(11) **EP 1 583 176 A1**

DEMANDE DE BREVET EUROPEEN

(43) Date de publication: **05.10.2005 Bulletin 2005/40**

(51) Int Cl.7: **H01Q 15/00**, H01Q 19/19

(21) Numéro de dépôt: 05290679.9

(22) Date de dépôt: 25.03.2005

(84) Etats contractants désignés:

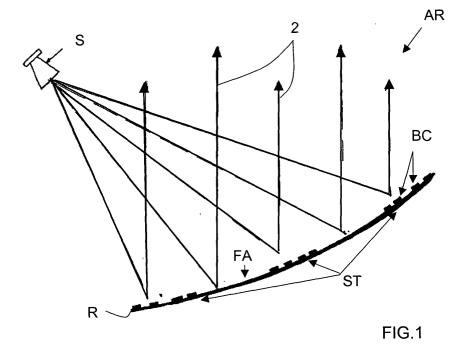
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Etats d'extension désignés:

AL BA HR LV MK YU

(30) Priorité: 02.04.2004 FR 0450662

(71) Demandeur: ALCATEL 75008 Paris (FR)

(72) Inventeurs:


 Judasz, Thierry 31520 Ramonville (FR)

- David, Jean-François 31400 Toulouse (FR)
- Maurel, Jacques 31270 Cugnaux (FR)
- (74) Mandataire: Hedarchet, Stéphane et al Compagnie Financiere Alcatel, DPI,
 54 rue la Boétie
 75411 Paris Cedex 08 (FR)

(54) Antenne réflecteur à structure 3D de mise en forme de faisceaux d'ondes appartenant à des bandes de fréquences différentes

(57) Une antenne réflecteur multifréquences (AR), par exemple pour un satellite de télécommunications, comporte un réflecteur (R) muni d'une face avant (FA) chargée de réfléchir des faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fré-

quences différentes. La face avant (FA) du réflecteur (R) comporte une structure (ST) définissant un motif tridimensionnel à symétrie de révolution, choisi de manière à mettre en forme les faisceaux de sorte qu'ils présentent des caractéristiques radiofréquences sensiblement identiques.

Description

[0001] L'invention concerne le domaine des antennes réflecteur hyperfréquences (ou RF), et plus particulièrement les antennes réflecteur destinées à la transmission et/ou la réception d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s).

[0002] On entend ici par bande de fréquence(s), une bande comportant au moins une fréquence.

[0003] Une antenne réflecteur, du type précité, comporte notamment un réflecteur chargé de réfléchir les ondes électromagnétiques qu'il reçoit soit d'une source locale lorsqu'elles sont destinées à un collecteur distant, soit d'une source distante lorsqu'elles sont destinées à un collecteur local. Il est rappelé qu'une antenne peut comporter soit une ou plusieurs sources locales, soit un ou plusieurs collecteurs locaux, soit encore une ou plusieurs sources locales et un ou plusieurs collecteurs locaux, éventuellement confondus.

[0004] Certaines applications, comme par exemple des applications spatiales, imposent des contraintes spécifiques aux antennes embarquées. Par exemple, certains satellites de télécommunications sont destinés à transmettre et à recevoir plusieurs faisceaux (ou « pinceaux »). Pour atteindre cet objectif, il a été initialement proposé de mettre en parallèle plusieurs antennes monofréquence et/ou monofaisceau, dédiées chacune à la transmission ou à la réception. Cette solution simple est inefficace. En effet, pour fonctionner selon 50 faisceaux de transmission et 50 faisceaux de réception, avec un faisceau par antenne, il faut utiliser 100 antennes

[0005] Certes il est en théorie possible de regrouper tous les faisceaux de transmission sur une antenne de transmission et tous les faisceaux de réception sur une antenne de réception. Mais, cette solution est impossible à mettre en oeuvre en pratique car elle ne permet pas de loger toutes les sources (de transmission ou de réception) les unes à côté des autres sur des antennes de taille et de poids compatibles avec des applications spatiales.

[0006] Une solution intermédiaire consiste à réaliser ce que l'homme de l'art appelle une « mosaïque colorée de sources ». Cette solution consiste à répartir, par exemple sur trois ou quatre antennes de transmission et trois ou quatre antennes de réception, des sources devant être initialement voisines, de manière à libérer de la place pour chaque source. Chaque antenne est alors dédiée à une unique couleur ou fréquence. Cependant, le nombre d'antennes demeure encore élevé (il est par exemple égal à 6 ou 8).

[0007] Par ailleurs, dans certaines applications, comme par exemple les applications multimédia en bande Ka, qui nécessitent des antennes multifaisceaux et/ou multifréquences offrant une grande directivité selon plusieurs fréquences différentes, on a fréquemment besoin de nombreux faisceaux (par exemple 50) relativement fins, et donc à fort gain, pour chacune des fréquences,

et donc de sources et/ou de collecteurs spécifiques. Or, la conception de telles sources et de tels collecteurs est particulièrement difficile, voire impossible, compte tenu des contraintes rencontrées.

[0008] Il est rappelé que la taille du réflecteur définit la taille du faisceau et son gain. Dans une bonne approximation la largeur (θ) d'un faisceau à -3 dB est en effet égale à 65 fois la longueur d'onde λ (en millimètre) des ondes à transmettre divisée par le diamètre D (en millimètre) de l'antenne, soit θ = 65 λ /D. Par conséquent, en présence d'une unique antenne et d'ondes présentant deux fréquences sensiblement différentes, comme par exemple 20 et 30 GHz, la largeur du faisceau de 30 GHz est plus étroite que la largeur du faisceau de 20 GHZ, du fait que la fréquence f (en GHz) et la longueur d'onde λ (en mm) sont liées par la relation λ = 300/f. Les zones qui reçoivent, ou d'où proviennent, les deux faisceaux transmis sont alors (très) différentes. De même, la zone d'où provient l'un des deux faisceaux ne correspond pas à la zone qui reçoit l'autre faisceau. Cela représente un réel inconvénient.

