(19)
(11) EP 1 630 361 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.03.2006  Patentblatt  2006/09

(21) Anmeldenummer: 05107505.9

(22) Anmeldetag:  16.08.2005
(51) Internationale Patentklassifikation (IPC): 
F01D 25/26(2006.01)
F01D 25/12(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR MK YU

(30) Priorität: 23.08.2004 DE 102004041271

(71) Anmelder: Alstom Technology Ltd
5400 Baden (CH)

(72) Erfinder:
  • Jurjevic, Zdenko
    5415 Nussbaumen (CH)

 
Bemerkungen:
Geänderte Patentansprüche gemäss Regel 86 (2) EPÜ.
 


(54) Einrichtung und Verfahren zum Kühlen eines Gehäuses einer Gasturbine bzw. einer Brennkammer


(57) Eine Einrichtung (1) zum Kühlen eines Gehäuses (2) einer Gasturbine (1) und/oder einer Brennkammer, insbesondere einer Gasturbine (1), umfasst:
  • eine Kühlgasversorgungseinrichtung (7) mit einem Kühlgasaustritt (8), aus dem im Betrieb der Kühlgasversorgungseinrichtung (7) ein Kühlgasstrom austritt, und mit einem Kühlgaseintritt (9), über den im Betrieb der Kühlgasversorgungseinrichtung (7) der Kühlgasstrom zur Kühlgasversorgungseinrichtung (7) zurückströmt,
  • einen durch das Gehäuse (2) in dessen Umfangsrichtung hindurchgeführten Kühlgaspfad (10), der einen ersten Gehäuseanschluss (11) mit einem zweiten Gehäuseanschluss (12) verbindet.
Um eine Umfangstemperaturdifferenz (T2-T1) des Gehäuses (2) unabhängig von einer Durchschnittstemperatur (T) des Gehäuses (2) einstellen zu können, ist die Kühleinrichtung (1) mit einer Schalteinrichtung (13) zur Strömungsrichtungsumkehr ausgestattet, die zwischen einer ersten Schaltstellung, in der sie den Kühlgasaustritt (8) mit dem ersten Gehäuseanschluss (11) und den Kühlgaseintritt (9) mit dem zweiten Gehäuseanschluss (12) verbindet und einer zweiten Schaltstellung umschaltbar ist, in der sie den Kühlgasaustritt (8) mit dem zweiten Gehäuseanschluss (12) und den Kühlgaseintritt (9) mit dem ersten Gehäuseanschluss (11) verbindet.




Beschreibung

Technisches Gebiet



[0001] Die vorliegende Erfindung betrifft eine Einrichtung sowie ein Verfahren zum Kühlen eines Gehäuses einer Gasturbine und/oder einer Brennkammer, insbesondere der Brennkammer einer Gasturbine.

Stand der Technik



[0002] Das Gehäuse einer Gasturbine bzw. einer Gasturbinen-Brennkammer muss im Betrieb der Gasturbine gekühlt werden. Hierzu ist es üblich, einen Kühlgaspfad in der Umfangsrichtung des Gehäuses durch das Gehäuse hindurchzuführen. Ein derartiger Kühlgaspfad verbindet dabei einen ersten Gehäuseanschluss, der z. B. als Kühlgaseinlass dient, mit einem zweiten Gehäuseanschluss, der beispielsweise als Kühlgasauslass dient. Bei der Durchströmung des Kühlgaspfades erwärmt sich das Kühlgas. Dementsprechend besitzt das Gehäuse am Kühlgaseinlass eine niedrigere Temperatur als am Kühlgasauslass. Das bedeutet, dass sich in der Umfangsrichtung des Gehäuses eine Umfangstemperaturdifferenz ausbildet. Diese Umfangstemperaturdifferenz darf im Betrieb der Gasturbine einen vorbestimmten Maximalwert nicht überschreiten, um Beschädigungen des Gehäuses aufgrund thermischer Spannungen zu vermeiden. Des Weiteren darf auch eine Durchschnittstemperatur des Gehäuses einen vorbestimmten Maximalwert nicht übersteigen, um Beschädigungen des Gehäuses zu vermeiden.

[0003] Es hat sich jedoch gezeigt, dass bei einer herkömmlichen Gehäusekühlung zwischen der Durchschnittstemperatur und der Umfangstemperaturdifferenz des Gehäuses eine Wechselwirkung besteht. Wenn die Durchschnittstemperatur, beispielsweise durch Absenken der Kühlgastemperatur am Kühlgaseinlass, reduziert wird, führt dies automatisch zu einer Vergrößerung der Umfangstemperaturdifferenz. Umgekehrt führt eine Anhebung der Durchschnittstemperatur, z. B. durch eine Erhöhung der Kühlgaseinlasstemperatur, automatisch zu einer Verkleinerung der Umfangstemperaturdifferenz. Bei einer herkömmlichen Gehäusekühlung ist die Einstellung der Umfangstemperaturdifferenz und die Einstellung der Durchschnittstemperatur somit stets ein Kompromiss aus einer vergleichsweise großen Umfangstemperaturdifferenz und einer vergleichsweise hohen Durchschnittstemperatur.

Darstellung der Erfindung



[0004] Hier setzt die Erfindung an. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für die Kühlung des Gehäuses einer Gasturbine bzw. einer Brennkammer einen Weg aufzuzeigen, der es insbesondere ermöglicht, die Umfangstemperaturdifferenz unabhängig von der Durchschnittstemperatur einzustellen.

[0005] Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.

