CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of application Serial No. 09/325,997 filed
on June 4, 1999, which is herein incorporated by reference for all purposes.
FIELD OF THE INVENTION
[0002] The present invention relates to the use of (-) (3-trihalomethylphenoxy) (4-halophenyl)
acetic acid derivatives and compositions in the treatment of insulin resistance, Type
2 diabetes, hyperlipidemia and hyperuricemia.
BACKGROUND OF THE INVENTION
[0003] Diabetes mellitus, commonly called diabetes, refers to a disease process derived
from multiple causative factors and characterized by elevated levels of plasma glucose,
referred to as hyperglycemia.
See, e.g., LeRoith, D.
et al., (eds.), DIABETES MELLITUS (Lippincott-Raven Publishers, Philadelphia, PA U.S.A.
1996), and all references cited therein. According to the American Diabetes Association,
diabetes mellitus is estimated to affect approximately 6% of the world population.
Uncontrolled hyperglycemia is associated with increased and premature mortality due
to an increased risk for microvascular and macrovascular diseases, including nephropathy,
neuropathy, retinopathy, hypertension, cerebrovascular disease and coronary heart
disease. Therefore, control of glucose homeostasis is a critically important approach
for the treatment of diabetes.
[0004] There are two major forms of diabetes: Type 1 diabetes (formerly referred to as insulin-dependent
diabetes or IDDM); and Type 2 diabetes (formerly referred to as non-insulin dependent
diabetes or NIDDM).
[0005] Type 1 diabetes is the result of an absolute deficiency of insulin, the hormone which
regulates glucose utilization. This insulin deficiency is usually characterized by
β-cell destruction within the Islets of Langerhans in the pancreas, which usually
leads to absolute insulin deficiency. Type 1 diabetes has two forms: Immune-Mediated
Diabetes Mellitus, which results from a cellular mediated autoimmune destruction of
the β cells of the pancreas; and Idiopathic Diabetes Mellitus, which refers to forms
of the disease that have no known etiologies.
[0006] Type 2 diabetes is a disease characterized by insulin resistance accompanied by relative,
rather than absolute, insulin deficiency. Type 2 diabetes can range from predominant
insulin resistance with relative insulin deficiency to predominant insulin deficiency
with some insulin resistance. Insulin resistance is the diminished ability of insulin
to exert its biological action across a broad range of concentrations. In insulin
resistant individuals, the body secretes abnormally high amounts of insulin to compensate
for this defect. When inadequate amounts of insulin are present to compensate for
insulin resistance and adequately control glucose, a state of impaired glucose tolerance
develops. In a significant number of individuals, insulin secretion declines further
and the plasma glucose level rises, resulting in the clinical state of diabetes. Type
2 diabetes can be due to a profound resistance to insulin stimulating regulatory effects
on glucose and lipid metabolism in the main insulin-sensitive tissues: muscle, liver
and adipose tissue. This resistance to insulin responsiveness results in insufficient
insulin activation of glucose uptake, oxidation and storage in muscle and inadequate
insulin repression of lipolysis in adipose tissue and of glucose production and secretion
in liver. In Type 2 diabetes, free fatty acid levels are often elevated in obese and
some non-obese patients and lipid oxidation is increased.
[0007] Premature development of atherosclerosis and increased rate of cardiovascular and
peripheral vascular diseases are characteristic features of patients with diabetes.
Hyperlipidemia is an important precipitating factor for these diseases. Hyperlipidemia
is a condition generally characterized by an abnormal increase in serum lipids in
the bloodstream and is an important risk factor in developing atherosclerosis and
heart disease. For a review of disorders of lipid metabolism,
see, e.g., Wilson, J.
et al., (ed.),
Disorders of Lipid Metabolism, Chapter 23, Textbook of Endocrinology, 9
th Edition, (W.B. Sanders Company, Philadelphia, PA U.S.A. 1998; this reference and
all references cited therein are herein incorated by reference). Serum lipoproteins
are the carriers for lipids in the circulation. They are classified according to their
density: chylomicrons; very low-density lipoproteins (VLDL); intermediate density
lipoproteins (IDL); low density lipoproteins (LDL); and high density lipoproteins
(HDL). Hyperlipidemia is usually classified as primary or secondary hyperlipidemia.
Primary hyperlipidemia is generally caused by genetic defects, while secondary hyperlipidemia
is generally caused by other factors, such as various disease states, drugs, and dietary
factors. Alternatively, hyperlipidemia can result from both a combination of primary
and secondary causes of hyperlipidemia. Elevated cholesterol levels are associated
with a number of disease states, including coronary artery disease, angina pectoris,
carotid artery disease, strokes, cerebral arteriosclerosis, and xanthoma.
[0008] Dyslipidemia, or abnormal levels of lipoproteins in blood plasma, is a frequent occurrence
among diabetics, and has been shown to be one of the main contributors to the increased
incidence of coronary events and deaths among diabetic subjects
(see, e.g., Joslin,
E. Ann. Chim. Med. (1927) 5:1061-1079). Epidemiological studies since then have confirmed the association
and have shown a several-fold increase in coronary deaths among diabetic subjects
when compared with nondiabetic subjects
(see, e.g., Garcia, M. J.
et al., Diabetes (1974) 23: 105-11 (1974); and Laakso, M. and Lehto, S.,
Diabetes Reviews (1997) 5(4): 294-315). Several lipoprotein abnormalities have been described among
diabetic subjects (Howard B.,
et al., Artherosclerosis (1978) 30: 153-162).
[0009] Previous studies from the 1970's have demonstrated the effectiveness of racemic 2-acetamidoethyl
(4-chlorophenyl) (3-trifluoromethylphenoxy) acetate (also known as "halofenate") as
a potential therapeutic agent to treat Type 2 diabetes, hyperlipidemia and hyperuricemia
(
see, e.g., Bolhofer, W., U.S. 3,517,050; Jain, A.
et al.,
N. Eng. J. Med. (1975) 293: 1283-1286; Kudzma, D.
et al.,
Diabetes (1977) 25: 291-95; Kohl, E.
et al.,
Diabetes Care (1984) 7: 19-24;
McMahon, F.G.
et al.,
Univ. Mich. Med. Center J. (1970) 36: 247-248; Simori, C.
et al.,
Lipids (1972) 7: 96-99; Morgan, J.P.
et al.,
Clin. Pharmacol. Therap. (1971) 12: 517-524, Aronow, W.S.
et al.,
Clin. Pharmacol Ther (1973) 14: 358-365 and Fanelli, G.M. et al.,
J. Pharm. Experimental Therapeutics (1972) 180:377-396). In these previous studies, the effect of racemic halofenate
on diabetes was observed when combined with sulfonylureas. A minimal effect on glucose
was observed in patients with diabetes treated with racemic halofenate alone. However,
significant side effects were noted including gastrointestinal bleeding from stomach
and peptic ulcers
(see, e.g., Friedberg, S.J.
et al.,
Clin. Res. (1986) Vol. 34, No. 2: 682A).
[0010] In addition, there were some indications of drug-drug interactions of racemic halofenate
with agents such as warfarin sulfate (also referred to as 3-(alpha-acetonylbenzyl)-4-hydroxycoumarin
or Coumadin™ (Dupont Pharmaceuticals, E. I. Dupont de Nemours and Co., Inc., Wilmington,
DE U.S.A.)
(see, e.g., Vesell, E. S. and Passantanti, G.T.,
Fed. Proc. (1972) 31(2): 538). Coumadin™ is an anticoagulant that acts by inhibiting the synthesis
of vitamin K dependent clotting factors (which include Factors II, VII, IX, and X,
and the anticoagulant proteins C and S). Coumadin™ is believed to be stereospecifically
metabolized by hepatic microsomal enzymes (the cytochrome P450 enzymes). The cytochrome
P450 isozymes involved in the metabolism of Coumadin include 2C9, 2C19, 2C8, 2C18,
1A2, and 3A4. 2C9 is likely to be the principal form of human liver P450 which modulates
in vivo drug metabolism of several drugs including the anticoagulant activity of Coumadin™
(
see, e.g., Miners, J. O.
et al.,
Bri. J. Clin. Pharmacol. (1998) 45: 525-538).
[0011] Drugs that inhibit the metabolism of Coumadin™ result in a further decrease in vitamin
K dependent clotting factors that prevents coagulation more than desired in patients
receiving such therapy (i.e., patients at risk for pulmonary or cerebral embolism
from blood clots in their lower extremities, heart or other sites). Simple reduction
of the dose of anticoagulant is often difficult as one needs to maintain adequate
anticoagulation to prevent blood clots from forming. The increased anticoagulation
from drug-drug interaction results in a significant risk to such patients with the
possibility of severe bleeding from soft tissue injuries, gastrointestinal sites (i.e.,
gastric or duodenal ulcers) or other lesions (i.e., aortic aneurysm). Bleeding in
the face of too much anticoagulation constitutes a medical emergency and can result
in death if it is not treated immediately with appropriate therapy.
[0012] Cytochrome P450 2C9 is also known to be involved in the metabolism of several other
commonly used drugs, including dilantin, sulfonylureas, such as tolbutamide and several
nonsteroidal anti-inflammatory agents, such as ibuprofen. Inhibition of this enzyme
has the potential to cause other adverse effects related to drug-drug interactions,
in addition to those described above for Coumadin™
(see, e.g., Pelkonen, O.
et al., Xenobiotica (1998) 28: 1203-1253; Linn, J.H. and Lu, A.Y.,
Clin. Pharmacokinet. (1998) 35(5): 361-390).
[0013] Solutions to the above difficulties and deficiencies are needed before halofenate
becomes effective for routine treatment of insulin resistance, Type 2 diabetes, hyperlipidemia
and hyperuricemia. The present invention fulfills this and other needs by providing
compositions and methods for alleviating insulin resistance, Type 2 diabetes, hyperlipidemia
and hyperuricemia, while presenting a better adverse effect profile.
SUMMARY OF THE INVENTION
[0014] This present invention provides a method of modulating Type 2 diabetes in a mammal.
The method comprises administering to the mammal a therapeutically effective amount
of the (-) stereoisomer of a compound of Formula I,

wherein R is a member selected from the group consisting of a hydroxy, lower aralkoxy,
di-lower alkylamino-lower alkoxy, lower alkanamido lower alkoxy, benzamido-lower alkoxy,
ureido-lower alkoxy, N'-lower alkyl-ureido-lower alkoxy, carbamoyl-lower alkoxy, halophenoxy
substituted lower alkoxy, carbamoyl substituted phenoxy, carbonyl-lower alkylamino,
N,N-di-lower alkylamino-lower alkylamino, halo substituted lower alkylamino, hydroxy
substituted lower alkylamino, lower alkanolyloxy substituted lower alkylamino, ureido,
and lower alkoxycarbonylamino; and X is a halogen; or a pharmaceutically acceptable
salt thereof, wherein the compound is substantially free of its (+) stereoisomer.
[0015] Some such methods further comprise a compound of Formula II:

wherein R
2 is a member selected from the group consisting of phenyl-lower alkyl, lower alkanamido-lower
alkyl, and benzamido-lower alkyl.
[0016] Some such methods further comprise a compound of Formula III:

[0017] The preferred compound of Formula III is known as "(-) 2-acetamidoethyl 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetate"
or "(-) halofenate."
[0018] The present invention further provides a method for modulating insulin resistance
in a mammal. This method comprises administering to the mammal a therapeutically effective
amount of the (-) stereoisomer of a compound of Formula I. Some such methods further
comprise a compound of Formula II. Some such methods further comprise a compound of
Formula III.
[0019] The present invention further provides a method of alleviating hyperlipidemia in
a mammal. This method comprises administering to the mammal a therapeutically effective
amount of a compound of Formula I. Some such methods further comprise a compound of
Formula II. Some such methods further comprise a compound of Formula III.
[0020] The present invention further provides a method of modulating hyperuricemia in a
mammal. This method comprises administering to the mammal a therapeutically effective
amount of a compound of Formula I. Some such methods further comprise a compound of
Formula II. Some such methods further comprise a compound of Formula III.
[0021] The present invention also provides pharmaceutical compositions. The pharmaceutical
compositions comprise a pharmaceutically acceptable carrier and a therapeutically
effective amount of a compound of Formula I, Formula II or Formula III.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022]
Figure 1 shows the inhibition of cytochrome P450 2C9 (CYP2C9) activity by racemic
halofenic acid, (-) halofenic acid and (+) halofenic acid. The hydroxylation of tolbutamide
was measured in the presence of increasing concentrations of these compounds. Racemic
halofenic acid inhibited CYP 2C9 activity with an IC50 of 0.45 µM and (+) halofenic
acid inhibited CYP 2C9 with an IC50 of 0.22 µM. In contrast, the (-) halofenic acid
was 20-fold less potent with an apparent IC50 of 3.5 µM.
Figure 2 shows the time course of glucose-lowering following a single oral dose of
racemic halofenate, (-) enantiomer of halofenate or (+) enantiomer of halofenate at
250 mg/kg in diabetic ob/ob mice. The (-) enantiomer showed the most rapid onset of
action and the longest duration of action. The decrease in glucose was significant
(p<0.05) for the (-) enantiomer compared to control for all points from 3 to 24 hours.
Racemic halofenate and the (+) enantiomer were also significant (p<0.05) for all points
from 4.5 to 24 hours. The plasma glucose at 24 hours was 217 ± 16.4 mg/dl in animals
treated with the (-) enantiomer, compared to 306 ± 28.5 mg/dl and 259.3 ± 20.8 mg/dl
for animals treated with the (+) enantiomer and the racemate, respectively. The plasma
glucose in the vehicle treated controls was 408 ± 16.2 mg/dl at 24 hours. The (-)
enantiomer was more effective and significantly different (p<0.05) from the (+) enantiomer
at both the 3 hour and 24 hour time points.
Figure 3 shows the ability of racemic halofenate and both the (-) and (+) enantiomers
of halofenate to lower plasma glucose in diabetic ob/ob mice following daily oral
administration. The racemate was given at a dose of 250 mg/kg/day and the enantiomers
were given at doses of 125 mg/kg/day and 250 mg/kg/day. Significant decreases in glucose
levels relative to control animals were observed in animals treated with racemic halofenate
and both the (-) and (+) enantiomers. At the low dose (125 mg/kg) of treatment with
the (-) and (+) enantiomers, the (-) enantiomer was significant at 6, 27 and 30 hours
whereas the (+) enantiomer was significant at only 6 and 27 hours.
Figure 4 shows the plasma insulin levels in the ob/ob mice treated with racemic halofenate
and both the (-) and (+) enantiomers of halofenate in diabetic ob/ob mice following
daily oral administration. The racemate was given at a dose of 250 mg/kg/day and the
enantiomers were given at doses of 125 mg/kg/day and 250 mg/kg/day. Relative to the
vehicle control, insulins were lower in the animals treated with either the racemate
or either of the enantiomers of halofenate. At the high dose, the greatest extent
of reduced plasma insulin was noted at 27 and 30 hours in animals treated with both
the (-) and (+) enantiomers of halofenate following two days of treatment.
Figure 5 shows plasma glucose levels following an overnight fast in ob/ob mice after
5 days treatment with vehicle, racemic halofenate at 250 mg/kg/day, (-) enantiomer
of halofenate at 125 mg/kg/day and 250 mg/kg/day or (+) enantiomer of halofenate at
125 mg/kg/day or 250 mg/kg/day. The control animals were hyperglycemic with plasma
glucose levels of 185.4 ± 12.3 mg/dl. All of the animals treated with halofenate showed
significant (p < 0.01) reductions in glucose. The high doses of both enantiomers lowered
the glucose to near normal levels at 127.3 ± 8.0 mg/dl and 127.2 ± 9.7 mg/dl for the
(-) enantiomer and (+) enantiomer treated animals, respectively.
Figure 6 shows the overnight fasting plasma insulin levels in the ob/ob mice treated
with vehicle, racemic halofenate at 250 mg/kg/day, (-) enantiomer at 125 mg/kg/day
and 250 mg/kg/day or (+) enantiomer of halofenate at 125 mg/kg/day or 250 mg/kg/day
for 5 days. Significantly lower plasma insulins were observed in animals receiving
both doses of (-) enantiomer. The low dose of (+) enantiomer of halofenate did not
lower plasma insulin, although the high dose of the (+) enantiomer resulted in a decrease
in plasma insulin.
Figure 7A shows plasma glucose levels following an oral glucose challenge in Zucker
fatty rats, a model of insulin resistance and Impaired Glucose Tolerance. These animals
were treated with either a vehicle control, racemic halofenate, (-) halofenate or
(+) halofenate 5.5 hours prior to the glucose challenge. The racemate was given at
100 mg/kg and both of the enantiomers were given at 50 and 100 mg/kg. In the control
animals the glucose rose to >250 mg/dl 30 minutes after the challenge, a clear indication
of impaired glucose tolerance. The plasma glucose was reduced in rats that had received
racemic halofenate, especially between 30 - 60 minutes after the challenge. Animals
that received the (-) halofenate at 100 mg/kg had the greatest degree of glucose-lowering
of all the treated animals. Animals treated with the (-) halofenate had lower glucose
levels that persisted at 90-120 minutes, compared to those rats treated with the racemate
or (+) halofenate. Figure 7B compares the incremental area under the curve (AUC) for
the animals in each group. Significant changes (p<0.05) were noted in the groups treated
with both doses of the (-) halofenate. Although the AUC was lower in the other groups
relative to the control, the changes were not significant.
Figure 8 shows the results of a short insulin tolerance test in Zucker fatty rats
that were treated with either a vehicle control, (-) halofenate (50 mg/kg/day) or
(+) halofenate (50 mg/kg/day) for 5 days. This test is a measure of the insulin sensitivity
of the test animals, the slope of the decline in glucose representing a direct measure
of insulin responsiveness. The (-) halofenate-treated animals were significantly more
insulin sensitive than the vehicle-treated (p < 0.01) or the (+) halofenate-treated
(p < 0.05) animals.
Figure 9A shows plasma cholesterol levels in Zucker Diabetic Fatty rats treated for
13 days with racemic halofenate, (-) enantiomer or (+) enantiomer at 50 mg/kg/day,
25 mg/kg/day or 25 mg/kg/day, respectively, relative to a vehicle treated control
group. In both the (-) enantiomer and racemate treated animals, the plasma cholesterol
declined with treatment. The cholesterol in the (+) enantiomer treated animals remained
relatively constant, whereas cholesterol rose in the control animals. Figure 9B compares
the differences in plasma cholesterol between the control group and the treated groups.
The (-) enantiomer was the most active of the species tested.
Figure 10A shows plasma cholesterol levels in Zucker Diabetic Fatty rats treated for
14 days with either (-) enantiomer or (+) enantiomer of halofenate at either 12.5
mg/kg/day (Low dose) or 37.5 mg/kg/day (High dose) relative to a vehicle treated control
group. In the animals treated with the high dose, the (-) enantiomer resulted in the
greatest extent of cholesterol lowering. Figure 10B compares the differences in plasma
cholesterol between the control and treated groups. There were significant differences
in the animals treated with the (-) enantiomer after 7 days at the low dose and after
both 7 and 14 days at the high dose. The (+) enantiomer showed significance only after
7 days of treatment at the high dose.
Figure 11A shows plasma triglyceride levels in Zucker Diabetic Fatty rats treated
with either (-) enantiomer or (+) enantiomer at either 12.5 mg/kg/day (Low dose) or
37.5 mg/kg/day (High dose) relative to a vehicle treated control group. Animals treated
with the high dose of the (-) enantiomer had the lowest triglyceride levels of all
the treatment groups. Figure 11B compares the differences in plasma triglyceride between
the control and treated groups. At 7 days, the high dose of both the (+) and (-) enantiomers
showed significant lowering of plasma triglyceride.
Figure 12 shows plasma glucose levels in Zucker Diabetic Fatty rats treated with vehicle,
(-) halofenate or (+) halofenate at day 0, day 2 and day 3. Treatment with (-) halofenate
significantly reduced plasma glucose concentrations as compared to vehicle-treated
animals.
Figure 13 shows plasma glucose concentrations in a control group of C57BL/6J db/db
mice versus in a group treated with (-) halofenate. Plasma glucose levels in the control
group increased progressively as animals aged, while the increase of plasma glucose
levels in the (-) halofenate treated group was prevented or significantly delayed.
Figure 14 shows plasma insulin levels in a control group of C57BL/6J db/db mice versus
in a group treated with (-) halofenate. Treatment with (-) halofenate maintained the
plasma insulin concentration, while plasma insulin in the control group decreased
progressively.
Figure 15 shows the percentage of non-diabetic mice in a control group of C57BL/6J
db/db mice versus in a group treated with (-) halofenate. About 30% of mice in the
(-) halofenate treated group did not develop diabetes (plasma glucose levels <250
mg/dl), while all of the control group did by the age of 10 weeks.
Figure 16 shows plasma triglyceride levels in a control group of C57BL/6J db/db mice
versus in a group treated with (-) halofenate. Treatment with (-) halofenate alleviated
hyperlipidemia, while there was no alleviation in the control group.
Figure 17 shows the effect of (-) halofenate and (+) halofenate on plasma uric acid
levels in oxonic acid induced hyperuricemic rats. Oral administration of (-) halofenate
significantly reduced plasma uric acid levels. (+) Halofenate also lowered plasma
uric acid levels, but it was not statistically significant.
DEFINITIONS
[0023] The term "mammal" includes, without limitation, humans, domestic animals (
e.
g., dogs or cats), farm animals (cows, horses, or pigs), monkeys, rabbits, mice, and
laboratory animals.
[0024] The term "insulin resistance" can be defined generally as a disorder of glucose metabolism.
More specifically, insulin resistance can be defined as the diminished ability of
insulin to exert its biological action across a broad range of concentrations producing
less than the expected biologic effect.
(see, e.g., Reaven, G. M.,
J. Basic & Clin. Phys. & Pharm. (1998) 9: 387-406 and Flier, J.
Ann Rev. Med. (1983) 34: 145-60). Insulin resistant persons have a diminished ability to properly
metabolize glucose and respond poorly, if at all, to insulin therapy. Manifestations
of insulin resistance include insufficient insulin activation of glucose uptake, oxidation
and storage in muscle and inadequate insulin repression of lipolysis in adipose tissue
and of glucose production and secretion in liver. Insulin resistance can cause or
contribute to polycystic ovarian syndrome, Impaired Glucose Tolerance (IGT), gestational
diabetes, hypertension, obesity, atherosclerosis and a variety of other disorders.
Eventually, the insulin resistant individuals can progress to a point where a diabetic
state is reached. The association of insulin resistance with glucose intolerance,
an increase in plasma triglyceride and a decrease in high-density lipoprotein cholesterol
concentrations, high blood pressure, hyperuricemia, smaller denser low-density lipoprotein
particles, and higher circulating levels of plaminogen activator inhibitor-1), has
been referred to as "Syndrome X"
(see, e.g., Reaven, G. M.,
Physiol. Rev. (1995) 75: 473-486).
[0025] The term "diabetes mellitus" or "diabetes" means a disease or condition that is generally
characterized by metabolic defects in production and utilization of glucose which
result in the failure to maintain appropriate blood sugar levels in the body. The
result of these defects is elevated blood glucose, referred to as "hyperglycemia."
Two major forms of diabetes are Type 1 diabetes and Type 2 diabetes. As described
above, Type 1 diabetes is generally the result of an absolute deficiency of insulin,
the hormone which regulates glucose utilization. Type 2 diabetes often occurs in the
face of normal, or even elevated levels of insulin and can result from the inability
of tissues to respond appropriately to insulin. Most Type 2 diabetic patients are
insulin resistant and have a relative deficiency of insulin, in that insulin secretion
can not compensate for the resistance of peripheral tissues to respond to insulin.
In addition, many Type 2 diabetics are obese. Other types of disorders of glucose
homeostasis include Impaired Glucose Tolerance, which is a metabolic stage intermediate
between normal glucose homeostasis and diabetes, and Gestational Diabetes Mellitus,
which is glucose intolerance in pregnancy in women with no previous history of Type
1 or Type 2 diabetes.
[0026] The term "secondary diabetes" is diabetes resulting from other identifiable etiologies
which include: genetic defects of β cell function
(e.g., maturity onset-type diabetes of youth, referred to as "MODY," which is an early-onset
form of Type 2 diabetes with autosomal inheritance;
see, e.g., Fajans S.
et al.,
Diabet. Med. (1996) (9 Suppl 6): S90-5 and Bell, G.
et al.,
Annu. Rev. Physiol. (1996) 58: 171-86; genetic defects in insulin action; diseases of the exocrine pancreas
(e.g., hemochromatosis, pancreatitis, and cystic fibrosis); certain endocrine diseases
in which excess hormones interfere with insulin action (e.g., growth hormone in acromegaly
and cortisol in Cushing's syndrome); certain drugs that suppress insulin secretion
(e.g., phenytoin) or inhibit insulin action (e.g., estrogens and glucocorticoids);
and diabetes caused by infection (
e.
g., rubella, Coxsackie, and CMV); as well as other genetic syndromes.
[0027] The guidelines for diagnosis for Type 2 diabetes, impaired glucose tolerance, and
gestational diabetes have been outlined by the American Diabetes Association
(see, e.g., The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus,
Diabetes Care, (1999) Vol 2 (Suppl 1): S5-19).
[0028] The term "halofenic acid" refers to the acid form of 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetic
acid.
[0029] The term "hyperinsulinemia" refers to the presence of an abnormally elevated level
of insulin in the blood.
[0030] The term "hyperuricemia" refers to the presence of an abnormally elevated level of
uric acid in the blood.
[0031] The term "secretagogue" means a substance or compound that stimulates secretion.
For example, an insulin secretagogue is a substance or compound that stimulates secretion
of insulin.
[0032] The term "hemoglobin" or "Hb" refers to a respiratory pigment present in erythrocytes,
which is largely responsible for oxygen transport. A hemoglobin molecule comprises
four polypeptide subunits (two α chain systems and two β chain systems, respectively).
Each subunit is formed by association of one globin protein and one heme molecule
which is an iron-protoporphyrin complex. The major class of hemoglobin found in normal
adult hemolysate is adult hemoglobin (referred to as "HbA"; also referred to HbA
0 for distinguishing it from glycated hemoglobin, which is referred to as "HbA
1," described
infra) having α
2β
2 subunits. Trace components such as HbA
2 (α
2δ
2) can also be found in normal adult hemolysate.
[0033] Among classes of adult hemoglobin HbAs, there is a glycated hemoglobin (referred
to as "HbA
1," or "glycosylated hemoglobin"), which may be further fractionated into HbA
1a1, HbA
1a2, HbA
1b, and HbA
1c with an ion exchange resin fractionation. All of these subclasses have the same primary
structure, which is stabilized by formation of an aldimine (Schiff base) by the amino
group of N-terminal valine in the β subunit chain of normal hemoglobin HbA and glucose
(or, glucose-6-phosphate or fructose) followed by formation of ketoamine by Amadori
rearrangement.
[0034] The term "glycosylated hemoglobin" (also referred to as "HbA
1c,", "GHb", "hemoglobin - glycosylated", "diabetic control index" and "glycohemoglobin";
hereinafter referred to as "hemoglobin A
1c") refers to a stable product of the nonenzymatic glycosylation of the β-chain of
hemoglobin by plasma glucose. Hemoglobin A
1c comprises the main portion of glycated hemoglobins in the blood. The ratio of glycosylated
hemoglobin is proportional to blood glucose level. Therefore, hemoglobin A
1c rate of formation directly increases with increasing plasma glucose levels. Since
glycosylation occurs at a constant rate during the 120-day lifespan of an erythrocyte,
measurement of glycosylated hemoglobin levels reflect the average blood glucose level
for an individual during the preceding two to three months. Therefore determination
of the amount of glycosylated hemoglobin HbA
1c can be a good index for carbohydrate metabolism control. Accordingly, blood glucose
levels of the last two months can be estimated on the basis of the ratio of HbA
1c to total hemoglobin Hb. The analysis of the hemoglobin A
1c in blood is used as a measurement enabling long-term control of blood glucose level
(see, e.g., Jain, S.,
et al.,
Diabetes (1989) 38: 1539-1543; Peters A.,
et al.,
JAMA (1996) 276: 1246-1252).
[0035] The term "symptom" of diabetes, includes, but is not limited to, polyuria, polydipsia,
and polyphagia, as used herein, incorporating their common usage. For example, "polyuria"
means the passage of a large volume of urine during a given period; "polydipsia" means
chronic, excessive thirst; and "polyphagia" means excessive eating. Other symptoms
of diabetes include, e.g., increased susceptibility to certain infections (especially
fungal and staphylococcal infections), nausea, and ketoacidosis (enhanced production
of ketone bodies in the blood).
[0036] The term "complication" of diabetes includes, but is not limited to, microvascular
complications and macrovascular complications. Microvascular complications are those
complications which generally result in small blood vessel damage. These complications
include, e.g., retinopathy (the impairment or loss of vision due to blood vessel damage
in the eyes); neuropathy (nerve damage and foot problems due to blood vessel damage
to the nervous system); and nephropathy (kidney disease due to blood vessel damage
in the kidneys). Macrovascular complications are those complications which generally
result from large blood vessel damage. These complications include, e.g., cardiovascular
disease and peripheral vascular disease. Cardiovascular disease refers to diseases
of blood vessels of the heart.
See. e.g., Kaplan, R.
M., et al., "Cardiovascular diseases" in HEALTH AND HUMAN BEHAVIOR, pp. 206-242 (McGraw-Hill,
New York 1993). Cardiovascular disease is generally one of several forms, including,
e.g., hypertension (also referred to as high blood pressure), coronary heart disease,
stroke, and rheumatic heart disease. Peripheral vascular disease refers to diseases
of any of the blood vessels outside of the heart. It is often a narrowing of the blood
vessels that carry blood to leg and arm muscles.
[0037] The term "atherosclerosis" encompasses vascular diseases and conditions that are
recognized and understood by physicians practicing in the relevant fields of medicine.
Atherosclerotic cardiovascular disease, coronary heart disease (also known as coronary
artery disease or ischemic heart disease), cerebrovascular disease and peripheral
vessel disease are all clinical manifestations of atherosclerosis and are therefore
encompassed by the terms "atherosclerosis" and "atherosclerotic disease".
[0038] The term "antihyperlipidemic" refers to the lowering of excessive lipid concentrations
in blood to desired levels.
[0039] The term "antiuricemic" refers to the lowering of excessive uric acid concentrations
in blood to desired levels.
[0040] The term "hyperlipidemia" refers to the presence of an abnormally elevated level
of lipids in the blood. Hyperlipidemia can appear in at least three forms: (1) hypercholesterolemia,
i.
e., an elevated cholesterol level; (2) hypertriglyceridemia,
i.
e., an elevated triglyceride level; and (3) combined hyperlipidemia, i.e., a combination
of hypercholesterolemia and hypertriglyceridemia.
[0041] The term "modulate" refers to the treating, prevention, suppression, enhancement
or induction of a function or condition. For example, the compounds of the present
invention can modulate hyperlipidemia by lowering cholesterol in a human, thereby
suppressing hyperlipidemia.
[0042] The term "treating" means the management and care of a human subject for the purpose
of combating the disease, condition, or disorder and includes the administration of
a compound of the present invention to prevent the onset of the symptoms or complications,
alleviating the symptoms or complications, or eliminating the disease, condition,
or disorder.
[0043] The term "preventing" means the management and care of a human subject such that
the onset of symptoms of a disease, condition or disorder does not occur.
[0044] The term "cholesterol" refers to a steroid alcohol that is an essential component
of cell membranes and myelin sheaths and, as used herein, incorporates its common
usage. Cholesterol also serves as a precursor for steroid hormones and bile acids.
[0045] The term "triglyceride(s)" ("TGs"), as used herein, incorporates its common usage.
TGs consist of three fatty acid molecules esterified to a glycerol molecule and serve
to store fatty acids which are used by muscle cells for energy production or are taken
up and stored in adipose tissue.
[0046] Because cholesterol and TGs are water insoluble, they must be packaged in special
molecular complexes known as "lipoproteins" in order to be transported in the plasma.
Lipoproteins can accumulate in the plasma due to overproduction and/or deficient removal.
There are at least five distinct lipoproteins differing in size, composition, density,
and function. In the cells of the small of the intestine, dietary lipids are packaged
into large lipoprotein complexes called "chylomicrons", which have a high TG and low-cholesterol
content. In the liver, TG and cholesterol esters are packaged and released into plasma
as TG-rich lipoprotein called very low density lipoprotein ("VLDL"), whose primary
function is the endogenous transport of TGs made in the liver or released by adipose
tissue. Through enzymatic action, VLDL can be either reduced and taken up by the liver,
or transformed into intermediate density lipoprotein ("IDL"). IDL, is in turn, either
taken up by the liver, or is further modified to form the low density lipoprotein
("LDL"). LDL is either taken up and broken down by the liver, or is taken up by extrahepatic
tissue. High density lipoprotein ("HDL") helps remove cholesterol from peripheral
tissues in a process called reverse cholesterol transport.
[0047] The term "dyslipidemia" refers to abnormal levels of lipoproteins in blood plasma
including both depressed and/or elevated levels of lipoproteins (e.g., elevated levels
of LDL, VLDL and depressed levels of HDL).
[0048] Exemplary Primary Hyperlipidemia include, but are not limited to, the following:
(1) Familial Hyperchylomicronemia, a rare genetic disorder which causes a deficiency in an enzyme, LP lipase, that
breaks down fat molecules. The LP lipase deficiency can cause the accumulation of
large quantities of fat or lipoproteins in the blood;
(2) Familial Hypercholesterolemia, a relatively common genetic disorder caused where the underlying defect is a series
of mutations in the LDL receptor gene that result in malfunctioning LDL receptors
and/or absence of the LDL receptors. This brings about ineffective clearance of LDL
by the LDL receptors resulting in elevated LDL and total cholesterol levels in the
plasma;
(3) Familial Combined Hyperlipidemia, also known as multiple lipoprotein-type hyperlipidemia; an inherited disorder where
patients and their affected first-degree relatives can at various times manifest high
cholesterol and high triglycerides. Levels of HDL cholesterol are often moderately
decreased;
(4) Familial Defective Apolipoprotein B-100 is a relatively common autosomal dominant genetic abnormality. The defect is caused
by a single nucleotide mutation that produces a substitution of glutamine for arginine
which can cause reduced affinity of LDL particles for the LDL receptor. Consequently,
this can cause high plasma LDL and total cholesterol levels;
(5) Familial Dysbetaliproteinemia, also referred to as Type III Hyperlipoproteinemia, is an uncommon inherited disorder
resulting in moderate to severe elevations of serum TG and cholesterol levels with
abnormal apolipoprotein E function. HDL levels are usually normal; and
(6) Familial Hypertriglyceridemia, is a common inherited disorder in which the concentration of plasma VLDL is elevated.
This can cause mild to moderately elevated triglyceride levels (and usually not cholesterol
levels) and can often be associated with low plasma HDL levels.
[0049] Risk factors in exemplary Secondary Hyperlipidemia include, but are not limited to,
the following: (1) disease risk factors, such as a history of Type 1 diabetes, Type
2 diabetes, Cushing's syndrome, hypothroidism and certain types of renal failure;
(2) drug risk factors, which include, birth control pills; hormones, such as estrogen,
and corticosteroids; certain diuretics; and various β blockers; (3) dietary risk factors
include dietary fat intake per total calories greater than 40%; saturated fat intake
per total calories greater than 10%; cholesterol intake greater than 300 mg per day;
habitual and excessive alcohol use; and obesity.
[0050] The terms "obese" and "obesity" refers to, according to the World Health Organization,
a Body Mass Index (BMI) greater than 27.8 kg/m
2 for men and 27.3 kg/m
2 for women (BMI equals weight (kg)/height (m
2). Obesity is linked to a variety of medical conditions including diabetes and hyperlipidemia.
Obesity is also a known risk factor for the development of Type 2 diabetes (
See, e.g., Barrett-Conner, E.,
Epidemol. Rev. (1989) 11: 172-181; and Knowler, et al.,
Am. J. Clin. Nutr. (1991) 53:1543-1551).
[0051] "Pharmaceutically acceptable salts" refer to the non-toxic alkali metal, alkaline
earth metal, and ammonium salts commonly used in the pharmaceutical industry including
the sodium, potassium, lithium, calcium, magnesium, barium, ammonium, and protamine
zinc salts, which are prepared by methods well known in the art. The term also includes
non-toxic acid addition salts, which are generally prepared by reacting the compounds
of the present invention with a suitable organic or inorganic acid. Representative
salts include, but are not limited to, the hydrochloride, hydrobromide, sulfate, bisulfate,
acetate, oxalate, valerate, oleate, laurate, borate, benzoate, lactate, phosphate,
tosylate, citrate, maleate, fumarate, succinate, tartrate, napsylate, and the like.
[0052] "Pharmaceutically acceptable acid addition salt" refers to those salts which retain
the biological effectiveness and properties of the free bases and which are not biologically
or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic
acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids
such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic
acid, malonic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, citric
acid, benzoic acid, cinnamic acid, mandelic acid, menthanesulfonic acid, ethanesulfonic
acid, p-toluenesulfonic acid, salicylic acid and the like. For a description of pharmaceutically
acceptable acid addition salts as prodrugs.
See, e.g., Bundgaard, H., ed.,
Design of Prodrugs (Elsevier Science Publishers, Amsterdam 1985).
[0053] "Pharmaceutically acceptable ester" refers to those esters which retain, upon hydrolysis
of the ester bond, the biological effectiveness and properties of the carboxylic acid
or alcohol and are not biologically or otherwise undesirable. For a description of
pharmaceutically acceptable esters as prodrugs, see Bundgaard, H.,
supra. These esters are typically formed from the corresponding carboxylic acid and an
alcohol. Generally, ester formation can be accomplished via conventional synthetic
techniques.
(See, e.g., March
Advanced Organic Chemistry, 3rd Ed., p. 1157 (John Wiley & Sons, New York 1985) and references cited therein,
and Mark
et al., Encyclopedia of Chemical Technology, (1980) John Wiley & Sons, New York). The alcohol component of the ester will generally
comprise: (i) a C
2-C
12 aliphatic alcohol that can or can not contain one or more double bonds and can or
can not contain branched carbons; or (ii) a C
7-C
12 aromatic or heteroaromatic alcohols. The present invention also contemplates the
use of those compositions which are both esters as described herein and at the same
time are the pharmaceutically acceptable acid addition salts thereof.
[0054] "Pharmaceutically acceptable amide" refers to those amides which retain, upon hydrolysis
of the amide bond, the biological effectiveness and properties of the carboxylic acid
or amine and are not biologically or otherwise undesirable. For a description of pharmaceutically
acceptable amides as prodrugs,
see, Bundgaard, H., ed.,
supra. These amides are typically formed from the corresponding carboxylic acid and an
amine. Generally, amide formation can be accomplished via conventional synthetic techniques.
See, e.g., March
et al.,
Advanced Organic Chemistry, 3rd Ed., p. 1152 (John Wiley & Sons, New York 1985), and Mark
et al., Encyclopedia of Chemical Technology, (John Wiley & Sons, New York 1980). The present invention also contemplates the use
of those compositions which are both amides as described herein and at the same time
are the pharmaceutically acceptable acid addition salts thereof.
DETAILED DESCRIPTION
(1) General
[0055] The present invention is directed to use of a preferred (-) (3-trihalomethylphenoxy)
(4-halophenyl) acetic acid derivatives having the following general formula:

