BACKGROUND OF THE INVENTION
Field of the Invention
[0001] This invention generally relates to a printhead controller, and more particularly
to a printhead controller of an ink jet printer.
Description of Related Art
[0002] Computers are widely used in the present era. In addition to displaying the data
or images processed by the computer on the display, there are several ways to output
the data or images. A printer is one of the most common output devices which can output
the text, data, graphics, etc. on the papers.
[0003] Currently, the printers can be classified into dot-matrix printers, ink jet printers,
and laser printers. Each of these three printers has its own advantages. Hence, users
can choose different printers based on their need.
[0004] A cartridge installed in a printer can contain ink with one or more different colors.
The cartridge jets out the drops of ink, via the nozzles onto the paper to form the
text, line, or graphics. Some photo ink jet printers even have the cartridges with
pink or pink blue ink for printing images with more colors.
[0005] FIG. 1 is an inkjet drive circuit disclosed in the U.S. Patent No. 6,299,292. As
shown in FIG. 1, the drive circuit includes 16 printhead arrays 105. Each printhead
array 105 includes 13 heaters H. After the decoder 109 receives the print command,
it will send out the address decoding signal of the printhead based on the print command
to heat up the heaters H corresponding to the specific addresses so that the ink will
be heated and jetted out via the nozzle.
[0006] The decoder 109 will send out the printhead array address signals AD1-AD16 and the
heater address signals A1-A13. The printhead array address signals AD1-AD16 will determine
which printhead array 105 will be driven. The heater address signals A1-A13 will determine
which heater H in the specific printhead array 105 will heat the ink. The first terminal
of the heater H receives the voltage signal V and the second terminal of the heater
H will be controlled by two switches to determine whether current passes through that
heater. These two switches comprise MOSFETs 101 and 103. The gate of the MOSFET 103
receives the printhead array address signal; the source (when the MOSFET is a CMOS)
receives the heater address signal. When the source and the gate of the MOSFET 103
are enabled at the same time, the drain (when the MOSFET is a CMOS) will generate
current signal and send it to the gate of the MOSFET 101. At the time the source-drain
of the MOSFET 101 will be turned on when the voltage signal V is supplied, and the
heater H will heat the ink and the ink is ready to be jetted out.
[0007] FIG. 2 is the inkjet drive circuit disclosed in the U.S. Patent No. 5,867,183. As
shown in FIG. 2, the inkjet drive circuit includes the inkjet printhead drive unit
201 and the printhead ink output units 211 and 213. The inkjet printhead drive unit
201 includes the inkjet printhead drive circuit 203 and the printhead selection circuit
205. The inkjet printhead drive circuit 203 outputs a set of bus control signals 207
and the printhead selection circuit 205 outputs a set of bus selection signal 209
selectively to enable one of the printhead ink output units. The control signals 207
and the corresponding selection signal will determine whether to enable the nozzles
of one of the printhead ink output units.
[0008] The printhead ink output unit 211 includes the enable circuit 215, the nozzle jetting
circuits 225-231 and the nozzle 233. The enable circuit 215 includes a plurality of
MOSFETs 217, 219, 221 and 223. The drain (current input) of each MOSFET will receive
the corresponding control signal in the bus control signal set 203. The gate (command
input) of each MOSFET will receive the corresponding selection signal in the bus selection
signal set 209. When the drain and the gate of the same MOSFET are enabled at the
same time, the source (output terminal, current output) will generate a current signal
to drive the coupled nozzle jetting circuit. For example, the MOSFET 217 is coupled
to the nozzle jetting circuit 225 and the MOSFET 219 is coupled to the nozzle jetting
circuit 227. Then the nozzle jetting circuit will jet out the ink out of the nozzle
223. The printhead ink output unit 213 works the same as the printhead ink output
unit 211.
SUMMARY OF THE INVENTION
[0009] The present invention is directed to a printhead control circuit using one or more
control signals to control the enable status of the nozzle in order to determine whether
or not to jet out the ink.
