(11) **EP 1 598 161 A1**

EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.11.2005 Bulletin 2005/47

(51) Int Cl.7: **B28D 1/08**

(21) Application number: 04425291.4

(22) Date of filing: 29.04.2004

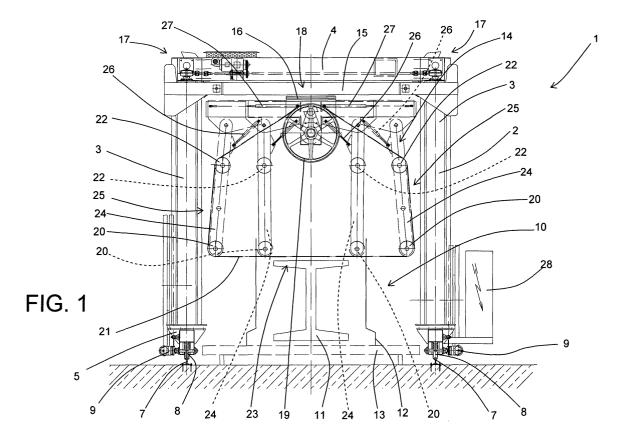
(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Designated Extension States:

AL HR LT LV MK

(71) Applicant: Pellegrini Meccanica S.p.A. 37135 Verona (IT)

(72) Inventor: Pellegrini, Marco Terzo Illasi - Verona (IT)


(74) Representative: Ponchiroli, Simone Bugnion S.p.A.

Via Garibaldi, 19 37121 Verona (IT)

(54) A machine for cutting blocks of stone material or concrete manufactured products

(57) A machine for cutting blocks of stone material or concrete manufactured products comprising a supporting structure and a wire cutting device (14) slidably mounted on the supporting structure (2) according to a predetermined sliding direction, and having at least one driving pulley (19), at least two idle return pulleys (20) coplanar with the driving pulley (19), and a cutting wire (21) which runs along a looped path formed by the pul-

leys. The idle pulleys (20) form between them an operating section (23) of the cutting wire (21). At the side of the operating section (23), starting from the idle pulleys (20), the looped path of the cutting wire (21) has two secondary sections (25) extending mainly vertically. The secondary sections (25) and the operating section (23) form an offshoot of the path, extending towards a zone (10) for positioning an element to be cut.

20

25

Description

[0001] The present invention relates to a machine for cutting blocks of stone material or concrete manufactured products.

[0002] Although the machine which forms the subject matter of the present invention can be used to cut any block of stone material or any concrete manufactured product, it is preferably intended for use for cutting precast reinforced concrete manufactured products.

[0003] In particular, it can be used to cut precast reinforced concrete pipes or beams, such as those used to build warehouses, bridges, etc., to which specific references are made below.

[0004] Such beams are normally produced by casting the concrete in a mould in which the metal reinforcement was previously prepared.

[0005] Very long beams (for example around 100 - 150 m) are normally produced, which must then be cut into lengths corresponding to the requirements of the end user.

[0006] At present two cutting techniques are known. [0007] A first technique involves substantially manual cutting, using a machine with a disk for cutting concrete and an oxy-hydrogen flame for cutting metal parts.

[0008] However, this technology involves very time consuming work with consequent high operating costs. Moreover, there is always a certain risk for the operator who carries out the work.

[0009] The second technology involves the use of a machine consisting mainly of two opposite vertical cutter disks positioned transversally to the direction in which the beam extends.

[0010] However, this solution has some disadvantages too.

[0011] Firstly, the machine is very large since, for mechanical strength reasons, only around one third of the height of each disk can actually be used for cutting.

[0012] Secondly, in order to cut it, the beam must be lifted off the ground, which is not easy considering the size of the beam.

[0013] Moreover, this machine only allows the beam to be cut according to vertical cutting planes perpendicular to the direction in which the beam extends.

[0014] Patents US 3,158,146 and US 5,173,250 also describe two machines respectively for cutting blocks of stone material and walls of nuclear reactors, although not suitable for cutting precast beams made of reinforced concrete or the like.

[0015] In this situation, the technical need which forms the basis of the present invention is to provide a machine for cutting blocks of stone material or concrete manufactured products which overcomes the abovementioned disadvantages.

[0016] In particular, the technical need of the present invention is to provide a machine for cutting blocks of stone material or concrete manufactured products which has limited dimensions and minimised operating

cost.

