(11) **EP 1 637 684 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

22.03.2006 Patentblatt 2006/12

(51) Int Cl.: **E05F 15/14** (2006.01)

E05D 15/06 (2006.01)

(21) Anmeldenummer: 05020074.0

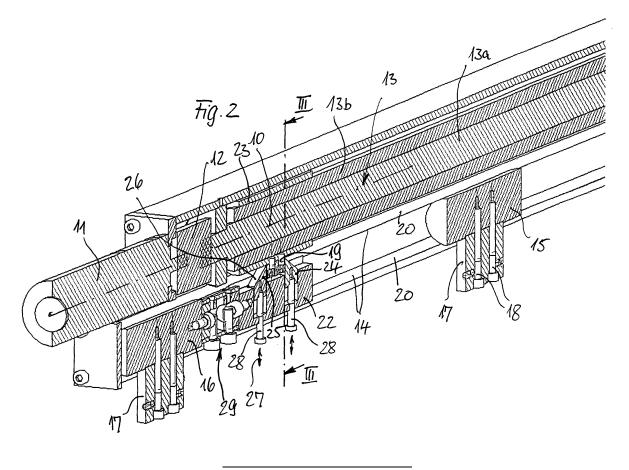
(22) Anmeldetag: 15.09.2005

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU


(30) Priorität: 20.09.2004 DE 102004046546

- (71) Anmelder: Pintsch Bamag
 Antriebs- und Verkehrstechnik GmbH
 46537 Dinslaken (DE)
- (72) Erfinder: Stahl, Andreas 46562 Voerde (DE)
- (74) Vertreter: Patentanwälte
 Ruff, Wilhelm, Beier, Dauster & Partner
 Kronenstrasse 30
 70174 Stuttgart (DE)

(54) Antriebsvorrichtung für Ein- und Ausstiegeinrichtungen, insbesondere für Türen von Schienenfahrzeugen

(57) Beschrieben werden Antriebsvorrichtungen, insbesondere für Schiebetüren von öffentlichen Verkehrsmitteln, die äußerst einfach aufgebaut sind, die einen Toleranzausgleich zwischen Türoberschiene und

Türunterschiene ermöglichen, ohne aufwendige Motorsteuerung das Problem des Einklemmens von Fahrgästen lösen und/oder einen wartungsfreundlichen Einbau ermöglichen.

20

25

40

45

Beschreibung

[0001] Die Erfindung betrifft eine Antriebsvorrichtung für Ein- und Ausstiegseinrichtungen, insbesondere für Türen von Schienenfahrzeugen, mit einer motorbetriebenen Spindel und mit einer auf dieser geführten Spindelmutter, die mit mindestens einem an einer Führung gehaltenen Türabschnitt verbunden ist.

1

[0002] Antriebsvorrichtungen dieser Art sind bekannt. Aus der DE 4 232 593 C1 ist beispielsweise ein Antrieb für Schwenktüren bekannt, bei der die Schließkraft in der letzten Phase des Schließvorganges erhöht werden soll. Bei dieser Bauart ist die Schraubenspindelmutter als Hebel ausgebildet und mit einer Rolle versehen, die in einer Kurvenbahn der Motorgetriebeeinheit geführt wird. Eine Kupplung für die Notentriegelung trennt den Motorgetriebeblock von der Schraubenspindel, so dass eine Öffnung der Tür von Hand möglich ist.

[0003] Der vorliegenden Erfindung liegt zum einen die Aufgabe zugrunde, eine Antriebsvorrichtung, insbesondere für Schiebetüren, zu schaffen, deren Einbauraum möglichst klein ist. Zur Lösung dieser Aufgabe wird bei einer Antriebsvorrichtung der eingangs genannten Art vorgesehen, dass die Spindel als Führung für den Türabschnitt dient und aus einem Stahlkern besteht, der mit einem den Spindelgang aufweisenden Kunststoffmantel umgeben ist. Durch diese Ausgestaltung wird eine gesonderte Führung neben oder unterhalb der Spindel überflüssig. Der entsprechende Türabschnitt kann unmittelbar an der Spindelmutter angebracht werden. Der Stahlkern der Spindel ist ausreichend stabil genug, um die Führung und Halterung des Türabschnittes zu übernehmen. Der Spindelgang lässt sich verhältnismäßig einfach im Kunststoffmantel anbringen.