[0010] The present invention is directed to an ink jet printer using the same control signals
to drive the printhead control circuits in the cartridges in order to determine whether
to jet out the ink.
[0011] One or part or all of these and other features and advantages of the present invention
will become readily apparent to those skilled in this art from the following description
wherein there is shown and described a preferred embodiment of this invention, simply
by way of illustration of one of the modes best suited to carry out the invention.
As it will be realized, the invention is capable of different embodiments, and its
several details are capable of modifications in various, obvious aspects all without
departing from the invention. Accordingly, the drawings and descriptions will be regarded
as illustrative in nature and not as restrictive.
[0012] According to an embodiment of the present invention, the printhead controller compris
es a buffer circuit for receiving an address signal and a selection signal and an
ink jetting circuit for receiving the buffer signal and determining whether to jet
out ink based on the buffer signal. The buffer circuit is adapted for outputting a
buffer signal corresponding to the selection signal.
[0013] In an embodiment of the present invention, the address signal is a working driving
voltage of the buffer circuit. The buffer circuit includes a plurality of inverters
connected in series. The inverters comprise, for example, FETs.
[0014] In an embodiment of the present invention, the buffer circuit includes a first resistor
having a first terminal for receiving the address signal; a first FET having a first
terminal being coupled to a second terminal of the first resistor for outputting an
inverted signal, a third terminal being coupled to a ground, and a second terminal
of the first FET for receiving the selection signal; a second resistor having a first
terminal for receiving the address signal; and a second FET having a first terminal
being coupled to a second terminal of the second resistor for outputting the buffer
signal, a second terminal of the second FET for receiving the inverted signal and
a third terminal of the second FET being coupled to the ground.
[0015] The present invention provides an ink jet printer comprising a printhead drive unit
including a printhead drive circuit and a printhead selection circuit. The printhead
drive circuit is adapted for outputting a plurality of address signals, and the printhead
selection circuit is adapted for outputting a plurality of selection signals. The
printhead module deposed within the printer comprises a plurality of printhead control
units. Each printhead control unit is adapted for receiving the plurality of address
signals and the selection signal corresponding to the printhead control unit for controlling
the enable status of the heaters or transducers corresponding to the nozzles in the
printhead control unit to determine whether or not to jet out the ink.
[0016] In an embodiment of the present invention, each of the printhead control units includes
a plurality of buffer circuits, a plurality of ink jetting circuits and a plurality
of nozzles. Each of the plurality of buffer circuits is adapted for receiving an address
signal and a selection signal. Each of the plurality of buffer circuits is adapted
for outputting a buffer signal corresponding to the selection signal. Each of the
plurality of ink jetting circuits is adapted for receiving the buffer signal and determining
whether or not to jet out ink based on the buffer signal. E ach of the plurality of
nozzles corresponds to one of the plurality of ink jetting circuits for jetting out
the ink. The heater or transducer corresponding to each nozzle is coupled to the corresponding
ink jetting circuit for adding pressure or vaporize the ink for jetting out ink.
[0017] In light of the above, the printhead controller of the present invention can use
a plurality of serial-connected inverters to constitute a buffer circuit for receiving
one or more control signals to control the enable status of the nozzle in order to
determine whether or not to jet out the ink.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] FIG. 1 is a circuit diagram of a traditional inkjet drive circuit.
[0019] FIG. 2 is another circuit diagram of a traditional inkjet drive circuit.
[0020] FIG. 3 is a circuit diagram of a printhead controller in accordance with an embodiment
of the present invention.
[0021] FIG. 4 is a circuit diagram of a buffer circuit in accordance with an embodiment
of the present invention.
[0022] FIG. 5 is a circuit diagram of a buffer circuit in accordance with another embodiment
of the present invention.