[0006] Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, die Umfangstemperaturdifferenz durch Umschalten der Strömungsrichtung, mit welcher die Kühlgasströmung den Kühlgaspfad des Gehäuses durchströmt, zu verändern. Durch Umschalten der Strömungsrichtung wird der zuvor als Kühlgaseintritt dienende Gehäuseanschluss zum Kühlgasaustritt und der zuvor als Kühlgasaustritt dienende Gehäuseanschluss zum Kühlgaseintritt. In der Folge wird die bis dahin entstandene Umfangstemperaturdifferenz zunächst verkleinert und anschließend invertiert, sofern der jeweilige Schaltzustand länger aufrecht erhalten wird. Durch den zeitlichen Abstand zwischen aufeinander folgenden Umschaltvorgängen mit jeweiliger Strömungsrichtungsumkehr kann somit die Umfangstemperaturdifferenz auf quasi beliebig kleine Werte eingestellt werden. In der Theorie lässt sich sogar eine Umfangstemperatur von etwa 0° C einstellen. Von entscheidender Bedeutung ist bei der vorliegenden Erfindung die Tatsache, dass die Änderung der Strömungsrichtung im wesentlichen keine Auswirkungen für die Durchschnittstemperatur des Gehäuses hat. Durch die Umkehrung der Strömungsrichtung verändert sich lediglich die Temperaturverteilung in der Umfangsrichtung des Gehäuses, während die mittlere Temperatur des Gehäuses konstant bleibt. Durch die Erfindung kann somit die Umfangstemperaturdifferenz unabhängig von der Durchschnittstemperatur eingestellt werden. Auf diese Weise ist es somit möglich, sowohl für die Umfangstemperatur als auch für die Durchschnittstemperatur vergleichsweise niedrige Werte einzustellen.

[0007] Zur Realisierung der Erfindung ist eine erfindungsgemäße Kühleinrichtung mit einer Schalteinrichtung zur Strömungsrichtungsumkehr ausgestattet, die - je nach Schaltstellung - einen Kühlgasaustritt einer Kühlgasversorgungseinrichtung wahlweise mit dem ersten Gehäuseanschluss oder mit dem zweiten Gehäuseanschluss verbinden kann, um so die jeweilige Strömungsrichtung durch den die beiden Gehäuseanschlüsse miteinander verbindenden Kühlgaspfad zu bestimmen. Mit Hilfe einer derartigen Schalteinrichtung kann die Strömungsrichtung des Kühlgases im Kühlgaspfad besonders einfach umgeschaltet werden, ohne dass hierzu der Betrieb der Kühlgasversorgungseinrichtung verändert werden muss.

[0008] Grundsätzlich kann die Schalteinrichtung einen beliebigen Aufbau besitzen und insbesondere mit beliebigen, geeigneten Schaltgliedern ausgestattet sein, mit deren Hilfe intern die Verbindung zwischen dem Kühlgasaustritt des Kühlgasgebläses einerseits und dem einen oder dem anderen Gehäuseanschluss andererseits geschaltet werden kann. Bevorzugt wird jedoch eine Schalteinrichtung, die mit einer Klappenanordnung arbeitet, um interne Pfade zu definieren und zu verändern, mit denen der Kühlgasaustritt wahlweise mit dem einen oder mit dem anderen Gehäuseanschluss verbunden werden kann. Eine derartige Klappenanordnung besitzt einen einfachen Aufbau, lässt sich preiswert realisieren und arbeitet zuverlässig.

[0009] Weitere wichtige Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.

Kurze Beschreibung der Zeichnungen



[0010] Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,
Fig. 1
eine stark vereinfachte Prinzipdarstellung einer Gasturbine, die mit einer erfindungsgemäßen Kühleinrichtung ausgestattet ist,
Fig. 2
eine stark vereinfachte Prinzipdarstellung einer Schalteinrichtung nach der Erfindung bei einer ersten Schaltstellung,
Fig. 3
eine Ansicht in Fig. 2, jedoch bei einer zweiten Schaltstellung,
Fig. 4
ein vereinfachtes Flussdiagramm zur Erläuterung eines Kühlverfahrens nach der Erfindung zur Steuerung einer Umfangstemperaturdifferenz,
Fig. 5
ein Flussdiagramm wie in Fig. 4, jedoch zur Steuerung einer Durchschnittstemperatur.

Wege zur Ausführung der Erfindung



[0011] Entsprechend Fig. 1 umfasst eine Gasturbine 1 ein Gehäuse 2, das im übrigen nicht dargestellte heiße Komponenten der Gasturbine 1 mantelförmig umschließt. Dabei ist klar, dass dieses Gehäuse 2 gleichzeitig auch eine nicht dargestellte Brennkammer der Gasturbine 1 umhüllen kann oder alternativ ausschließlich zur Umhüllung einer Brennkammer, vorzugsweise einer Gasturbinen-Brennkammer, dienen kann.

[0012] Zur Kühlung des Gehäuses 2 ist eine Kühleinrichtung 3 vorgesehen, die ein Kühlgasgebläse 4 zum Antreiben eines Kühlgases aufweist. Als Kühlgas wird vorzugsweise Luft verwendet. Zweckmäßig ist das Kühlgasgebläse 4 in einen geschlossenen Kühlgaskreis 5 eingebunden, in dem außerdem ein Kühler 6 angeordnet sein kann. Ebenso ist es möglich, den Kühlgaskreis 5 offen auszugestalten, so dass das Kühlgas aus der Umgebung angesaugt wird und anschließend wieder in die Umgebung ausgestoßen wird. Kühlgasgebläse 4 und Kühler 6 bilden dabei jeweils einen Bestandteil einer Kühlgasversorgungseinrichtung 7, die einen Kühlgasaustritt 8 und einen Kühlgaseintritt 9 aufweist. Durch den Kühlgasaustritt 8 gelangt das Kühlgas von der Kühlgasversorgungseinrichtung 7 zum Gehäuse 2. Im Unterschied dazu gelangt durch den Kühlgaseintritt 9 das vom Gehäuse 2 kommende, aufgewärmte Kühlgas zurück zur Kühlgasversorgungseinrichtung 7.

