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(54) Automatic validation and calibration of transaction-based performance models

(57) The described systems, methods, and data
structures are directed at automatic configuration of
transaction-based performance models. Models of an in-
frastructure are created and automatically configured us-
ing data provided by existing management tools that are
designed to monitor the infrastructure. These automati-
cally configured models may be used to simulate the per-
formance of the infrastructure in the current configuration
or other potential configurations. The models may also
be automatically validated calibrated by comparing re-
sults from simulations and measured data.
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Description

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims the benefit of U. S. Provisional Application No. 60/598,568, filed August 2, 2004, titled
"SYSTEM AND METHOD FOR PROCESSING PERFORMANCE MODELS TO REFLECT ACTUAL COMPUTER SYS-
TEM DEPLOYMENT SCENARIOS", the content of which is hereby incorporated by reference.
[0002] This application is related to U. S. Patent Application, No. 09/632,521, titled "A PERFORMANCE TECHNOLOGY
INFRASTRUCTURE FOR MODELING THE PERFORMANCE OF COMPUTER SYSTEMS", the content of which is
hereby incorporated by reference.
[0003] This application is related to U. S. Patent Application, No. 10/053,733, titled "LATE BINDING OF RESOURCE
ALLOCATION IN A PERFORMANCE SIMULATION INFRASTRUCTURE", the content of which is hereby incorporated
by reference.
[0004] This application is related to U. S. Patent Application, No. 10/053,731, titled "EVALUATING HARWARE MOD-
ELS HAVING RESOURCE CONTENTION", the content of which is hereby incorporated by reference.
[0005] This application is related to U. S. Patent Application, No. 10/304,601, titled "ACTION BASED SERVICES IN
A PERFORMANCE SIMULATION INFRASTRUCTURE", the content of which is hereby incorporated by reference.

BACKGROUND

[0006] Computer system infrastructure has become one of the most important assets for many businesses. This is
especially true for businesses that rely heavily on network-based services. To ensure smooth and reliable operations,
substantial amount of resources are invested to acquire and maintain the computer system infrastructure. Typically,
each sub-system of the computer system infrastructure is monitored by a specialized component for that sub-system,
such as a performance counter. The data generated by the specialized component may be analyzed by an administrator
with expertise in that sub-system to ensure that the sub-system is running smoothly.
[0007] A successful business often has to improve and expand its capabilities to keep up with customers’ demands.
Ideally, the computer system infrastructure of such a business must be able to constantly adapt to this changing business
environment. In reality, it takes a great deal of work and expertise to be able to analyze and assess the performance of
an existing infrastructure. For example, if a business expects an increase of certain types of transactions, performance
planning is often necessary to determine how to extend the performance of the existing infrastructure to manage this
increase.
[0008] One way to execute performance planning is to consult an analyst. Although workload data may be available
for each sub-system, substantial knowledge of each system and a great deal of work are required for the analyst to be
able to predict which components would need to be added or reconfigured to increase the performance of the existing
infrastructure. Because of the considerable requirement for expertise and effort, hiring an analyst to carry out performance
planning is typically an expensive proposition.
[0009] Another way to execute performance planning is to use an available analytical tool to predict the requirements
for the workload increase. However, many of the conventional tools available today are programs that simply extrapolate
from historical data and are not very accurate or flexible. Also, subjective decisions will still have to be made to choose
the components that will deliver the predicted requirements.
[0010] A user-friendly tool that is capable of accurately carrying out performance planning continues to elude those
skilled in the art.

DESCRIPTION OF THE DRAWINGS

[0011] These and other features and advantages of the present invention will be better understood from the following
detailed description read in light of the accompanying drawings, wherein:
[0012] FIG. 1 shows an example system for automatically configuring a transaction-based performance model.
[0013] FIG. 2 shows example components of the automated modeling module illustrated in FIG. 1.
[0014] FIG. 3 shows an example process for simulating the performance of an infrastructure.
[0015] FIG. 4 shows an example process for automatically configuring a model of an infrastructure.
[0016] FIG. 5 shows an example process for simulating an infrastructure using an automatically configured model.
[0017] FIG. 6 shows an exemplary computer device for implementing the described systems and methods.
[0018] FIG. 7 shows an example process for simulating the performance of an infrastructure using a validated model.
[0019] FIG. 8 shows an example process for validating a model of an infrastructure.
[0020] FIG. 9 shows an example process for calibrating a device model using data provided by an application specific
counter.
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[0021] FIG. 10 shows an example process for calibrating a device model using data provided by repeated simulations
with different workload levels.