[0023] FIG. 6 is a circuit diagram of a buffer circuit in accordance with still another
embodiment of the present invention.
[0024] FIG. 7 is a circuit diagram of a buffer circuit in accordance with further still
another embodiment of the present invention.
[0025] FIG. 8 is a block diagram of an ink jet printer in accordance with an embodiment
of the present invention.
[0026] FIG. 9 is a block diagram of an ink jet printer in accordance with another embodiment
of the present invention.
DESCRIPTION OF THE EMBODIMENTS
[0027] FIG. 3 is a circuit diagram of a printhead controller in accordance with an embodiment
of the present invention. As shown in FIG. 3, the printhead controller includes the
buffer circuit 301 and the ink jetting circuit 303. The buffer circuit 301 includes
the inverters 305 and 307 connected in series. The working driving voltages of these
two inverters are controlled by the same address signal A1. The input terminal of
the inverter 305 receives and inverts the selection signal SEL. Then the inverter
305 outputs the inverted signal via the output terminal of the inverter 305 to the
inverter 307. After the inverse operation by the inverter 307, the buffer signal is
outputted from the output terminal of the inverter 307 to the ink jetting circuit
303 via the transmission line 317.
[0028] The ink jetting circuit 303 includes, for example, but is not limited to, two MOSFETs
309 and 311. The gates of the MOSFETs 309 and 311 receive the buffer signal form the
inverter 307. When the buffer signal received by the ink jetting circuit 303 is at
the high voltage level, the MOSFETs 309 and 311 are turned on and the heaters H will
heat the ink up depending on the status of voltage V1 and V2 for jetting ink out via
the nozzle of the cartridge. In this embodiment, the buffer signal received by the
ink jetting circuit 303 is the voltage signal. In other words, the on/off of MOSFETs
in the ink jetting circuit 303 depends on the voltage level. The MOSFETs can also
be driven by current by adding a resistor on the transmission line 317 and coupling
it to the ground.
[0029] FIG. 4 is a circuit diagram of a buffer circuit in accordance with an embodiment
of the present invention. As shown in FIG. 4, the buffer circuit includes two inverters
305A and 307A. The inverter 305A includes the MOSFET F1 and the resistor R1, and the
inverter 307A includes the MOSFET F2 and the resistor R2. The driving voltage of these
two inverters is controlled by the address signal A1. The gate of the MOSFET F1 of
the inverter 305A is coupled in series with the resistor R3 and then coupled to the
ground. The gate of the MOSFET F1 receives the selection signal SEL to determine whether
or not to turn on MOSFET F1 in order to output the corresponding inverted signal.
The gate of the MOSFET F2 of the inverter 307 receives the inverted signal and then
outputs the corresponding buffer signal in order to determine the subsequent operation
of the circuit. In this embodiment, as shown in FIG. 4, the resistors R1 and R2 range
from 0.5kΩ to 500kΩ. The preferred resistance of the resistors R1 and R2 range from
20kΩ to 80kΩ. The resistors R3 and R4 range from 1kΩ to 500kΩ. The preferred resistance
of the resistors R1 and R2 ranges from 20kΩ to 80kΩ.
[0030] FIG. 5 is a circuit diagram of a buffer circuit in accordance with another embodiment
of the present invention. As shown in FIG. 5, the buffer circuit includes two inverters
305B and 307B, each of which consists of MOSFETs. The inverter 305B includes the MOSFETs
F3, F4 and F5 connected in series; the inverter 307B includes the MOSFETs F6 and F7.
The difference between this embodiment and the embodiment in FIG. 4 is that buffer
circuit in this embodiment can receive two selection signals SEL1 and SEL2. The inverter
307B then outputs the corresponding buffer signal based on the statuses of these two
selection signals SEL1 and SEL2.