[0013] Im Inneren des Gehäuses 2 ist ein Kühlgaspfad 10 ausgebildet, der in Umfangsrichtung des Gehäuses 2 durch das Gehäuse 2 hindurchgeführt ist. Dabei verbindet der Kühlgaspfad 10 einen ersten Gehäuseanschluss 11 mit einem zweiten Gehäuseanschluss 12.

[0014] Die erfindungsgemäße Kühleinrichtung 3 ist außerdem mit einer Schalteinrichtung 13 ausgestattet, mit deren Hilfe die Strömungsrichtung im Kühlgaspfad 10 umgekehrt werden kann. In Fig. 1 ist mit durchgezogenen Pfeilen ein erste Strömungsrichtung 14 angedeutet, die sich in einer ersten Schaltstellung der Schalteinrichtung 13 einstellt. Im Unterschied dazu ist eine zweite Strömungsrichtung 15, die der ersten Strömungsrichtung 14 entgegengerichtet ist, mit unterbrochenen Pfeilen symbolisiert. Die zweite Strömungsrichtung 15 stellt sich in einer zweiten Schaltstellung der Schalteinrichtung 13 ein.

[0015] Die Schalteinrichtung 13 ist in den Kühlgaskreis 5 so eingebunden, dass sie in der ersten Schaltstellung den Kühlgasaustritt 8 mit dem ersten Gehäuseanschluss 11 und den zweiten Gehäuseanschluss 12 mit dem Kühlgaseintritt 9 verbindet. Hieraus resultiert dann die erste Strömungsrichtung 14. Im Unterschied dazu verbindet die Schalteinrichtung 13 in ihrer zweiten Schaltstellung den Kühlgasaustritt 8 mit dem zweiten Gehäuseanschluss 12 und den ersten Gehäuseanschluss 11 mit dem Kühlgaseintritt 9. Hieraus resultiert dann die zweite Strömungsrichtung 15.

[0016] Wenn die Kühleinrichtung 3 so betrieben wird, dass für längere Zeit die Strömungsrichtung des Kühlgases im Kühlgaspfad 10 gleich bleibt, also wenn beispielsweise die Schalteinrichtung 13 ihre erste Schaltstellung aufweist, so dass sich die erste Strömungsrichtung 14 ausbildet, hat dies zur Folge, dass sich entlang des Kühlgaspfads 10 ein Temperaturgradient ausbildet. Am jeweiligen Eintritt des Kühlgases in den Kühlgaspfad 10, also bei der ersten Strömungsrichtung 14 am ersten Gehäuseanschluss 11, stellt sich aufgrund der Kühlwirkung des Kühlgases am Umfang des Gehäuses 2 eine erste Temperatur T1 ein, die im folgenden auch als Einlasstemperatur T1 bezeichnet wird. Im Verlaufe des Kühlgaspfads 10 erwärmt sich das Kühlgas, wodurch dessen Kühlwirkung abnimmt. Dementsprechend kommt es an einem Ausgang des Kühlgaspfads 10, also bei der ersten Strömungsrichtung 14 am zweiten Gehäuseanschluss 12, zu einer zweiten Temperatur T2, die höher ist als die Einlasstemperatur T1. Die zweite Temperatur T2 wird im folgenden auch als Auslasstemperatur T2 bezeichnet. Die Differenz zwischen Auslasstemperatur T2 und Einlasstemperatur T1 wird im folgenden als Umfangstemperaturdifferenz △T bezeichnet:



[0017] Um übermäßige thermische Spannungen des Gehäuses 2 im Betrieb der Gasturbine 1 zu vermeiden, ist es erforderlich, dass diese Umfangstemperaturdifferenz ΔT nicht größer ist als ein vorbestimmter oder vorgebbarer oberer Grenzwert ΔTmax. Außerdem kann es wünschenswert sein, dass diese Umfangstemperaturdifferenz ΔT nicht kleiner ist als ein vorgegebener oder vorgebbarer unterer Grenzwert ΔTmin. Es muss daher gelten:



[0018] Um die Umfangstemperaturdifferenz ΔT zu variieren, kann bei der erfindungsgemäßen Kühleinrichtung 3 mit Hilfe der Schalteinrichtung 13 die Strömungsrichtung im Kühlgaspfad 10 umgekehrt werden. Vor der Strömungsrichtungsumkehr herrscht am Einlass des Kühlgaspfads 10 die niedrigste Gehäusetemperatur, während am Auslass des Kühlgaspfads 10 die höchste Temperatur des Gehäuses 2 vorliegt. Nach Umkehr der Strömungsrichtung nähern sich die Temperaturen am Einlass und am Auslass des Kühlgaspfads 10 einander an. Dabei kann es zu einem Nulldurchgang kommen, bei dem die Temperaturen am Eingang und am Ausgang des Kühlgaspfads 10 gleich groß sind. Des Weiteren kann sich anschließend das Temperaturverhältnis zwischen den Temperaturen am Eingang und am Ausgang des Kühlgaspfads 10 auch umkehren. Durch ein gezieltes Hin- und Herschalten der Strömungsrichtung im Kühlgaspfad 10 kann somit ohne weiteres ein vorbestimmter und insbesondere vergleichsweise kleiner Wert für die Umfangstemperaturdifferenz ΔT eingestellt werden. Von besonderem Vorteil ist dabei, dass sich durch die Variierung der Umfangstemperaturdifferenz ΔT eine Durchschnittstemperatur T des Gehäuses 10, welche das Gehäuse 2 entlang seines Umfangs im Mittel aufweist, im wesentlichen nicht ändert. Das heißt, die Variation der Umfangstemperaturdifferenz ΔT kann unabhängig von der Durchschnittstemperatur T durchgeführt werden. Die Erfindung ermöglicht es außerdem, auch für die Durchschnittstemperatur T Werte einzustellen, die zwischen relativ niedrigen Grenzwerten liegen, so dass insbesondere gilt:



[0019] Grundsätzlich kann die Schalteinrichtung 13 auf jede beliebige geeignete Weise ausgestaltet sein. Mit Bezug auf die Fig. 2 und 3 wird im folgenden lediglich eine mögliche Ausführungsform für eine derartige Schalteinrichtung 13 näher erläutert, wobei dies ohne Beschränkung der Allgemeinheit erfolgen soll.

[0020] Entsprechend den Fig. 2 und 3 besitzt die Schalteinrichtung 13 vier Anschlüsse, nämlich einen ersten Anschluss 16, einen zweiten Anschluss 17, einen dritten Anschluss 18 und einen vierten Anschluss 19. Der erste Anschluss 16 ist mit dem Kühlgasaustritt 8 der Kühlgasversorgungseinrichtung 7 verbunden. Der zweite Anschluss 17 ist mit dem Kühlgaseintritt 9 der Kühlgasversorgungseinrichtung 7 verbunden. Der dritte Anschluss 18 ist mit dem ersten Gehäuseanschluss 11 des Gehäuses 2 verbunden, während der vierte Anschluss 19 mit dem zweiten Gehäuseanschluss 12 des Gehäuses 2 verbunden ist.

[0021] Des Weiteren enthält die Schalteinrichtung 13 in der hier gezeigten, besonderen Ausführungsform drei Leitungen, nämlich eine erste Leitung 20, eine zweite Leitung 21 und eine dritte Leitung 22. Des Weiteren sind drei Öffnungen vorgesehen, nämlich eine erste Öffnung 23, eine zweite Öffnung 24 und eine dritte Öffnung 25. Die erste Leitung 20 führt vom ersten Anschluss 16 zum dritten Anschluss 18. Die zweite Leitung 21 führt vom vierten Anschluss 19 zum zweiten Anschluss 17. Die dritte Leitung 22 führt von der zweiten Öffnung 24 zur dritten Öffnung 25. Die erste Öffnung 23 verbindet die erste Leitung 20 mit der zweiten Leitung 21 und ist hierzu beispielsweise in einer gemeinsamen Trennwand zwischen erster Leitung 20 und zweiter Leitung 21 ausgebildet. Die zweite Öffnung 24 ist in der ersten Leitung 20 ausgebildet, und zwar vorzugsweise in einer der ersten Öffnung 23 gegenüberliegenden Wand der ersten Leitung 20. Entsprechend ist die dritte Öffnung 25 in der zweiten Leitung 21 ausgebildet, und zwar vorzugsweise in einer der ersten Öffnung 23 gegenüberliegenden Wand der zweiten Leitung 21.

[0022] Die Schalteinrichtung 13 ist außerdem mit einer Klappenanordnung ausgestattet, die hier drei Klappen umfasst, nämlich eine erste Klappe 26, eine zweite Klappe 27 und eine dritte Klappe 28. Während die erste Klappe 26 zum Steuern der ersten Öffnung 23 dient, kann mit der zweiten Klappe 27 die zweite Öffnung 24 gesteuert werden, und die dritte Klappe 28 dient zum Steuern der dritten Öffnung 25.

[0023] Fig. 2 zeigt die erste Schaltstellung der Schalteinrichtung 13, während Fig. 3 die zweite Schaltstellung der Schalteinrichtung 13 wiedergibt. In der ersten Schaltstellung verschließt jede Klappe 26, 27, 28 die ihr zugeordnete Öffnung 23, 24, 25. Auf diese Weise sind die erste Leitung 20 und die zweite Leitung 21 freigeschaltet, während die dritte Leitung 22 gesperrt ist. In dieser Schaltstellung definiert somit die Klappenanordnung 26-27-28 einen durch die erste Leitung 20 vom ersten Anschluss 16 zum dritten Anschluss 18 führenden ersten Pfad 29 und einen durch die zweite Leitung 21 vom vierten Anschluss 19 zum zweiten Anschluss 17 führenden zweiten Pfad 30.

[0024] In der zweiten Schaltstellung gemäß Fig. 3 sind die Klappen 26, 27, 28 jeweils so verstellt, dass sie die jeweils zugeordneten Öffnungen 23, 24, 25 öffnen. Gleichzeitig sperrt die erste Klappe 26 in der zweiten Schaltstellung die erste Leitung 20, und zwar zwischen der ersten Öffnung 23 und der zweiten Öffnung 24. Außerdem sperrt die dritte Klappe 28 in der zweiten Schaltstellung die zweite Leitung 21, und zwar zwischen der ersten Öffnung 23 und der dritten Öffnung 25. Auf diese Weise kann die Klappenanordnung 26-27-28 in der zweiten Schaltstellung einen dritten Pfad 31 und einen vierten Pfad 32 definieren. Während der dritte Pfad 31 vom ersten Anschluss 16 durch einen Teil der ersten Leitung 20, durch die erste Öffnung 23 und durch einen Teil der zweiten Leitung 21 zum vierten Anschluss 19 führt, führt der vierte Pfad 32 vom dritten Anschluss 18 durch einen Teil der ersten Leitung 20, durch die zweite Öffnung 24, durch die dritte Leitung 22, durch die dritte Öffnung 25 und durch einen Teil der zweiten Leitung 21 zum zweiten Anschluss 17.