[0009] Afin de tenter de remédier à cet inconvénient, il a été proposé, notamment dans le document brevet EP 1 083 625, une antenne comportant un réflecteur dont la face avant est subdivisée en une première partie « centrale », chargée de réfléchir des faisceaux d'ondes à des première et seconde fréquences, et une seconde partie « périphérique », entourant la première et chargée de ne réfléchir de façon sélective que la fréquence la moins élevée des deux, tout en diffractant ou en déphasant de façon destructive le plus possible la fréquence la plus élevée. Les extensions radiales des deux parties sont choisies de sorte que la dimension électrique du réflecteur (en terme de nombre de longueurs d'onde) soit sensiblement la même pour les deux fréquences, et par conséquent que les largeurs des deux faisceaux réfléchis soient sensiblement égales. Par exemple, dans le cas de faisceaux de 20 et 30 GHz, si R est le rayon de l'antenne et que l'on utilise toute l'antenne (réflecteur) à 20 GHz, c'est-à-dire R, on utilise seulement 2R/3 à 30 GHz pour obtenir des faisceaux de même taille aux deux fréquences.

[0010] Afin d'empêcher que les ondes présentant la plus grande fréquence ne soient réfléchies par la seconde partie de l'antenne, cette dernière comprend un réseau de bandes concentriques, en saillie ou en creux, présentant des dimensions identiques et de pas constant. Dans un premier mode de réalisation, chaque bande présente une section transverse rectangulaire de manière à introduire un déphasage destructif de 180° entre les ondes réfléchies sur le sommet des bandes et celles réfléchies dans l'espace interbandes. Dans un second mode de réalisation, chaque bande présente une section transverse en forme de dent de scie de manière à diffracter dans toutes les directions les ondes présentant la plus grande fréquence.

[0011] Pour que le premier mode de réalisation puisse produire le résultat escompté (suppression par dé-

phasage destructif), il est impératif que le profil rectangulaire du réseau soit rigoureusement respecté. De même, pour que le second mode de réalisation puisse produire le résultat escompté (diffraction dans toutes les directions), il est impératif que le profil en dent de scie effilée (triangle rectangle) du réseau soit rigoureusement respecté.

[0012] De tels profils abruptes peuvent être obtenus dans des matériaux métalliques (typiquement de densité supérieure à 2,7) tels que l'aluminium, ou l'acier, ou encore un alliage. Mais, il est notablement plus difficile de les obtenir à l'aide des matériaux couramment utilisés dans les applications spatiales, comme par exemple les matériaux composites fibres de carbone /résine organique ou autre (par exemple le CFRP pour « Carbon Fiber Reinforced Plastics »). Par conséquent, la solution proposée dans le document brevet précité peut certes être mise en oeuvre dans le cas d'une application terrestre, mais pas dans le cas d'une application spatiale ou lorsque la masse est pénalisante pour le reste d'une mission.

[0013] En outre, la technique, utilisée pour que la dimension électrique du réflecteur soit sensiblement la même pour les deux fréquences, induit un élargissement du lobe principal du diagramme d'antenne pour la plus grande des fréquences, sans action spécifique et/ ou précise sur les lobes secondaires (ou latéraux), si bien que le niveau de ces derniers est élevé, tandis que la qualité du faisceau principal, associé au lobe principal, est faible, et que le paramètre d'isolation agrégée (C/I) entre faisceaux de même fréquence est faible.

[0014] Par ailleurs, cette technique provoquant la suppression ou la diffraction d'une partie du signal, réduit sensiblement l'efficacité énergétique de l'antenne. [0015] Enfin, cette technique ne prend pas en compte le diagramme de transmission de la (ou des) source(s) qui comporte généralement des imperfections qui demeurent de ce fait non corrigées, ou bien des améliorations non prises en compte.

[0016] Aucune antenne réflecteur connue n'apportant une entière satisfaction, l'invention a donc pour but d'améliorer la situation.

[0017] Elle propose à cet effet une antenne réflecteur multifréquences comportant un réflecteur muni d'une face avant chargée de réfléchir des faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s) différentes.

[0018] Cette antenne se caractérise par le fait que la face avant de son réflecteur comporte, de préférence sur toute sa surface, une structure définissant un motif tridimensionnel (3D) à symétrie de révolution (ou de rotation), choisi de manière à mettre en forme les faisceaux de sorte qu'ils présentent des caractéristiques radiofréquences (RF) sensiblement identiques.

[0019] Ainsi, contrairement à la technique antérieure dans laquelle une partie du signal est supprimée, soit par déphasage destructif, soit par diffraction, ici les faisceaux sont mis en forme afin de présenter des caracté-

ristiques radiofréquences sensiblement identiques.

[0020] Le motif tridimensionnel peut être constitué de bandes concentriques en saillie ou en creux comportant des bords d'attaque à rayon de giration (ou de courbure) compris entre environ 1 mm et environ 200 mm, et préférentiellement entre environ 10 mm et environ 40 mm. [0021] Par ailleurs, chaque bande concentrique peut s'étendre sur une largeur choisie, fixe ou variable, et sur une hauteur choisie, fixe ou variable, et les différentes bandes concentriques peuvent être espacées les unes des autres d'un pas constant ou variable.

[0022] Lorsque l'antenne est dédiée à la transmission et à la réception, elle comprend au moins une source délivrant un premier faisceau d'ondes électromagnétiques à transmettre, appartenant à une première bande de fréquence(s), et au moins un collecteur, éventuellement confondu avec la source, et chargé de collecter un second faisceau, appartenant à une seconde bande de fréquence(s). Dans ce cas, le réflecteur est agencé de manière à transmettre le premier faisceau provenant de la source, après réflexion et mise en forme par sa face avant, et à recevoir un faisceau d'ondes électromagnétiques appartenant à la seconde bande de fréquence(s), pour le transmettre au collecteur sous la forme du second faisceau après réflexion et mise en forme par sa face avant.

[0023] Lorsque l'antenne est dédiée à la seule transmission, elle comprend au moins une source de faisceaux à transmettre. Dans ce cas, le réflecteur est agencé de manière à transmettre les faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s) différentes et provenant de la source, après réflexion et mise en forme par sa face avant.