[0031] In the inverter 305B, the drain and the gate of MOSFET F3 are coupled to each other
to form the drain feedback. The drain receives the address signal A1; the source is
coupled to the drain of MOSFET F4 and outputs the inverted signal. The gate of MOSFET
F4 receives the selection signal SEL1; the source of MOSFET F4 is coupled to the drain
of MOSFET F5. The gate of MOSFET F5 receives the selection signal SEL2; the source
of MOSFET F5 is grounded. When one of the selection signals SEL1 and SEL2 is at the
low voltage level, one of the MOSFETs cannot be turned on. Hence, the inverted signal
is at the high voltage level. On the other hand, when both of the selection signals
SEL1 and SEL2 are at the high voltage level, the inverted signal is at the low voltage
level. The MOSFET F3 in the inverter 305B can be replaced by the resistor R1 in FIG.
4. Further, in this embodiment, the selection signal SEL2 received by the MOSFET F5
can be replaced by the address signal A1 and the same result can be achieved (i.e.,
when MOSFET F4 and MOSFET F5 receive the high voltage signals, the inverted signal
is at the low voltage level).
[0032] In the inverter 307B, like the MOSFET F3, the drain and the gate of MOSFET F6 are
coupled to each other to form the drain feedback. The source of MOSFET F6 is coupled
to MOSFET F7 and outputs the buffer signal according to the inverted signal. The gate
of MOSFET F7 receives the inverted signal and the source of MOSFET F7 is grounded.
[0033] When the buffer circuit is required to receive more selection signal for determination,
one skilled in the art can connect the other MOSFETs to MOSFET F5 in the inverter
305B in series and input the new added selection signals (or address signals) to the
gates of the new added MOSFETs to satisfy the requirement of inputting more selection
signals in an specific embodiment.
[0034] FIG. 6 is a circuit diagram of a buffer circuit in accordance with still another
embodiment of the present invention. As shown in FIG. 6, the buffer circuit includes
two inverters 305C and 307C, wherein the inverter 305C is same as the inverter 305A.
In the inverter 307C, the gate and the drain of MOSFET F9 are coupled to each other
to form the drain feedback. The drain of MOSFET F9 receives the address signal; the
source of MOSFET F9 is coupled to the drain of MOSFET F10 and outputs the buffer signal.
The gate of MOSFET F10 receives the inverted signal from the inverter 305C and determines
whether or not to turn on/off MOSFET F10 based on the voltage level of the inverted
signal. The source of MOSFET F10 is grounded.
[0035] FIG. 7 is a circuit diagram of a buffer circuit in accordance with still another
embodiment of the present invention. As shown in FIG. 7, the buffer circuit includes
two inverters 305D and 307D, wherein the inverter 305D is the same as the inverter
305A. In the inverter 307D, the drain of MOSFET F12 receives the address signal; and
the gate and the drain of MOSFET F13 are coupled to each other. The source of MOSFET
F13 outputs the buffer signal. The gate and the source of MOSFET F13, the source of
MOSFET F12, and the drain of MOSFET F14 are coupled together. The gate of MOSFET F14
receives the inverted signal from the inverter 305D to determine whether or not to
turn on/off MOSFET F14. The source ofMOSFET F14 is grounded.
[0036] FIG. 8 is a block diagram of an ink jet printer in accordance with an embodiment
of the present invention. As shown in FIG. 8, the ink jet printer includes the printhead
drive unit 801. The printhead drive unit 801 includes the printhead drive circuit
803 and the printhead selection circuit 805. The printhead module 827 installed in
the ink jet printer includes two cartridges and the corresponding printhead control
circuits which are the black printhead control circuit 807 and the color printhead
control circuit 815. The printhead drive circuit 803 of the printhead drive unit 801
outputs address signals; the printhead selection circuit 805 outputs a set of selection
signals (wherein one of the set of selection signals is high while the other are low
to selectively enable one printhead control circuit). The address signals and the
selection signal corresponding to one printhead control circuit are used to control
whether to enable the nozzles of one printhead control circuit in the ink jet printer.