[0025] Bemerkenswert ist außerdem, dass bei der hier gewählten Klappenanordnung 26-27-28 die drei Klappen 26, 27, 28 mit Hilfe eines gemeinsamen Stellglieds 33 simultan verstellt werden können. Die hier gezeigte Schalteinrichtung 13 besitzt somit einen vergleichsweise preiswerten Aufbau, der außerdem besonders zuverlässig arbeitet.

[0026] Entsprechend Fig. 4 kann die Kühlung des Gehäuses 2 zweckmäßig wie folgt durchgeführt werden:

[0027] In der Ausgangssituation weist die Schalteinrichtung 13 ihre erste Schaltstellung auf, so dass im Kühlgaspfad 10 die erste Strömungsrichtung 14 vorliegt. Dies führt dazu, dass die erste Temperatur T1 am ersten Gehäuseanschluss 11 kleiner ist als die zweite Temperatur T2 am zweiten Gehäuseanschluss 12. Das heißt, es stellt sich eine Umfangstemperaturdifferenz ΔT ein.

[0028] Mit Hilfe entsprechender, hier nicht gezeigter Temperatursensoren kann bei Position 34 die aktuelle Umfangstemperaturdifferenz ΔT ermittelt werden. Anschließend erfolgt bei Position 35 die Überprüfung, ob die ermittelte Umfangstemperaturdifferenz △T in einem vorbestimmten Wertebereich liegt. Ist dies der Fall, gilt "JA" und wird zur Temperaturmessung 34 zurückgeschleift. Liegt die gemessene Umfangstemperaturdifferenz △T bei der Abfrage 35 nicht mehr im zulässigen Wertebereich, gilt "NEIN" und es erfolgt bei Position 36 vorzugsweise die Abfrage, ob die ermittelte Umfangstemperaturdifferenz ΔT größer als der obere zulässige Grenzwert ΔTmax ist. Ist dies der Fall, gilt "JA" und bei Position 37 wird veranlasst, dass nunmehr die zweite Strömungsrichtung 15 eingestellt wird. Hierzu wird die Schalteinrichtung 13 zum Einstellen ihrer zweiten Schaltstellung betätigt. In der Folge kommt es zu einer Absenkung der zweiten Temperatur T2 am zweiten Gehäuseanschluss 12 und zu einer Erhöhung der ersten Temperatur T1 am ersten Gehäuseanschluss 11. Das heißt, die Umfangstemperaturdifferenz △T nimmt ab.

[0029] Die zweite Strömungsrichtung 15 bleibt dann solange erhalten, bis die Umfangstemperaturdifferenz △T am unteren Bereich aus den zulässigen Werten herausfällt. Dann ergibt die Abfrage 35 wieder die Antwort "NEIN". Die nachfolgende Abfrage 36 ergibt dann auch die Antwort "NEIN". In der Folge wird dann bei Position 38 wieder die erste Strömungsrichtung 14 eingestellt, indem die Schalteinrichtung 13 entsprechend zum Einstellen der ersten Schaltstellung betätigt wird.

[0030] Es ist klar, dass der in Fig. 4 illustrierte Verfahrensablauf nur exemplarisch zu verstehen ist, so dass grundsätzlich auch andere Abläufe denkbar sind. Beispielsweise kann vorgesehen sein, die Umfangstemperaturdifferenz ΔT nur betragsmäßig zu betrachten und immer dann, wenn die gemessene Umfangstemperaturdifferenz ΔT betragsmäßig einen vorgegebenen oder vorgebbaren Grenzwert ΔTmax übersteigt, die Strömungsrichtung umzukehren.

[0031] Des Weiteren ist es möglich, die Umfangstemperaturdifferenz ΔT durch Erhöhen der Umschaltfrequenz zu verkleinern bzw. durch Absenken der Umschaltfrequenz zu vergrößern.

[0032] Wesentlich für die Erfindung ist, dass die Veränderung der Umfangstemperaturdifferenz △T mit Hilfe der Erfindung quasi ohne Einfluss ist auf die Durchschnittstemperatur T, die separat eingestellt werden kann.

[0033] Fig. 5 zeigt exemplarisch einen denkbaren Ablauf zur Steuerung der Durchschnittstemperatur T des Gehäuses 2. Bei einer Position 39 wird die mittlere Temperatur, also die Durchschnittstemperatur T des Gehäuses 2 ermittelt. Diese Durchschnittstemperatur T kann beispielsweise durch den Mittelwert aus der ersten Temperatur T1 am ersten Gehäuseanschluss 11 und der zweiten Temperatur T2 am zweiten Gehäuseanschluss 12 gebildet werden. Hierzu kann auf die Sensorik zur Bestimmung der Umfangstemperaturdifferenz ΔT zurückgegriffen werden. Zweckmäßig sind jedoch entlang des Umfangs des Gehäuses 2 mehrere, hier nicht gezeigte, Temperatursensoren verteilt angeordnet, mit denen die Durchschnittstemperatur T des Gehäuses 2 ermittelt werden kann.