[0017] A further technical need of the present invention is to provide a machine for cutting blocks of stone material or concrete manufactured products which allows a precast beam to be cut according to any predetermined profile.

[0018] Another technical need of the present invention is to provide a machine for cutting blocks of stone material or concrete manufactured products which guarantees greater operator safety than the known machines.

[0019] The technical need specified and the aims indicated are substantially achieved by a machine for cutting blocks of stone material or concrete manufactured products as described in the claims herein.

[0020] Other features and advantages of the invention are more clearly indicated in the detailed description which follows with reference to the accompanying drawings which illustrate a preferred non-restricting embodiment of a machine for cutting blocks of stone material or concrete manufactured products and in which:

- Figure 1 is a schematic front view, with some parts in cross-section and other parts cut away, of a machine for cutting blocks of stone material or concrete manufactured products in accordance with the present invention;
- Figure 2 is a schematic top view, with some parts cut away, of the machine illustrated in Figure 1; and
- Figure 3 is a schematic side view, with some parts cut away, of the machine illustrated in Figure 1.

[0021] With reference to the accompanying drawings, the numeral 1 denotes as a whole a machine for cutting blocks 2 of stone material or concrete manufactured products in accordance with the present invention.

[0022] Firstly, the machine 1 comprises a supporting structure 2 consisting of two vertical uprights 3 distanced from one another and a crosspiece 4 rigidly connected on top of the two uprights 3.

[0023] Advantageously, for each vertical upright 3 it also comprises a base 5 and an angled stiffening element 6 connected between the base 5 and the zone at which the upright 3 and the crosspiece 4 join.

[0024] According to the preferred embodiment, the machine 1 also comprises at least one horizontal track 7 on which the supporting structure 2 is slidably mounted on wheels 8.

[0025] The structure is also operatively connected to drive means 9 (of the known type) so that when the command is given the structure moves along the track 7.

[0026] Under the crosspiece 4 of the supporting structure 2 there is a zone 10 for positioning an element to be cut, which in the embodiment illustrated in Figure 1 consists of a reinforced concrete beam 11 (Figure 1 also schematically illustrates the mould 12 for the beam 11) resting on its own supporting element 13.

[0027] A wire cutting device 14 is slidably mounted on

30

35

the supporting structure 2 according to a vertical sliding direction. In particular, in the embodiment illustrated in the accompanying drawings, the machine 1 comprises a carriage 15 slidably connected, at its ends, to the vertical uprights 3, and at least one thrust block 16 rotatably connected under the carriage 15 and supporting the cutting device 14, which can therefore rotate relative to the supporting structure 2 about a substantially vertical axis of rotation (Figure 2 illustrates two possible cutting device 14 angles with dashed lines).

[0028] Moreover, the carriage 15 is operatively connected to drive means 17 which move the cutting device 14 vertically relative to the structure 2, whilst the thrust block 16 is operatively connected to rotation means 18 which, when the command is given, cause the cutting device 14 to rotate, again relative to the supporting structure 2.

[0029] The cutting device 14 has at least one driving pulley 19, at least two idle return pulleys 20 coplanar with the driving pulley 19, and a cutting wire 21 which runs along a looped path formed by the driving pulley 19 and the idle pulleys 20. In the embodiment illustrated there are also two additional return pulleys 22.

[0030] The idle pulleys 20 form between them an operating section 23 along the path of the cutting wire 21, where the element to be cut is cut.

[0031] The cutting device 14 also has at least two arms 24 which mainly extend vertically and are capable of reciprocal movement according to a substantially horizontal direction parallel with the plane in which the cutting wire 21 lies. In Figure 1 each arm 24 is illustrated in a closed position and in an open position.

[0032] One of the idle pulleys 20 is rotatably connected to each arm 24, at one end of the arm 24 close to the operating section 23.

[0033] According to the present invention, on both sides of the operating section 23, starting from the idle pulleys 20, the looped path of the cutting wire 21 has two secondary sections 25 extending mainly vertically.

[0034] The secondary sections 25 and the operating section 23 form an offshoot of the path of the cutting wire 21 which extends towards the positioning zone 10, and which allows the cutting device 14 to be inserted in the space in the mould 12.

[0035] For this purpose, the secondary sections 25 extend substantially parallel with the arms 24, or within the maximum dimensions of the arms 24.