In other embodiments, there can be more than two cartridges installed in the printer.
[0037] The buffer circuit set 809 of the black printhead control circuit 807 of the printhead
module 827 receives the address signal and the selection signal via the transmission
lines 823 and 825. After receiving the buffer signal, the ink jetting circuit 811
will determine whether or not to jet out the ink based on the buffer signal. If it
is determined to jet out the ink, the ink will be jetted out via the nozzle 813.
[0038] The operation of the color printhead control circuit 815 is same as the black printhead
control circuit 807. The buffer circuit set 817 of the color printhead control circuit
815 of the printhead module 827 receives the address signal and the selection signal
via the transmission lines 823 and 825'. After receiving the buffer signal, the ink
jetting circuit 819 will determine whether or not to jet out the ink based on the
buffer signal. If it is determined to jet out the ink, the ink will be jetted out
via the nozzle 821.
[0039] In the embodiment mentioned above, the address signals and the selection signals
of the black printhead control circuit 807 and the color printhead control circuit
815 are sent by the transmission lines 823, 825, and 825'. That is, the ink jet printer
can control the operation of the two printheads in the printhead set 827 by using
three signals transmitted by the printhead drive unit 801. It is noted that when one
of the two printhead is driven, the voltage level of the selection signal of the other
one printhead is low. If more cartridges are required, only addition of new corresponding
selection signals is required. The new added printhead control circuits are only required
to receive the same address signals.
[0040] In addition, the buffer circuit sets 809 and 817 have a plurality of buffer circuits.
Each buffer circuit directly receives the address signal and the selection signal
and outputs the corresponding buffer signal. Likewise, the ink jetting circuit set
811 and 819 have a plurality of ink jetting circuits. Each ink jetting circuit is
coupled to a specific buffer circuit and receives the buffer signal from the buffer
circuit. The nozzle sets 813 and 821 have a plurality of nozzles. When the ink jetting
circuit determines to jet out the ink, the corresponding nozzles will jet out the
ink.
[0041] FIG. 9 is a block diagram of an ink jet printer in accordance with another embodiment
of the present invention. The ink jet printer includes the printhead drive circuit
801 and the black printhead control circuit 807. Like the embodiment of FIG. 8, the
printhead drive circuit 801 includes the printhead drive circuit 803 and the printhead
selection circuit 805 for sending the address signal and the selection signal.
[0042] The black printhead control circuit 807 includes the buffer circuit 301, the ink
jetting circuit 303 and the nozzle 901. The working driving voltages of the MOSFETs
F1 and F2 of the buffer circuit 301 are controlled by the address signal from the
printhead drive circuit 803. The gate of MOSFET F1 receives the selection signal from
the printhead selection circuit 805 and outputs the inverted signal to MOSFET F2 based
on the selection signal. Then MOSFET F2 outputs the buffer signal to the ink jetting
circuit 303 based on the inverted signal. If it is determined to jet out the ink,
the ink jetting circuit will heat up the ink and the nozzle 901 then jets out the
ink.
[0043] Although in this embodiment the black printhead control circuit 807 only includes
one buffer circuit set, one skilled in the art can expand one buffer circuit set to
several buffer circuit sets. In addition, this embodiment is also applied to the other
color cartridges.
[0044] In light of the above, the printhead controller of the present invention can use
a plurality of serial-connected inverters to constitute a buffer circuit for receiving
one or more control signals to control the enable status of the nozzle in order to
determine whether or not to jet out the ink. In addition, the ink jet printer of the
present invention can use the same signals to control several printheads in order
to reduce the circuit complexity.