[0004] Bei einer solchen Anordnung, aber auch bei einer anderen Ausgestaltung von Spindel und Spindelmutter ist es besonders vorteilhaft, wenn die Spindelmutter mit einem in den Spindelgang eingreifenden Mitnehmernocken versehen ist und wenn mindestens ein Abschnitt im Bereich des Stellweges des Spindelganges die Steigung null aufweist, wobei dieser Abschnitt am Spindelmantel über einen Winkel von weniger als 360° verläuft. Diese Ausgestaltung nämlich erlaubt es dann, wenn Motorgetriebe und Spindelgangsteigung nicht selbsthemmend sind, dass der mit der Spindelmutter verbundene Türabschnitt um einen gewissen vorbestimmbaren Weg gegen die Schließrichtung aufschiebbar wird, wenn beispielsweise eine Person beim Einsteigen in der Tür eingeklemmt ist. Bekannterweise weisen nicht alle Türschließeinheiten an der Schließstelle eine Sicherheitsleiste auf, die bei einem Einklemmvorgang automatisch die Tür wieder öffnet. Durch die eben beschriebene Ausgestaltung wird der Aufschiebeweg an den Stellen, wo der Spindelgang die Steigung null aufweist, jedoch begrenzt. Da diese mit der Steigung null versehenen Abschnitte über weniger als 360° verlaufen, kann der Mitnehmer bei einer erneuten Drehung der Spindel wieder in den Spindelgang einlaufen.

[0005] Natürlich können zur Arretierung des Türabschnittes in der Schließlage und in der geöffneten Stellung Spindelgangabschnitte mit der Steigung null ebenfalls vorgesehen sein und es ist auch möglich, zum Auffangen der Trägheit des sich bewegenden Türabschnittes Spindelgangabschnitte vorzusehen, die eine negative Steigung haben.

[0006] Schließlich ist es möglich, den Spindelgang mit einer variablen Steigung zu versehen, die ein sanftes Anlaufen und Abbremsen der Bewegung des Türabschnittes erlaubt, ohne dass eine aufwendige Motorsteuerung notwendig wird.

[0007] In besonders vorteilhafter Weise kann der Mitnehmernocken auch radial zur Spindel bewegbar aber arretierbar ausgebildet sein, so dass auch eine vollständige Entkoppelung der Spindelmutter von der Spindel und damit eine Entkopplung des Türabschnittes möglich wird. Wird der Mitnehmernocken mit einer in der Richtung des Spindelganges gemessenen Länge versehen, die deutlich größer ist als die Spindelgangbreite, dann wird es auch möglich, die Spindel mit einem zweiten Spindelgang gleicher Breite aber mit größerer, außerhalb der Selbsthemmung liegender Steigung und geringerer Tiefe zu versehen, so dass ein manueller Notbetrieb zur Türbewegung möglich ist, wenn der Mitnehmernocken sich im zweiten Spindelgang befindet. Da sich erster und zweiter Spindelgang kreuzen, der zweite Spindelgang aber nicht so tief wie der erste Spindelgang ist, überläuft der Mitnehmernocken problemlos die Kreuzungspunkte beider Spindelgänge.

[0008] Eine weitere Aufgabe der Erfindung liegt darin, eine Ausgestaltung zu finden, mit der in einfacher Weise ein Toleranzausgleich eines Versatzes der Oberschiene und der Unterschiene einer Schiebetüranordnung möglich ist. Zur Lösung dieser Aufgabe wird bei einer Antriebsvorrichtung der eingangs genannten Art vorgesehen, dass eine Führung mit einem Gleitstück vorgesehen ist, das sowohl entlang einer Längsachse der Führung verschiebbar als auch um einen Toleranzausgleichswinkel um die Längsachse der Führung drehbar ist. Vorteilhafterweise besteht die Führung aus mehreren, insbesondere aus vier parallel zur Führungsachse verlaufenden Stangen, die zueinander in einem Abstand stehen, der dem Durchmesser eines zylindrischen Gleitstückes entspricht, an dem wiederum der Türabschnitt gehalten ist. Diese Ausgestaltung, bei der die Stangen als Gleitführung wirken, erlaubt ein Pendeln der Türaufhängung in der Führung, ohne dass jedoch, wie bei bisher bekannten Türaufhängungen, nur eine Seite der Türlagerung zum Tragen kommt. In vorteilhafter Ausgestaltung einer solchen Anordnung können die Stangen als Rundstangen ausgebildet sein, deren Achsen in den Ecken eines Rechtecks verlaufen, das symmetrisch zu einer das Gleitstück durchlaufenden Längsmittelebene liegt. Die Längsmittelebene kann dann auch die Längsmittelebene für die Spindel, für einen von der Spindelmutter nach unten ragenden Mitnehmer und für die Befestigungsstükke für den Türabschnitt bilden.