[0024] Dans les deux modes de réalisation d'antenne qui précèdent, il est avantageux que le motif tridimensionnel soit choisi en fonction du diagramme de transmission de la source.

[0025] Lorsque l'antenne est dédiée à la seule réception, elle comprend au moins un collecteur de faisceaux. Dans ce cas, le réflecteur est agencé de manière à recevoir les faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s), pour les transmettre au collecteur après réflexion et mise en forme par sa face avant.

[0026] Enfin, la structure peut soit être rapportée sur la face avant, soit faire partie intégrante de la face avant. [0027] L'invention est particulièrement bien adaptée, bien que de façon non exclusive, au domaine des télécommunications spatiales, en particulier dans la bande Ka (17,7 à 31 GHz).

[0028] D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :

 la figure 1 illustre de façon schématique, dans une vue en coupe transversale, un exemple de réalisation d'une antenne réflecteur multifréquences selon l'invention, dédiée à la transmission,

- la figure 2 illustre un exemple de distribution de courant total (C_T en unité arbitraire) en fonction du rayon du réflecteur (en unité arbitraire),
- la figure 3 illustre un exemple de surface ou motif de décalage par rapport à une parabole de référence, la barre placée à droite du diagramme matérialisant l'écart par rapport à la parabole de référence en fonction du niveau de gris,
- la figure 4 illustre de façon très schématique, dans une vue en coupe transversale, un premier exemple de réalisation d'une structure de mise en forme de faisceaux, de type symétrique, en saillie,
- la figure 5 illustre de façon très schématique, dans une vue en coupe transversale, un deuxième exemple de réalisation d'une structure de mise en forme de faisceaux, à espacements irréguliers de bandes concentriques en saillie,
- la figure 6 illustre de façon très schématique, dans une vue en coupe transversale, un troisième exemple de réalisation d'une structure de mise en forme de faisceaux, à espacements irréguliers de bandes concentriques en creux,
- la figure 7 illustre de façon très schématique, dans une vue en coupe transversale, une bande concentrique d'une structure de mise en forme de faisceaux.
- la figure 8 illustre de façon schématique, dans une vue en coupe transversale, un quatrième exemple de réalisation d'une partie d'une structure de mise en forme de faisceaux, à espacements irréguliers de bandes concentriques du type de celle illustrée sur la figure 7,
- la figure 9 illustre de façon schématique, dans une vue du dessus, un premier exemple de réalisation d'une projection planaire d'une partie d'une structure de mise en forme de faisceaux, à espacements irréguliers de bandes concentriques,
- la figure 10 illustre de façon schématique, dans une vue du dessus, un second exemple de réalisation d'une projection planaire d'une partie d'une structure de mise en forme de faisceaux, à espacements irréguliers de bandes concentriques,
- la figure 11 illustre de façon schématique, dans une vue en coupe transversale, un premier exemple de réalisation d'une partie d'un réflecteur équipé d'une structure rapportée de mise en forme de faisceaux,
- la figure 12 illustre de façon schématique, dans une vue en coupe transversale, un deuxième exemple de réalisation d'une partie d'un réflecteur comportant une structure de mise en forme de faisceaux réalisée par moulage en creux de sa face avant,
- la figure 13 illustre de façon schématique, dans une vue en coupe transversale, un troisième exemple de réalisation d'une partie d'un réflecteur comportant une structure de mise en forme de faisceaux réalisée par moulage en creux de sa face avant et moulage en saillie de sa face arrière,
- la figure 14 illustre de façon schématique, dans une

- vue en coupe transversale, un réflecteur cellulaire en technologie dite « coque épaisse », de type sandwich, similaire à celui de la figure 11, monté sur un bras de déploiement relié lui-même à une plateforme de satellite,
- la figure 15 illustre de façon schématique, dans une vue en coupe transversale, un réflecteur cellulaire en technologie dite « coque mince raidie », de type sandwich, monté sur une structure rigide de support d'un satellite, et
- la figure 16 illustre de façon schématique, dans une vue en coupe transversale, un réflecteur à coque ultrafine, monté sur une structure rigide de support constituée à partir d'éléments monolithiques assemblés.

[0029] Les dessins annexés pourront non seulement servir à compléter l'invention, mais aussi contribuer à sa définition, le cas échéant.

[0030] L'invention a pour objet de permettre la mise en forme de faisceaux par un réflecteur d'une antenne multifréquences, éventuellement et de préférence de type multifaisceaux.

[0031] L'invention concerne tous les types d'antenne réflecteur multifréquences, embarqués ou terrestres, travaillant dans le domaine des hyperfréquences, en particulier celles supérieures au gigahertz (GHz), et plus particulièrement celles appartenant à la bande Ka (17,7 GHz à 31 GHz).

[0032] Dans la description qui suit, on considère, à titre d'exemple illustratif, que les antennes sont embarquées sur des satellites de télécommunications et fonctionnent dans la bande Ka.

[0033] On se réfère tout d'abord à la figure 1 pour décrire un exemple de réalisation d'une antenne réflecteur multifréquences AR, selon l'invention. Dans cet exemple, l'antenne à réflecteur AR est, par exemple, exclusivement dédiée à la transmission d'ondes électromagnétiques selon deux bandes de fréquences centrées sur les valeurs 20 GHz et 30 GHz. Afin de simplifier la description, on assimilera dans ce qui suit la première bande de fréquences à sa valeur centrale 20 GHz et la seconde bande de fréquences à sa valeur centrale 30 GHz.

[0034] Bien entendu, l'antenne pourrait être dédiée soit exclusivement à la réception de faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s), soit à la fois à la transmission d'ondes électromagnétiques présentant au moins une fréquence et à la réception d'ondes électromagnétiques présentant au moins une autre fréquence. D'une manière générale l'invention concerne les applications au moins bi-bande de fréquences.

L'antenne réflecteur multifréquences AR illustrée comporte une source S alimentant un réflecteur R en ondes électromagnétiques présentant les premières (20 GHz) et seconde (30 GHz) fréquences. Tout type de source efficace connue de l'homme de l'art peut être utilisé à

40

cet effet.

