(11) EP 1 598 435 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:23.11.2005 Bulletin 2005/47

(21) Application number: 04425372.2

(22) Date of filing: 21.05.2004

(51) Int CI.7: **C22C 5/02**, C22C 5/06, A61L 27/04, A44C 27/00, C22F 1/14

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR Designated Extension States:

AL HR LT LV MK

(71) Applicant: Leg.Or S.r.I 35012 Camposampiero (Padova) (IT)

(72) Inventor: Basso, Andrea 35012 Camposampiero (Padova) (IT)

 (74) Representative: Ponchiroli, Simone Bugnion S.p.A.
 Via Garibaldi, 19
 37121 Verona (IT)

(54) A method for reducing the allergenicity of metal products made using alloys comprising allergenic elements

(57) A method for reducing the allergenicity of products made using alloys comprising allergenic elements, in particular gold alloys comprising Ag, Ni, Cu and Zn, comprises the operating step of subjecting the product to a treatment for homogenising the internal structure, preferably done by subjecting the product to an annealing heat treatment. Annealing can take place in an at-

mosphere which is controlled or not controlled.

In some preferred forms of implementation of the method, the annealing step takes place at a temperature between 680°C and 850°C with a duration of between 10 and 90 minutes.

Description

20

30

35

45

50

[0001] The present invention relates to a method for reducing the allergenicity of products made using alloys comprising allergenic elements.

[0002] Hereinafter the term products refers to both industrial semi-finished products and to finished products, such as decorative objects which can be worn.

[0003] In particular, the present invention is designed to be implemented relative to objects made of gold alloy which are worn for decorative and non-decorative purposes.

[0004] It is known that for sensitised persons many components of gold alloys can cause allergic reactions mainly in the form of allergic dermatitis, where there is prolonged contact with the skin from objects containing such components, for example pieces of jewellery, and stomatitis for example in the case of products used in the dental and dental technology fields.

[0005] Amongst the various elements of which gold alloys are composed, the one recognised as having the greatest allergenic capacity is definitely nickel.

⁵ [0006] Due to the recognised allergenicity of nickel, products known as nickel-free and nickel-tested have spread over the years.

[0007] Whilst the former are simply products without said element, the latter are products which although they contain nickel are considered substantially anallergic.

[0008] The concept of nickel-tested products is linked to the knowledge of the physical - chemical mechanism which forms the basis of the above-mentioned allergic phenomena.

[0009] Studies carried out have shown that the level of allergenicity of a certain element is linked to the capacity of the product which contains it to release it in contact with the substances produced by the human body, in particular sweat and saliva.

[0010] It was found that allergic reactions only occur when a relatively large amount of nickel is released.

[0011] With regard to this, European Standard EN1811:1998, which substantially established the category of nickel-tested products, indicated the nickel release threshold value below which a product may be considered anallergic as 0.5 µg/cm²/week.

[0012] According to that standard, the value indicated must be checked by immersing the product in a predetermined solution whose composition is a sort of artificial human sweat.

[0013] Despite the spread of nickel-tested products, procedures for the production of such products are not known.

[0014] Therefore, at present, first one obtains a predetermined alloy with which to make the relevant product, then one checks whether or not it may be considered a nickel-tested product.

[0015] Also, at present there are no known jewellery products made of low carat gold alloy which, although containing nickel, satisfy the requirements of the standard that would allow them to be called nickel-tested.

[0016] However, as already indicated, nickel is not the only element which can cause allergic reactions such as dermatitis and stomatitis.

[0017] In particular, the elements recognised as having more or less marked allergenicity include cobalt, gold, palladium, and rhodium.

[0018] In contrast, silver and zinc do not seem to cause allergic reactions.

[0019] Finally, the role of copper, zinc, tin, platinum and titanium is uncertain.

[0020] Two groups may be identified amongst the above-mentioned elements: on one hand cobalt, gold, palladium and rhodium, which have an allergenic capacity (with reference to their release) comparable with that of nickel; and on the other hand the other elements, whose allergenic capacity is significantly lower than that of nickel.

[0021] However, as yet for elements other than nickel there are no normative or other references to indicate the allergenicity thresholds.

[0022] In this situation the technical need which forms the basis of the present invention is to provide a method for reducing the allergenicity of products made using alloys comprising allergenic elements.