DETAILED DESCRIPTION

[0022] The systems, methods, and data structure described herein relates to automatic configuration of transac-
tion-based performance models. Models of an infrastructure are created and automatically configured using data provided
by existing management tools that are designed to monitor the infrastructure. These automatically configured models
may be used to simulate the performance of the infrastructure in the current configuration or other potential configurations.
[0023] The automated performance model configuration system described below enables performance modeling to
be efficiently and accurately executed. This system allows users to quickly and cost-effectively perform various types
of analysis. For example, the described system may be used to execute a performance analysis for a current infrastructure,
which includes both hardware and software components. The system may import data from the various configuration
databases to represent the latest or a past deployment of the information technology (IT) infrastructure. This model
configuration may serve as the baseline for analyzing the performance of the system. The types of analysis may include
capacity planning, bottleneck analysis, or the like. Capacity planning includes the process of predicting the future usage
requirements of a system and ensuring that the system has sufficient capacity to meet those requirements. Bottleneck
analysis includes the process of analyzing an existing system to determine which components in the system are operating
closest to maximum capacity. These are typically the components that will need to be replaced first if the capacity of the
overall system is to be increased.
[0024] The described system may also be used for executing a what-if analysis. Using the baseline models, a user
may predict the performance of the infrastructure with one or more changes to the configurations. Examples of what-if
scenarios include an increase in workload, changes to hardware and/or software configuration parameters, or the like.
[0025] The described system may further be used for automated capacity reporting. For example, a user may define
a specific time interval for the system to produce automatic capacity planning reports. When this time interval elapses,
the system imports data for the last reporting period and automatically configures the models. The system then uses
the configured models to execute a simulation and produces reports for the future capacity of the system. The system
may raise an alarm if the capacity of the system will not be sufficient for the next reporting period.
[0026] The described system may be used for operational troubleshooting. For example, an IT administrator may be
notified by an operational management application that a performance threshold has been exceeded. The administrator
may use the described system to represent the current configuration of the system. The administrator may then execute
a simulation to identify whether the performance alarm is the cause of a capacity issue. Particularly, the administrator
may determine whether the performance alarm is caused by an inherent capacity limitation of the system or by other
factors, such as an additional application being run on the system by other users.
[0027] FIG. 1 shows an example system for automatically configuring a transaction-based performance model. In one
implementation, the example system may include automated model configuration module 100 and simulation module
130, which are described as separate modules in FIG. 1 for illustrative purposes. In actual implementation, automated
model configuration module 100 and simulation module 130 may be combined into a single component. The example
system is configured to model infrastructure 110 and to emulate events and transactions for simulating the performance
of infrastructure 110 in various configurations.
[0028] Infrastructure 110 is a system of devices connected by one or more networks. Infrastructure 110 may be used
by a business entity to provide network-based services to employees, customers, vendors, partners, or the like. As
shown in FIG. 1, infrastructure 110 may include various types of devices, such as servers 111, storage 112, routers and
switches 113, load balancers 114, or the like. Each of the devices 111-114 may also include one or more logical
components, such as applications, operating system, or other types of software.
[0029] Management module 120 is configured to manage infrastructure 110. Management module may include any
hardware or software component that gathers and processes data associated with infrastructure 110, such as change
and configuration management (CCM) applications or operations management (OM) applications. For example, man-
agement module 120 may include server management tools developed by MICROSOFT®, such as MICROSOFT®
Operation Manager (MOM), System Management Server (SMS), System Center suite of products, or the like. Typically,
the data provided by management module is used for managing and monitoring infrastructure 110. For example, a
system administrator may use the data provided by management module 120 to maintain system performance on a
regular basis. In this example, the data provided by management module is also used to automatically create models
for simulation.
[0030] Management module 120 is configured to provide various kinds of data associated with infrastructure 110. For
example, management module 120 may be configured to provide constant inputs, such as a list of application components
from the logical topology of infrastructure 110, transaction workflows, a list of parameter names from the user workload,
action costs, or the like. Management module 120 may be configured to provide configurable inputs, such as the physical
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topology of infrastructure 110, logical mapping of application components onto physical hardware from the logical to-
pology, values of parameters from the user workload, or the like.
[0031] Management module 120 may also include discovery applications, which are written specifically to return
information about the configuration of a particular distributed server application. For example, discovery applications
may include WinRoute for MICROSOFT® Exchange Server, WMI event consumers for MICROSOFT® WINDOWS®
Server, or the like. These discovery applications may be considered as specialized versions of CCM/OM for a particular
application. However, these applications are typically run on demand, rather than as a CCM/OM service. Discovery
applications may be used to obtain the physical topology, logical mapping, and parameter values needed to configure
a performance model in a similar way to that described for CCM/OM databases. The CCM/OM databases may be used
with a translation step customized for each discovery application. The data may be returned directly, rather than being
extracted from a database. However, this method may involve extra delay while the discovery application is executed.
[0032] Data store 123 is configured to store data provided by management module 120. The data may be organized
in any kind of data structure, such as one or more operational databases, data warehouse, or the like. Data store 123
may include data related to the physical and logical topology of infrastructure 110. Data store 123 may also include data
related to workload, transactional workflow, or action costs. Such data may be embodied in the form of traces produced
by event tracing techniques, such as Event Tracing for WINDOWS® (ETW) or Microsoft SQL Traces.
[0033] Automated model configuration module 100 is configured to obtain information about infrastructure 110 and to
automatically create and configure models 103 of each components of infrastructure 110 for simulation. Models 103 are
served as inputs to simulation module 130.
[0034] Automated model configuration module 100 may interact with infrastructure 110 and perform network discovery
to retrieve the data for constructing the models. However, automated model configuration module 100 is typically con-
figured to obtain the data from operational databases and data warehouse that store information gathered by adminis-
trative components for infrastructure 110. For example, automated model configuration module 100 may retrieve the
data from data store 123, which contains data provided by management module 120.
[0035] Automated model configuration module 100 may provide any type of models for inputting to simulation module
130. In one embodiment, automated model configuration generates models for infrastructure 110 relating to physical
topology, logical topology, workload, transaction workflows, and action costs.
[0036] Data for modeling the physical topology of infrastructure 110 may include a list of the hardware being simulated,
including the capabilities of each component, and how the components are interconnected. The level of detail is normally
chosen to match the level on which performance data can easily be obtained. For example, the MICROSOFT® WIN-
DOWS® operating system may use performance counters to express performance data. These counters are typically
enumerated down to the level of CPUs, network interface cards, and disk drives. Automated model configuration module
100 may model such a system by representing the system as individual CPUs, network interface cards, and disk drives
in the physical topology description. Each component type may have a matching hardware model that is used to calculate
the time taken for events on that component. Thus, the CPU component type is represented by the CPU hardware
model, which calculates the time taken for CPU actions, such as computation.
[0037] Automated model configuration module 100 may use a hierarchical Extensible Markup Language (XML) format
to encode hardware information, representing servers as containers for the devices that the servers physically contain.
A component may be described with a template, which may encode the capabilities of that component. For example, a
"PIII Xeon 700MHz" template encodes the performance and capabilities of an Intel Pill Xeon CPU running at a clock
speed of 700 MHz. After the components have been named and described in this hierarchical fashion, the physical
topology description may also include the network links between components. The physical topology description may
be expressed as a list of pairs of component names, tagged with the properties of the corresponding network. Where
more than one network interface card (NIC) is present in a server, the particular NIC being used may also be specified.
Below is an example code related to physical topology modeling:
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[0038] Data modeling for the logical topology of infrastructure 110 may include a list of the software components (or
services) of the application being modeled, and a description of how components are mapped onto the hardware described
in the physical topology. The list of software components may be supplied as part of the application model. For example,
an application model of an e-commerce web site might include one application component representing a web server,
such as MICROSOFT® Internet Information Services, and another application component representing a database
server, such as MICROSOFT® SQL Server. The description of each application component may include the hardware
actions that the application component requires in order to run.
[0039] Logical-to-physical mapping of application components onto hardware may be expressed using a list of the
servers (described in the physical topology) that run each application component, along with a description of how load
balancing is performed across the servers. Note that this is not necessarily a one-to-one mapping. A single application
component may be spread across multiple servers, and a single server may host several application components. Below
is an example code related to logical topology modeling:

[0040] Data for modeling the workload of infrastructure 110 may include a list of name/value pairs, defining numeric
parameters that affect the performance of the system being simulated. For example, the e-commerce web site described
above might include parameters for the number of concurrent users, the frequency with which they perform different
transactions, etc. Below is an example code related to workload modeling:
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[0041] In one implementation, automated model configuration module 100 is configured to automatically configure
the models of infrastructure 110 with existing data in data store 123 provided by management module 120. For example,
automated model configuration module 100 may automatically configure the physical topology, the logical mapping of
application components onto physical hardware from the logical topology, and the values of parameters from the workload.
Typically, automated model configuration module 100 may initially create models as templates that describe the hardware
or software in general terms. Automated model configuration module 100 then configures the models to reflect the
specific instances of the items being modeled, such as how the hardware models are connected, how the software
models are configured or used, or the like.
[0042] Simulation module 130 is configured to simulate actions performed by infrastructure 110 using models generated
and configured by automated model configuration module 100. Simulation module 130 may include an event-based
simulation engine that simulates the events of infrastructure 110. For example, the events may include actions of software
components. The events are generated according to user load and are then executed by the underlying hardware. By
calculating the time taken for each event and accounting for the dependencies between events, aspects of the perform-
ance of the hardware and software being modeled are simulated.
[0043] The system described above in conjunction with FIG. 1 may be used on any IT infrastructure. For example, a
typical enterprise IT environment has multiple geo-scaled datacenters, with hundreds of servers organized in complex
networks. It is often difficult for a user to manually capture the configuration of such an environment. Typically, users
are required to only model a small subset of their environment. Even in this situation, the modeling process is labor-in-
tensive. The described system makes performance modeling for event-based simulation available to a wide user base.
The system automatically configures performance models by utilizing existing information that is available from enterprise
management software.
[0044] By automating and simplifying configuration of models, the described system enables users to execute per-
formance planning in a variety of contexts. For example, by enabling a user to quickly configure models to represent
the current deployment, the system allows the user to create weekly or daily capacity reports, even in an environment
with rapid change. Frequent capacity reporting allows an IT professional to proactively manage an infrastructure, such
as anticipating and correcting performance problems before they occur.
[0045] The system described above also enables a user to easily model a larger fraction of an organization to analyze
a wider range of performance factors. For example, a mail server deployment may affect multiple datacenters. If the
relevant configuration data is available, models of the existing infrastructure with the mail server can be automatically
configured and the models can be used to predict the latency of transactions end to end, e.g. determining the latency
of sending an email from an Asia office to an American headquarters. Another example benefit of such analysis is
calculating the utilization due to mail traffic of the Asian/American WAN link.
[0046] Performance analysis using the described system can also be used to troubleshoot the operations of a data-
center. For example, operations management software, such as MOM, may issue an alert about slow response times
on a mail server. An IT Professional can use the system to automatically configure a model representing the current
state of the system, simulate the expected performance, and determine if the problem is due to capacity issues or to
some other cause.
[0047] FIG. 2 shows example components of the automated modeling module 100 illustrated in FIG. 1. As shown FIG.
2, automated modeling module 100 may include physical topology modeling module 201, logical topology modeling
module 202, and events analysis module 203. Modules 201-203 are shown only for illustrative purposes. In actual
implementation, modules 201-203 are typically integrated into one component.
[0048] Physical topology module 201 is configured to model the physical topology of an infrastructure. The physical
topology may be derived from data directly retrieved from a CCM application, an OM application, or a discovery application.
For example, data may be retrieved from management module 120 in FIG. 1. Typically, the physical topology is derived
using data retrieved from an operational database or data warehouse of the management module 120.
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[0049] The retrieved data typically contains the information for construction a model of the infrastructure, such as a
list of servers and the hardware components that they contain, and the physical topology of the network (e.g. the
interconnections between servers). Physical topology module 201 may also be configured to convert the retrieved data
to a format for creating models that are usable in a simulation. For example, the retrieved data may be converted to an
XML format. Physical topology module 201 may also be configured to filter out extraneous information. For example,
the retrieved data may contain memory size of components of the infrastructure, even through memory size is typically
not directly modeled for simulation. Physical topology module 201 may further be configured to perform "semantic
expansion" of the retrieved data. For example, physical topology module 201 may convert the name of a disk-drive,
which may be expressed as a simple string, into an appropriate template with values for disk size, access time, rotational
speed, or the like. Physical topology module 201 may be configured to convert data in various types of formats from
different discovery applications.
[0050] Logical topology modeling module 202 is configured to map software components onto physical hardware
models derived from data provided by management module 120. Data from both CCM applications and OM applications
may be used. For example, a CCM application may record the simple presence or absence of MICROSOFT® Exchange
Server, even though the Exchange Server may have one of several distinct roles in an Exchange system. By contrast,
an OM application that is being used to monitor that Exchange Server may also include full configuration information,
such as the role of the Exchange Server, which in turn can be used to declare the application component to which a
performance model of Exchange corresponds. Logical topology modeling module 202 may be configured to convert
data of the underlying format to a format that is usable for simulation models and to filter out unneeded information, such
as the presence of any application that is not being modeled.
[0051] Workload modeling module 203 is configured to derive the values of parameters from the user workload.
Typically, the values are derived from data retrieved from management module 120. The retrieved data may contain