[0056] In Formula I, R is a functional group including, but not limited to, the following:
hydroxy, lower aralkoxy, e.g., phenyl-lower alkoxy such as benzyloxy, phenethyloxy;
di-lower alkylamino-lower alkoxy and the nontoxic, pharmacologically acceptable acid
addition salts thereof, e.g., dimethylaminoethoxy, diethylaminoethoxy hydrochloride,
diethylaminoethoxy citrate, diethylaminopropoxy; lower alkanamido lower alkoxy,
e.g., formamidoethoxy, acetamidoethoxy or acetamidopropoxy; benzamido-lower alkoxy,
e.g., benzamidoethoxy or benzamidopropoxy; ureido-lower alkoxy,
e.g., ureidoethoxy or 1-methyl-2-ureidoethoxy; N'-lower alkyl-ureido-lower alkoxy,
i.e., R
1NH-CONH-C
nH
2n-O- wherein R
1 represents lower alkyl and
n is an integer having a value of from 1 to about 5,
e.g., N'-ethyl-ureidoethoxy or N'-ethyl-ureidopropoxy; carbamoyl-lower alkoxy,
e.g., carbamoylmethoxy or carbamoylethoxy; halophenoxy substituted lower alkoxy,
e.g., 2-(4-chlorophenoxy) ethoxy or 2 - (4 - chlorophenoxy)-2-methylpropoxy; carbamoyl
substituted phenoxy,
e.g., 2-carbamoylphenoxy; carboxy-lower alkylamino and the nontoxic, pharmacologically
acceptable amine addition salts thereof,
e.g., carboxymethylamino cyclohexylamine salt or carboxyethylamine; N,N-di-lower alkylamino-lower
alkylamino and the nontoxic, pharmacologically acceptable acid solution salts thereof,
e.g., N,N-dimethylaminoethylamino hydrochloride, N,N-diethylaminoethylamino, N,N-diethylaminoethylamino
citrate, or N,N-dimethylaminopropylamino citrate; halo substituted lower alkylamino,
e.g., 2-chloroethylamino or 4-chlorobutylamino; hydroxy substituted lower alkylamino,
e.g., 2-hydroxyethylamino, or 3-hydroxypropylamino; lower alkanoyloxy substituted
lower alkylamino, e.g., acetoxyethylamino or acetoxypropylamino; ureido; lower alkoxycarbonylamino,
e.g., methoxycarbonylamino (
i.e., -NHCOOCH
3), or ethyoxycarbonylamino (
i.e., CHCOOC
2H
5)- In a preferred embodiment, R is selected such that it is a hydrolyzable moiety,
such as an ester or amide, and upon hydrolysis of the ester or amide bond, the compound
is biologically active such as pharmaceutically acceptable esters or amides as prodrugs.
X, in formula I, is a halogen, e.g., chloro, bromo, fluoro or iodo.
[0057] In a preferred embodiment, the present invention relates to use of the (-) (3 - trihalomethylphenoxy)(4-halophenyl)
acetic acid derivatives having the following general formula:

[0058] In Formula II, R
2 is a functional group including, but not limited to, the following: hydrogen, phenyl-lower
alkyl, e.g., benzyl; lower alkanamido-lower alkyl, e.g., acetamidoethyl; or benzamido-lower
alkyl, e.g., benzamidoethyl. X, in Formula II, is a halogen, e.g., chloro, bromo,
fluoro or iodo.
[0059] In a further preferred embodiment, the present invention relates to the use of a
compound having the formula:

[0060] The compound of Formula III is referred to as "(-) 2-acetamidoethyl 4-chlorophenyl-(3-trifluoromethylphenoxy)
acetate" (also referred to as "(-) halofenate").
[0061] Changes in drug metabolism mediated by inhibition of cytochrome P450 enzymes has
a very high potential to precipitate significant adverse effects in patients. Such
effects were previously noted in patients treated with racemic halofenate. In the
present studies, racemic halofenic acid was found to inhibit cytochrome P450 2C9,
an enzyme known to play a significant role in the metabolism of specific drugs. This
can lead to significant problems with drug interactions with anticoagulants, anti-inflammatory
agents and other drugs metabolized by this enzyme. However, quite surprisingly, a
substantial difference was observed between the enantiomers of halofenic acid in their
inability to inhibit cytochrome P450 2C9, the (-) enantiomer being about twenty-fold
less active whereas the (+) enantiomer was quite potent
(see Example 7). Thus, use of the (-) enantiomer of compounds in Formula I, Formula II
or Formula III will avoid the inhibition of this enzyme and the adverse effects on
drug metabolism previously observed with racemic halofenate.
[0062] The present invention encompasses a method of modulating insulin resistance in a
mammal, the method comprising: administering to the mammal a therapeutically effective
amount of a compound having the general structure of Formula I or a pharmaceutically
acceptable salt thereof. In a presently preferred embodiment, the compound has the
general structure of Formula II. In a further preferred embodiment, the compound has
the structure of Formula III. Quite surprisingly, the method avoids the adverse effects
associated with the administration of a racemic mixture of halofenate by providing
an amount of the (-) stereoisomer of the compounds in Formula I, Formula II or Formula
III which is insufficient to cause the adverse effects associated with the inhibition
of cytochrome P450 2C9.
[0063] The present invention also encompasses a method of modulating Type 2 diabetes in
a mammal, the method comprising: administering to the mammal a therapeutically effective
amount of a compound having the general structure of Formula I or a pharmaceutically
acceptable salt thereof. In a presently preferred embodiment, the compound has the
general structure of Formula II. In a further preferred embodiment, the compound has
the structure of Formula III. Quite surprisingly, the method avoids the adverse effects
associated.with the administration of a racemic mixture of halofenate by providing
an amount of the (-) stereoisomer of the compounds in Formula I, Formula II or Formula
III which is insufficient to cause the adverse effects associated with the inhibition
of cytochrome P450 2C9.
[0064] The present invention further encompasses a method of modulating hyperlipidemia in
a mammal, the method comprising: administering to the mammal a therapeutically effective
amount of a compound having the general structure of Formula I or a pharmaceutically
acceptable salt thereof. In a presently preferred embodiment, the compound has the
general structure of Formula II. In a further preferred embodiment, the compound has
the structure of Formula III. Quite surprisingly, the method avoids the adverse effects
associated with the administration of a racemic mixture of halofenate by providing
an amount of the (-) stereoisomer of the compounds in Formula I, Formula II or Formula
III which is insufficient to cause the adverse effects associated with the inhibition
of cytochrome P450 2C9.
[0065] The racemic mixture of the halofenate
(i.e., a 1:1 racemic mixture of the two enantiomers) possesses antihyperlipidemic activity
and provides therapy and a reduction of hyperglycemia related to diabetes when combined
with certain other drugs commonly used to treat this disease. However, this racemic
mixture, while offering the expectation of efficacy, causes adverse effects. The term
"adverse effects" includes, but is not limited to, nausea, gastrointestinal ulcers,
and gastrointestinal bleeding. Other side effects that have been reported with racemic
halofenate include potential problems with drug-drug interactions, especially including
difficulties controlling anticoagulation with Coumadin™. Utilizing the substantially
pure compounds of the present invention results in clearer dose related definitions
of efficacy, diminished adverse effects, and accordingly, an improved therapeutic
index. As such, it has now been discovered that it is more desirable and advantageous
to administer the (-) enantiomer of halofenate instead of racemic halofenate.
[0066] The present invention further encompasses a method of modulating hyperuricemia in
a mammal, the method comprising: administering to the mammal a therapeutically effective
amount of a compound having the general structure of Formula I or a pharmaceutically
acceptable salt thereof. In a presently preferred embodiment, the compound has the
general structure of Formula II. In a further preferred embodiment, the compound has
the structure of Formula III. Quite surprisingly, the method avoids the adverse effects
associated with the administration of a racemic mixture of halofenate by providing
an amount of the (-) stereoisomer of the compounds in Formula I, Formula II or Formula
III which is insufficient to cause the adverse effects associated with the inhibition
of cytochrome P450 2C9.
(2) (-) Enantiomers of Formula I, Formula II and Formula III
[0067] Many organic compounds exist in optically active forms, i.e., they have the ability
to rotate the plane of plane-polarized light. In describing an optically active compound,
the prefixes R and S are used to denote the absolute configuration of the molecule
about its chiral center(s). The prefixes "d" and "1" or (+) and (-) are employed to
designate the sign of rotation of plane-polarized light by the compound, with (-)
or 1 meaning that the compound is "levorotatory" and with (+) or d is meaning that
the compound is "dextrorotatory". There is no correlation between nomenclature for
the absolute stereochemistry and for the rotation of an enantiomer. For a given chemical
structure, these compounds, called "stereoisomers," are identical except that they
are mirror images of one another. A specific stereoisomer can also be referred to
as an "enantiomer," and a mixture of such isomers is often called an "enantiomeric"
or "racemic" mixture.
See, e.g., Streitwiesser, A. & Heathcock, C.H., INTRODUCTION TO ORGANIC CHEMISTRY, 2
nd Edition, Chapter 7 (MacMillan Publishing Co., U.S.A. 1981).
[0068] The chemical synthesis of the racemic mixture of halofenates (3-trihalomethylphenoxy)
(4-halophenyl) acetic acid derivatives can be performed by the methods described in
U.S. Patent No. 3,517,050, the teaching of which are incorporated herein by reference.
The synthesis of the compounds of the present invention is further described in the
Examples,
supra. The individual enantiomers can be obtained by resolution of the racemic mixture
of enantiomers using conventional means known to and used by those of skill in the
art.
See, e.g., Jaques, J.,
et al., in ENANTIOMERS, RACEMATES, AND RESOLUTIONS, John Wiley and Sons, New York (1981).
Other standard methods of resolution known to those skilled in the art, including
but not limited to, simple crystallization and chromatographic resolution, can also
be used (
see, e.g., STEREOCHEMISTRY OF CARBON COMPOUNDS (1962) E. L. Eliel, McGraw Hill; Lochmuller,
J.
Chromatography (1975) 113,283-302). Additionally, the compounds of the present invention, i.e.,
the optically pure isomers, can be prepared from the racemic mixture by enzymatic
biocatalytic resolution. Enzymatic biocatalytic resolution has been described previously
(see, e.g., U.S. Patent Nos. 5,057,427 and 5,077,217, the disclosures of which are incorporated
herein by reference). Other methods of obtaining enantiomers include stereospecific
synthesis
(see, e.g., Li, A. J.
et al., Pharm. Sci. (1997) 86: 1073-1077).
[0069] The term "substantially free of its (+) stereoisomer," as used herein, means that
the compositions contain a substantially greater proportion of the (-) isomer of halofenate
in relation to the (+) isomer. In a preferred embodiment, the term "substantially
free of its (+) stereoisomer," as used herein, means that the composition is at least
90% by weight of the (-) isomer and 10% by weight or less of the (+) isomer. In a
more preferred embodiment, the term "substantially free of its (+) stereoisomer,"
as used herein, means that the composition contains at least 99% by weight of the
(-) isomer and 1% by weight or less of the (+) isomer. In the most preferred embodiment,
the term "substantially free of its (+) stereoisomer," means that the composition
contains greater than 99% by weight of the (-) isomer. These percentages are based
upon the total amount of halofenate in the composition. The terms "substantially optically
pure (1) isomer of halofenate," "substantially optically pure (1) halofenate," "optically
pure (1) isomer of halofenate" and "optically pure (1) halofenate" all refer to the
(-) isomer and are encompassed by the above-described amounts. In addition, the terms
"substantially optically pure (d) isomer of halofenate," "substantially optically
pure (d) halofenate," "optically pure (d) isomer of halofenate" and "optically pure
(d) halofenate" all refer to the (+) isomer and are encompassed by the above-described
amounts.
[0070] The term "enantiomeric excess" or "ee" is related to the term "optical purity" in
that both are measures of the same phenomenon. The value of ee will be a number from
0 to 100, 0 being racemic and 100 being pure, single enantiomer. A compound that is
referred to as 98% optically pure can be described as 96% ee.
(3) Combination Therapy With Additional Active Agents
[0071] The compositions can be formulated and administered in the same manner as detailed
below. "Formulation" is defined as a pharmaceutical preparation that contains a mixture
of various excipients and key ingredients that provide a relatively stable, desirable
and useful form of a compound or drug. For the present invention, "formulation" is
included within the meaning of the term "composition." The compounds of the present
invention can be used effectively alone or in combination with one or more additional
active agents depending on the desired target therapy
(see, e.g., Turner, N.
et al. Prog. Drug Res. (1998) 51: 33-94; Haffner, S.
Diabetes Care (1998) 21: 160-178; and DeFronzo, R.
et al. (eds.),
Diabetes Reviews (1997) Vol. 5 No. 4). A number of studies have investigated the benefits of combination
therapies with oral agents
(see, e.g., Mahler, R.,J.
Clin. Endocrinol. Metab. (1999) 84: 1165-71; United Kingdom Prospective Diabetes Study Group: UKPDS 28,
Diabetes Care (1998) 21: 87-92; Bardin, C. W.,(ed.), CURRENT THERAPY IN ENDOCRINOLOGY AND METABOLISM,
6
th Edition (Mosby - Year Book, Inc., St. Louis, MO 1997); Chiasson, J.
et al.,
Ann. Intern. Med. (1994) 121: 928-935; Coniff, R.
et al., Clin. Ther. (1997) 19: 16-26; Coniff, R.
et al., Am. J. Med. (1995) 98: 443-451; and Iwamoto, Y.
et al., Diabet. Med. (1996) 13 365-370; Kwiterovich, P.
Am. J. Cardiol (1998) 82(12A): 3U-17U). These studies indicate that diabetes and hyperlipidemia
modulation can be further improved by the addition of a second agent to the therapeutic
regimen. Combination therapy includes administration of a single pharmaceutical dosage
formulation which contains a compound having the general structure of Formula I (or
Formula II or Formula III) and one or more additional active agents, as well as administration
of a compound of Formula I (or Formula II or Formula III) and each active agent in
its own separate pharmaceutical dosage formulation. For example, a compound of Formula
I and an HMG-CoA reductase inhibitor can be administered to the human subject together
in a single oral dosage composition, such as a tablet or capsule, or each agent can
be administered in separate oral dosage formulations. Where separate dosage formulations
are used, a compound of Formula I and one or more additional active agents can be
administered at essentially the same time (i.e., concurrently), or at separately staggered
times (i.e., sequentially). Combination therapy is understood to include all these
regimens.
[0072] An example of combination therapy that modulates (prevents the onset of the symptoms
or complications associated) atherosclerosis, wherein a compound of Formula I is administered
in combination with one or more of the following active agents: an antihyperlipidemic
agent; a plasma HDL-raising agent; an antihypercholesterolemic agent, such as a cholesterol
biosynthesis inhibitor, e.g., an hydroxymethylglutaryl (HMG) CoA reductase inhibitor
(also referred to as statins, such as lovastatin, simvastatin, pravastain, fluvastatin,
and atorvastatin), an HMG-CoA synthase inhibitor, a squalene epoxidase inhibitor,
or a squalene synthetase inhibitor (also known as squalene synthase inhibitor); an
acyl-coenzyme A cholesterol acyltransferase (ACAT) inhibitor, such as melinamide;
probucol; nicotinic acid and the salts thereof and niacinamide; a cholesterol absorption
inhibitor, such as β-sitosterol; a bile acid sequestrant anion exchange resin, such
as cholestyramine, colestipol or dialkylaminoalkyl derivatives of a cross-linked dextran;
an LDL (low density lipoprotein) receptor inducer; fibrates, such as clofibrate, bezafibrate,
fenofibrate, and gemfibrizol; vitamin B
6 (also known as pyridoxine) and the pharmaceutically acceptable salts thereof, such
as the HCl salt; vitamin B
12 (also known as cyanocobalamin); vitamin B
3 (also known as nicotinic acid and niacinamide,
supra); anti-oxidant vitamins, such as vitamin C and E and beta carotene; a beta-blocker;
an angiotensin II antagonist; an angiotensin converting enzyme inhibitor; and a platelet
aggregation inhibitor, such as fibrinogen receptor antagonists (i.e., glycoprotein
IIb/IIIa fibrinogen receptor antagonists) and aspirin. As noted above, the compounds
of Formula I can be administered in combination with more than one additional active
agent, for example, a combination of a compound of Formula I with an HMG-CoA reductase
inhibitor (e.g., lovastatin, simvastatin and pravastatin) and aspirin, or a compound
of Formula I with an HMG-CoA reductase inhibitor and a β blocker.
[0073] Another example of combination therapy can be seen in treating obesity or obesity-related
disorders, wherein the compounds of Formula I can be effectively used in combination
with, for example, phenylpropanolamine, phentermine, diethylpropion, mazindol; fenfluramine,
dexfenfluramine, phentiramine, β
3 adrenoceptor agonist agents; sibutramine, gastrointestinal lipase inhibitors (such
as orlistat), and leptins. Other agents used in treating obesity or obesity-related
disorders wherein the compounds of Formula I can be effectively used in combination
with, for example, neuropeptide Y, enterostatin, cholecytokinin, bombesin, amylin,
histamine H
3 receptors, dopamine D
2 receptors, melanocyte stimulating hormone, corticotrophin releasing factor, galanin
and gamma amino butyric acid (GABA).
[0074] Still another example of combination therapy can be seen in modulating diabetes (or
treating diabetes and its related symptoms, complications, and disorders), wherein
the compounds of Formula I can be effectively used in combination with, for example,
sulfonylureas (such as chlorpropamide, tolbutamide, acetohexamide, tolazamide, glyburide,
gliclazide, glynase, glimepiride, and glipizide), biguanides (such as metformin),
thiazolidinediones (such as ciglitazone, pioglitazone, troglitazone, and rosiglitazone);
dehydroepiandrosterone (also referred to as DHEA or its conjugated sulphate ester,
DHEA-SO
4); antiglucocorticoids; TNFα inhibitors; α-glucosidase inhibitors (such as acarbose,
miglitol, and voglibose), pramlintide (a synthetic analog of the human hormone amylin),
other insulin secretogogues (such as repaglinide, gliquidone, and nateglinide), insulin,
as well as the active agents discussed above for treating atherosclerosis.
[0075] A further example of combination therapy can be seen in modulating hyperlipidemia
(treating hyperlipidemia and its related complications), wherein the compounds of
Formula I can be effectively used in combination with, for example, statins (such
as fluvastatin, lovastatin, pravastatin or simvastatin), bile acid-binding resins
(such as colestipol or cholestyramine), nicotinic acid, probucol, betacarotene, vitamin
E, or vitamin C.
[0076] In accordance with the present invention, a therapeutically effective amount of a
compound of Formula I (or Formula II or Formula III) can be used for the preparation
of a pharmaceutical composition useful for treating diabetes, treating hyperlipidemia,
treating hyperuricemia, treating obesity, lowering triglyceride levels, lowering cholesterol
levels, raising the plasma level of high density lipoprotein, and for treating, preventing
or reducing the risk of developing atherosclerosis.
[0077] Additionally, an effective amount of a compound of Formula I (or Formula II or Formula
III) and a therapeutically effective amount of one or more active agents selected
from the group consisting of: an antihyperlipidemic agent; a plasma HDL-raising agent;
an antihypercholesterolemic agent, such as a cholesterol biosynthesis inhibitor, for
example, an HMG-CoA reductase inhibitor, an HMG-CoA synthase inhibitor, a squalene
epoxidase inhibitor, or a squalene synthetase inhibitor (also known as squalene synthase
inhibitor); an acyl-coenzyme A cholesterol acyltransferase inhibitor; probucol; nicotinic
acid and the salts thereof; niacinamide; a cholesterol absorption inhibitor; a bile
acid sequestrant anion exchange resin; a low density lipoprotein receptor inducer;
clofibrate, fenofibrate, and gemfibrozil; vitamin B
6 and the pharmaceutically acceptable salts thereof; vitamin B
12; an anti-oxidant vitamin; a β -blocker; an angiotensin II antagonist; an angiotensin
converting enzyme inhibitor; a platelet aggregation inhibitor; a fibrinogen receptor
antagonist; aspirin; phentiramines, β
3 adrenergic receptor agonists; sulfonylureas, biguanides, α-glucosidase inhibitors,
other insulin secretogogues, and insulin can be used together for the preparation
of a pharmaceutical composition useful for the above-described treatments.
(4) Pharmaceutical Formulations and Methods of Administration
[0078] In the methods of the present invention, the compounds of Formula I, Formula II,
and Formula III can be delivered or administered to a mammal,
e.g., a human patient or subject, alone, in the form of a pharmaceutically acceptable
salt or hydrolyzable precursor thereof, or in the form of a pharmaceutical composition
where the compound is mixed with suitable carriers or excipient(s) in a therapeutically
effective amount. By a "therapeutically effective dose", "therapeutically effective
amount", or, interchangeably, "pharmacologically acceptable dose" or "pharmacologically
acceptable amount", it is meant that a sufficient amount of the compound of the present
invention, alternatively, a combination, for example, a compound of the present invention,
which is substantially free of its (+) stereoisomer, and a pharmaceutically acceptable
carrier, will be present in order to achieve a desired result,
e.g., alleviating a symptom or complication of Type 2 diabetes.
[0079] The compounds of Formula I, Formula II, and Formula III that are used in the methods
of the present invention can be incorporated into a variety of formulations for therapeutic
administration. More particularly, the compounds of Formula I (or Formula II or Formula
III) can be formulated into pharmaceutical compositions by combination with appropriate,
pharmaceutically acceptable carriers or diluents, and can be formulated into preparations
in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, pills, powders,
granules, dragees, gels, slurries, ointments, solutions, suppositories, injections,
inhalants and aerosols. As such, administration of the compounds can be achieved in
various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal,
transdermal, intratracheal administration. Moreover, the compound can be administered
in a local rather than systemic manner, in a depot or sustained release formulation.
In addition, the compounds can be administered in a liposome.
[0080] In addition, the compounds of Formula I, Formula II or Formula III can be formulated
with common excipients, diluents or carriers, and compressed into tablets, or formulated
as elixirs or solutions for convenient oral administration, or administered by the
intramuscular or intravenous routes. The compounds can be administered transdermally,
and can be formulated as sustained release dosage forms and the like.
[0081] Compounds of Formula I, Formula II, or Formula III can be administered alone, in
combination with each other, or they can be used in combination with other known compounds
(discussed
supra). In pharmaceutical dosage forms, the compounds can be administered in the form of
their pharmaceutically acceptable salts thereof. They can contain hydrolyzable moieties.
They can also be used alone or in appropriate association, as well as in combination
with, other pharmaceutically active compounds.
[0082] Suitable formulations for use in the present invention are found in
Remington's Pharmaceutical Sciences (Mack Publishing Company (1985) Philadelphia, PA, 17th ed.), which is incorporated
herein by reference. Moreover, for a brief review of methods for drug delivery,
see, Langer,
Science (1990) 249:1527-1533, which is incorporated herein by reference. The pharmaceutical
compositions described herein can be manufactured in a manner that is known to those
of skill in the art, i.e., by means of conventional mixing, dissolving, granulating,
dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing
processes. The following methods and excipients are merely exemplary and are in no
way limiting.
[0083] For injection, the compounds can be formulated into preparations by dissolving, suspending
or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other
similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids
or propylene glycol; and if desired, with conventional additives such as solubilizers,
isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
Preferably, the compounds of the present invention can be formulated in aqueous solutions,
preferably in physiologically compatible buffers such as Harks's solution, Ringer's
solution, or physiological saline buffer. For transmucosal administration, penetrants
appropriate to the barrier to be permeated are used in the formulation. Such penetrants
are generally known in the art.
[0084] For oral administration, the compounds of Formula I, Formula II, or Formula III can
be formulated readily by combining with pharmaceutically acceptable carriers that
are well known in the art. Such carriers enable the compounds to be formulated as
tablets, pills, dragees, capsules, emulsions, lipophilic and hydrophilic suspensions,
liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a
patient to be treated. Pharmaceutical preparations for oral use can be obtained by
mixing the compounds with a solid excipient, optionally grinding a resulting mixture,
and processing the mixture of granules, after adding suitable auxiliaries, if desired,
to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers
such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations
such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin,
gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose,
and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents can be added,
such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof
such as sodium alginate.
[0085] Dragee cores are provided with suitable coatings. For this purpose, concentrated
sugar solutions can be used, which can optionally contain gum arabic, talc, polyvinyl
pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions,
and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added
to the tablets or dragee coatings for identification or to characterize different
combinations of active compound doses.
[0086] Pharmaceutical preparations which can be used orally include push-fit capsules made
of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such
as glycerol or sorbitol. The push-fit capsules can contain the active ingredients
in admixture with filler such as lactose, binders such as starches, and/or lubricants
such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules,
the active compounds can be dissolved or suspended in suitable liquids, such as fatty
oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers can
be added. All formulations for oral administration should be in dosages suitable for
such administration.
[0087] For buccal administration, the compositions can take the form of tablets or lozenges
formulated in conventional manner.
[0088] For administration by inhalation, the compounds for use according to the present
invention are conveniently delivered in the form of an aerosol spray presentation
from pressurized packs or a nebulizer, with the use of a suitable propellant,
e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon
dioxide or other suitable gas, or from propellant-free, dry-powder inhalers. In the
case of a pressurized aerosol the dosage unit can be determined by providing a valve
to deliver a metered amount. Capsules and cartridges of,
e.g., gelatin for use in an inhaler or insufflator can be formulated containing a powder
mix of the compound and a suitable powder base such as lactose or starch.
[0089] The compounds can be formulated for parenteral administration by injection,
e.g., by bolus injection or continuous infusion. Formulations for injection can be presented
in unit dosage form,
e.g., in ampules or in multidose containers, with an added preservative. The compositions
can take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles,
and can contain formulator agents such as suspending, stabilizing and/or dispersing
agents.
[0090] Pharmaceutical formulations for parenteral administration include aqueous solutions
of the active compounds in water-soluble form. Additionally, suspensions of the active
compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic
solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid
esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions
can coritain substances which increase the viscosity of the suspension, such as sodium
carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension can also
contain suitable stabilizers or agents which increase the solubility of the compounds
to allow for the preparation of highly concentrated solutions. Alternatively, the
active ingredient can be in powder form for constitution with a suitable vehicle,
e.g., sterile pyrogen-free water, before use.
[0091] The compounds can also be formulated in rectal compositions such as suppositories
or retention enemas,
e.g., containing conventional suppository bases such as cocoa butter, carbowaxes, polyethylene
glycols or other glycerides, all of which melt at body temperature, yet are solidified
at room temperature.
[0092] In addition to the formulations described previously, the compounds can also be formulated
as a depot preparation. Such long acting formulations can be administered by implantation
(for example subcutaneously or intramuscularly) or by intramuscular injection. Thus,
for example, the compounds can be formulated with suitable polymeric or hydrophobic
materials (for example as an emulsion in an acceptable oil) or ion exchange resins,
or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
[0093] Alternatively, other delivery systems for hydrophobic pharmaceutical compounds can
be employed. Liposomes and emulsions are well known examples of delivery vehicles
or carriers for hydrophobic drugs. In a presently preferred embodiment, long-circulating,
i.e., stealth, liposomes can be employed. Such liposomes are generally described in
Woodle,
et al., U.S. Patent No. 5,013,556, the teaching of which is hereby incorporated by reference.
The compounds of the present invention can also be administered by controlled release
means and/or delivery devices such as those described in U.S. Pat. Nos. 3,845,770;
3,916,899; 3,536,809; 3,598,123; and 4,008,719; the disclosures of which are hereby
incorporated by reference.
[0094] Certain organic solvents such as dimethylsulfoxide (DMSO) also can be employed, although
usually at the cost of greater toxicity. Additionally, the compounds can be delivered
using a sustained-release system, such as semipermeable matrices of solid hydrophobic
polymers containing the therapeutic agent. Various types of sustained-release materials
have been established and are well known by those skilled in the art. Sustained-release
capsules can, depending on their chemical nature, release the compounds for a few
hours up to over 100 days.
[0095] The pharmaceutical compositions also can comprise suitable solid or gel phase carriers
or excipients. Examples of such carriers or excipients include but are not limited
to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives,
gelatin, and polymers such as polyethylene glycols.
[0096] Pharmaceutical compositions suitable for use in the present invention include compositions
wherein the active ingredients are contained in a therapeutically effective amount.
The amount of composition administered will, of course, be dependent on the subject
being treated, on the subject's weight, the severity of the affliction, the manner
of administration and the judgment of the prescribing physician. Determination of
an effective amount is well within the capability of those skilled in the art, especially
in light of the detailed disclosure provided herein.
[0097] For any compound used in the method of the present invention, a therapeutically effective
dose can be estimated initially from cell culture assays or animal models.
[0098] Moreover, toxicity and therapeutic efficacy of the compounds described herein can
be determined by standard pharmaceutical procedures in cell cultures or experimental
animals,
e.
g., by determining the LD
50, (the dose lethal to 50% of the population) and the ED
50 (the dose therapeutically effective in 50% of the population). The dose ratio between
toxic and therapeutic effect is the therapeutic index and can be expressed as the
ratio between LD
50 and ED
50. Compounds which exhibit high therapeutic indices are preferred. The data obtained
from these cell culture assays and animal studies can be used in formulating a dosage
range that is not toxic for use in human. The dosage of such compounds lies preferably
within a range of circulating concentrations that include the ED
50 with little or no toxicity. The dosage can vary within this range depending upon
the dosage form employed and the route of administration utilized. The exact formulation,
route of administration and dosage can be chosen by the individual physician in view
of the patient's condition.
(See, e.g., Fingl
et al. 1975 In:
The Pharmacological Basis of Therapeutics, Ch. 1).
[0099] The amount of active compound that can be combined with a carrier material to produce
a single dosage form will vary depending upon the disease treated, the mammalian species,
and the particular mode of administration. However, as a general guide, suitable unit
doses for the compounds of the present invention can, for example, preferably contain
between 100 mg to about 3000 mg of the active compound. A preferred unit dose is between
500 mg to about 1500 mg. A more preferred unit dose is between 500 to about 1000 mg.
Such unit doses can be administered more than once a day, for example 2, 3, 4, 5 or
6 times a day, but preferably 1 or 2 times per day, so that the total daily dosage
for a 70 kg adult is in the range of 0.1 to about 250 mg per kg weight of subject
per administration. A preferred dosage is 5 to about 250 mg per kg weight of subject
per administration, and such therapy can extend for a number of weeks or months, and
in some cases, years. It will be understood, however, that the specific dose level
for any particular patient will depend on a variety of factors including the activity
of the specific compound employed; the age, body weight, general health, sex and diet
of the individual being treated; the time and route of administration; the rate of
excretion; other drugs which have previously been administered; and the severity of
the particular disease undergoing therapy, as is well understood by those of skill
in the area.
[0100] A typical dosage can be one 10 to about 1500 mg tablet taken once a day, or, multiple
times per day, or one time-release capsule or tablet taken once a day and containing
a proportionally higher content of active ingredient. The time-release effect can
be obtained by capsule materials that dissolve at different pH values, by capsules
that release slowly by osmotic pressure, or by any other known means of controlled
release.
[0101] It can be necessary to use dosages outside these ranges in some cases as will be
apparent to those skilled in the art. Further, it is noted that the clinician or treating
physician will know how and when to interrupt, adjust, or terminate therapy in conjunction
with individual patient response.
(5) Protecting Groups
[0102] Certain compounds having the general structure of Formula I and II may require the
use of protecting groups to enable their successful elaboration into the desired structure.
Protecting groups can be chosen with reference to Greene, T. W.,
et al.,
Protective Groups in Organic Synthesis, John Wiley & Sons, Inc., 1991. The blocking groups are readily removable, i.e., they
can be removed, if desired, by procedures which will not cause cleavage or other disruption
of the remaining portions of the molecule. Such procedures include chemical and enzymatic
hydrolysis, treatment with chemical reducing or oxidizing agents under mild conditions,
treatment with fluoride ion, treatment with a transition metal catalyst and a nucleophile,
and catalytic hydrogenation.
[0103] Examples of suitable hydroxyl protecting groups are: trimethylsilyl, triethylsilyl,
o-nitrobenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, t-butyldiphenylsilyl, t-butyldimethylsilyl,
benzyloxycarbonyl, t-butyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl, and allyloxycarbonyl.
Examples of suitable carboxyl protecting groups are benzhydryl, o-nitrobenzyl, p-nitrobenzyl,
2-naphthylmethyl, allyl, 2-chloroallyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl,
t-butyldimethylsilyl, t-butyldiphenylsilyl, 2-(trimethylsilyl)ethyl, phenacyl, p-methoxybenzyl,
acetonyl, p-methoxyphenyl, 4-pyridylmethyl and t-butyl.
(6) Process
[0104] Processes for making the compounds of the present invention are generally depicted
in Schemes 1 and 2 (and further described in the Examples):