[0035] Bien entendu, au lieu d'une unique source S délivrant à la fois les première et seconde fréquences, selon des diagrammes de transmission choisis, on pourrait avoir deux sources délivrant chacune l'une des première et seconde fréquences selon un diagramme de transmission choisi. Ce qui est important ici ce n'est pas le nombre de sources utilisés, mais l'écart de fréquence entre les première et seconde fréquences.

[0036] Le réflecteur R comporte une coque rigide, ici solidarisée à un bras de déploiement ou à la structure de l'engin spatial (ici un satellite). Cette coque rigide, sur laquelle on reviendra plus loin, comporte une face avant FA destinée à réfléchir les ondes électromagnétiques, délivrées par la source S conformément à ses diagrammes de transmission, sous la forme de premier et second faisceaux dirigés vers une même zone terrestre.

[0037] Selon l'invention, la face avant FA du réflecteur R comprend une structure ST qui définit un motif tridimensionnel (3D) à symétrie de révolution (ou de rotation). Ce motif 3D est choisi de manière à mettre en forme les deux faisceaux de sorte qu'ils présentent des caractéristiques radiofréquences (RF) sensiblement identiques.

[0038] On entend ici par « caractéristiques radiofréquences » les caractéristiques électromagnétiques, comme par exemple la largeur de faisceau (ou « beam width »), qui caractérise la directivité de l'antenne, et/ou le diagramme de rayonnement électromagnétique, comme par exemple la répartition énergétique dans un plan transversal (lobe principal et lobes secondaires (ou latéraux)), ainsi qu'éventuellement l'affaiblissement (ou « Roll off »).

[0039] En raison de cette mise en forme des faisceaux par la structure ST du réflecteur R, on peut obtenir des faisceaux (ou pinceaux) très fins. Par exemple, des faisceaux de 20 et 30 GHz peuvent présenter une largeur comprise entre environ 0,5° et 1° (ce qui correspond à une antenne de grande directivité). Dans ce cas, le diamètre de l'antenne à réflecteur AR est compris entre environ 1500 mm et environ 1600 mm, par exemple environ 1560 mm.

[0040] Bien entendu, l'invention s'applique également à des faisceaux plus larges, voire beaucoup plus larges, mais également plus fins.

[0041] Le motif 3D est calculé à l'aide d'un ordinateur, compte tenu des caractéristiques géométriques désirées pour les deux faisceaux. Le calcul peut également tenir compte des diagrammes de transmission de la source S pour chacune des première (ici 20 GHz) et seconde (ici 30 GHz) fréquences. Cela permet en effet, avantageusement, de corriger au moins partiellement les imperfections des diagrammes de transmission (mais également ceux de réception lorsque l'antenne fonctionne en réception ou en transmission/réception), ainsi que des améliorations non prises en compte.

[0042] Le calcul du motif 3D permettant la mise en for-

me des deux faisceaux peut être effectué en deux étapes : une première étape consistant à résoudre un problème d'illumination d'antenne bidimensionnelle (2D), puis une seconde étape consistant à généraliser le problème à une illumination 3D.

[0043] Le problème 2D à résoudre porte sur la détermination du champ électromagnétique E, issu de l'ouverture, en fonction de l'angle θ représentant les angles de visée de l'antenne (en général compris entre 0° et 180°), donné par la formule suivante :

$$E(\theta) = \int_{\text{obserture}} I_d \cdot e^{(-jkd \cdot \cos \theta)}$$

où I_d est le courant dans l'ouverture, k est le nombre d'onde (k= $2\pi/\lambda$), d est une distance dans l'ouverture, et λ est la longueur d'onde.

[0044] Afin de faciliter la résolution, on peut effectuer le changement de variable suivant : $\psi = \pi.\cos(\theta) + \alpha$.

[0045] On cherche à déterminer une distribution de courant permettant d'obtenir un diagramme de champ lointain aussi proche que possible d'une fonction de type « porte » (ou créneau) ou d'un diagramme de type Chebychev présentant des lobes secondaires (ou latéraux) de très faible niveau (par exemple de -30 dB).

[0046] Une fois le champ lointain désiré choisi, on lui applique une transformée de Fourier inverse afin d'obtenir la distribution de courant correspondante. Par exemple, lorsque le diagramme de champ lointain est une fonction porte, la distribution de courant est proche d'une fonction sinx/x.

[0047] On peut ensuite séparer en deux parties la distribution de courant total selon la formule suivante : $C_T = C_S * C_R$, où C_T est la distribution de courant total (c'està-dire la transformée inverse du champ lointain désiré), C_S est la contribution de la source S en amplitude et en phase au niveau du réflecteur R, et C_R est la contribution du réflecteur R à l'amplitude et à la phase du courant total (par exemple le changement de phase induit par un changement de forme du réflecteur).

[0048] Il est ici rappelé que la contribution C_S de la source S dépend de son diagramme de transmission (lequel peut être adapté en fonction de la largeur d'ouverture de la source S). C_S étant connue et C_T ayant été déterminée, on peut alors déduire C_R de la dernière formule : $C_R = C_T / C_S$.

[0049] Il est important de noter que la contribution C_R du réflecteur porte à la fois sur l'amplitude et la phase, signes compris.

[0050] Cette fonction C_R a par exemple la forme d'un cosinus tronqué présentant un maximum au centre du réflecteur, puis décroissant, puis passant par zéro, puis devenant négatif.

[0051] Pour approximer cette fonction on peut juxtaposer des sections de réflecteur de hauteur 0 mm (section normale) et des sections de hauteur égale à 7,5 mm

(section rehaussée) ou bien à - 7,5 mm (section abaissée), dans le cas des deux fréquences 20 et 30 GHz. En effet, les longueurs d'onde sont alors de 15 et 10 mm, et 7,5 mm représente $\lambda/2$ et $3\lambda/4$ respectivement pour les deux fréquences.

[0052] Lorsque l'onde à 20 GHz rencontre une section $\lambda/2$, elle se réfléchit et se retrouve déphasée de λ par rapport à la section voisine, si bien qu'elle est en phase avec l'onde voisine.