[0034] In einer nachfolgenden Abfrage 40 wird dann überprüft, ob die gemessene Durchschnittstemperatur T in einem vorbestimmten oder vorgebbaren Bereich zulässiger Durchschnittstemperaturen liegt. Ist dies der Fall, gilt "JA", so dass zur Temperaturermittlung 39 zurückgeschleift werden kann. Ergibt die Abfrage 40 jedoch als Antwort "NEIN", erfolgt bei Position 41 die Abfrage, ob die gemessene Durchschnittstemperatur T größer ist als die maximal zulässige Durchschnittstemperatur Tmax. Ist dies der Fall, gilt "JA", so dass bei Position 42 geeignete Maßnahmen zur Senkung der Durchschnittstemperatur T initiiert werden können. Beispielsweise kann der durch den Kühlgaspfad 10 geförderte Kühlgasmassenstrom erhöht werden. Hierzu kann z. B. die Leistung des Gebläses 4 entsprechend erhöht werden. Zusätzlich oder alternativ kann eine Kühlgaseintrittstemperatur, also die Temperatur, mit der das Kühlgas in den Kühlgaspfad 10 einströmt, abgesenkt werden. Eine derartige Absenkung der Kühlgaseintrittstemperatur kann beispielsweise durch eine Erhöhung der Leistung des Kühlers 6 erzielt werden.

[0035] Ergibt jedoch die Abfrage 36 als Antwort "NEIN", bedeutet dies, dass die gemessene Durchschnittstemperatur T unterhalb der erwünschten zulässigen Temperaturwerte liegt, so dass gilt:



[0036] Ist dies der Fall, können bei Position 43 geeignete Maßnahmen zur Erhöhung der Durchschnittstemperatur T eingeleitet werden. Beispielsweise kann hierzu der Kühlgasmassenstrom reduziert werden. Zusätzlich oder alternativ ist es ebenso möglich, die Kühlgaseintrittstemperatur anzuheben.

Bezugszeichenliste



[0037] 
1
Gasturbine
2
Gehäuse
3
Kühleinrichtung
4
Kühlgasgebläse
5
Kühlgaskreis
6
Kühler
7
Kühlgasversorgungseinrichtung
8
Kühlgasaustritt von 7
9
Kühlgaseintritt von 7
10
Kühlgaspfad in 2
11
erster Gehäuseanschluss von 2
12
zweiter Gehäuseanschluss von 2
13
Schalteinrichtung
14
erste Strömungsrichtung
15
zweite Strömungsrichtung
16
erster Anschluss von 13
17
zweiter Anschluss von 13
18
dritter Anschluss von 13
19
vierter Anschluss von 13
20
erste Leitung in 13
21
zweite Leitung in 13
22
dritte Leitung in 13
23
erste Öffnung von 13
24
zweite Öffnung von 13
25
dritte Öffnung von 13
26
erste Klappe von 13
27
zweite Klappe von 13
28
dritte Klappe von 13
29
erster Pfad in 13
30
zweiter Pfad in 13
31
dritter Pfad in 13
32
vierter Pfad in 13
33
Stellglied
34
Position im Flussdiagramm gemäß Fig. 4
35
Position im Flussdiagramm gemäß Fig. 4
36
Position im Flussdiagramm gemäß Fig. 4
37
Position im Flussdiagramm gemäß Fig. 4
38
Position im Flussdiagramm gemäß Fig. 4
39
Position im Flussdiagramm gemäß Fig. 5
40
Position im Flussdiagramm gemäß Fig. 5
41
Position im Flussdiagramm gemäß Fig. 5
42
Position im Flussdiagramm gemäß Fig. 5
43
Position im Flussdiagramm gemäß Fig. 5



Ansprüche

1. Einrichtung zum Kühlen eines Gehäuses (2) einer Gasturbine (1) und/oder einer Brennkammer, insbesondere einer Gasturbine (1),

- mit einer Kühlgasversorgungseinrichtung (7), die einen Kühlgasaustritt (8), aus dem im Betrieb der Kühlgasversorgungseinrichtung (7) ein Kühlgasstrom austritt, und einen Kühlgaseintritt (9) aufweist, über den im Betrieb der Kühlgasversorgungseinrichtung (7) der Kühlgasstrom zur Kühlgasversorgungseinrichtung (7) zurückströmt,

- mit einem durch das Gehäuse (2) in dessen Umfangsrichtung hindurchgeführten Kühlgaspfad (10), der einen ersten Gehäuseanschluss (11) mit einem zweiten Gehäuseanschluss (12) verbindet,

- mit einer Schalteinrichtung (13) zur Strömungsrichtungsumkehr, die zwischen einer ersten Schaltstellung, in der sie den Kühlgasaustritt (8) mit dem ersten Gehäuseanschluss (11) und den Kühlgaseintritt (9) mit dem zweiten Gehäuseanschluss (12) verbindet, und einer zweiten Schaltstellung umschaltbar ist, in der sie den Kühlgasaustritt (8) mit dem zweiten Gehäuseanschluss (12) und den Kühlgaseintritt (9) mit dem ersten Gehäuseanschluss (11) verbindet.