[0009] In vorteilhafter Ausgestaltung kann der Türabschnitt an zwei im Abstand zueinander in der Führung angeordneten Gleitstücken angebracht sein, wobei ein Gleitstück mit einem weiteren Gleitstück gekoppelt ist, das mit dem nach unten ragenden Mitnehmer der Spindelmutter verbindbar ist. Das weitere Gleitstück kann dabei mit Federkraft beaufschlagte Anschlagstücke aufweisen, die sich jeweils an einer Seite des Mitnehmers anlegen und manuell oder auch fernbedient gegen die Federkraft bewegbar sind, und dadurch das Gleitstück in einer Bewegungsrichtung von der Spindelmutter entkoppeln. Dadurch kann dann beispielsweise manuell ein Öffnen oder auch ein Schließen der Tür vorgenommen werden

[0010] In vorteilhafter Ausgestaltung können die Anschlagstücke auf der vom Mitnehmer abgewandten Seite mit einer Auflaufschräge versehen werden, die beim Wiederauftreffen auf den Mitnehmer, also beispielsweise dann, wenn der Türabschnitt aus der ursprünglichen Lage wieder zurückgeschoben wird, ein selbsttätiges Einrasten am Mitnehmer bewirken. Dies geschieht dadurch, dass die Anschlagstücke durch den auflaufenden Mitnehmer nach unten gedrückt werden und danach wieder zum Anschlag am Mitnehmer hochfahren.

[0011] Alle bisher geschilderten Ausführungsformen können schließlich in einfacher und vorteilhafter Weise in einem Strangpressprofil, insbesondere aus Aluminium untergebracht sein, dessen Außenabmessungen den Innenabmessungen eines vorzugsweise im oberen Bereich der Türöffnung der Wagenkarosserie angeordneten hohlen Tragprofiles angepasst sind, das von der lichten Türöffnung aus zugänglich ist. Die modulartig aufgebauten Bauteile der Antriebsvorrichtung lassen sich dann in einfacher Weise von der offenen Seite der Tür her im Tragprofil, beispielsweise in einer kanalartigen Führung unterbringen, untereinander kombinieren und befestigen. Sie lassen sich von der gleichen Seite aus beispielsweise zu Wartungsarbeiten wieder in einfacher Weise entnehmen.

[0012] Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung dargestellt und wird im Folgenden erläutert. Es zeigen:

- Fig. 1 eine perspektivische Darstellung einer mittig aufgeschnittenen ersten Ausführungsform einer Antriebsvorrichtung nach der Erfindung, bei der die Spindel unmittelbar Tragkörper für die Tür ist,
- Fig. 2 eine andere Ausführungsform, bei der zur Führung der zu verschiebenden Türelemente unterhalb des Spindelantriebes eine aus Gleitstangen aufgebaute Führung vorgesehen ist,
- Fig. 3 die vergrößerte Darstellung eines Schnittes längs der Linie III-III in Fig. 2 und
- Fig. 4 schließlich die perspektivische Darstellung ei-

nes Einbaumoduls ähnlich Fig. 3, der in nicht näher dargestellter Weise in einen Montageund Tragkanal am oberen Ende einer Türöffnung einsetzbar ist.