[0023] In particular, the technical need of the present invention is to provide a method for reducing the allergenicity of products made using alloys comprising allergenic elements, which allows a simultaneous reduction of the allergenicity linked to each of the individual allergenic elements.

[0024] A further technical need of the present invention is to provide a method for reducing the allergenicity of products made using alloys comprising allergenic elements, in particular for treating products made of gold alloy, therefore, linked to the goldsmiths' sector, whether they are semi-finished or finished products.

[0025] The technical need specified and the aims indicated are substantially achieved by a method for reducing the allergenicity of products made using alloys comprising allergenic elements as described in the claims herein.

[0026] Other features and advantages of the invention are more clearly indicated in the detailed description which follows, of several preferred non-restricting forms of implementation of a method for reducing the allergenicity of products made using alloys comprising allergenic elements.

EP 1 598 435 A1

[0027] As already indicated, the allergenicity of a product relative to one of its components depends on the product's capacity to release that component upon contact with secretions from the human body.

[0028] Therefore, the method for reducing allergenicity disclosed is substantially implemented in the form of a method for reducing the release of allergic elements from the products which contain them.

[0029] It is substantially a method of treating the product which allows the release of each individual element to be brought below a threshold value considered safe for that element.

[0030] This threshold value may be higher for those elements which have a lower level of allergenicity. As already said, the present invention is intended in particular for implementation in the sector of products made using gold alloy, such a semi-finished products from the goldsmiths' and jewellery sector (particularly those which are designed to make contact with the skin such as earrings, rings, necklaces, watches, etc.).

[0031] A fundamental aspect of the present invention is the fact that the main step of the method for reducing allergenicity consists of subjecting the product to be treated to a treatment which homogenises its internal structure.

[0032] According to the preferred forms of implementation of the present invention, this step of homogenising the internal structure involves subjecting the product to an annealing heat treatment, at a temperature and with a duration which vary according to the characteristics of the alloy with which the product is made.

[0033] In this case the main parameters are the composition of the alloy, in terms of both the elements of which it is composed and the percentage of the individual elements, and the method with which the product was obtained, as seen below.

[0034] The best results are achieved by carrying out the annealing step in a controlled atmosphere, especially a reducing environment, although the annealing can also be carried out in an unprotected atmosphere (therefore in oxidative conditions) or in an inert atmosphere.

[0035] Tests have shown that the annealing step should preferably take place at a temperature between 680°C and 850°C, and the duration should be between 10 and 90 minutes.

[0036] However, as already indicated, the precise temperature and optimum duration for each type of product must be established in each case based on experimental tests.

[0037] The results of some experimental tests carried out on products made using four different types of alloys are indicated below by way of example.

[0038] In particular, the first two examples refer to products obtained by investment casting alloys, whilst the other two refer to products obtained by mechanical working alloys, in the case in question rolling with a 70% reduction of the original thickness.

[0039] Table 1 shows the compositions of the four alloys.

Table 1

Example	Au	Zn	Cu	Ag	Ni	Pd	Grain Refinement	Other	As-cast Grain size (μm)		
				ı	nvestm	ent cas	sting alloys				
1C	37.5	10.2	36	4	12.1	-	Medium	Si	630		
2C	37.5	12.1	36	1.5	12.5	-	No	Si	600		
	Mechanical working alloys										
1M	37.5	9.7	43	-	9.7	-	Medium	Si	370		
2M	58.5	6	22.7	12.2	-	-	Medium	Si,Co	nd		

[0040] Each alloy was subjected to at least one annealing treatment.

[0041] The release of the individual elements of each alloy before and after annealing was measured.

[0042] To measure the release of each element, the standard proposed by European directive EN1811:1988 relative to nickel was used.

[0043] The following safety threshold values were identified for the individual elements (based on the differing dangerousness of the different elements):

for cobalt, nickel and silver: release 0.5 μg/cm²/week;

for gold and palladium: release $0.2 \,\mu g/cm^2/week$; for the other elements: release $2.0 \,\mu g/cm^2/week$.

55

20

30

35

40

45

50

Example 1C - Investment casting alloy

[0044]

5

10

15

Table 2

Zn	Cu	Ag	Ni	Au
10.2	36	4	12.1	37.5
0.81 0.41	2.80 0.41	0.00	1.62 0.33	0.00
	10.2 0.81	10.2 36 0.81 2.80	10.2 36 4 0.81 2.80 0.00	10.2 36 4 12.1 0.81 2.80 0.00 1.62

[0045] As can be seen, the annealing treatment at 820° with a duration of 40 minutes allowed all of the release values to be brought under the safety threshold.