 
2. Kühleinrichtung nach Anspruch 1,
dadurch gekennzeichnet,

- dass die Schalteinrichtung (13) aufweist:

einen mit dem Kühlgasaustritt (8) verbundenen ersten Anschluss (16),

einen mit dem Kühlgaseintritt (9) verbundenen zweiten Anschluss (17),

einen mit dem ersten Gehäuseanschluss (11) verbundenen dritten Anschluss (18) und

einen mit dem zweiten Gehäuseanschluss (12) verbundenen vierten Anschluss (19),

- dass die Schalteinrichtung (13) eine Klappenanordnung (26-27-28) enthält, die in der ersten Schaltstellung einen vom ersten Anschluss (16) zum dritten Anschluss (18) führenden ersten Pfad (29) sowie einen vom vierten Anschluss (19) zum zweiten Anschluss (17) führenden zweiten Pfad (30) definiert und
die in der zweiten Schaltstellung einen vom ersten Anschluss (16) zum vierten Anschluss (19) führenden dritten Pfad (31) sowie einen vom dritten Anschluss (18) zum zweiten Anschluss (17) führenden vierten Pfad (32) definiert.


 
3. Kühleinrichtung nach Anspruch 2,
dadurch gekennzeichnet,

- dass die Schalteinrichtung (13) aufweist:

eine vom ersten Anschluss (16) zum dritten Anschluss (18) führende erste Leitung (20),

eine vom zweiten Anschluss (17) zum vierten Anschluss (19) führende zweite Leitung (21),

eine mittels einer ersten Klappe (26) steuerbare, die erste Leitung (20) mit der zweiten Leitung (21) verbindende erste Öffnung (23),

eine mittels einer zweiten Klappe (27) steuerbare zweite Öffnung (24) in der ersten Leitung (20),

eine mittels einer dritten Klappe (28) steuerbare dritte Öffnung (25) in der zweiten Leitung (21) und

eine die zweite Öffnung (24) mit der dritten Öffnung (25) verbindende dritte Leitung (22),

- dass die erste Klappe (26) in der ersten Schaltstellung die erste Öffnung (23) verschließt und in der zweiten Schaltstellung die erste Öffnung (23) öffnet und die erste Leitung (20) zwischen erster Öffnung (23) und zweiter Öffnung (24) sperrt,

- dass die zweite Klappe (27) in der ersten Schaltstellung die zweite Öffnung (24) verschließt und in der zweiten Schaltstellung die zweite Öffnung (24) öffnet,

- dass die dritte Klappe (28) in der ersten Schaltstellung die dritte Öffnung (25) verschließt und in der zweiten Schaltstellung die dritte Öffnung (25) öffnet und die zweite Leitung (21) zwischen erster Öffnung (23) und dritter Öffnung (25) sperrt.


 
4. Kühleinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
dass für die drei Klappen (26, 27, 28) ein gemeinsames Stellglied (33) zum simultanen Verstellen der Klappen (26, 27, 28) vorgesehen ist.
 
5. Verfahren zum Kühlen eines Gehäuses (2) einer Gasturbine (1) und/oder einer Brennkammer, insbesondere einer Gasturbine,

- bei dem ein Kühlgaspfad (10), der durch das Gehäuse (2) in dessen Umfangsrichtung hindurchgeführt ist und dabei einen ersten Gehäuseanschluss (11) mit einem zweiten Gehäuseanschluss (12) verbindet, mit einer Kühlgasströmung beaufschlagt wird,

- bei dem eine Umfangstemperaturdifferenz (ΔT) des Gehäuses (2) zwischen einer an dem einen Gehäuseanschluss (12) gemessenen Auslasstemperatur (T2) und einer an dem anderen Gehäuseanschluss (11) gemessenen Einlasstemperatur (T1) durch Umschalten der Strömungsrichtung der Kühlgasströmung im Kühlgaspfad (10) variiert wird.


 
6. Kühlverfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass die Umfangstemperaturdifferenz (ΔT) durch Erhöhen der Umschaltfrequenz verkleinert und durch Absenken der Umschaltfrequenz vergrößert wird.
 
7. Kühlverfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet,
dass die Strömungsrichtung (14, 15) der Kühlgasströmung immer dann umgeschaltet wird, wenn die Umfangstemperaturdifferenz (ΔT) einen vorbestimmten oder vorgebbaren Grenzwert (ΔTmax) übersteigt.
 
8. Kühlverfahren nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet,
dass eine Durchschnittstemperatur (T) des Gehäuses (2) durch Verändern einer Eintrittstemperatur des Kühlgases beim Eintreten in den Kühlgaspfad (10) und/oder durch Verändern eines Massenstroms des dem Kühlgaspfad (10) zugeführten Kühlgases variiert wird.
 
9. Kühlverfahren nach Anspruch 8,
dadurch gekennzeichnet,
dass die Durchschnittstemperatur (T) des Gehäuses (2) durch den Mittelwert von Einlasstemperatur (T1) und Auslasstemperatur (T2) gebildet ist.
 


Geänderte Patentansprüche gemäss Regel 86(2) EPÜ.


1. Einrichtung zum Kühlen eines Gehäuses (2) einer Gasturbine (1) und/oder einer Brennkammer, insbesondere einer Gasturbine (1), wenigstens umfassend

- eine Kühlgasversorgungseinrichtung (7), die einen Kühlgasaustritt (8), aus dem im Betrieb der Kühlgasversorgungseinrichtung (7) ein Kühlgasstrom austritt, und einen Kühlgaseintritt (9), über den im Betrieb der Kühlgasversorgungseinrichtung (7) der Kühlgasstrom zur Kühlgasversorgungseinrichtung (7) zurückströmt, aufweist, und

- einen durch das Gehäuse (2) in dessen Umfangsrichtung hindurchgeführten Kühlgaspfad (10), der einen ersten Gehäuseanschluss (11) mit einem zweiten Gehäuseanschluss (12) verbindet,


dadurch gekennzeichnet, dass
eine Schalteinrichtung (13) zur Strömungsrichtungsumkehr, die zwischen einer ersten Schaltstellung, in der sie den Kühlgasaustritt (8) mit dem ersten Gehäuseanschluss (11) und den Kühlgaseintritt (9) mit dem zweiten Gehäuseanschluss (12) verbindet, und einer zweiten Schaltstellung, in der sie den Kühlgasaustritt (8) mit dem zweiten Gehäuseanschluss (12) und den Kühlgaseintritt (9) mit dem ersten Gehäuseanschluss (11) verbindet, umschaltbar ist.
 