[0036] When the command is given, each arm 24 can rotate about an axis of rotation substantially perpendicular to the plane in which the cutting wire 21 lies and distanced from the axis of rotation of the idle pulleys 20. In the embodiment illustrated this axis of rotation passes through the end of the arm 24 opposite that supporting the idle pulley.

[0037] Tensioning means 26, consisting of two actuators, are operatively connected to each arm 24 to make it rotate and so tension the cutting wire 21.

[0038] The distance between the two arms 24 is de-

termined by spacer means 27 also consisting of two actuators. In this case, the cutting device 14 has a telescopic shape.

[0039] The entire path of the cutting wire 21, with the exception of the operating section 23, may be covered by special guards (not illustrated).

[0040] Figure 2 shows how the track 7 also extends mainly perpendicular to the plane in which the structure 2 lies.

[0041] Advantageously, the machine 1 also comprises a programmable electronic control unit 28 operatively connected to the mobile parts of the machine 1 to control their movements.

[0042] In particular, the control unit 28 allows simultaneous activation of the drive means 17, the rotation means 18, the tensioning means 26, the spacer means 27, the driving pulley 19 and the drive means 9. In this way, beams can be cut and ends shaped as required can be created on the individual lengths. The machine 1 can cut both horizontally and vertically and according to angled or curved cutting planes or surfaces, as required.

[0043] In particular, when intended for cutting reinforced concrete, the machine 1 preferably also comprises a system 28 for detecting the machine 1 absorbed power during a cutting operation, operatively connected to the control unit 28. The control unit 28 is in turn programmed to vary the cutting device 14 speed of vertical movement according to the machine 1 absorbed power, in particular reducing the speed of movement when the machine 1 absorbed power increases.

[0044] The speed of forward movement may be higher when cutting concrete (step during which power absorption is relatively low) whilst it must be lower when cutting metal (step during which power absorption is relatively high).

[0045] In the preferred embodiment, the detection system 28 measures the electrical current absorbed by the machine 1 (which, the power supply voltage being equal, is proportional to the power).

[0046] Machine 1 operation is immediately derived from the above description.

[0047] Preferably, during cutting, the idle pulleys 20 are kept as close as possible to the element to be cut, at the same time guaranteeing correct tensioning of the cutting wire 21, by operating appropriately on the rotation and distancing of the arms 24 from one another.

[0048] This minimises the rise of the cutting wire 21 and significantly improves the quality of the cut, particularly at the edges.

[0049] The present invention brings important advantages

[0050] Firstly, the machine for cutting blocks of stone material or concrete manufactured products disclosed has limited dimensions and a minimised operating cost, thanks to the high cutting speeds, much greater than can be achieved with manual cutting.

[0051] Secondly, the machine allows cuts to be made

15

20

25

35

40

45

50

according to any predetermined profile.

[0052] Moreover, it can be used for cutting reinforced concrete beams even with the mould present.

[0053] It should also be noticed that the present invention is relatively easy to make and even the cost linked to implementation of the invention is not very high.
[0054] The invention described may be subject to modifications and variations without thereby departing from the scope of the inventive concept.

[0055] All of the details of the invention may be substituted with technically equivalent elements and in practice all materials used and the shapes and dimensions of the various components may be any according to requirements.