[0053] Lorsque l'onde à 30 GHz rencontre une section $3\lambda/4$, elle se réfléchie et se retrouve déphasée de $3\lambda/2$ ou 180° par rapport à la section voisine, si bien qu'elle est en phase avec la section voisine.

[0054] L'intégrale de sections voisines est donc d'autant plus positive que les sections sont « normales ». Elle est d'autant plus négative que le nombre de sections rehaussées (ou abaissées) est important. Ainsi, on peut approximer la fonction C_R en juxtaposant des sections normales (ou positives) et des sections rehaussées (ou négatives, ou abaissées) en proportions nécessaires selon l'amplitude et le signe local de C_R .

[0055] La finesse ou précision de l'intégrale est proportionnelle à la largeur des sections.

[0056] Un exemple de distribution de courant total C_T en fonction du rayon du réflecteur est donné sur la figure 2.

[0057] Une simple généralisation à trois dimensions (par symétrie de révolution au premier ordre) permet alors d'obtenir la forme du motif 3D (et donc du réflecteur R) qui permet d'obtenir la distribution de courant total C_T désirée. Le motif 3D a donc pour objet principal de modifier le diagramme de phase du réflecteur R, ou en d'autres termes d'introduire un motif de décalage, par rapport à une parabole de référence, à symétrie de révolution (ou de rotation), par rapport à la forme standard dudit réflecteur R, par exemple parabolique.

[0058] Un exemple d'un tel motif de décalage est illustré sur la figure 3.

[0059] Afin de mettre en oeuvre le motif de décalage précité, le motif 3D est préférentiellement réalisé sous la forme de bandes concentriques BC (ou « couronnes ») 3D en saillie ou en creux. Il est important de noter que ces bandes concentriques BC peuvent, dans certaines situations, ne pas être continues sur 360°. Elles peuvent en effet présenter des zones dans lesquelles elles sont interrompues. Cependant, la forme d'une bande concentrique BC, c'est-à-dire sa section transverse, est constante (en dehors des éventuelles zones d'interruption).

[0060] Trois exemples partiels de motifs 3D sont illustrés sur les figures 4 à 6, dans des vues en coupe transversale. Plus précisément, l'exemple illustré sur la figure 4 correspond à un motif 3D symétrique en saillie, dans lequel les bandes concentriques BC sont toutes identiques (largeur d1 constante et hauteur h constante) et espacées d'un pas d2 constant. En variante, la largeur d1 et le pas d2 peuvent être constants, et la hauteur h

peut varier d'une bande concentrique BC à l'autre.

[0061] L'exemple illustré sur la figure 5 correspond à un motif 3D en saillie, dans lequel certaines bandes concentriques BC présentent des formes différentes et des espacements irréguliers. Par exemple, une bande concentrique BC peut présenter une largeur d1, une autre bande concentrique BC peut présenter une largeur d3, et encore une autre bande concentrique BC peut présenter une largeur d5. Dans ce cas, l'espacement entre bandes concentriques voisines est préférentiellement variable (ici, l'espacement d2 est plus petit que l'espacement d4), et la hauteur h varie préférentiellement d'une bande concentrique BC à l'autre.

[0062] L'exemple illustré sur la figure 6 correspond également à un motif 3D en creux, dans lequel toutes les bandes concentriques BC présentent des formes différentes et des espacements irréguliers. Par exemple, une bande concentrique BC peut présenter une largeur d2, une autre bande concentrique BC peut présenter une largeur d4, et encore une autre bande concentrique BC peut présenter une largeur d6. Dans ce cas, l'espacement entre bandes concentriques voisines varie (ici d1 \neq d3 \neq d5 \neq d7), et la hauteur h varie préférentiellement d'une bande concentrique BC à l'autre.

[0063] Par exemple, la hauteur h est égale à environ 7,5 mm, et les largeurs et espacements di sont compris entre environ 80 mm et 400 mm.

[0064] Comme cela est mieux illustré sur la figure 7, les bandes concentriques BC du motif 3D comportent préférentiellement des bords d'attaque BA arrondis présentant un rayon de giration (ou de courbure) compris entre environ 1 mm et environ 200 mm, et plus préférentiellement entre environ 10 mm et environ 40 mm.

[0065] Cela permet avantageusement de réaliser la structure ST définissant le motif 3D à l'aide des matériaux ultralégers couramment utilisés dans les applications spatiales, et notamment en matériaux composites fibres de carbone / matrice organique ou autre (par exemple en CFRP pour « Carbon Fiber Reinforced Plastics »), ou en tout autre matériau équivalent connu de l'homme de l'art, comme par exemple des laminés préimprégnés carbone /résine (unidirectionnels ou tissés).

[0066] Le matériau constituant le motif 3D peut être éventuellement métallisé afin de minimiser les pertes radioélectriques. Par ailleurs, un contrôle thermique du réflecteur R peut être classiquement obtenu au moyen d'un radome placé sur sa face avant FA et d'un isolant thermique, en technologie SLI (pour « Single Layer Insulation » ou Isolation à une couche) ou en technologie MLI (pour « Multiple Layer Insulation » ou Isolation à couche multiple), par exemple une feuille ou un feuilleté de Kapton, placé sur sa face arrière. En variante, on peut seulement prévoir un isolant thermique sur la face arrière.

[0067] Il est important de noter que d'autres matériaux plus lourds, comme par exemple l'aluminium, l'acier, ou un alliage, peuvent être utilisés dans des ap-

plications pour lesquelles le poids ne représente pas un inconvénient, comme par exemple dans les applications terrestres.

[0068] On a représenté sur la figure 8, dans une vue en coupe transversale, un exemple de portion de motif 3D dans lequel les bandes concentriques BC présentent une section transverse du type de celle illustrée sur la figure 7, c'est-à-dire à bords d'attaque BA arrondis.