2. Kühleinrichtung nach Anspruch 1,
dadurch gekennzeichnet,

- dass die Schalteinrichtung (13) aufweist:

einen mit dem Kühlgasaustritt (8) verbundenen ersten Anschluss (16),

einen mit dem Kühlgaseintritt (9) verbundenen zweiten Anschluss (17),

einen mit dem ersten Gehäuseanschluss (11) verbundenen dritten Anschluss (18) und

einen mit dem zweiten Gehäuseanschluss (12) verbundenen vierten Anschluss (19),

- dass die Schalteinrichtung (13) eine Klappenanordnung (26-27-28) enthält, die in der ersten Schaltstellung einen vom ersten Anschluss (16) zum dritten Anschluss (18) führenden ersten Pfad (29) sowie einen vom vierten Anschluss (19) zum zweiten Anschluss (17) führenden zweiten Pfad (30) definiert und

die in der zweiten Schaltstellung einen vom ersten Anschluss (16) zum vierten Anschluss (19) führenden dritten Pfad (31) sowie einen vom dritten Anschluss (18) zum zweiten Anschluss (17) führenden vierten Pfad (32) definiert.
 
3. Kühleinrichtung nach Anspruch 2,
dadurch gekennzeichnet,

- dass die Schalteinrichtung (13) aufweist:

eine vom ersten Anschluss (16) zum dritten Anschluss (18) führende erste Leitung (20),

eine vom zweiten Anschluss (17) zum vierten Anschluss (19) führende zweite Leitung (21),

eine mittels einer ersten Klappe (26) steuerbare, die erste Leitung (20) mit der zweiten Leitung (21) verbindende erste Öffnung (23),

eine mittels einer zweiten Klappe (27) steuerbare zweite Öffnung (24) in der ersten Leitung (20),

eine mittels einer dritten Klappe (28) steuerbare dritte Öffnung (25) in der zweiten Leitung (21) und

eine die zweite Öffnung (24) mit der dritten Öffnung (25) verbindende dritte Leitung (22),

- dass die erste Klappe (26) in der ersten Schaltstellung die erste Öffnung (23) verschließt und in der zweiten Schaltstellung die erste Öffnung (23) öffnet und die erste Leitung (20) zwischen erster Öffnung (23) und zweiter Öffnung (24) sperrt,

- dass die zweite Klappe (27) in der ersten Schaltstellung die zweite Öffnung (24) verschließt und in der zweiten Schaltstellung die zweite Öffnung (24) öffnet,

- dass die dritte Klappe (28) in der ersten Schaltstellung die dritte Öffnung (25) verschließt und in der zweiten Schaltstellung die dritte Öffnung (25) öffnet und die zweite Leitung (21) zwischen erster Öffnung (23) und dritter Öffnung (25) sperrt.


 
4. Kühleinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
dass für die drei Klappen (26, 27, 28) ein gemeinsames Stellglied (33) zum simultanen Verstellen der Klappen (26, 27, 28) vorgesehen ist.
 
5. Verfahren zum Kühlen eines Gehäuses (2) einer Gasturbine (1) und/oder einer Brennkammer, insbesondere einer Gasturbine, bei dem ein Kühlgaspfad (10), der durch das Gehäuse (2) in dessen Umfangsrichtung hindurchgeführt ist und dabei einen ersten Gehäuseanschluss (11) mit einem zweiten Gehäuseanschluss (12) verbindet, mit einer Kühlgasströmung beaufschlagt wird,
dadurch gekennzeichnet, dass
eine Umfangstemperaturdifferenz (ΔT) des Gehäuses (2) zwischen einer an dem einen Gehäuseanschluss (12) gemessenen Auslasstemperatur (T2) und einer an dem anderen Gehäuseanschluss (11) gemessenen Einlasstemperatur (T1) durch Umschalten der Strömungsrichtung der Kühlgasströmung im Kühlgaspfad (10) variiert wird.
 
6. Kühlverfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass die Umfangstemperaturdifferenz (ΔT) durch Erhöhen der Umschaltfrequenz verkleinert und durch Absenken der Umschaltfrequenz vergrößert wird.
 
7. Kühlverfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet,
dass die Strömungsrichtung (14, 15) der Kühlgasströmung immer dann umgeschaltet wird, wenn die Umfangstemperaturdifferenz (ΔT) einen vorbestimmten oder vorgebbaren Grenzwert (ΔTmax) übersteigt.
 
8. Kühlverfahren nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet,
dass eine Durchschnittstemperatur (T) des Gehäuses (2) durch Verändern einer Eintrittstemperatur des Kühlgases beim Eintreten in den Kühlgaspfad (10) und/oder durch Verändern eines Massenstroms des dem Kühlgaspfad (10) zugeführten Kühlgases variiert wird.
 
9. Kühlverfahren nach Anspruch 8,
dadurch gekennzeichnet,
dass die Durchschnittstemperatur (T) des Gehäuses (2) durch den Mittelwert von Einlasstemperatur (T1) und Auslasstemperatur (T2) gebildet ist.
 




Zeichnung
















Recherchenbericht