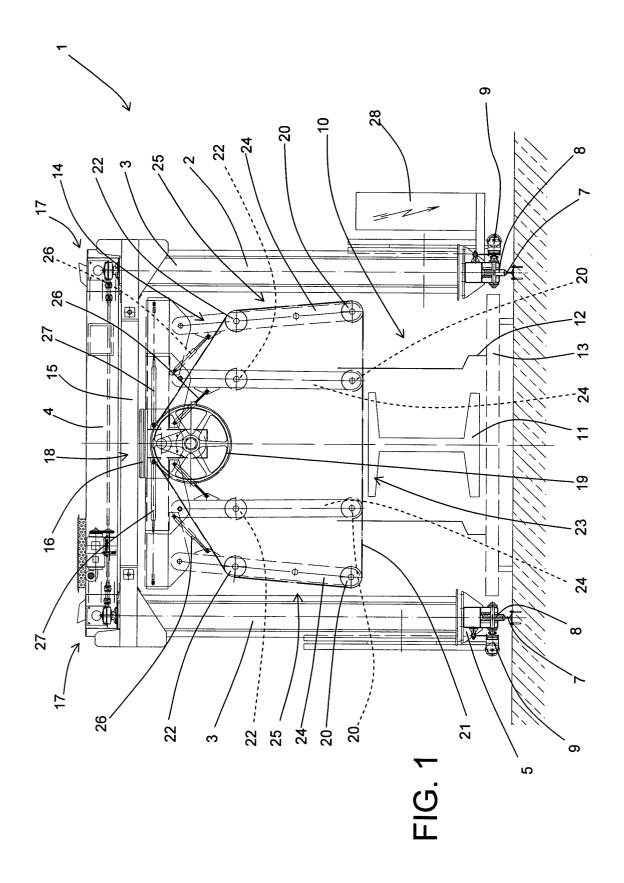
Claims

- A machine for cutting blocks of stone material or concrete manufactured products comprising:
 - a supporting structure (2) with at least two vertical uprights (3) distanced from one another and a crosspiece (4) rigidly connected on top of the two uprights (3),
 - a zone (10) for positioning an element to be cut, located below the crosspiece (4);
 - a wire cutting device (14) slidably mounted on the supporting structure (2) according to a predetermined sliding direction, and having at least one driving pulley (19), at least two idle return pulleys (20) coplanar with the driving pulley (19), and a cutting wire (21) which runs along a looped path formed by the pulleys, the idle pulleys (20) forming between them an operating section (23) along the path of the cutting wire (21);
 - the cutting device (14) also having at least two arms (24) which mainly extend vertically and each support, at their end close to the operating section (23), one of the idle pulleys (20);
 - the arms (24) being able to move relative to one another according to a substantially horizontal direction parallel with the plane in which the cutting wire (21) lies;
 - drive means (17) producing cutting device (14) vertical movement relative to the structure;

the machine being **characterised in that** the looped path of the cutting wire (21) has two secondary sections (25) extending mainly vertically, starting from the idle pulleys (20) at the sides of the operating section (23), the secondary sections (25) and the operating section (23) forming an offshoot of the path, extending towards the positioning zone (10).

2. The cutting machine according to claim 1, charac-

terised in that the secondary sections (25) extend substantially parallel with the arms (24).


- 3. The cutting machine according to claim 1 or 2, characterised in that the cutting device (14) can rotate relative to the supporting structure (2) about a substantially vertical axis of rotation.
- 4. The cutting machine according to claim 3, characterised in that it also comprises a carriage (15) slidably connected to the vertical uprights (3), and at least one thrust block (16) rotatably connected to the carriage (15) and supporting the cutting device (14).
- 5. The cutting machine according to claim 4, characterised in that it also comprises rotation means (18) operatively connected to the thrust block (16), which cause the cutting device (14) to rotate when the command is given.
- 6. The cutting machine according to any of the foregoing claims, characterised in that when the command is given each of the arms (24) can rotate about an axis of rotation substantially perpendicular to the plane in which the cutting wire (21) lies and distanced from the axis of rotation of the idle pulleys (20).
- 7. The cutting machine according to claim 6, characterised in that it also comprises tensioning means (26) operatively connected to the arms (24), which cause the arms to rotate and tension the cutting wire (21).
 - **8.** The cutting machine according to any of the foregoing claims, **characterised in that** it also comprises at least one track (7), mainly extending perpendicular to the plane defined by the supporting structure (2) slidably mounted on the track (7).
 - 9. The cutting machine according to claim 8, characterised in that it also comprises drive means (9) operatively connected to the structure so as to move it along the track (7) when the command is given.
 - 10. The cutting machine according to any of the foregoing claims, characterised in that it comprises a programmable electronic control unit (28) operatively connected to the mobile parts of the machine for controlling their movement.
 - 11. The cutting machine according to claims 5, 7, 9 and 10, characterised in that the control unit (28) allows simultaneous activation of the drive means (17), the rotation means (18), the tensioning means (26), the driving pulley (19), the arms (24) and the

drive means (9).

12. The cutting machine according to claim 11, characterised in that it also comprises a system (28) for detecting the power absorbed by the machine (1) during a cutting operation, operatively connected to the control unit (28), the control unit (28) varying the cutting device (14) speed of vertical movement according to the power absorbed by the machine (1) during cutting.

13. The cutting machine according to claim 12, **characterised in that** the detection system (28) measures the electrical current absorbed by the machine (1) during cutting.

