 577 796 A1

25



EP 1 577 796 A1

26



EP 1 577 796 A1

27



EP 1 577 796 A1

28



EP 1 577 796 A1

29



EP 1 577 796 A1

30



EP 1 577 796 A1

31



EP 1 577 796 A1

32


	bibliography
	description
	claims
	drawings
	search report