[0105] According to Scheme 1, a substituted phenyl acetonitrile is converted to a substituted
phenyl acetic acid. The substituted phenyl acetic acid is converted to an activated
acid derivative (e.g., acid chloride), followed by halogenation at the alpha-carbon
and esterification with an alcohol. The halogenated ester is treated with a substituted
phenol (e.g., 3-trifluoromethylphenol), yielding an aryl ether, which is hydrolyzed
to form a carboxylic acid derivative. The acid derivated is converted to an activated
acid derivative and subsequently treated with a nucleophile (e.g., N-acetylethanolamine)
to afford the desired product.
[0106] According to Scheme 2, a substituted phenyl acetic acid is converted to an activated
acid derivative (e.g., acid chloride) followed by halogenation at the alpha-carbon.
The activated acid portion of the molecule is reacted with a nucleophile (e.g., N-acetylethanolamine)
to provide a protected acid. The halogenated, protected acid is treated with a substituted
phenol (e.g., 3-trifluoromethylphenol), yielding the desired product.
[0107] The stereoisomers of the compounds of the present invention can be prepared by using
reactants or reagents or catalysts in their single enantiomeric form in the process
wherever possible or by resolving the mixture of stereoisomers by conventional methods,
discussed
supra and in the Examples. Some of the preferred methods include use of microbial resolution,
resolving the diastereomeric salts formed with chiral acids or chiral bases and chromatography
using chiral supports.
(7) Kits
[0108] In addition, the present invention provides for kits with unit doses of the compounds
of Formula I, Formula II, or Formula III either in oral or injectable doses. In addition
to the containers containing the unit doses will be an informational package insert
describing the use and attendant benefits of the drugs in alleviating symptoms and/or
complications associated with Type 2 diabetes as well as in alleviating hyperlipidemia
and hyperuricemia. Preferred compounds and unit doses are those described herein above.
EXAMPLES
[0109] The compounds of Formula I, Formula II, or Formula III of the present invention can
be readily prepared using the process set forth in Scheme 1,
supra, and from the following examples.
EXAMPLE 1
[0110] This example relates to the preparation of Methyl Bromo-(4-chlorophenyl)-acetate.

[0111] The initial compound listed in Scheme 1, i.e., 4-chlorophenylacetic acid, is readily
available from several commercial sources (
e.
g., Aldrich and Fluka).
[0112] A 5-L Morton reactor equipped with a magnetic stirrer, a pot temperature control,
and addition funnel was vented through a gas scrubber and charged with p-chlorophenylacetic
acid (720 gm, 4.2 moles) and SOCl
2 (390 ml, 630 gm, 5.3 moles). The reaction was stirred, heated and held at 55°±5°
C for 1 hour. Bromine (220 ml., 670 gm, 5.3 moles) was then added over 20 min. and
stirred at 55°±5° C for 16 hours. The temperature was raised to 80° C for 7 hours
and then cooled to 9° C in an ice-water bath. Methanol (2.0 L, 1.6 kg, 49.4 moles)
was then carefully added. The solvent was stripped to obtain 2 liquids weighing 1.28kg.
These were dissolved in a mixture of 0.84 L water and 2.1 L ether and separated. The
organic phase was washed once with 0.78 L 25% (w:w) aqueous NaCl and dried over 0.13
kg MgSO
4. This was filtered through Whatman #1 filter paper and stripped of solvent to obtain
0.985 kg of orange liquid. The proton NMR showed this to be 80% product and 19% non-brominated
ester. The HPLC showed 82% product and 18% non-brominated ester. HPLC was run on a
Zorbax SB-C8 column at 30° C measuring 250 X 4.6 mm and 5 µ particle size. The mobile
phase was 60:40 (v:v) acetonitrile: 0.1% H
3PO
4 at 1.5 ml/min. Detection was at 210 nm. The injected sample of 1 µl was dissolved
in acetonitrile at a concentration of 10 mg/ml. The product had a retention time of
5.0 min. and that of the non-brominated ester was 3.8 min. This crude product was
purified by vacuum distillation to obtain 96% pure product with an 84% yield. The
product proton NMR (CDCl
3, 300 MHz) showed shifts at 3.79 (s, 3H), 5.32 (s, 1H) and 7.20-7.55 (m, 4H) ppm.
EXAMPLE 2
[0113] This example relates to the preparation of Methyl 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetate.

[0114] This step was similar to the same step in U.S. 3,517,050 with one exception, potassium
t-butoxide was used in place of sodium methoxide to prevent generation of the corresponding
methyl ether. A 5-L Morton reactor equipped with an overhead stirrer, a pot temperature
detector, and addition funnel and under a nitrogen atmosphere was charged with methyl
bromo-(4-chlorophenyl)-acetate (830 gm, 3.0 moles) and THF (600 ml). The reactor was
cooled to 14°±3° C in an ice-water bath and then a similarly cooled solution of trifluoromethyl-m-cresol
(530 gm, 3.3 moles) in 1.0 M potassium t-butoxide in THF (3.1 L, 3.1 moles) was added.
The reaction proceeded exothermically with a typical temperature rise exceeding 25°
C and the addition was controlled to maintain a temperature of 15°±2° C and stirred
at ambient temperature for 2 hours. HPLC was run on a Zorbax SB-C8 column at 30° C
measuring 250 x 4.6 mm and 5 µ particle size. The mobile phase was 60:40 (v:v) acetonitrile:
0.1 % H
3PO
4 at 1.5 ml/min. Detection was at 210 nm. The injected sample of 1 µl was dissolved
in acetonitrile at a concentration of 10 mg/ml. The product had a retention time of
9.6 min., the starting ester eluted at 5.0 min., the phenol at 3.0 and the non-brominated
ester at 3.8 min. The solvent was stripped using a rotary evaporator to obtain a yellow
slush that was dissolved in a mixture of 4.0 L water and 12.0 L ether. The mixture
was separated and the organic phase was washed once with 1.6 L 5% (w:w) aqueous NaOH
followed by 1.6 L water and finally 1.6 L 25% (w:w) aqueous NaCl. The organic phase
was dried over 0.32 kg MgSO
4 and filtered through Whatman #1 filter paper. The solvent was stripped to obtain
1.0 kg of damp, off-white crystals. This was recrystallized on the rotary evaporator
by dissolving in 1.0 L methylcyclohexane at 75° C and then cooling to 20° C. The crystals
were filtered through Whatman #1 filter paper and washed with three 0.25 L portions
of cool (15° C) methylcyclohexane. The wet product (0.97 kg) was dried overnight to
obtain 0.81 kg of 98% pure product that corresponds to a 79% yield. The product proton
NMR (CDCl
3, 300 MHz) shows shifts at 3.75 (s, 3H), 5.63 (s, 1H) and 7.05-7.55 (m, 8H).
EXAMPLE 3
[0115] This example relates to the preparation of 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetic
Acid

[0116] A 12-L Morton reactor with magnetic stirrer, pot temperature controller, a reflux
condenser and under a nitrogen atmosphere was charged with methyl 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetate
(810 gm, 2.3 moles) and absolute ethanol (5.8 L) and heated with stirring to 57° C
to dissolve the solid. A solution of KOH (520 gm, 9.3 moles) in 0.98 L water was added.
The solution was refluxed for 30 min. and solvent was stripped by a rotary evaporator
to obtain 2.03 kg of a mixture of two nearly colorless liquids. These were dissolved
in water (16 L) and treated with 16 gm neutral Norit, then filtered through a pad
of infusorial earth retained on Whatman #1 filter paper. The pH of the filtrate was
lowered from an initial range of 13 to a range of 1 to 2 by adding a total of 2.75
L of 3 M HCl (8.25 moles). A very sticky solid formed after the addition of the first
2.30 L of acid and ether (7 L) was added at this point. The two layers were separated
and the organic layer was dried over MgSO
4 (230 gm) and filtered through Whatman #1 filter paper. The solvent was then stripped
to obtain 0.85 kg water-white syrup. The material was then recrystallized on the rotary
evaporator by adding methylcyclohexane (800 ml) and cooling to 18° C with slow rotation.
The temperature was then dropped to 5° C, the crystals were filtered, and washed 5
times with 0.10 L portions of cold (0° C) methylcyclohexane to obtain 0.59 kg wet
crystals. The wet crystals were dried to obtain 0.48 kg (62% yield) product with no
p-chlorophenylacetic acid detectable in the proton NMR. The product proton NMR (CDCl
3, 300 MHz) shows shifts at 5.65 (s, 1H), 7.02-7.58 (m, 8H) and 10.6 (s, 1H).
EXAMPLE 4
[0117] This example relates to the preparation of resolved enantiomers of 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetic
Acid.