14. The cutting machine according to claim 12 or 13, **characterised in that** the speed of movement is reduced as the power absorbed by the machine (1) during cutting increases.

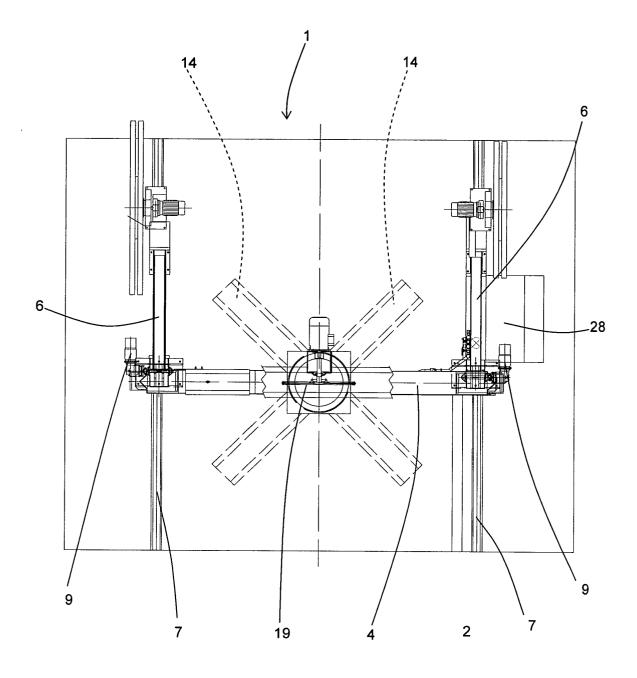


FIG. 2

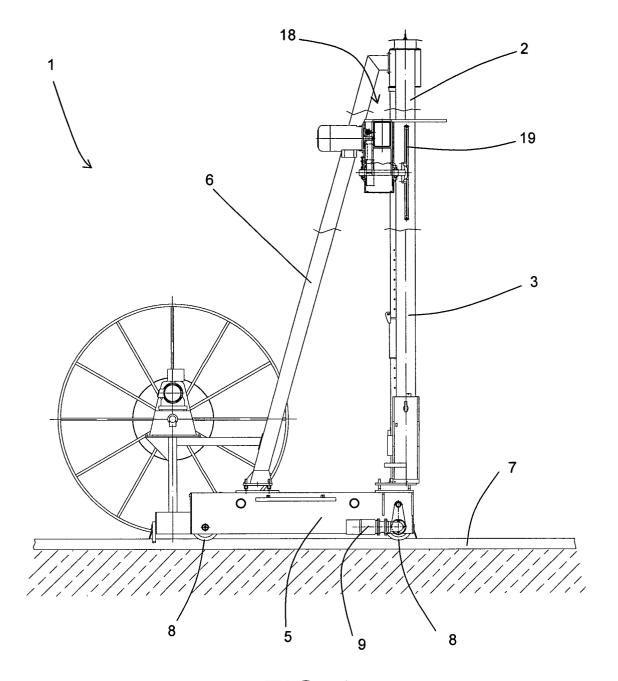


FIG. 3

EUROPEAN SEARCH REPORT

Application Number EP 04 42 5291

Category	Citation of document with inc of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
A,D	US 3 158 146 A (ALLE 24 November 1964 (19	EN CLIFFORD R)	1	B28D1/08
A	FR 2 725 931 A (DG (26 April 1996 (1996- * page 3, line 25 - figure 2 *	04-26)	1	
A,D	US 5 173 250 A (HASE 22 December 1992 (19 * column 2, line 63 figure 1 *		1	
				TECHNICAL FIELDS
				SEARCHED (Int.CI.7) B28D
	The present search report has be	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	29 July 2004	Fri	isch, U
X : part Y : part docu A : tech	ATEGORY OF CITED DOCUMENTS ioularly relevant if taken alone ioularly relevant if combined with another iment of the same category inological background -written disclosure rmediate document	E : earlier patent after the filing or D : document cite L : document cite	ed in the application od for other reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 42 5291

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-07-2004

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3158146	Α	24-11-1964	NONE		
FR 2725931	Α	26-04-1996	FR	2725931 A1	26-04-199
US 5173250	А	22-12-1992	JP JP GB	2969222 B2 4042100 A 2245214 A ,B	02-11-199 12-02-199 02-01-199

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82