Example 2C - Investment casting alloy

[0046]

Table 3

20

25

30

35

40

45

50

55

Zn Cu Ni Ag Au Composition (%) 12.1 36 1.5 12.5 37.5 Release (µg/cm2/week) 1.1 as-cast 0.99 1.36 0.00 1.66 0.00 1.2 820°C x 40' H₂O 1.26 0.34 0.00 0.44 0.00

[0047] As can be seen, the annealing treatment at 820° with a duration of 40 minutes allowed all of the release values to be brought under the safety threshold, although it caused a slight increase in the release of zinc.

Example 1M - Mechanical working alloy

[0048]

Table 4

	Zn	Cu	Ag	Ni	Au
Composition (%)	9.7	43	-	9.7	37.5
Release (μg/cm2/week)					
1.1 After 70% reduction	4.77	4.14	-	7.89	0.00
1.2 550°C x 40'	7.03	3.80	-	11.28	0.00
1.3 600°C x 40'	3.46	4.29	-	8.17	0.00
1.4 680°C x 40'	1.50	3.88	-	1.83	0.00
1.5 760°C x 40'	0.17	0.67	-	0.20	0.00
1.6 820°C x 40'	0.22	0.39	-	0.14	0.00

[0049] As can be seen, in this case the annealing treatments at 760° and at 820° with a duration of 40 minutes both allowed all of the release values to be brought under the safety threshold.

Example 2M - Mechanical working alloy

[0050]

Table 5

 Zn
 Cu
 Ag
 Co
 Au

 Composition (%)
 6
 22.7
 12.2
 0.4
 58.5

Table 5 (continued)

	Zn	Cu	Ag	Со	Au
Release (μg/cm2/week)					
1.1 After 70% reduction	0.03	0.06	0.10	0.55	0.00
1.2 550°C x 40'	0.03	0.07	0.30	0.69	0.00
1.3 600°C x 40'	0.02	0.09	0.60	3.11	0.00
1.4 680°C x 40'	0.04	0.06	0.47	2.21	0.00
1.5 760°C x 40'	0.09	0.14	0.68	0.21	0.00
1.6 820°C x 40'	0.24	0.14	1.40	0.42	0.00

[0051] As can be seen, in this case the annealing treatment at 760° with a duration of 40 minutes allowed the best results to be achieved. It should be noticed how treatment at 820°C, although satisfactory, is not optimum in this case. **[0052]** It may be imagined how further tests at temperatures between 680°C and 820°C could allow the ideal temperature for implementing the present invention for the product 2M to be found.

[0053] The present invention brings important advantages.

[0054] Firstly, the method disclosed allows a reduction of the release of elements in the products treated using it. Consequently, it allows a reduction of the allergenicity of products made using alloys comprising potentially allergenic elements.

[0055] Once perfected for the specific alloy used to make the product to be treated, the method described above allows the release of all of the allergenic elements to be simultaneously kept at a safe level. Secondly, the method disclosed allows a reduction of the allergenicity of products made using gold alloys comprising allergenic elements.

[0056] This advantage is particularly important for the goldsmiths' sector, for both semi-finished and finished products.

[0057] Relative to this, it should be emphasised how products made using low carat gold alloys (for example, 9 carat) comprising nickel cannot normally pass the test established in order to define them as nickel-tested.

[0058] By applying the method disclosed, nickel-tested products can be made of 9 carat gold alloy

(Examples 1C).

5

10

15

20

30

35

40

45

50

55

[0059] It should also be noticed that the present invention is relatively easy to produce and the cost linked to its implementation is not very high. The invention described may be subject to modifications and variations without thereby departing from the scope of the inventive concept.

[0060] All details of the invention may be substituted with other technically equivalent elements according to requirements.