[0069] En général le motif 3D s'étend sur toute la face avant FA du réflecteur R, comme illustré sur le diagramme de la figure 9, mais il peut également s'étendre seulement sur une partie de la face avant FA du réflecteur R, et dans ce cas il y a peu ou pas de bande concentrique BC dans la zone centrale, comme illustré sur le diagramme de la figure 10. Ces deux diagrammes représentent, dans une projection planaire, les positions des différentes bandes concentriques BC (qui sont ici transformées en lignes du fait de la projection) par rapport au centre du réflecteur R. L'axe des abscisses est gradué de 1 à 201, et matérialise 200 points compris entre le centre et le bord du réflecteur R. L'axe des ordonnées matérialise la hauteur h (en mm) des bandes concentriques BC, par exemple environ 7,5 mm.

[0070] Par ailleurs, la structure ST, définissant le motif 3D, peut être soit rapportée sur la face avant FA du réflecteur R, soit faire partie intégrante de celui-ci. Ainsi, dans l'exemple illustré sur la figure 11 (ainsi que dans les exemples des figures 14 à 16 sur lesquels on reviendra plus loin), la structure ST est constituée de plusieurs groupes de bandes concentriques BC rapportés sur la face avant FA de la coque du réflecteur R. Dans ce cas, chaque groupe est réalisé à l'aide d'un moule spécifique, puis rapporté, par exemple par collage, sur la face avant FA de la coque du réflecteur R.

[0071] Dans l'exemple illustré sur la figure 12, la structure ST fait partie intégrante de la coque du réflecteur R. Le moule, permettant l'élaboration de la coque, comporte par conséquent l'empreinte en négatif de la structure ST. Le motif 3D est donc fabriqué en même temps que la coque, par cuisson, par exemple à 180°C (la température dépend bien entendu du type de résine utilisé). De tels moules peuvent être réalisés au moyen de la technologie d'usinage dite 5D. On peut noter que la coque peut être réalisée avec un espaceur d'épaisseur constante ou non.

[0072] Dans l'exemple illustré sur la figure 13, la structure ST fait également partie intégrante de la coque du réflecteur R. Contrairement à l'exemple de la figure 12 dans lequel seul la face avant comporte le motif 3D, ici la face avant FA et la face arrière AR comportent le motif 3D. Cela nécessite un moule comportant une première portion munie du motif 3D en négatif et une seconde portion munie du motif 3D en positif. Ce mode de réalisation de la coque du réflecteur R facilite son élaboration, notamment en série par moulage ou par estampage à chaud (entre un poinçon et un contre-poinçon), ou encore par toute autre technique. Il est important de noter que seule la face avant FA est fonctionnelle.

[0073] Comme cela est illustré sur les figures 14 à 16, le réflecteur selon l'invention peut être installé de la même façon que n'importe quel réflecteur traditionnel. Ainsi, dans l'exemple illustré sur la figure 14, dans une vue en coupe transversale, le réflecteur R, de type cellulaire en technologie dite « coque épaisse », en concept sandwich, est monté sur un bras de déploiement BD relié à une plateforme du satellite.

[0074] Dans l'exemple illustré sur la figure 15, dans une vue en coupe transversale, le réflecteur R, de type cellulaire en technologie dite « coque mince raidie », en concept sandwich, est monté sur une structure rigide SR du satellite, par exemple au moyen de clips en L. Un tel agencement offre une bonne tenue mécanique et une bonne stabilité dimensionnelle.

[0075] Dans l'exemple illustré sur la figure 16, dans une vue en coupe transversale, le réflecteur, à coque ultrafine, est monté sur une structure rigide SR dite monolithique, constituée d'un unique élément ou d'un assemblage d'éléments monolithiques, par exemple au moyen de clips en L, éventuellement collés. Un tel agencement offre également une bonne tenue mécanique et une bonne stabilité dimensionnelle.

[0076] L'antenne réflecteur multifréquences selon l'invention offre de nombreux avantages comparée aux antennes de l'art antérieur.

[0077] Ainsi, elle permet d'obtenir des faisceaux présentant des largeurs de faisceau, sensiblement identiques, sans perte d'efficacité.

[0078] Elle permet en outre de réduire les lobes secondaires (ou latéraux) quelle que soit la fréquence considérée, ce qui confère une bonne isolation des différentes fréquences et un bon rapport C/I d'isolation agrégée.

[0079] Elle permet également d'obtenir des faisceaux présentant des roll-offs comparables, voire même sensiblement identiques, et réduits.

[0080] Elle permet également de prendre en compte le diagramme d'émission de la source et/ou le diagramme de réception du collecteur, afin d'en corriger les éventuelles imperfections.

[0081] Elle permet enfin une utilisation dans tout type d'application et en particulier dans les applications spatiales, notamment du fait que le nombre d'antennes peut être divisé par deux (ce nombre peut en effet, par exemple, être ramené à 3 ou 4 quand dans la technique antérieur il est égal à 6 ou 8).

[0082] L'invention ne se limite pas aux modes de réalisation d'antenne réflecteur multifréquences décrits ciavant, seulement à titre d'exemple, mais elle englobe toutes les variantes que pourra envisager l'homme de l'art dans le cadre des revendications ci-après.

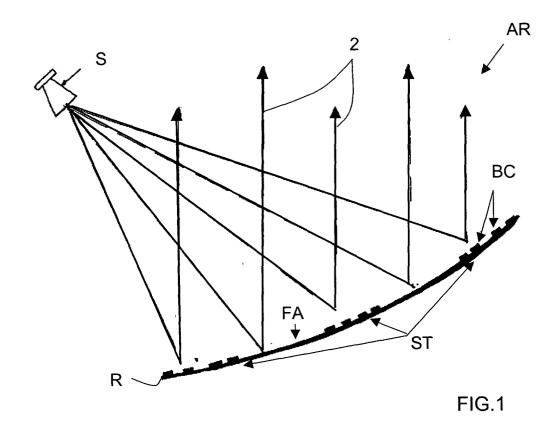
[0083] Ainsi, l'invention concerne toute antenne réflecteur munie d'une structure définissant un motif tridimensionnel à symétrie de révolution et présentant des bords d'attaque de forme arrondie et « doux ».