current or historical information about the workload being experienced by one or more applications being monitored.
Typical performance counters may include the number of concurrent users, the numbers of different transaction types
being requested, or the like. A translation step may be performed to convert from the underlying format of the retrieved
data into a format usable in a model for simulation and to perform mathematical conversions where necessary. For
example, an OM database might record the individual number of transactions of different types that were requested over
a period of an hour, whereas the model may express this same information as a total number of transactions in an hour,
plus the percentage of these transactions that are of each of the different types.
[0052] FIG. 3 shows an example process 300 for simulating the performance of an infrastructure. At block 301, topology
and performance data associated with an infrastructure is identified. The identified data may be provided by one or more
management applications of the infrastructure. The data may be provided directly by a management application or
through an operational database or a data warehouse.
[0053] At block 303, the identified data is processed to obtain inputs for the model of the infrastructure. For example,
topology data may be converted to a format that is usable by a modeling module or a simulation module, such as a XML
format. Performance data may be converted to a form that is readily used to represent workload.
[0054] At block 305, a model of the infrastructure is automatically configured using the modeling inputs. An example
process for automatically configuring a model of an infrastructure will be discussed in FIG. 4. Briefly stated, the model
is configured using existing data from the management applications, such as data related to physical topology, logical
topology, workload, transaction workflow, action costs, or the like.
[0055] At block 307, one or more simulations are executed based on the models. The simulations are executed based
on emulating events and actions with the models of the physical and logical components of the infrastructure. Simulations
may be performed on the current configuration or potential configurations of the infrastructure. An example process for
simulating an infrastructure using automatically configured models will be discussed in FIG. 5. At block 309, the results
of the simulation are output.
[0056] FIG. 4 shows an example process 400 for automatically configuring a model of an infrastructure. Process 400
may be implemented by the automated model configuration module 100 shown in FIG. 1 and 2. At block 401, hardware
models are configured using physical topology data provided by a management application of the infrastructure. The
physical topology data may include hardware configurations for devices of the infrastructure and the components of
those devices. Physical topology data may also include information regarding how the devices are connected.
[0057] At block 403, software models are determined from logical topology data provided by the management appli-
cation of the infrastructure. The logical topology data may include information about the software components on devices
of the infrastructure and the configuration of the software components. At block 405, the software models are mapped
to the hardware models.
[0058] At block 407, workload data, transactional workflow data and action costs data are determined from the man-
agement application of the infrastructure. In particular, the data may define events and actions that are performed by
the hardware and software components and the time and workload associated with these events and actions. At block
409, the data are integrated into the models. For example, the software and hardware models may be configured to
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reflect the performance of the models when performing the defined events and actions.
[0059] FIG. 5 shows an example process 500 for simulating an infrastructure using an automatically configured model.
Process 500 may be implemented by the simulation module 130 shown in FIG. 1. At block 501, instructions to perform
a simulation are received. The instructions may include information related to how the simulation is to be executed. For
example, the instructions may specify that the simulation is to be performed using the existing configuration of the
infrastructure or a modified configuration. The instructions may specify the workload of the simulation, such as using
the current workload of the infrastructure or a different workload for one or more components of the infrastructure.
[0060] At block 503, the model of an existing infrastructure is determined. Typically, the model is provided by a modeling
module and is automatically configured to reflect the current state of the infrastructure. At decision block 505, a deter-
mination is made whether to change the configurations of the infrastructure model. A simulation of the infrastructure
with the changed configurations may be performed to predict the performance impact before the changes are actually
implemented. If there are no configuration changes, process 500 moves to block 513.
[0061] Returning to decision block 505, if the determination is made to change the configurations, process 500 moves
to block 507 where changes to the infrastructure are identified. The changes may be related to any aspects of the
infrastructure, such as physical topology, logical topology, or performance parameters. At block 509, the model is modified
in accordance with the identified changes. At block 513, the simulation is performed using the modified model.
[0062] FIG. 6 shows an exemplary computer device 600 for implementing the described systems and methods. In its
most basic configuration, computing device 600 typically includes at least one central processing unit (CPU) 605 and
memory 610.
[0063] Depending on the exact configuration and type of computing device, memory 610 may be volatile (such as
RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. Additionally, computing device
600 may also have additional features/functionality. For example, computing device 600 may include multiple CPU’s.
The described methods may be executed in any manner by any processing unit in computing device 600. For example,
the described process may be executed by both multiple CPU’s in parallel.
[0064] Computing device 600 may also include additional storage (removable and/or non-removable) including, but
not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in Fig. 6 by storage 615. Computer
storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or
technology for storage of information such as computer readable instructions, data structures, program modules or other
data. Memory 610 and storage 615 are all examples of computer storage media. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which can accessed by computing
device 600. Any such computer storage media may be part of computing device 600.
[0065] Computing device 600 may also contain communications device(s) 640 that allow the device to communicate
with other devices. Communications device(s) 640 is an example of communication media. Communication media
typically embodies computer readable instructions, data structures, program modules or other data in a modulated data
signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term
"modulated data signal" means a signal that has one or more of its characteristics set or changed in such a manner as