[0118] A 12-L open-top Morton reactor with an overhead stirrer was charged with 4-chlorophenyl-(3-trifluoromethyl-phenoxy)-acetic
acid (350 gm, 1.06 moles) and isopropanol (4.0 L) and heated to 65°±3° C. A slurry
of (-) cinchonidine (300 gm, 1.02 moles) in isopropanol (2.0 L) was added, rinsing
all solid into the reactor with an additional 0.8 L of isopropanol. The temperature
dropped from 65° to 56° C and a transparent, orange solution ultimately formed and
the mixture was held at 55°±5° C for 2 hours. Fine crystals were collected by filtration
through Whatman #1 filter paper, washing once with 0.7 L hot (55° C) isopropanol.
The crystals were dried for 16 hours at ambient temperature in a 12.6-L vacuum oven
under a 5 LPM nitrogen flow. The dry solid weighed 0.37 kg and had an 80% enantiomeric
excess (ee) of the (+) enantiomer. The enantiomeric excess was determined by HPLC
using a 250 x 4.6 mm R,R-WhelkO-1 column at ambient temperature. Injected samples
were 20 µl of 2 mg/ml solutions of the samples in ethanol. The column was eluted with
95:5:0.4, hexane:isopropanol:acetic acid at a flow of 1 ml/min. Detection was at 210
nm. The (+) enantiomer eluted at 7 to 8 min. and the (-) enantiomer at 11 to 13 min.
The mother liquor dropped a second crop almost immediately that was filtered, washed,
and dried to afford 0.06 kg salt that has a 90% ee of the (-)-enantiomer. Similarly
third, fourth and fifth crops weighing 0.03 kg, 0.03 kg and 0.7 kg, respectively,
were obtained; with (-) enantiomer excesses of 88%, 89% and 92%, respectively.
[0119] The crude (+) salt (320 gm) was recrystallized from a mixture of ethanol (5.9 L)
methanol (1.2 L). The mixture was heated with overhead stirring to dissolve, cooled
at ambient temperature for 16 hours, filtered and washed twice with 0.20 L of 5:1
(v:v) ethanol:methanol. The crystals were dried to obtain 0.24 kg of the (+) enantiomer
that had an ee of 97%. This corresponded to an 80% recovery of this isomer. The resolved
salt was suspended in a mixture of ether (6.5 L) and water (4.0 L) with overhead stirring.
The pH was lowered to 0-1 as measured by pH indicating strips with a solution of concentrated
H
2SO
4 (0.13 L) in water (2.5 L). The phases were separated and the organic phase and washed
twice with 6.5 L portions of water. Ether (1.9 L) was added and the organic layer
washed once more with 6.5 L water. After the final separation, 0.1 L of 25% (w:w)
aqueous NaCl was added clean up any slight emulsion. The product was dried over 0.19
kg MgSO
4 , filtered and solvent removed solvent to obtain 0.13 kg of water-white syrup that
solidifies on cooling. This corresponded to a 97% recovery of product that had a 95%
ee of the (+) enantiomer. [α]
D+5.814° (c.=0.069 in methyl alcohol).
[0120] The combined, crude (-) salt (200 gm) was recrystallized from isopropanol (3.1 L).
The mixture was heated to dissolve almost all of the solid and fast-filtered to remove
insoluble solids. The mixture was then cooled with stirring at ambient temperature
for 16 hours, filtered, washed, and dried to obtain 0.16 kg of the (-) enantiomer
that has an ee of 97%. This corresponds to a 49% recovery of this isomer. The (-)
enantiomer of the acid was isolated in the same manner as described above for the
(+) acid. The resolved salt was suspended in ether and water, the pH lowered with
concentrated H
2SO
4, and the product extracted in the organic phase.
EXAMPLE 5
A. Preparation of (-) 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetyl Chloride
[0121]

[0122] A 2-L evaporation flask with magnetic stirrer, Claissen adapter, pot thermometer
and a reflux condenser routed to a gas scrubber was charged with (-) 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetic
acid (143 g, 0.42 mole based on 97% purity) and CHCl
3 (170 ml) and heated to boiling in order to dissolve. SOCl
2 (38 ml, 62.1 gm, 0.52 mole) was added. The mixture was heated to reflux (68° C final)
for 4.5 hours and then stripped of volatiles to obtain 151 g yellow, turbid liquid
(103% apparent yield). The material was used in the next step without further purification.
B. Preparation of (+) 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetyl Chloride
[0123]

[0124] A 3-L evaporation flask with magnetic stirrer, Claissen adapter, pot thermometer
and a reflux condenser routed to a gas scrubber was charged with (+) 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetic
acid (131 g, 0.37 mole) and CHCl
3 (152 ml ) and heated to boiling in order to dissolve. SOCl
2 (35 ml, 56.5 g, 0.48 mole) was added. The mixture was heated to reflux (70° C final)
for 4 hours and then stripped of volatiles to obtain 139 g liquid. The material was
used in the next step without further purification.
EXAMPLE 6
A. Preparation of (-) 2-Acetamidoethyl 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetate
[0125]

[0126] A 3-L round-bottom flask with magnetic stirrer, pot thermometer, under a nitrogen
atmosphere and in an ice-water bath was charged with DMF (420 ml), pyridine (37 ml,
36 g, 0.46 mole) and N-acetoethanolamine (39 ml, 43 g, 0.42 mole). The mixture was
cooled to 0° to 5° C and a solution of crude (-) 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetyl
chloride (151 gm, 0.42 mole based on 100% yield of previous step) in ether (170 ml)
was added over a 40 min. period so as to maintain the pot temperature below 13° C.
The mixture was stirred at ambient temperature for 16 hours and dissolved by adding
water (960 ml) followed by ethyl acetate (630 ml). The water addition proceeded exothermically
raising the temperature from 24° to 34° C. Ethyl acetate addition caused a temperature
drop to 30° C. The layers were separated and the aqueous phase extracted once with
ethyl acetate (125 ml). The combined organic layers were extracted once with 7% (w:w)
aqueous NaHCO
3 (125 ml) and five times with 60 ml portions of water and then twice with 60 ml portions
of 25% (w:w) aqueous NaCl. The product was dried over MgSO
4 (42 g) and filtered through Whatman #1 filter paper. Solvent was stripped using a
rotary evaporator to obtain 160 g of a yellow syrup corresponding to an 80% yield
based on the proton nmr that shows 87% product, 8% EtOAc, 4% non-brominatcd amide,
and 1% DMF. This syrup was dissolved in MTBE (225 ml) at ambient temperature and chilled
(-15° C) 85% hexanes (400 ml) was added with stirring. Two liquids formed, then crystals,
then the mixture formed a solid. The solid mass was scraped onto a Buchner funnel
fitted with Whatman #1, packed down and washed three times with 100 ml portions of
1:1 (v:v) MTBE:hexanes to obtain 312 g wet product which dries to 127 gm, corresponding
to a 73% yield.
B. Preparation of (+) 2-Acetamidoethyl 4-Chlorophenyl-(3-trifluoromethylphenoxy)-acetate
[0127]