[0045] The foregoing description of the preferred embodiment of the present invention has
been presented for purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise form or to exemplary embodiments
disclosed. Accordingly, the foregoing description should be regarded as illustrative
rather than restrictive. Obviously, many modifications and variations will be apparent
to practitioners skilled in this art. The embodiments are chosen and described in
order to best explain the principles of the invention and its best mode practical
application, thereby to enable persons skilled in the art to understand the invention
for various embodiments and with various modifications as are suited to the particular
use or implementation contemplated. It is intended that the scope of the invention
be defined by the claims appended hereto and their equivalents in which all terms
are meant in their broadest reasonable sense unless otherwise indicated. It should
be appreciated that variations may be made in the embodiments described by persons
skilled in the art without departing from the scope of the present invention as defined
by the following claims. Moreover, no element and component in the present disclosure
is intended to be dedicated to the public regardless of whether the element or component
is explicitly recited in the following claims.
1. A printhead controller, comprising:
a buffer circuit, for receiving an address signal and a selection signal, said buffer
circuit outputting a buffer signal corresponding to said selection signal; and
an ink jetting circuit, for receiving said buffer signal and determining whether or
not to jet out ink based on said buffer signal.
2. The printhead controller of claim 1, wherein said address signal is a working driving
voltage of said buffer circuit.
3. The printhead controller of claim 1, wherein said buffer circuit includes a plurality
of inverters connected in series.
4. The printhead controller of claim 3, wherein each of said inverters includes a FET.
5. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor, having a first terminal for receiving said address signal;
a first FET, having a first terminal being coupled to a second terminal of said first
resistor and outputting an inverted signal, a second terminal for receiving said selection
signal, and a third terminal being coupled to a ground;
a second resistor, having a first terminal for receiving said address signal; and
a second FET, having a first terminal being coupled to a second terminal of said second
resistor and outputting said buffer signal, a second terminal for receiving said inverted
signal, and a third terminal being coupled to said ground.
6. The printhead controller of claim 5, wherein a resistance of said first resistor and
said second resistor range from 0.5kΩ to 500kΩ.
7. The printhead controller of claim 5, wherein a resistance of said first resistor and
said second resistor range from 20kΩ to 80kΩ.
8. The printhead controller of claim 4, wherein said buffer circuit includes:
a first FET, having a first terminal for receiving said address signal, a second terminal
coupled to said first terminal of said first FET, and a third terminal for outputting
an inverted signal;
a second FET, having a first terminal being coupled to said third terminal of said
first FET, and a second terminal for receiving said selection signal;
a third FET, having a first terminal being coupled to a third terminal of said second
FET, a second terminal for receiving a second selection signal, and a third terminal
being coupled to a ground;
a fourth FET, having a first terminal for receiving said address signal, a second
terminal being coupled to said first terminal of said fourth FET, and a third terminal
for outputting said buffer signal; and
a fifth FET, having a first terminal being coupled to said third terminal of said
fourth FET, a second terminal for receiving said inverted signal, and a third signal
being coupled to said ground.
9. The printhead controller of claim 8, wherein said first FET is replaced by a first
resistor, and said first resistor has a first terminal for receiving said address
signal and a second terminal being coupled to said first terminal of said second FET.
10. The printhead controller of claim 8, wherein said second selection signal is said
address signal.
11. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor, having a first terminal for receiving said address signal;
a first FET, having a first terminal being coupled to a second terminal of said first
resistor and outputting an inverted signal, a second terminal for receiving said selection
signal, and a third terminal being coupled to a ground;
a second FET, having a first terminal for receiving said address signal, a second
terminal being coupled to said first terminal of said second FET, and a third terminal
for outputting said buffer signal; and
a third FET, having a first terminal being coupled to said third terminal of said
second FET, a second terminal for receiving said inverted signal, and a third terminal
being coupled to said ground.
12. The printhead controller of claim 11, wherein a resistance of said first resistor
ranges from 0.5kΩ to 500kΩ.
13. The printhead controller of claim 11, wherein a resistance of said first resistor
ranges from 20kΩ to 80kΩ.
14. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor, having a first terminal for receiving said address signal;
a first FET, having a first terminal being coupled to a second terminal of said first
resistor and outputting an inverted signal, a second terminal for receiving said selection
signal, and a third terminal being coupled to a ground;
a second FET, having a first terminal for receiving said address signal, and a third
terminal for outputting said buffer signal;
a third FET, having a first terminal being coupled to said first terminal and a second
terminal of said second FET, a second terminal and a third terminal being coupled
to said third terminal of said second FET; and
a fourth FET, having a first terminal being coupled to said third terminal of said
second FET, a second terminal for receiving said inverted signal, and a third terminal
being coupled to said ground.
15. The printhead controller of claim 14, wherein a resistance of said first resistor
ranges from 0.5kΩ to 500kΩ.
16. The printhead controller of claim 14, wherein a resistance of said first resistor
ranges from 20kΩ to 80kΩ.
17. An ink jet printer, comprising:
a printhead drive unit, including a printhead drive circuit and a printhead selection
circuit, said printhead drive circuit outputting a plurality of address signals, said
printhead selection circuit outputting a plurality of selection signal; and
a plurality of printhead control units, each of said printhead control units receiving
corresponding one of said plurality of address signals and corresponding one of said
plurality of selection signals, each said printhead control unit including:
a plurality of buffer circuits, each of said plurality of buffer circuits for receiving
one of said address signals and one of said selection signals, each of said plurality
of buffer circuits outputting a buffer signal corresponding to said received selection
signal;
a plurality of ink jetting circuits, each of said plurality of ink jetting circuits
for receiving buffer signal outputting from corresponding buffer circuit and determining
whether or not to jet out ink based on said received buffer signal.; and
a plurality of nozzles, each of said plurality of nozzles corresponding to one of
said plurality of ink jetting circuits for jetting out said ink.
18. The ink jet printer of claim 17, wherein said address signal is a working driving
voltage of said buffer circuit.
19. The printhead controller of claim 17, wherein each of said buffer circuits includes
a plurality of inverters serial-connected to each other.
20. The printhead controller of claim 19, wherein each of said inverters includes a FET.
Amended claims in accordance with Rule 86(2) EPC.
1. A printhead controller (807), comprising:
a buffer circuit (301), for receiving an address signal (A1) and a selection signal
(SEL), said buffer circuit outputting a buffer signal corresponding to said address
signal and said selection signal; and
an ink jetting circuit (303), for receiving said buffer signal and determining whether
or not to jet out ink based on said buffer signal.
2. The printhead controller of claim 1, wherein said address signal is a working driving
voltage of said buffer circuit.
3. The printhead controller of claim 1, wherein said buffer circuit includes a plurality
of inverters (305, 307) connected in series.
4. The printhead controller of claim 3, wherein each of said inverters includes a FET.
5. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor (R1), having a first terminal for receiving said address signal;
a first FET (F1), having a first terminal being coupled to a second terminal of said
first resistor and outputting an inverted signal, a second terminal for receiving
said selection signal, and a third terminal being coupled to a ground;
a second resistor (R2), having a first terminal for receiving said address signal;
and
a second FET (F2), having a first terminal being coupled to a second terminal of said
second resistor and outputting said buffer signal, a second terminal for receiving
said inverted signal, and a third terminal being coupled to said ground.
6. The printhead controller of claim 5, wherein a resistance of said first resistor
and said second resistor range from 0.5kΩ to 500kΩ.
7. The printhead controller of claim 5, wherein a resistance of said first resistor
and said second resistor range from 20kΩ to 80kΩ.