to encode information in the signal. By way of example, and not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. The term computer-readable media as used herein includes both computer storage media and communication
media. The described methods may be encoded in any computer-readable media in any form, such as data, compu-
ter-executable instructions, and the like.
[0066] Computing device 600 may also have input device(s) 635 such as keyboard, mouse, pen, voice input device,
touch input device, etc. Output device(s) 630 such as a display, speakers, printer, etc. may also be included.
All these devices are well know in the art and need not be discussed at length.
[0067] As discussed above, the described systems, methods and data structures are capable of automatically con-
figuring infrastructure models using data from available management applications. These systems, methods and data
structures may be further enhanced by incorporating an automatic validation and calibration feature. A model may be
validated and calibrated to a degree of accuracy selected by a user.
[0068] After a model of an infrastructure has been automatically configured, validation may be performed to confirm
that the model’s performance predictions are accurate to within a user-specified degree. If the specified degree of
accuracy is not achieved, calibration may be performed to modify non-configurable aspects of the model to achieve the
specified accuracy. The configurable aspects of a model, such as the representation of the hardware, topology, workload,
or the like, are typically not changed by the calibration. The calibration may change parameters associated with the
model, such as action costs, background load, or other parameters that are part of the model template.
[0069] Action costs are numeric values representing the resource requirements of a particular transaction step on a
particular hardware resource. Action costs may be measured in terms that are specific to the type of hardware device
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being used. Typically, action costs are independent of the particular instance of the device. For example, action costs
for a CPU may be measured in megacycles of computation, while action costs for a disk may be measured in terms of
the number of disk transfers required and the amount of data transferred. Different CPUs and disks may take different
amounts of simulated time to process actions that require the same action costs. Action costs are typically obtained
during the development of an infrastructure model, by benchmarking the application to be modeled in a performance
laboratory.
[0070] Ideally, all action costs for a particular device type (e.g. CPU) may be described using a single numeric value
(e.g. megacycles), and may accurately scale across all instances of that device type. In practice, scaling may not be
simple. For example, running the same action on a CPU with twice the clock speed may not result in half the time taken
to complete the action. Accounting for all the factors that affect this nonlinear scaling is often impractical. Even if a very
complex model is provided that accurately accounts for all possible factors, the model may still not be used for a variety
of reasons. For example, the time and/or memory required to compute the final result may be much higher than that for
a simple model, resulting in prohibitively long simulation times. Also, the number of input variables required may be too
great for simple data collection and model configuration. Spending a significant amount of time or effort instrumenting
applications and hardware may not be desired.
[0071] To alleviate the difficult tradeoff between model accuracy and complexity, calibration may be used to obtain
the benefits of both, e.g. a simple, fast model can be used with a specified minimum of accuracy for a wide range of
inputs. Validation may be implemented to determine whether the modeling accuracy is sufficient. Calibration may be
implemented to adjust the action costs to better reflect the particular set of inputs being used.
[0072] Background load is another variable that is often encountered in practice, but is typical not implemented in a
conventional model. Background load refers to the utilization of hardware resources by applications that are not part of
the workload model. For example, a virus checker may be imposing extra CPU overhead on every disk read, in order
to scan contents in the disk for virus signatures. A local area network (LAN) is another example because a LAN is very
rarely dedicated to a single application. More often, a LAN is shared across multiple computers running multiple appli-
cations, each of which has its own impact on the network. Sometimes, the user may be aware of this background load
and may include this load as part of the initial model configuration, for example by specifying a fixed percentage of
utilization of the LAN. However, more often, the user is unaware of these extra effects, and only knows that the performance
model seems inaccurate.
[0073] Additionally, some background load effects may not be constant, but rather may be dependent on the workload.
The virus checker is an example. Normally, disk operations are modeled independently of the CPU. There may not be
a "CPU cost" field provided in a disk model. The effect of the virus checker may be seen as an increased CPU cost for
all transactions containing disk access actions.
[0074] To validate the accuracy of a performance model, the performance of the application being modeled may be
captured. Performance data may be captured using statistical counters that measure performance aspects the application
and the hardware devices on which the application executes. For example, "performance counters" exposed by MICRO-
SOFT® WINDOWS® may be used. Other examples include hardware measures (e.g. the amount of CPU time used by
a CPU) and counters created by an application to measure performance, such as the average transaction rate.
[0075] Models are typically developed to use performance counter measures as part of the models’ configuration
information. The level of abstraction of a model may be chosen to match the availability of performance information. The
outputs of the models may also be expressed in terms of these performance counters. For example, the outputs may
include how much CPU time is used on a particular CPU during a simulated series of transactions, and the average
transaction rate that the application sustains.
[0076] As described above, during automatic configuration, information about the application being modeled may be
imported from OM database. An example of such a database is that maintained by Microsoft Operation Manager (MOM),
which includes historical values of performance counters for the application being modeled. These counters may capture
both the input workload (e.g. the number of transactions processed) and the observed results (e.g. the CPU time
consumed).
[0077] Validation may include taking the automatically configured model, setting inputs of the model to historically
observed performance counter values (e.g. number of transactions per hour) from the OM database, running a perform-
ance simulation, and comparing the predicted outputs to historically observed performance counter values (e.g. the CPU
time consumed). For a predicted performance counter value, the accuracy of the performance model may be expressed
in both relative (i.e. percentage) and absolute (e.g. number of megacycles) terms. The required accuracy may be
expressed in either of these terms. Additionally, the performance counters may be grouped. The required accuracy may