Claims

- **1.** A method for reducing the allergenicity of products made using alloys comprising allergenic elements, **characterised in that** its comprises the operating step of subjecting the product to a treatment which homogenises its internal structure.
- **2.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to claim 1, **characterised in that** the step of homogenising the internal structure involves subjecting the product to an annealing heat treatment.
- **3.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to claim 2, **characterised in that** the annealing step takes place in a controlled atmosphere.
- **4.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to claim 3, **characterised in that** the controlled atmosphere is a reducing environment.
- **5.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to claim 3, **characterised in that** the controlled atmosphere is an inert environment.
- **6.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to claim 2, **characterised in that** the annealing step takes place in an unprotected atmosphere.

EP 1 598 435 A1

- 7. The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to any of the foregoing claims from 2 to 6, **characterised in that** the annealing step takes place at a temperature between 680° C and 850° C.
- **9.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements according to any of the foregoing claims from 2 to 7, **characterised in that** the duration of the annealing step is between 10 and 90 minutes.
- **10.** The method for reducing the allergenicity of products made using alloys comprising allergenic elements, the products consisting of objects which can be worn and the alloys comprising precious or semi-precious metals, **characterised in that** it comprises at least the following operating steps:
 - a first step of producing the object using the alloys comprising precious or semi-precious metals;

- a second step of heating the object to a temperature suitable for relaxing mechanical tensions inside the structure of the object.

EUROPEAN SEARCH REPORT

Application Number EP 04 42 5372

Category	Citation of document with ir of relevant passa	ndication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
Х	US 4 902 342 A (WAH 20 February 1990 (1 * abstract; claim 4	 LBECK HANS G E) 990-02-20	1-6,9,10	C22C5/02 C22C5/06 A61L27/04 A44C27/00
Х	PATENT ABSTRACTS OF vol. 0186, no. 04 (17 November 1994 (1 & JP 6 228753 A (SE 16 August 1994 (199 * abstract *	C-1275), 994-11-17) IKO INSTR INC),	1,2	C22F1/14
Х	12 May 1998 (1998-0	- line 63; tables 1,4	1,2,7,9	
Х	CH 684 616 A (METAU 15 November 1994 (1 * abstract * * page 3, line 62 -	994-11-15)	1-4,7	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
X	EP 0 539 702 A (LEA 5 May 1993 (1993-05 * page 3, line 19 - tables 1A,1B *	CH & GARNER CO) (-05) Tine 21; figure 1; 	1-3,7,9	C22C C22F A61L A44C
	The present search report has because of search	peen drawn up for all claims Date of completion of the search		Examiner
	The Hague	26 October 2004	Bom	beke, M
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone coularly relevant if combined with anothement of the same category nological background	T : theory or principl E : earlier patent do after the filing dat	le underlying the in cument, but publis te in the application or other reasons	vention hed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 42 5372

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

26-10-2004

cited in search report		date		member(s)	date
Patent document cited in search report US 4902342	A	Publication date 20-02-1990	AT AU AU AU CZ DD DE DE DE FI HU	64761 T 110421 T 612136 B2 1261388 A 567701 B2 2203283 A 1222636 A1 8307968 A3 218394 A5 3382325 D1 3382756 D1 3382756 T2 316384 A 0124574 A1 0241582 A2 8504268 A1 842587 A ,B,	15-07- 15-09- 04-07- 23-06- 03-12- 22-05- 09-06- 14-08- 06-02- 01-08- 29-09- 20-04- 28-06- 14-11- 21-10- 01-07- 27-06-
			FI HU IT JP KR MX NO PT SE WO SK US ZA	842587 A ,B, 38402 A2 1197736 B 59501913 T 9109870 B1 173530 B 164073 B 842594 A ,B, 77560 A ,B 8206158 A 8401788 A1 796883 A3 4933023 A 8308048 A	27-06- 28-05- 06-12- 15-11- 03-12- 14-03- 13-07- 27-06- 01-11- 30-04- 10-05- 06-05- 12-06- 27-02-
JP 6228753	Α	16-08-1994	NONE		
US 5749979	Α	12-05-1998	NONE		
СН 684616	Α	15-11-1994	СН	684616 A3	15-11-
EP 0539702	А	05-05-1993	US AT CA DE DE EP ES JP JP	5180551 A 162557 T 2081744 A1 69224138 D1 69224138 T2 0539702 A1 2111024 T3 3233701 B2 6128668 A	19-01- 15-02- 01-05- 26-02- 30-04- 05-05- 01-03- 26-11- 10-05-

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 42 5372

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

26-10-2004

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0539702	Α		MX	9206204	A1	01-07-199
more details about this anne						