[0128] A 3-L round-bottom flask with magnetic stirrer, pot thermometer, under a nitrogen
atmosphere and in an ice-water bath was charged with DMF (365 ml), pyridine (33 ml,
32.3 g, 0.41 mole) and N-acetoethanolamine (34 ml, 38.1 g, 0.37 mole). The mixture
was cooled to 0° to 5° C and a solution of crude (+) 4-chlorophenyl-(3-trifluoromethylphenoxy)-acetyl
chloride (139 gm, 0.37 mole based on 100% yield of previous step) in ether (155 ml)
was added over a 25 min. period so as to maintain the pot temperature below 13° C.
The mixture was stirred at ambient temperature 40 hours and dissolved by adding water
(850 ml) followed by ethyl acetate (550 ml). The water addition proceeded exothermically
raising the temperature from 24° to 34° C. Ethyl acetate addition caused a temperature
drop to 30° C. The layers were separated and the aqueous phase extracted once with
ethyl acetate (110 ml). The combined organic layers were washed twice with 55 ml portions
of water and then five times with 55 ml portions of 25% (w:w) aqueous NaCl and dried
over 30 g MgSO
4 and filtered through Whatman #1 filter paper. Solvent was stripped using a rotary
evaporator to obtain 168 g yellow liquid corresponding to an 86% yield based on the
proton nmr that shows 79% product, 9% EtOAc, 8% non-brominated amide, and 4% DMF.
The product was crystallized in an 800-ml beaker by dissolving in MTBE (200 ml) at
ambient temperature, cooling at -15° for 1.4 hours, adding 200 ml 85% hexanes and
then chilling 1 hour. The solid mass was scraped out onto a Buchner funnel fitted
with Whatman #1, packed down and washed once with 1:1 (v:v) MTBE:hexanes (100 ml)
to obtain 201 gm wet product. The product was dried under nitrogen flow and triturated
with 85% hexanes (700 ml) using an overhead stirrer. The material was filtered and
dried to obtain 87 gm product. [α]
D +2.769° (c.=0.048 in methyl alcohol). [α]
D-2.716° (c.=0.049 in methyl alcohol). The (+) and (-) enantiomers were also analyzed
by HPLC using a 250 x 4.6 mm R,R-WhelkO-1 column at ambient temperature. Injected
samples were 20 µl of 2 mg/ml solutions of the samples in ethanol. The column was
eluted with 60:40, isopropanol:hexane at a flow of 1 ml/min. Detection was at 220
nm. The (+) enantiomer eluted at 5.0 to 5.2 min. and the (-) enantiomer at 5.7 to
5.9 min.
EXAMPLE 7
[0129] This example relates to the inhibition of cytochrome P450 2C9 (CYP2C9) by the compounds
of the present invention.
[0130] Tolbutamide hydroxylation activity (100 µM
14C-tolbutamide; 1 mM NADPH) was assayed in pooled human liver microsomes (0.6 mg protein/ml))
for 60 minutes at 37°C both with and without test compounds. Racemic halofenic acid,
(-) halofenic acid and (+) halofenic acid were tested (0.25 µM to 40 µM). As shown
in Figure 1, racemic halofenic acid inhibited CYP2C9-mediated tolbutamide hydroxylation
activity in human liver microsomes with an apparent IC
50 of 0.45 µM. A substantial difference was noted in the ability of the enantiomers
of halofenic acid to inhibit CYP2C9. The (+) halofenic acid had an apparent IC
50 of 0.22 µM whereas the (-) halofenic acid was almost 20-fold less potent with an
apparent IC
50 of 3.6 µM.
EXAMPLE 8
[0131] This example relates to the time course of glucose-lowering for the compounds of
the present invention.
A. Material and Methods
[0132] Male, 9-10 weeks old, C57BL/6J ob/ob mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). Animals were housed (4-5 mice/cage) under standard laboratory
conditions at 22°C and 50% relative humidity, and were maintained on a diet of Purina
rodent chow and water ad libitum. Prior to treatment, blood was collected from the
tail vein of each animal. Mice that had non-fasting plasma glucose levels between
300 and 500 mg/dl were used. Each treatment group consisted of 10 mice that were distributed
so that the mean glucose levels were equivalent in each group at the start of the
study. Mice were dosed orally once by gavage with either vehicle, racemic halofenate
(250 mg/kg), (-) halofenate (250 mg/kg) or (+) halofenate (250 mg/kg). All compounds
were delivered in a liquid formulation contained 5% (v/v) dimethyl sulfoxide (DMSO),
1% (v/v) tween 80 and 2.7% (w/v) methylcellulose. The gavage volume was 10 ml/kg.
Blood samples were taken at 1.5, 3, 4.5, 6, 7.5, 9 and 24 hour after the dose and
analyzed for plasma glucose. Plasma glucose concentrations were determined colorimetrically
using glucose oxidase method (Sigma Chemical Co, St. Louis, MO, USA). Significance
difference between groups (comparing drug-treated to vehicle-treated or between drug-treated
groups) was evaluated using Student unpaired t-test.
B. Results
[0133] As illustrated in Figure 2, racemic halofenate significantly reduced plasma glucose
concentrations at most of the timepoints with the peak activity at 9 hours. (-) Halofenate
showed a plasma glucose reduction as early as 1.5 hours and reached its peak activity
at 3 hours. The plasma glucose concentrations remained low up to 24 hours. (+) Halpfenate
did not show significant activity until 4.5 hours and the peak activity was at 7.5
hours. Plasma glucose started to rebound afterward. There were significant differences
between (-) and (+) enantiomers of halofenate at the 3 and 24-hour timepoints. The
activity of the (-) halofenate was more rapid onset and sustained longer.
EXAMPLE 9
[0134] This example relates to the Glucose lowering activity of the compounds of the present
invention.
A. Materials and Methods
[0135] Male, 8-9 weeks old, C57BL/6J ob/ob mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). Animals were housed (4-5 mice/cage) under standard laboratory
conditions at 22°C and 50% relative humidity, and were maintained on a diet of Purina
rodent chow and water ad libitum. Prior to treatment, blood was collected from the
tail vein of each animal. Mice that had non-fasting plasma glucose levels between
300 and 520 mg/dL were used. Each treatment group consisted of 10 mice that were distributed
so that the mean glucose levels were equivalent in each group as the start of the
study. Mice were dosed orally by gavage once a day for 5 days with either vehicle,
racemic halofenate (250 mg/kg), (-) halofenate (125 and 250 mg/kg) or (+) halofenate
(125 and 250 mg/kg). Racemic halofenate was delivered in 2.7% (w/v) methylcellulose
and both the (-) enantiomer and (+) enantiomer were delivered in a liquid formulation
contained 5% (v/v) dimethyl sulfoxide (DMSO), 1% (v/v) tween 80 and 2.7% (w/v) methylcellulose.
The gavage volume was 10 ml/kg. Blood samples were taken at 3, 6, 27, 30 and 120 hour
after the first dose and analyzed for plasma glucose and insulin. The animals were
fasted overnight (14 hours) before the 120 hours sampling. Plasma glucose concentrations
were determined colorimetrically using glucose oxidase method (Sigma Chemical Co,
St. Louis, MO, USA). Plasma insulin concentrations were determined by using the Rat
Insulin RIA Kit from Linco Research Inc. (St. Charles, MO, USA). Significance difference
between groups (comparing drug-treated to vehicle-treated) was evaluated using Student
unpaired t-test.
B. Results
[0136] As illustrated in Figure 3, (-) halofenate significantly reduced plasma glucose concentrations
at 6, 27 and 30 hours. (-) Halofenate at both dosage levels significantly lowered
plasma glucose concentrations ai 6, 27 and 30 hours. The high-dose (250 mg/kg) was
also active at 3 hours. (+) Halofenate at 125 mg/kg showed plasma glucose reduction
at 6 and 27 hours, where at 250 mg/kg, lowered plasma glucose concentrations were
observed at 3, 6, 27 and 30 hours. Plasma insulin levels are shown in Figure 4. Racemic
halofenate significantly reduced insulin at 6 and 27 hours. Plasma insulins were significantly
reduced in the (-) halofenate group at 27 hours at both doses and was significantly
reduced at 30 hours in the animals treated with 250 mg/kg/day. (+) halofenate significantly
reduced insulin at 27 and 30 hours at both doses. At 125 mg/kg/day a significant reduction
was also observed after 6 hours. After fasting overnight (at 120 hours), all treatments
reduced plasma glucose concentrations significantly (Figure 5). Plasma insulins were
significantly reduced in all halofenate treated groups except the (+) halofenate at
125 mg/kg/day (Figure 6).
EXAMPLE 10
[0137] This example relates to the improvement in Insulin Resistance and Impaired Glucose
Tolerance for the compounds of the present invention.
A. Materials and Methods
[0138] Male, 8-9 weeks old Zucker fa/fa rats (Charles River, ) were housed (2-3 rats/cage)
under standard laboratory conditions at 22°C and 50% relative humidity, and were maintained
on a diet of Purina rodent chow and water ad libitum. Prior to treatment, rats were
assigned to 6 groups based on body weight. Each treatment group consisted of 8 rats.
Rats were dosed orally once by gavage with either vehicle, racemic halofenate (100
mg/kg), (-) halofenate (50 or 100 mg/kg) or (+) halofenate (50 or 100 mg/kg). All
compounds were delivered in a liquid formulation contained 5% (v/v) dimethyl sulfoxide
(DMSO), 1% (v/v) tween 80 and 2.7% (w/v) methylcellulose. The gavage volume was 10
ml/kg. All rats received an oral glucose challenge (1.9 g/kg) 5.5 hours after the
treatment and 4 hours after withdrawal of the food. Blood samples were taken at 0,
15, 30, 60, 90, 120, and 180 minutes following the glucose challenge for plasma glucose
measurement. The vehicle, (-) halofenate (50 mg/kg) and (+) halofenate (50 mg/kg)
groups were subjected to an insulin challenge following daily gavage of the respective
treatments for 5 days. On day 5, rats received the intravenous insulin (0.75 U/kg)
5.5 hours after the last dose and 4 hours after withdrawal of the food. Blood samples
were taken at 3, 6, 9, 12, 15 and 18 minutes following the insulin injection for plasma
glucose measurement. Plasma glucose concentrations were determined colorimetrically
using glucose oxidase method (Sigma Chemical Co, St. Louis, MO, U.S.A.). Significance
difference between groups (comparing drug-treated to vehicle-treated or between drug-treated
groups) was evaluated using Student unpaired t-test.
B. Results
[0139] As illustrated in Figure 7A, Zucker fatty rats with Impaired Glucose Tolerance had
lower plasma glucose levels after a glucose challenge following treatment with halofenate.
The (-) halofenate was the most effective in lowering the glucose and had an effect
that persisted longer than the racemate or (+) enantiomer. Figure 7B shows the incremental
area under the curve (AUC) for all the treatment groups. The animals treated with
the (-) halofenate showed significant reductions in the glucose area relative to vehicle-treated
controls. Although the AUC was decreased in the groups treated with the racemate or
(+) halofenate, the effects were not as great as in the (-) halofenate-treated rats
and the differences were not statistically significant.
[0140] Changes in insulin sensitivity were assessed by monitoring the fall in glucose after
an intravenous injection of insulin. The slope of the line is a direct indication
of the insulin sensitivity of the test animal. As shown in Figure 8, the insulin sensitivity
was improved significantly after 5 days of treatment with (-) halofenate compared
to the vehicle-treated controls (p < 0.01) and animals treated with (+) halofenate
(p < 0.05). Treatment with (+) halofenate had a small effect on insulin sensitivity
that was not significantly different from the vehicle-treated control (p = 0.083).
Treatment with (-) halofenate substantially reduced the insulin resistance in the
Zucker fatty rat, a well-established model of Impaired Glucose Tolerance and insulin
resistance.
EXAMPLE 11
[0141] This example relates to the lipid lowering activity of the compounds of the present
invention.
A. Materials and methods
[0142] Male Zucker diabetic fatty (ZDF) rats were obtained from GMI Laboratories (Indianapolis,
IN) at 9 weeks of age. Vehicle or enantiomers of halofenate administered by oral gavage
on a daily basis starting at 74 days of age. Initial blood samples were obtained for
analysis one day before treatment and at the indicated times in the treatment protocol.
Blood was analyzed for plasma triglyceride and cholesterol by standard techniques.
B. Results
[0143] In experiment I animals received a dose of 25 mg/kg/day. As shown in Figure 9A and
Figure 9B, a significant decrease in plasma cholesterol was noted only in animals
treated with the (-)halofenate after 7 and 13 days of treatment. In Experiment II,
animals at 107 days of age received daily doses of either 12.5 mg/kg/day or 37.5 mg/kg/day
of the (-) and (+) enantiomers of halofenate. As shown in Figure 10A and Figure 10B,
the plasma cholesterol was significantly lower on the high dose after 7 days but not
after 14 days of treatment with the (+) halofenate. In contrast, for the (-) halofenate
at the low dose, a significant decrease in cholesterol was observed after 7 days.
At the high dose a much greater decline in plasma cholesterol was noted that was apparent
both after 7 and 14 days of treatment. As shown in Figure 11A and Figure 11B, a significant
decrease in plasma triglyceride was also noted 7 days after treatment at the high
dose which was of greater magnitude in animals treated with the (-) enantiomer of
halofenate.
EXAMPLE 12
[0144] This example relates to the glucose lowering activity of (±) halofenate analogs and
(-) halofenate analogs.
A. Materials and methods
[0145] Male, 8-9 weeks old, C57BL/6J ob/ob mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). Animals were housed (4-5 mice/cage) under standard laboratory
conditions at 22 ± 3°C temperature and 50 ± 20% relative humidity, and were maintained
on a diet of Purina rodent chow and water
ad libitum. Prior to treatment, blood was collected from the tail vein of each animal. Mice that
had non-fasting plasma glucose levels between 250 and 500 mg/dl were used. Each treatment
group consisted of 8-10 mice that were distributed so that the mean glucose levels
were equivalent in each group at the start of the study. Mice were dosed orally by
gavage once a day for 1-3 days with either vehicle, (-) halofenic acid, (±) analog
14, 29, 33, 34, 35, 36, 37, or 38 at 125 mg/kg or (-) analog 29, 36, 37 or 38 at 150
mg/kg. Compounds were delivered in a liquid formulation containing 5% (v/v) dimethyl
sulfoxide (DMSO), 1% (v/v) tween 80 and 0.9% (w/v) methylcellulose. The gavage volume
was 10 ml/kg. Blood samples were taken at 6 hours after the each dose and analyzed
for plasma glucose. Food intake and body weight were measured daily. Plasma glucose
concentrations were determined colorimetrically using glucose oxidase method (Sigma
Chemical Co, St. Louis, MO, USA). Significant difference between groups (comparing
drug-treated to vehicle-treated) was evaluated using the Student unpaired t-test.
B. Results
[0146] As illustrated in Table 2, compounds were evaluated in 5 different experiments. Single
dose (-) halofenic acid significantly reduced plasma glucose concentrations at 6 hours.
Analog 14 significantly lowered plasma glucose concentrations at 6, 30 and 54 hours.
Analog 33 significantly lowered plasma glucose concentrations at 6 and 54 hours. Analog
29 and 38 significantly lowered plasma glucose concentrations at 6, 30 and 54 hours.
Analog 35 and 36 significantly lowered plasma glucose concentrations at 30 and 54
hours. Analog 37 significantly lowered plasma glucose concentrations at 54 hours.
Single dose (-) analogs 29, 36, 37 and 38 significantly reduced plasma glucose concentrations
at 6 hours. Compound treatments did not affect the animal's food intake and body weight.
Table 1: (±) and (-) Halofenate analogs. Compounds described in reference to
Formula II.
| Cmpd No. |
X |
CX3 |
R2 |
| halofenic acid |
Cl |
CF3 |
H |
| 14 |
F |
CF3 |
(CH2)2NHAc |
| 29 |
Br |
CF3 |
(CH2)2NHAc |
| 33 |
Cl |
CF3 |
(CH2)3CH3 |
| 35 |
Cl |
CF3 |
(CH2)2N(CH3)2 |
| 36 |
Cl |
CF3 |
(CH2)2NHCOPh |
| 37 |
Cl |
CF3 |
CH2CONH2 |
| 38 |
Cl |
CF3 |
CH2CON(CH3)2 |
Table 2 Glucose-lowering Activities of (±)Halofenate and (-)Halofenate Analogs
| |
Predose |
6 hours |
30 hours |
54 hours |
| Glucose (mg/dl) |
Glucose (mg/dl) |
P VALUE vs. veh |
Glucose (mg/dl) |
P VALUE vs. veh |
Glucose (mg/dl) |
P VALUE vs. veh |
| Vehicle |
313±18 |
303±19.8 |
|
NA |
|
NA |
|
| (-)halofenic acid |
312.9±17.7 |
163.8±11.8 |
0.0011 |
NA |
|
NA |
|
| |
|
|
|
|
|
|
|
| Vehicle |
360.2±27.8 |
405.8±25.8 |
|
356.0±27.6 |
|
386.1±20.6 |
|
| (±)Analog 14 |
361.0±17.1 |
328.9±34.1 |
0.0444 |
267.0±21.3 |
0.0099 |
293.0±29.4 |
0.0092 |
| |
|
|
|
|
|
|
|
| Vehicle |
291.6±18.5 |
363.0±25.1 |
|
340.8±30.0 |
|
351.5±23.8 |
|
| (±)Analog 33 |
292.0±19.1 |
227.5±13.2 |
0.0001 |
298.0±15.3 |
0.1119 |
286.6±9.9 |
0.0125 |
| |
|
|
|
|
|
|
|
| Vehicle |
387.1±14.3 |
371.5±24.2 |
|
326.2±22.5 |
|
374.0±37.9 |
|
| (±)Analog 29 |
387.1±16.0 |
299.7±24.5 |
0.0259 |
237.4±14.9 |
0.0020 |
293.3±9.7 |
0.0268 |
| (±)Analog 35 |
387.0±18.0 |
319.6±26.7 |
0.0834 |
276.8±17.6 |
0.0504 |
286.2±31.5 |
0.0458 |
| (±)Analog 37 |
387.4±18.8 |
345.4±19.7 |
NS |
312.5±21.7 |
NS |
285.1±14.7 |
0.0210 |
| |
|
|
|
|
|
|
|
| Vehicle |
329.6±16.1 |
361.8±23.2 |
|
346.5±24.6 |
|
379.2±24.4 |
|
| (±)Analog 36 |
329.7±17.6 |
300.5±27.3 |
0.0522 |
249.7±8.6 |
0.0008 |
272.2±18.4 |
0.0013 |
| (±)Analog 38 |
329.4±18.9 |
303.2±18.2 |
0.0312 |
245.6±15.6 |
0.0014 |
243.1±10.6 |
0.0000 |
| |
|
|
|
|
|
|
|
| Vehicle |
373.0±13.6 |
405.8±33.7 |
|
NA |
|
NA |
|
| (-)Analog 36 |
373.2±15.5 |
281.1±18.2 |
0.0019 |
NA |
|
NA |
|
| (-)Analog 37 |
373.4±16.1 |
271.7±22.5 |
0.0018 |
NA |
|
NA |
|
| (-)Analog 38 |
373.4±16.1 |
251.2±23.6 |
0.0007 |
NA |
|
NA |
|
| (-)Analog 29 |
372.2±17.1 |
333.5±16.1 |
0.0353 |
NA |
|
NA |
|
EXAMPLE 13
[0147] This example relates to a comparison between the activities of (-) halofenate and
(+) halofenate.
A. Materials and methods
[0148] Male 8-9 week old ZDF rats were purchased from Genetic Models, Inc. (Indianapolis,
IN). Animals were housed (3 rats/cage) under standard laboratory conditions at 22
± 3 °C temperature and 50 ± 20% relative humidity, and were maintained on a diet of
Purina rodent chow and water
ad libitum. Prior to treatment, blood was collected from the tail vein of each animal. Rats that
had 4-hour fasting plasma glucose levels between 200 and 500 mg/dL were used. Each
treatment group consisted of 8-10 rats that were distributed so that the mean glucose
levels were equivalent in each group at the start of the study. Rats were dosed orally
by gavage once a day for 3 days with either vehicle, (-) halofenate or (+) halofenate
at 50 mg/kg. Compounds were delivered in a liquid formulation containing 5% (v/v)
dimethyl sulfoxide (DMSO), 1% (v/v) tween 80 and 0.9% (w/v) methylcellulose. The gavage
volume was 5 ml/kg. Blood samples were taken at 5 hours post dose on day 2 and 3.
Plasma glucose concentrations were determined colorimetrically using glucose oxidase
method (Sigma Chemical Co, St. Louis, MO, USA). Significant difference between groups
(comparing drug-treated to vehicle-treated) was evaluated using the Student unpaired
t-test.
B. Results
[0149] Oral administration of (-) halofenate at 50 mg/kg significantly reduced plasma glucose
concentrations , while (+) halofenate at the same dosage levels failed to reduce plasma
glucose concentrations as compared to vehicle-treated animals (Figure 12).
EXAMPLE 14
[0150] This example relates to a pharmacokinetic study of (±) halofenate and (-) halofenate.
A. Materials and methods
[0151] Male 225-250 g SD rats were purchased from Charles River. Animals were housed (3
rats/cage) under standard laboratory conditions at 22 ± 3 °C temperature and 50 ±
20% relative humidity, and were maintained on a diet of Purina rodent chow and water
ad libitum. A catheter was placed in the left carotid artery under sodium pentobarbital (50 mg/kg
i.p.) and animals were allowed to recover for 2 days before treatment. Single dose
of (±) halofenate or (-) halofenate at 50 mg/kg were administered by oral gavage.
Compounds were delivered in a liquid formulation containing 5% (v/v) dimethyl sulfoxide
(DMSO), 1% (v/v) tween 80 and 0.9% (w/v) methylcellulose. The gavage volume was 5
ml/kg. Blood samples were collected at 1, 2, 4, 6, 8, 12, 24,48, 72, 96 and 120 hours
post dose. The plasma samples were analyzed for each enantiomeric acid ((-) halofenic
acid and (+) halofenic acid) by a chiral specific HPLC assay, since the esters are
prodrugs, which are designed to convert to their respective enantiomeric acids
in vivo.
B. Results
[0152] After oral administration of (±) halofenate, both (-) halofenic acid and (+) halofenic
acid were detected in the plasma samples. As shown in table 3, it appeared that the
two enantiomeric acids had different dispositional profiles. The elimination of (-)
halofenic acid was much slower than (+) halofenic acid. As a result, the AUC of (-)
halofenic acid was significantly higher than the AUC for (+) halofenic acid, 4708.0
vs. 758.0 µg·h/mL and the terminal half-life was 46.8 vs. 14.3 hours.
[0153] After oral administration of (-) halofenate, the dispositional profile of (-) halofenic
acid was basically identical to the administration of (±) halofenate as the terminal
half-life is the same (Table 2). The Cmax and AUC of (-) halofenic acid were proportionally
higher simply due to higher amount of (-) halofenate administered (Table 3). (+) Halofenic
acid was also detected in the plasma but the concentration was much lower than (-)
halofenic acid. It is speculated that (+) halofenic acid was formed in
vivo since the terminal half-life (T
1/2) of both acids was similar.
[0154] These results suggest the use of (-) halofenate is more desirable since the AUC of
(-) halofenic acid was significantly higher than the AUC for (+) halofenic acid.
Table 3: Pharmacokinetic Analysis of (-) Halofenate (- Enantiomer) and (+) Halofenate
(+ Enantiomer)
| Drug administered |
(-) Halofenate (n = 3) |
(±) Halofenate (n = 1) |
| Enantiomer |
- |
+ |
- |
+ |
| Dose administered* |
50 mg/kg |
0 (metabolite) |
25 mg/kg |
25 mg/kg |
| Cmax (µg/mL) |
114.6 ± 29.7 |
2.4 ± 0.5 |
65.2 |
30.5 |
| Tmax (hours) |
8 - 12 |
6 - 12 |
12 |
6 |
| AUC (µg · h/mL) |
7159 ± 1103 |
164.3 ± 79.3 |
4708 |
758 |
| T1/2 (hours) |
46.4 ± 4.7 |
41.7 ± 11.8 |
46.8 |
14.3 |
| The dose of each enantiomer in (±) halofenate is 50% of the total dose of the racemic
mixture. |
Table 4: Plasma Concentrations of (-) halofenic acid and (+) halofenic acid following
a single dose of (-) halofenate.
| Time (hour) |
Compound Analyzed (µg/mL) |
| (-) halofenic acid |
(+) halofenic acid |
| Rat 8 |
Rat 9 |
Rat 11 |
Rat 8 |
Rat 9 |
Rat 11 |
| 0 |
BOL |
BOL |
BOL |
BOL |
BOL |
BOL |
| 1 |
81.2 |
23.7 |
61.0 |
1.12 |
BOL |
BOL |
| 2 |
100.1 |
30.4 |
87.8 |
1.27 |
BOL |
1.09 |
| 4 |
122.3 |
36.9 |
94.5 |
1.67 |
BOL |
1.95 |
| 6 |
128.3 |
56.5 |
116.3 |
2.96 |
BOL |
1.73 |
| 8 |
128.2 |
79.0 |
127.8 |
2.58 |
BOL |
2.06 |
| 12 |
135.3 |
80.6 |
104.8 |
2.85 |
2.23 |
2.08 |
| 24 |
82.5 |
73.1 |
66.5 |
2.22 |
1.29 |
1.86 |
| 48 |
56.2 |
44.5 |
47.1 |
1.64 |
1.03 |
1.14 |
| 72 |
39.7 |
37.4 |
30.8 |
1.25 |
BQL |
BQL |
| 96 |
31.1 |
N/A |
24.6 |
BQL |
N/A |
BQL |
| 120 |
20.3 |
N/A |
N/A |
BQL |
N/A |
N/A |
| *BQL = Below Quantifiable Limit < 1.00 µg/mL |
| N/A = Sample not available |
EXAMPLE 15
[0155] This example relates to the prevention of the development of diabetes and the alleviation
of hypertriglyceridemia by (-) halofenate.
A. Materials and methods
[0156] Male, 4 weeks old, C57BL/6J db/db mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). Animals were housed (5 mice/cage) under standard laboratory
conditions at 22 ± 3°C temperature and 50 ± 20% relative humidity, and were maintained
on a powder diet of Purina rodent chow (#8640) and water
ad libitum. Prior to treatment, blood was collected from the tail vein of each animal for plasma
glucose, insulin and triglyceride concentrations. Mice were distributed so that the
mean glucose levels and body weight were equivalent in each group at the start of
the study. The control group (20 mice) was put on powder chow mixed with 5% sucrose
and the treatment group (20 mice) was put on powder chow mixed with 5% sucrose and
(-) halofenate. The amount of (-) halofenate in the chow was adjusted continuously
according the animal's body weight and food intake to meet the target dosage of 150
mg/kg/day. Blood samples were taken at 8-10 AM once a week for 9 weeks under non-fasting
condition. Food intake and body weight were measured every 1-3 days. Plasma glucose
and triglyceride concentrations were determined colorimetrically using kits from Sigma
Chemical Co (No. 315 and No. 339, St. Louis, MO, USA). Plasma insulin levels were
measured using RIA assay kit purchased from Linco Research (St. Charles, MO). Significant
differences between groups (comparing drug-treated to vehicle-treated) was evaluated
using Student unpaired t-test.
B. Results
[0157] C57BL/6J db/db mice at 4 weeks of age are in a pre-diabetic state. Their plasma glucose
concentrations are normal, but the plasma insulin concentrations are significantly
elevated. As illustrated in Figure 13, the plasma glucose concentrations in both groups
were normal at the start of the experiment. Following the natural course of diabetes
development, plasma glucose levels in the control group increased progressively as
the animals aged, while the increase of plasma glucose levels in the (-) halofenate
treated group was prevented or significantly delayed. As depicted in Figure 15, about
30% of mice did not develop diabetes in the (-) halofenate treated group when diabetes
is defined as plasma glucose levels >250 mg/dl. On the other hand, none of the mice
in the control group was free of diabetes by the age of 10 weeks. Consistent with
the plasma glucose finding, plasma insulin in the control group decreased progressively,
indicating deterioration of the ability of the pancreas to secret insulin. (-) Halofenate
treatment maintained the plasma insulin concentration, indicating prevention of the
deterioration of pancreatic function (Figure 14).
[0158] Figure 16 shows progression of the plasma triglyceride concentrations versus age
in C57BL/6J db/db mice. (-) Halofenate administration alleviated the increase of plasma
triglyceride concentration over the course of the experiment.
EXAMPLE 16
[0159] This example describes the preparation of (-) 2-Acetamidoethyl 4-Chlorophenyl-(3-trifluoro
methylphenoxy)-acetate ((-) halofenate).