be applied to the group as a whole. For example, a user may require all disk bandwidth predictions to be accurate to
within 20%, or all CPU megacycle predictions on front-end web servers to be accurate to within 5%.
[0078] Performance counters may be organized into two categories based on the scope of the counters. Some counters
apply to a specific application. For example, a mail server application may expose the CPU usage caused by the
application. These counters may be defined as application specific counters. The operation system (OS) is also respon-
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sible for monitoring the overall performance of a system, and exposes counters, such as the overall CPU usage. These
system wide counters may include usage of all the applications that execute on the system. When there is an error in
the model, these counters may be used to determine the source of the error. The errors may be characterized into work
load dependent errors and workload independent errors.
[0079] Workload dependent errors include errors with a magnitude that varies as a function of the application workload.
For example, the workload dependent errors may result from an incorrect modeling assumption, start up effects (e.g.
cold caches), application saturation (e.g. locks), missing transaction classes, or the like. Missing transaction classes is
very common since, typically, just the most common transactions are modeled, rather than all supported transactions.
The effect of workload dependent errors may be calculated by comparing application specific counters with modeling
results. For example, if the predicted CPU utilization of the mail server application is 10% and the actual CPU usage of
the application is 15%, the 5% difference is a workload dependent error.
[0080] Workload independent errors include errors with a magnitude that is independent of the workload. Workload
independent errors are typically resulted from overheads from the OS or other workloads not included in a model. For
example, a single server device may run both a mail server application and a file server application. A mail server
application model may not account for the device usage caused by the file server application. The effect of workload
independent errors may be calculated by comparing system wide counters with application specific counters. For ex-
ample, if the CPU usage of the mail server application is 25%, and the overall CPU usage is 35%, the 10% difference
is a workload independent error due to a constant or background load.
[0081] Default values for required accuracy limits may be supplied as part of the underlying model. For example, if
the disk model has been found in practice to be particularly accurate, the default required accuracy may be set to 5%,
since a value outside of this range is more likely to be the result of a hidden underlying factor, such as background load.
Conversely, if the CPU model is known to be less accurate, the default required accuracy may be set to 20% to avoid
inaccurate conclusions from the results.
[0082] The accuracies may be grouped to simplify the display of information and to reduce user load. For example,
rather than showing the accuracies for all front-end web servers in a data center, the validation user interface may show
a single representation of the front-end web servers, with a range of accuracies (e.g. "-6% to +7%"). Color-coding may
further enhance the usability of the interface. For example, performance counters with an accuracy that lies well within
the user-specified limits may be displayed in green, those which are approaching the limits in orange, and those which
exceed the limits in red.
[0083] If a user is satisfied with the observed-vs.-predicted accuracy of all the performance counters, the validation
process is complete, and the user may use the model to perform what-if analyses with greater confidence in the final
results. Otherwise, one or more cycles of calibration followed by validation may be performed.
[0084] Calibration involves adjusting either the action costs or the background load of the underlying performance
model to improve the accuracy of model validation. Adjusting the action costs may produce the desired effect if the
underlying cause of the inaccuracy is dependent on the workload (i.e. workload dependent error). If the underlying cause
is independent of the workload, for example another application is using percentage of the LAN bandwidth, then adjusting
the action costs may result in inaccurate results for all levels of workload except the one chosen for validation.
[0085] Adjusting the background load may be used to improve the accuracy of model validation by including the
concept of workload dependent background load. Background load can be a constant, or a scalar that is multiplied by
the current workload. Background load can be applied on a per-device level, rather than on a per-action level. However,
to capture the case where the model underestimates the performance of an application, background load may be
extended to include a negative load (i.e. adjusting the capacity of the device so that it is higher than it should be, based
on the model). Negative load may be used to account for cases where devices scale better than the results from the
models.
[0086] The concept of background load may be applied to the resource capacity of the underlying hardware models
being used in the simulation. The background load may be constant (i.e. workload independent errors) or workload
dependent and may act as a positive or negative factor. The correct amount by which to adjust the background load
depends on the underlying model. If the model is linear, a multiplication by a correction factor may be sufficient. However,
more complex models may require unique calculations to determine the appropriate correction factor. As with default
accuracy values, these calculations may be provided as a calibration function within the hardware model. This calibration
function may be called for each device type with the observed inaccuracy. The calibration function may return the
appropriate factor or constant amount by which to change the resource costs in order to bring the inaccuracy to zero.
[0087] After an inaccuracy error is observed, analysis may be performed to determine which part of the inaccuracy is
due to a constant effect and which part is due to a workload dependent effect. This determination may be made by
comparing the results of two simulations. The determination may also be made by comparing the results of an applica-
tion-specific counter and those of a system wide performance counter.
[0088] Inaccuracy assessment by simulation involves performing two simulations using two different workload values
and determining whether the inaccuracies of the two simulations stay the same or vary. Any workload variation for the
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second simulation may be used, such as half or twice the previous workload. Doubling the workload may result in
non-linear performance effects as individual components near saturation. For example, the behavior of the overall system
may become exponential, even if the behavior is normally linear. Thus, using half the workload in the second simulation
may provide better results in many situations. However, half the workload in the second simulation may not be desired
when the initial workload is so low that the model is approaching the level of granularity of the performance counters
and the performance effects may be lost in the noise. Calibration using this solution therefore consists of:

a) Rerunning the simulation for a second time with a different workload intensity (e.g. with half the workload)
b) For each hardware device being modeled that requires calibration:

i) Comparing the observed performance counters and predicted performance counters for the first and second
simulations to determine whether the device should have a constant background load or a variable background
load applied.

ii) Calling the calibration function of the appropriate hardware model, supplying the constant or variable back-
ground load error, and obtaining the corresponding constant or variable background load factor.

iii) Apply the load factor to the underlying device.

[0089] Inaccuracy assessment by simulation may be represented by:
[0090]

[0091] where / represents load, e represents the overall error, ec represents the constant error (e.g. due to background
load), ev represents the variable error due to load, up represents the predicted device utilization, and um represents the
measured device utilization.
[0092] In the equation above, um, up and l are known. Running the simulations with two loads results in a simple
system of 2 equations with 2 unknowns. Thus, ev and ec can be readily determined.
[0093] Inaccuracy assessment by using performance counters typically requires the availability of pairs of application
specific and system wide performance counters that characterize the utilization level of the same device. Calibration
may be performed by:

a) Determining the error that is due to the background load (e.g. the predicted utilization counter minus the system
wide counter). The result is the constant background load to apply to the device.
b) Determine the workload dependent error (e.g. the predicted utilization counter minus the application specific
counter). The result is the background load to apply as a function of the load.
c) Apply the combined load factors to the underlying device.

[0094] After completing a calibration step, the validation may be executed again.
[0095] FIG. 7 shows an example process 700 for simulating the performance of an infrastructure using a validated
model. Process 700 is similar to process 300 shown in FIG. 3 but includes extra steps after block 307.
[0096] At decision block 703, a determination is made whether validation of the automatically configured model will
be performed. If not, process 700 continues at block 309. If validation will be performed, process 700 moves to block
707 where the model is validated. An example process for validating the model will be discussed in conjunction with
FIG. 8. The process then moves to block 707 where the results of the simulation are outputted.
[0097] FIG. 8 shows an example process 800 for validating a model of an infrastructure. At block 803, results from a
simulation are identified. At block 805, workload data from measurements are determined. The measured workload data
may be provided by a management module for an infrastructure. At block 807, the simulation results are compared with
the measured workload data. An error may be calculated from the comparison. At decision block 809, a determination
is made whether the error is within an acceptable level. If so, process 800 moves to block 815 where the model is validated.
[0098] Returning to decision block 809, if the error is not within the acceptable level, process 800 moves to block 811
where a load factor for each device of the infrastructure is determined. The load factor may be determined by comparing
data provided by an overall performance counter and data provided by an application specific counter. The load factor
may also be determined from results generated by two simulations executed with two different workload levels. Examples
of these methods will be discussed in conjunction with FIG. 9 and 10.
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[0099] At block 813, the model is calibrated with the load factor. For example, the model may be configured to account
for workload independent errors during simulation as a constant background load and to scale the workload dependent
errors based on the workload level. At block 815, the model is validated after calibration. It is to be appreciated that the
steps in block 809, 811 and 813 may be repeated until the error is within the acceptable level.
[0100] FIG. 9 shows an example process 900 for calibrating a device model using data provided by an application
specific counter. At block 903, a utilization value for the device is identified from simulation. At block 907, the overall
error is determined using data provided by a system wide counter. For example, the overall error may be determined
by subtracting the utilization value provided by the system wide counter by the utilization value of the device from
simulation. The overall error may represent a background load that includes a workload dependent component (e.g.
application load that is not modeled) and a workload independent component (e.g. load generated by the OS of the
device). This background load resulted in an error because the load is not accounted by the model during simulation.
[0101] At block 909, a workload dependent error is determined using data provided by an application specific counter.
The application specific counter determines the utilization of the application. The workload dependent error may be
determined from the differences between the simulated and the actual utilization value associated with the application.
The remaining overall error is the constant error that is workload independent. At block 911, a load factor for calibration
is calculated from the constant and workload dependent errors.
[0102] FIG. 10 shows an example process 1000 for calibrating a device model using data provided by repeated
simulations with different workload levels. At block 1005, the measured utilization values from two workload levels are
identified. At block 1007, simulated utilization values for the two workload levels are determined. At block 1009, the
overall errors for the two workload levels are calculated. For example, the overall errors may be calculated by subtracting
the measured data by the simulation results. The overall errors represent background load that is not accounted by the
model.
[0103] At block 1015, the workload dependent error is calculated by comparing the overall errors for the two workload
levels. For example, if the overall errors are different at the two workload levels, the difference represents the error that
is dependent on workload. The remaining error is workload independent. At block 1017, a load factor is determined from
the workload independent and workload dependent errors.
[0104] To implement validation and calibration of automatically configured models, automated modeling module 100
shown in FIG. 1 and 2 may be configured to implement processes 800, 900 and 1000 discussed above.
[0105] While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that
various changes can be made therein without departing from the spirit and scope of the invention.

Claims

1. A computer-implemented method for modeling an infrastructure containing multiple devices, the infrastructure being
monitored by a management application, the computer-implemented method comprising:

generating a model of the infrastructure;
configuring the model using information provided by the management application;
performing a simulation with the model;
identifying performance data from the simulation;
calculating an error based, at least in part, on comparing the simulated performance data with measured per-
formance data provided by the management application; and
validating the model if the error is within a threshold value.

2. The computer-implemented method as recited in claim 1, further comprising:

determining a simulated utilization value for a device in the infrastructure;
determining a measured utilization value for the device from a system counter associated with the device;
determining an overall device error by comparing the simulated utilization value and the measured utilization
value; and
calibrating the model using the overall device error.

3. The computer-implemented method as recited in claim 2, wherein calibrating the model is performed by adjusting
at least one of an action cost or a background load associated with the device.

4. The computer-implemented method as recited in claim 1, further comprising:
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determining a measured application utilization value from an application specific counter associated with an
application executing on a device in the infrastructure;
determining a simulated application utilization value for the application;
determining a workload dependent error based, at least in part, on comparing the measured application utilization
value and the simulated application utilization value; and
calibrating the model based, at least in part, on the workload dependent error.

5. The computer-implemented method as recited in claim 4, further comprising:

determining a simulated utilization value for the device;
determining a measured utilization value for the device from a system counter associated with the device;
determining an overall device error based, at least in part, on comparing the simulated utilization value and the
measured utilization value;
determining a constant error from the overall device error and the workload dependent error; and
calibrating the model based, at least in part, on the constant error.