8. The printhead controller of claim 4, wherein said buffer circuit includes:
a first FET (F3), having a first terminal for receiving said address signal, a second
terminal coupled to said first terminal of said first FET, and a third terminal for
outputting an inverted signal;
a second FET (F4), having a first terminal being coupled to said third terminal of
said first FET, and a second terminal for receiving said selection signal;
a third FET (F5), having a first terminal being coupled to a third terminal of said
second FET, a second terminal for receiving a second selection signal, and a third
terminal being coupled to a ground;
a fourth FET (F6), having a first terminal for receiving said address signal, a second
terminal being coupled to said first terminal of said fourth FET, and a third terminal
for outputting said buffer signal; and
a fifth FET (F7), having a first terminal being coupled to said third terminal of
said fourth FET, a second terminal for receiving said inverted signal, and a third
signal being coupled to said ground.
9. The printhead controller of claim 8, wherein said first FET is replaced by a first
resistor, and said first resistor has a first terminal for receiving said address
signal and a second terminal being coupled to said first terminal of said second FET.
10. The printhead controller of claim 8, wherein said second selection signal is said
address signal.
11. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor (R1), having a first terminal for receiving said address signal;
a first FET (F1), having a first terminal being coupled to a second terminal of said
first resistor and outputting an inverted signal, a second terminal for receiving
said selection signal, and a third terminal being coupled to a ground;
a second FET (F9), having a first terminal for receiving said address signal, a second
terminal being coupled to said first terminal of said second FET, and a third terminal
for outputting said buffer signal; and
a third FET (F10), having a first terminal being coupled to said third terminal of
said second FET, a second terminal for receiving said inverted signal, and a third
terminal being coupled to said ground.
12. The printhead controller of claim 11, wherein a resistance of said first resistor
ranges from 0.5kΩ to 500kΩ.
13. The printhead controller of claim 11, wherein a resistance of said first resistor
ranges from 20kΩ to 80kΩ.
14. The printhead controller of claim 4, wherein said buffer circuit includes:
a first resistor (R1), having a first terminal for receiving said address signal;
a first FET (F1), having a first terminal being coupled to a second terminal of said
first resistor and outputting an inverted signal, a second terminal for receiving
said selection signal, and a third terminal being coupled to a ground;
a second FET (F 12), having a first terminal for receiving said address signal, and
a third terminal for outputting said buffer signal;
a third FET (F13), having a first terminal being coupled to said first terminal and
a second terminal of said second FET, a second terminal and a third terminal being
coupled to said third terminal of said second FET; and
a fourth FET (F14), having a first terminal being coupled to said third terminal of
said second FET, a second terminal for receiving said inverted signal, and a third
terminal being coupled to said ground.
15. The printhead controller of claim 14, wherein a resistance of said first resistor
ranges from 0.5kΩ to 500kΩ.
16. The printhead controller of claim 14, wherein a resistance of said first resistor
ranges from 20kΩ to 80kΩ.
17. An ink jet printer, comprising:
a printhead drive unit (801), including a printhead drive circuit (803) and a printhead
selection circuit (805), said printhead drive circuit outputting a plurality of address
signals, said printhead selection circuit outputting a plurality of selection signal;
and
a plurality of printhead control units (807, 815), each of said printhead control
units receiving corresponding one of said plurality of address signals and corresponding
one of said plurality of selection signals, each said printhead control unit including:
a plurality of buffer circuits (809, 817), each of said plurality of buffer circuits
for receiving one of said address signals and one of said selection signals, each
of said plurality of buffer circuits outputting a buffer signal corresponding to said
received address signal and said received selection signal;
a plurality of ink jetting circuits (811, 819), each of said plurality of ink jetting
circuits for receiving buffer signal outputting from corresponding buffer circuit
and determining whether or not to jet out ink based on said received buffer signal.;
and
a plurality of nozzles (813, 821), each of said plurality of nozzles corresponding
to one of said plurality of ink jetting circuits for jetting out said ink.
18. The ink jet printer of claim 17, wherein said address signal is a working driving
voltage of said buffer circuit.
19. The printhead controller of claim 17, wherein each of said buffer circuits includes
a plurality of inverters serial-connected to each other.
20. The printhead controller of claim 19, wherein each of said inverters includes a FET.