[0160] 4-Chlorophenylacetic acid was combined with 1,2-dichloroethane and the resulting
solution was heated to 45 °C. Thionyl chloride was added to the reaction mixture,
which was heated at 60 °C for 18 hours. The reaction was allowed to cool to room temperature
and was then added slowly to a solution of N-acetylethanolamine in dichloromethane.
After stirring 30 min., the reaction was quenched with aqueous potassium carbonate
and sodium thiosulfate. The organic layer was washed with water, dried over magnesium
sulfate and filtered. Removal of the solvent by rotary evaporation provided N-acetylaminoethyl
2-bromo-2-(4-chlorophenyl)acetate as an oil.

[0161] 3-Hydroxybenzotrifluoride was added to a solution of potassium hydroxide in isopropanol.
N-acetylaminoethyl 2-bromo-2-(4-chlorophenyl)acetate in isopropanol was added to the
isopropanol/phenoxide solution and stirred at room temperature for 4 hours. The isopropanol
was removed by vacuum distillation, and the resulting slush was dissolved in ethyl
acetate and washed twice with water and once with brine. After drying over magnesium
sulfate and filtration, the solvent was removed to give crude product as an oil. The
crude product was dissolved in hot toluene/hexanes (1:1 v/v) and cooled to between
0 and 10 °C to crystallize the product. The filter cake was washed with hexanes/toluene
(1:1 v/v) and then dried under vacuum at 50 °C. The isolated solid was dissolved in
hot 1:6 (v/v) isopropanol in hexanes. After cooling, the pure racemic 2-Acetamidoethyl
4-Chlorophenyl-(3-trifluoro methylphenoxy)-acetate formed as a crystalline solid.
The solid was collected by filtration, the filter cake washed with 1:6 (v/v) isopropanol
in hexanes and dried under vacuum at 50 °C.
[0162] The racemic compound was dissolved in a solution of 20% isopropanol (IPA) and 80%
hexane at 2.5% (wt/wt). The resulting solution was passed over a Whelk-O R,R Chiral
Stationary Phase (CSP) in continuous fashion until >98% ee extract could be removed.
The solvent was evaporated from the extract under reduced pressure to provide (-)
2-Acetamidoethyl 4-Chlorophenyl-(3-trifluoro methylphenoxy)-acetate. (The Simulated
Moving Bed resolution was conducted by Universal Pharm Technologies LLC of 70 Flagship
Drive, North Andover, MA 01845.)
EXAMPLE 17
[0163] This example relates to the lowering of plasma uric acid levels through the administration
of (-) halofenate.
A. Materials and methods
[0164] Male SD rats, weight 275-300 g were purchased from Charles River. Animals were housed
(3 rats/cage) under standard laboratory conditions at 22 ± 3°C temperature and 50
± 20% relative humidity, and were maintained on a powder diet of Purina rodent chow
(#8640) and water
ad libitum. To establish a hyperuricemic state, animals were put on a diet containing 2.5% (w/w)
of oxonic acid (Sigma Chemical Co, St. Louis, MO, USA) throughout the experiment.
Oxonic acid elevates plasma uric acid by inhibiting uricase. Rats were screened for
plasma uric acid levels 3 days after they were placed on the diet, and those that
had extreme plasma uric acid levels were excluded. Rats were assigned to one of three
groups and the mean uric acid levels were equivalent in each group. Rats were dosed
orally by gavage once a day for 3 days with either vehicle, (-) halofenate or (+)
halofenate at 50 mg/kg. On the 4
th day, respective rats received (-) halofenate or (+) halofenate at 100 mg/kg and all
rats received an i.p. injection of oxonic acid (250 mg/kg) 4 hours after the oral
gavage. (-) Halofenate and (+) halofenate were delivered in a liquid formulation containing
5% (v/v) dimethyl sulfoxide (DMSO), 1% (v/v) tween 80 and 0.9% (w/v) methylcellulose.
Oxonic acid was delivered in a liquid formulation containing 0.9% (w/v) methylcellulose.
The gavage and injection volumes were 5 ml/kg. Blood samples were taken at 6 hours
post oral gavage on day 4. Plasma uric acid levels were determined colorimetrically
using the Infinity Uric Acid Reagent (Sigma Chemical Co, St. Louis, MO, USA). Significant
difference between the groups (comparing drug-treated to vehicle-treated) was evaluated
using the Student unpaired t-test.
B. Results
[0165] As shown in Figure 17, oral administration of (-) halofenate significantly reduced
plasma uric acid levels. (+) Halofenate also lowered plasma uric acid levels, but
it was not statistically significant.
EXAMPLE 18
[0166] This example relates to the inhibition of cytochrome P450 isoforms by the compounds
of the present invention.
A. Materials and methods
[0167] The following probe substrates were used to investigate the inhibitory potential
of the test article on the cytochrome P450 isoforms 1A2, 2A6, 2C9, 2C19, 2D6, 2E1
and 3A4: 100 µM phenacetin (CYP1A2), 1 µM coumarin (CY)2A6), 150 µM tolbutamide (CYP2C9),
50 µM S-mephenytoin (CYP2C19), 16 µM dextromethorphan (CYP2D6), 50 µM chlorzoxazone
(CYP2E1), and 80 µM testosterone (CYP3A4). The activity of each isoform was determined
in human hepatic microsomes in the presence and absence of the test article.
[0168] Unless otherwise noted, all incubations were conducted at 37 °C. The sample size
was N = 3 for all test and positive control conditions and N = 6 for all vehicle control
conditions. (-) Halofenic acid (MW = 330) was prepared at room temperature as 1000X
stocks in methanol, then diluted with Tris buffer to achieve final concentrations
of 0.33, 1.0, 3.3, 10 and 33.3 µM, each containing 0.1% methanol. A vehicle control
(VC) consisting of microsomes and substrate in Tris buffer containing 0.1% methanol
without the test article was included for all experimental groups. Positive control
(PC) mixtures were prepared using the following known CYP450 inhibitors: 5 µM furafylline
(CYP1A2), 250 µM tranylcypromine (CYP2A6), 50 µM sulfaphenazole (CYP2C9), 10 µM omeprazole
(CYP2C19), 1 µM quinidine (CYP2D6), 100 µM 4-methylpyrazole (CYP2E1), and 5 µM ketoconazole
(CYP3A4). A chromatographic interference control (CIC) was included to investigate
the possibility of chromatographic interference by the test article and its metabolites.
The test article ( at 33.3 µg/mL) was incubated with 1X microsomal protein, 1X NRS,
and 10 µL of an appropriate organic for an appropriate time period as described below.
[0169] Stable, frozen lots of pooled adult male and female hepatic microsomes prepared by
differential centrifugation of liver homogenates were used in this study
(see, e.g., Guengerich, F.P. (1989). Analysis and characterization of enzymes. In
Principles and Methods of Toxicology (A.W. Hayes, Ed.), 777-813. Raven Press, New York.). Incubation mixtures were prepared
in Tris buffer to contain microsomal protein (1 mg/mL), each concentration of the
probe substrates (as 100X stocks), and the test article (at each concentration) or
PC as appropriate for each isoform. After a 5-minute preincubation at 37 °C, NADPH
regenerating system (NRS) was added to initiate the reactions, and the samples were
incubated at 37 °C for the following time periods: 30 minutes for phenacetin (CYP1A6),
20 minutes for coumarin (CYP2A6), 40 minutes for tolbutamide (CYP2C9), 30 minutes
for S-mephenytoin (CYP2C19), 15 minutes for dextromethorphan (CYP2D6), 20 minutes
for chlorozoxazone (CYP2E1), and 10 minutes for testosterone (CYP3A4). Incubation
reactions were terminated at the appropriate time with the addition of an equal volume
of methanol, except for the incubations with S-mephenytoin, which were terminated
with the addition of 100 µL of perchloric acid. All substrates were evaluated near
their respective K
m concentrations, as previously indicated.
[0170] After each incubation, the activities of the P450 isoforms were determined by measuring
the rates of metabolism for the respective probe substrates. The metabolites monitored
for each probe substrate were as follows: acetaminophen for CYP1A2; 7-hydroxycoumarin
for CYP2A6; 4-hydroxytolbutramide for CYP2C9; 4-hydroxymephenytoin for CYP2C19; dextrorphan
for CYP2D6; 6-hydroxychlorzoxazone for CYP2E1; and 6β-hydroxytestosterone for CYP3A4.
Activities were analyzed using HPLC (In Vitro Technologies, Inc., Baltimore, MD).
[0171] Inhibition was calculated using the following equation:

Percent inhibition data for the test article was presented in a tabular format. Descriptive
statistics (mean and standard deviation) of each test article concentration were calculated,
then presented to show inhibitory potency. IC
50 values were also calculated for the test article using a 4-parameter curve fitting
equation in Softmax 2.6.1.
[0172] Measures of time, temperature, and concentration in this example are approximate.
B. Results
[0173] The results for each of the 7 isoforms of cytochrome P450, expressed as metabolic
activity and percentage of inhibition, are presented in Tables 5-8. (-) Halofenic
acid inibited 4-hydroxytolbutamide production (CYP2C9, IC50 = 11 µM) and also inhibited
4-hydroxymephenytoin production (CYP2C19) at the 10 and 33 µM dose levels. Inhibition
of other CYP450 isoforms was not observed. It should be noted that the IC50 for CYP2C9
in this experiment was approximately three times that reported in Example 7 (11 µM
as compared to 3.6 µM). This result is most likely due, at least in part, to the use
of a lower purity (-) halofenic acid (lower ee) in Example 7.
Table 5: Hepatic microsomal activities of phenacetin (CYP1A2) and coumarin (CYP2A6)
in male and female human microsomes incubated with (-) halofenic acid at doses of
0.33,1.0, 3.3, 10, and 33.3 µM
| Control/ Test Article |
Conc (µM) |
Phenacetin |
Coumarin |
| AC Production (pmol/mg protein/min) |
% Inhibitio n |
7-HC Production (pmol/mg protein/min) |
% Inhibition |
| CIC |
33.3 |
0.00 ± 0.00 |
NA |
0.00 ± 0.00 |
NA |
| VC |
0.1% |
118 ± 2 |
0 |
32.0 ± 1.4 |
0 |
| FUR |
5 |
54.5 ± 1.3 |
54 |
NA |
NA |
| TRAN |
250 |
NA |
NA |
0.00 ± 0.00 |
100 |
| (-) |
0.33 |
116 ± 2 |
1 |
33.3 ± 0.7 |
-4 |
| halofenic acid |
1.0 |
118 ± 2 |
0 |
32.6 ± 0.7 |
-2 |
| 3.3 |
119 ± 2 |
-1 |
32.1 ± 0.7 |
0 |
| 10 |
119 ± 2 |
-1 |
33.1 ± 0.7 |
-3 |
| 33.3 |
119 ± 2 |
-1 |
32.3 ± 0.7 |
-1 |
| |
IC50 |
NA |
|
NA |
|
| Values are the mean ± standard deviation ofN = 3 samples (VC: N = 6). Abbreviations:
Conc, concentration; AC, acetaminophen; 7-HC, 7-hydroxycoumarin; CIC, chromatographic
interference control; VC, vehicle control (0.1 % methanol); NA, not applicable; FUR,
furafylline; TRAN, tranylcypromine. |
Table 6: Hepatic microsomal activities of tolbutamide (CYP2C9) and S-mephenytoin
(CYP2C19) in male and female human microsomes incubated with (-) halofenic acid at
doses of 0.33, 1.0, 3.3, 10, and 33.3 µM
| Control/ Test Article |
Conc (µM) |
Tolbutamide |
S-Mephenytoin |
| 4-OH TB Production (pmol/mg protein/min) |
% Inhibitio n |
4-OH ME Production (pmol/mg protein/min) |
% Inhibition |
| CIC |
33.3 |
0.00 ± 0.00 |
NA |
0.00 ± 0.00 |
NA |
| VC |
0.1% |
43.0 ± 1.4 |
0 |
3.17 ± 0.29 |
0 |
| OMP |
10 |
NA |
NA |
1.58 ± 0.05 |
50 |
| SFZ |
50 |
BQL |
-100 |
NA |
NA |
| (-) |
0.33 |
41.0 ± 0.9 |
5 |
3.03±0.03 |
4 |
| halofenic acid |
1.0 |
38.6 ± 0.5 |
10 |
3.01 ± 0.07 |
5 |
| 3.3 |
34.2 ± 0.2 |
21 |
2.69 ± 0.12 |
15 |
| 10 |
22.7 ± 0.6 |
47 |
2.43 ± 0.09 |
23 |
| 33.3 |
12.7 ± 0.2 |
71 |
1.80 ± 0.07 |
43 |
| |
IC50 |
~11.335 µM |
>33.3 µM |
| Values are the mean ± standard deviation ofN = 3 samples (VC: N = 6). Abbreviations:
Conc, concentration; 4-OH TB, 4-hydroxytolbutamide; 4-OH ME, 4-hydroxymephenytoin;
CIC, chromatographic interference control; VC, vehicle control (0.1% methanol); NA,
not applicable; OMP, omeprazole; SFZ, sulfaphenazole; BQL, below quantifiable limit. |
Table 7: Hepatic microsomal activities of dextromethorphan (CYP2D6) and chlorzoxazone
(CYP2E1) in male and female human microsomes incubated with (-) halofenic acid at
doses of 0.33, 1.0, 3.3, 10, and 33.3 µM
| Control/ Test Article |
Conc (µM) |
Dextromethorphan |
Chlorzoxazone |
| DEX Production (pmol/mg protein/min) |
% Inhibitio n |
6-OH CZX Production (pmol/mg protein/min) |
% Inhibition |
| CIC |
33.3 |
0.00 ± 0.00 |
NA |
0.00 ± 0.00 |
NA |
| VC |
0.1% |
111 ± 6 |
0 |
246 ± 5 |
0 |
| 4-MP |
100 |
NA |
NA |
BQL |
~100 |
| QUIN |
1 |
BQL |
~100 |
NA |
NA |
| (-) |
0.33 |
107 ± 4 |
3 |
238 ± 4 |
3 |
| halofenic acid |
1.0 |
110 ± 2 |
1 |
244 ± 1 |
1 |
| 3.3 |
104 ± 3 |
6 |
239 ± 4 |
3 |
| 10 |
107 ± 1 |
4 |
244±6 |
1 |
| 33.3 |
106 ± 4 |
5 |
239 ± 4 |
3 |
| |
IC50 |
NA |
|
NA |
|
| Values are the mean ± standard deviation ofN = 3 samples (VC: N = 6). Abbreviations:
Conc, concentration; DEX, dextrorphan; 6-OH CZX, 6-hydroxychlorzoxazone; CIC, chromatographic
interference control; VC, vehicle control (0.1% methanol); NA, not applicable; 4-MP,
4-methylpyrazole; QUIN, quinidine; BQL, below quantifiable limit. |
Table 8: Hepatic microsomal activities of testosterone (CYP3A4) in male and female
human microsomes incubated with (-) halofenic acid at doses of 0.33, 1.0, 3.3, 10,
and 33.3 µM
| Control/ |
|
Testosterone |
| Test Article |
Conc (µM) |
6β-OHT Production (pmol/mg protein/min) |
% Inhibition |
| CIC |
33.3 |
0.00 ± 0.00 |
NA |
| VC |
0.1% |
1843 ± 9 |
0 |
| KTZ |
5 |
32.4 ± 0.2 |
98.2 |
| (-) |
0.33 |
1816 ± 12 |
1.5 |
| halofenic acid |
1.0 |
1851 ± 14 |
0 |
| 3.3 |
1810 ± 3 |
1.8 |
| 10 |
1819 ± 4 |
1.3 |
| 33.3 |
1816 ± 6 |
1.5 |
| |
IC50 |
NA |
| Values are the mean ± standard deviation of N = 3 samples (VC: N = 6). Abbreviations:
Conc, concentration; 6β-OHT, 6β-hydroxytestosterone; CIC, chromatographic interference
control; VC, vehicle control (0.1% methanol); NA, not applicable; KTZ, ketoconazole;
BQL, below quantifiable limit. |
[0174] Although the foregoing invention has been described in detail for purposes of clarity
of understanding, it will be obvious that certain modifications can be practiced within
the scope of the appended claims. All publications and patent documents cited herein
are hereby incorporated by reference in their entirety for all purposes to the same
extent as if each were so individually denoted.