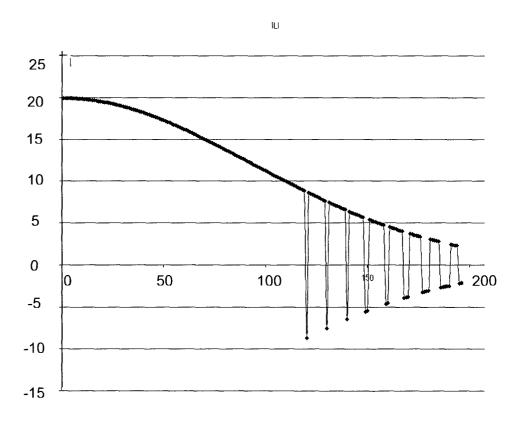
20

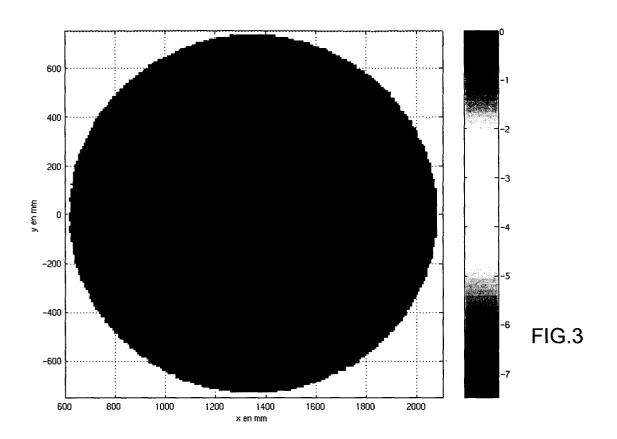
25

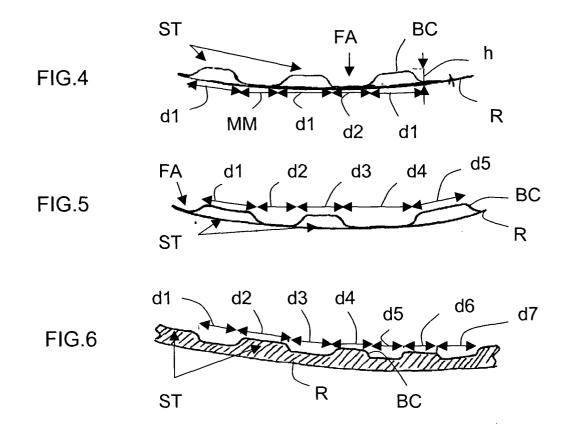
40

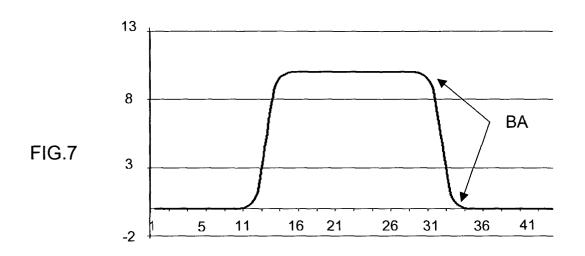
45


50


Revendications


- 1. Antenne réflecteur multifréquences (AR) comportant un réflecteur (R) muni d'une face avant (FA) propre à réfléchir des faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes différentes d'au moins une fréquence, caractérisée en ce que ladite face avant (FA) comporte une structure (ST) définissant un motif tridimensionnel à symétrie de révolution, choisi de manière à mettre en forme lesdits faisceaux de sorte qu'ils présentent des caractéristiques radiofréquences sensiblement identiques.
- Antenne selon la revendication 1, caractérisée en ce que ladite structure (ST) s'étend sensiblement sur toute la surface de ladite face avant (FA).
- 3. Antenne selon la revendication 1, caractérisée en ce que ledit motif tridimensionnel est constitué de bandes concentriques (BC) en saillie comportant des bords d'attaque (BA) à rayon de courbure ou de giration compris entre environ 1 mm et environ 200 mm.
- 4. Antenne selon la revendication 1, caractérisée en ce que ledit motif tridimensionnel est constitué de bandes concentriques (BC) en creux comportant des bords d'attaque (BA) à rayon de courbure ou de giration compris entre environ 1 mm et environ 30 200 mm.
- 5. Antenne selon la revendication 3, caractérisée en ce que lesdits bords d'attaque (BA) présentent un rayon de courbure ou de giration compris entre environ 10 mm et environ 40 mm.
- **6.** Antenne selon la revendication 3, **caractérisée en ce que** chaque bande concentrique (BC) s'étend sur une largeur choisie et sur une hauteur choisie.
- Antenne selon la revendication 6, caractérisée en ce que ladite largeur choisie est variable d'une bande concentrique (BC) à une autre bande concentrique (BC).
- Antenne selon la revendication 6, caractérisée en ce que ladite largeur choisie est constante d'une bande concentrique (BC) à une autre bande concentrique (BC).
- Antenne selon la revendication 6, caractérisée en ce que ladite hauteur choisie est variable d'une bande concentrique (BC) à une autre bande concentrique (BC).
- Antenne selon la revendication 6, caractérisée en ce que ladite hauteur choisie est constante d'une