[0013] Die Fig. 1 zeigt eine von einem Motor 1 über eine Kupplung 2 angetriebene Spindel 3, die beim Ausführungsbeispiel aus einem Stahlkern 3a und aus einem diesen umgebenden Kunststoffmantel 3b besteht, der in nicht näher gezeigter Weise mit einem Spindelgang versehen ist. Motor 1 und Spindel 3 sind in einer Halterung 4 angeordnet, die beispielsweise ein U-Profil sein kann, von dem nur ein Teil gezeigt ist. In dieser Halterung 4 sind Querwände 5 und 6 eingebaut, von denen die Querwand 5 zur Lagerung des Motors 1 und seiner Kupplung 2 dient und die Querwand 6 zur Lagerung der Spindel 3 dient, die mit ihrem dem Motor 1 zugewandten Ende in einem Lager 7 der Querwand 6 gehalten ist. Die Spindel 3 ist an dem nicht gezeigten und von ihrem im Lager 7 sitzenden Ende abgewandten Ende ebenfalls in der Halterung 4 gelagert.

[0014] Die Spindel 3 ist von einer Spindelmutter 8 umgeben, die auf dem Kunststoffmantel 3b sitzt und mit einem radial nach innen abragenden Mitnehmer 9 in den Spindelgang des Kunststoffmantels 3b hereinragt. Die Spindelmutter 8 ist in der Art eines Schlittens ausgebildet, der unverdrehbar in der Halterung 4 geführt ist. Sie dient als Verstellelement für einen Türabschnitt, der parallel zur Spindelachse 10 bewegbar ist und der fest mit dem unteren Teil der als Schlitten ausgebildeten Spindelmutter 8 verbunden ist.

[0015] Eine gesonderte Führung für einen Verstellschlitten der Tür oder des Türabschnittes, die hier als Schiebetür ausgebildet wird und an ihrem von der Spindelmutter 9 abgewandten Ende in einer unteren Türschiene geführt ist, ist daher nicht notwendig. Die Spindel 3 dient unmittelbar als Trag- und Führungselement für die Tür. Die Abmessungen dieser Antriebsvorrichtung sind daher in Richtung der Höhe der nicht gezeigten Tür sehr gering. Ein größerer Raumaufwand für den Einbau der Antriebsvorrichtung ist daher überflüssig. Die Ausbildung der Spindel 3 mit einem Stahlkern 3a macht die Tragfähigkeit der Spindel möglich. Der Kunststoffmantel 3b lässt sich leicht bearbeiten und mit dem Spindelgang versehen.

[0016] Um bei dieser Ausführungsform, bei der die Steigung des Spindelganges so gewählt werden kann, dass eine Selbsthemmung nicht eintritt, zu gewährleisten, dass eine in der Türöffnung eingeklemmte Person die Tür ein Stück weit von Hand aufdrücken kann, aber nicht beliebig weit, wird in nicht näher dargestellter Weise vorgesehen, dass mindestens ein Abschnitt im Bereich des Stellweges des Spindelganges die Steigung null aufweist. Das bedeutet, dass die entsprechende Führungsnut für den Mitnehmer 9 in einer Radialebene zur Spindelachse 10 verläuft, so dass hier eine Arretierung für die Aufschiebebewegung der Tür eintritt, ohne dass aufwendige Steuerungsmaßnahmen für den Antriebsmotor

40

45

notwendig sind. Der Bereich der Nut mit der Steigung null muss jedoch kleiner als 360° gehalten werden, um wiederum sicherzustellen, dass bei einer erneuten Drehbewegung der Spindel über den Motor sich der Mitnehmer 9 wieder in den Spindelgang, der mit einer Steigung versehen ist, einfädelt und die Tür Schließ- oder Öffnungsbewegungen durchführt. Entsprechende Stellen mit der Steigung null können auch zur Arretierung der Tür oder des Türabschnittes in der Schließlage und in der geöffneten Stellung vorgesehen werden. Um die Trägheitskräfte eines sich bewegenden Türabschnittes in den Endlagen aufzufangen, können auch Spindelgangabschnitte mit negativer Steigung vorgesehen werden. [0017] Schließlich ist es auch möglich, den Spindelgang mit einer variablen Steigung zu versehen, die z.B. ein sanftes Anlaufen und Abbremsen der Bewegung des Türabschnittes erlaubt, ohne dass hierzu wiederum eine aufwendige Motorsteuerung erforderlich wird.