6. The computer-implemented method as recited in claim 1, further comprising:

determining a first simulated utilization value for a device in the infrastructure from the simulation;
determining a measured utilization value for the device from a system counter associated with the device; and
determining an first device error by comparing the first simulated utilization value and the measured utilization
value.

7. The computer-implemented method as recited in claim 6, further comprising:

performing a second simulation with the model;
determining a second simulated utilization value for the device from the second simulation;
determining a second device error by comparing the second simulated utilization value and the measured
utilization value.

8. The computer-implemented method as recited in claim 6, further comprising:

determining a workload independent error and a workload dependent error associated with the device by com-
paring the first device error and the second device error; and
calibrating the model based, at least in part, on the workload independent error and the workload dependent error.

9. The computer-implemented method as recited in claim 8, wherein the workload independent error is determined
based, at least in part, on the difference between the first device error and the second device error.

10. The computer-implemented method as recited in claim 8, wherein calibrating the model is performed by adjusting
at least one of an action cost or a background load associated with the device.

11. One or more computer-readable media encoded with computer-executable instructions for performing the compu-
ter-implemented method recited in claim 1.

12. An apparatus configured to perform the computer-implemented method as recited in claim 1.

13. A computer-implemented method for automatically calibrating a model of an infrastructure, the computer-imple-
mented method comprising:

performing a simulation with the infrastructure model;
identifying a device model included in the infrastructure model, the device model associated with a device in
the infrastructure;
determining from the simulation a first utilization level for an application executing on the device;
determining from measurement a second utilization level for the application;
determining a workload dependent error by comparing the first utilization level and the second utilization level; and
calibrating the device model based, at least in part, on the workload dependent error.
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14. The computer-implemented method as recited in claim 13, wherein calibrating the device model based, at least in
part, on the workload dependent error includes correcting the device model with a factor that scales with workload.

15. The computer-implemented method as recited in claim 13, wherein the second utilization level is determined from
an application specific counter associated with the application.

16. The computer-implemented method as recited in claim 13, further comprising:

determining from the simulation a third utilization level for the device;
determining from measurement a fourth utilization level for the device;
determining a device error by comparing the third utilization level and the fourth utilization level;
determining a constant error from the device error and the workload dependent error; and
calibrating the device model based, at least in part, on the constant error.

17. The computer-implemented method as recited in claim 16, wherein calibrating the device model based, at least in
part, on the constant error includes correcting the device model with a constant factor that does not change with
workload.

18. The computer-implemented method as recited in claim 16, further comprising:

validating each device model in the infrastructure; and
performing the identifying, determining and calibrating steps for each device that is not validated.

19. One or more computer-readable media encoded with computer-executable instructions for performing the compu-
ter-implemented method recited in claim 13.

20. An apparatus configured to perform the computer-implemented method as recited in claim 13.

21. A computer-implemented method for automatically calibrating a model of an infrastructure, the computer-imple-
mented method comprising:

performing a first simulation having a first workload;
performing a second simulation having a second workload different from the first workload;
determining from the first simulation a first simulated utilization level for a device represented as a device model
in the infrastructure model;
determining from the second simulation a second simulated utilization level for the device;
determining from measurement a first actual utilization level for the device, the first actual utilization level
associated with the first workload;
determining from measurement a second actual utilization level for the device, the second actual utilization level
associated with the second workload;
calculating a first error associated with the first simulation, the first error representing a difference between the
first simulated utilization level and the first actual utilization level;
calculating a second error associated with the second simulation, the second error representing a difference
between the second simulated utilization level and the second actual utilization level; and
calculating a workload dependent error representing the difference between the first error and the second error;
and
calibrating the device model with the workload dependent error.

22. The computer-implemented method as recited in claim 21, further comprising:

determining a workload independent error representing a common component of the first error and the second
error; and
calibrating the device model with the workload independent error.

23. The computer-implemented method as recited in claim 21, further comprising:

validating each device model in the infrastructure; and
performing the determining, calculating and calibrating steps for each device that is not validated.
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24. One or more computer-readable media encoded with computer-executable instructions for performing the compu-
ter-implemented method recited in claim 21.

25. An apparatus configured to perform the computer-implemented method as recited in claim 21.

26. A system comprising:

means for performing a simulation with a model of an infrastructure;
means for identifying a device model representing in the infrastructure model;
means for determining a simulated device utilization level of the device;
means for determining an actual device utilization level of the device; and
means for calculating a device error based, at least in part, on comparing the simulated device utilization level
and the actual device utilization level; and
means for validating the device model based, at least in part, on the device error.

27. The system as recited in claim 26, further comprising:

means for determining a simulated application utilization level of the device;
means for determining an actual application utilization level of the device;
means for determining a workload dependent factor based, at least in part, on comparing the simulated appli-
cation utilization level and the actual application utilization level; and
means for calibrating the device using the a workload dependent factor.

28. The system as recited in claim 27, further comprising:

means for calculating a workload independent factor based, at least in part, on the device error and the workload
dependent factor; and
means for calibrating the device using the a workload independent factor.

29. The system as recited in claim 27, further comprising:

means for performing another simulation with a different workload;
means for calculating another device error for the other simulation;
means for determining a workload dependent factor based, at least in part, on comparing the two device errors;
and
means for calibrating the device using the a workload dependent factor.

30. The system as recited in claim 29, further comprising:

means for calculating a workload independent factor based, at least in part, on comparing the two device errors;
and
means for calibrating the device using the a workload independent factor.

31. A system comprising:

means for performing a simulation based, at least in part, on a model of the infrastructure;
means for automatically gathering data from performance counters associated with an infrastructure; and
means for automatically validating the model by comparing results from the simulation and the gathered data.

32. The system as recited in claim 31, further comprising:

means for calculating errors between results from the simulation and the gathered data; and
means for automatically calibrating the model based, at least in part, on the errors.
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