- bande concentrique (BC) à une autre bande concentrique (BC).
- 11. Antenne selon la revendication 6, caractérisée en ce que lesdites bandes concentriques (BC) sont espacées les unes des autres d'un pas constant.
- **12.** Antenne selon la revendication 6, **caractérisée en ce que** lesdites bandes concentriques (BC) sont espacées les unes des autres d'un pas variable.
- 13. Antenne selon la revendication 1, caractérisée en ce qu'elle comprend au moins une source (S) propre à délivrer au moins un premier faisceau d'ondes électromagnétiques à transmettre, appartenant à une première bande de fréquence(s), et au moins un collecteur propre à collecter au moins un second faisceau, appartenant à une seconde bande de fréquence(s), et en ce que ledit réflecteur (R) est agencé pour transmettre ledit premier faisceau provenant de ladite source (S), après réflexion et mise en forme par sa face avant (FA), et pour recevoir un faisceau d'ondes électromagnétiques appartenant à ladite seconde bande de fréquence(s), et le transmettre audit collecteur sous la forme dudit second faisceau après réflexion et mise en forme par sa face avant (FA).
- 14. Antenne selon la revendication 13, caractérisée en ce que ladite source (S) et ledit collecteur sont confondus.
- 15. Antenne selon la revendication 1, caractérisée en ce qu'elle comprend au moins une source (S) de faisceaux à transmettre, et en ce que ledit réflecteur (R) est agencé pour transmettre lesdits faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s) différentes et provenant de ladite source (S), après réflexion et mise en forme par sa face avant (FA).
- 16. Antenne selon la revendication 13, caractérisée en ce que ledit motif tridimensionnel est choisi en fonction d'un diagramme de transmission de ladite source (S).
- 17. Antenne selon la revendication 1, caractérisée en ce qu'elle comprend au moins un collecteur de faisceaux, et en ce que ledit réflecteur (R) est agencé pour recevoir lesdits faisceaux d'ondes électromagnétiques appartenant à au moins deux bandes de fréquence(s), et les transmettre audit collecteur après réflexion et mise en forme par sa face avant (FA).
- **18.** Antenne selon la revendication 1, **caractérisée en ce que** ladite structure (ST) est rapportée sur ladite face avant (FA).


19. Antenne selon la revendication 1, **caractérisée en ce que** ladite structure (ST) fait partie intégrante dudit réflecteur (R).

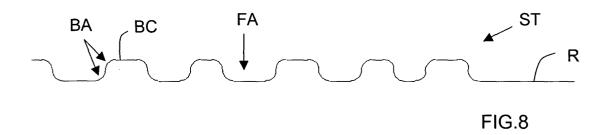


FIG.9

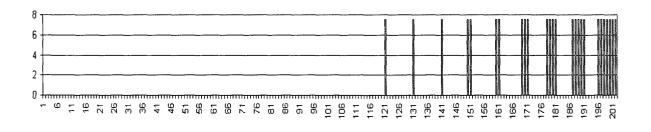
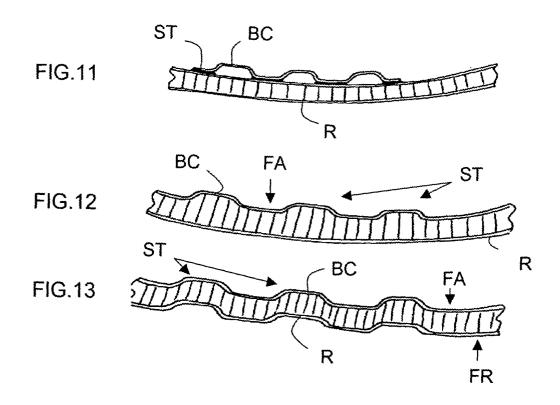
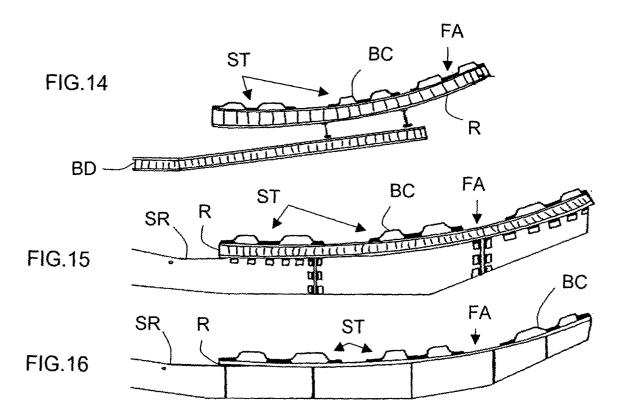




FIG.10

Numéro de la demande EP 05 29 0679

Catégorie	Citation du document avec des parties pertine	indication, en cas de besoin, entes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CI.7)
Х	EP 1 083 625 A (TRW 14 mars 2001 (2001-		1-6, 8-11, 13-19	H01Q15/00 H01Q19/19
Υ	* abrégé; figures 1 * colonne 3, alinéa 19 *	,2 * 12 - colonne 5, alinéa	7	
Y	multi-band applicat PROCEEDINGS OF THE PROPAGATION SOCIETY SYMPOSIUM (APSIS). 1992, NEW YORK, IEE	ANTENNAS AND INTERNATIONAL CHICAGO, JULY 20 - 24, E, US, llet 1992 (1992-07-18) 010066047		
Α	EP 1 020 953 A (TRW 19 juillet 2000 (20 * abrégé; figures 1 * colonne 5, alinéa * colonne 6, alinéa	00-07-19) a,4a * 14 *	1,2	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.7)
Α	VENUE AND EXACT DAT IEEE, US,	surfaces for a ation satellite" ANTENNAS AND ANNUAL MEETING. 1991. E NOT SHOWN, NEW YORK, n 1991 (1991-06-24), 0050653	13	
А	US 2004/036661 A1 (26 février 2004 (20 * abrégé; figure 1		14	
	ésent rapport a été établi pour tou			
	Lieu de la recherche Munich	Date d'achèvement de la recherche 24 juin 2005	Cor	Examinateur deiro J-P.
X : part Y : part autre A : arriè	ATEGORIE DES DOCUMENTS CITES iculièrement pertinent à lui seul iculièrement pertinent en combinaison e document de la même catégorie recant technologique ilgation non-écrite	E : document de br date de dépôt or avec un D : cité dans la den L : cité pour d'autre	evet antérieur, mai u après cette date nande es raisons	

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 05 29 0679

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

24-06-2005

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
EP 1083625	A	14-03-2001	US CA EP JP	6285332 2316751 1083625 2001102858	A1 A2	04-09-20 10-03-20 14-03-20 13-04-20
EP 1020953	A	19-07-2000	US CA DE DE EP JP	6169524 2293189 60015822 60015822 1020953 2000216623	A1 D1 T2 A2	02-01-20 15-07-20 23-12-20 31-03-20 19-07-20 04-08-20
US 2004036661	A1	26-02-2004	AUCL	JN		

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

EPO FORM P0460