[0018] Natürlich kann der Mitnehmer 9 auch so angeordnet werden, dass er beispielsweise gegen Federkraft radial zur Spindel bewegbar aber jeweils arretierbar ist, so dass auch eine Entkopplung der Spindelmutter 8 von der Spindel 3 möglich wird, die durch entsprechende Ausbildung des Mitnehmers 9, beispielsweise durch eine Verbindung mit einem Handhebel oder einem Servomotor, möglich wird. Bei einer solchen Ausgestaltung wird es auch möglich, die Spindel oder den Spindelmantel 3b mit einem zweiten Spindelgang gleicher Breite aber mit größerer Steigung und geringerer Tiefe zu versehen. Wird dann der Mitnehmer 9 radial aus dem ersten Spindelgang herausgezogen und schnappt in den zweiten Spindelgang ein, wird ein manueller Notbetrieb möglich. Um in diesem Fall, wo sich beide Spindelgänge an bestimmten Stellen überkreuzen, zu verhindern, dass der Mitnehmer in den nicht gewünschten Spindelgang hereinrutscht, wird vorgesehen, dass der Mitnehmernocken in Richtung des Spindelganges eine Länge aufweist, die deutlich größer als die Breite des Spindelganges ist. Auf diese Weise wird der Mitnehmer an den Kreuzungspunkten über diese hinweggeführt.

[0019] Die Fig. 2 zeigt eine andere Ausführungsform der Erfindung, bei der zwar auch eine Spindel 13 mit einem Spindelkern 13a und einem diesen umgebenden Kunststoffmantel 13b vorgesehen sein kann, bei der aber unterhalb der Spindel 13 eine gesonderte Führungsbahn 14 für Gleitstücke 15 und 16 vorgesehen ist, die jeweils mit nach unten ragenden Laschen 17 zur Befestigung einer Tür oder eines Türabschnittes ausgerüstet sind. Die Laschen 17 sind dabei über Schraubbolzen 18 mit den Gleitstücken 15, 16 verbunden und die Gleitstücke wiederum sind zylindrisch ausgebildet, wie insbesondere aus Fig. 3 erkennbar wird. Die

[0020] Führung unterhalb der Spindel 13 wird von vier parallel zueinander und zu der Spindelachse 10 verlaufende Rundstangen 20 gebildet, die jeweils an den Ecken eines Rechteckes angeordnet sind, das symmetrisch zu einer Längsmittelebene 21 liegt, die durch die Spindelachse 10 verläuft. Der gegenseitige Abstand von zwei

diametral gegenüberliegenden Rundstangen 20, also beispielsweise der Rundstangen 20a und 20b, ist auf den Durchmesser der Gleitstücke 15 und 16 und auf den Durchmesser des weiteren Gleitstückes 22 abgestimmt, das mit einem Mitnehmer 19 koppelbar ist, der Teil der Spindelmutter 23 ist.

[0021] Die Fig. 2 zeigt, dass bei dieser Ausführungsform, die mit der zusätzlichen Gleitführung für die Gleitstücke 15, 16 und 22 versehen ist, der Mitnehmer 19 fest an der Spindelmutter 23 angeordnet ist und beispielsweise auch die Form von zwei Zapfen haben kann, die fest in der Spindelmutter 23 stecken. Das Gleitstück 22 ist bei dieser Ausführungsform mit dem Mitnehmer 19 durch zwei Anschlagstücke 24 und 25 gekoppelt, die radial verschiebbar im Gleitstück 22 angeordnet sind und mit einer radial verlaufenden Fläche jeweils seitlich am Mitnehmer 19 anliegen. Dieser radial verlaufenden Fläche gegenüber liegt eine Anlaufschräge 26 und beide Anschlagstücke 24 und 25 sind in der in Fig. 2 gezeigten Lage durch Federkraft gehalten, können aber im Sinn der Pfeile 27 über Betätigungsbolzen 28 bewegt werden. [0022] Das Gleitstück 22 ist über eine Kupplungsanordnung 29 mit dem Gleitstück 16 verbunden und in der in Fig. 2 gezeigten Lage wird daher das Gleitstück 16 bei einer Drehbewegung der Spindel 13, die über den Motor 11 und die Kupplung 12 oder ein Getriebe erfolgt, längs den Gleitstangen 20 bewegt, so dass auch die Tür oder der Türabschnitt, der an den Laschen 17 der Gleitstücke 16 und 15 angebracht ist, in Richtung der Spindelachse 10 bewegt wird.

[0023] Die Gleitstücke 15, 16, 22 und die daran hängende Tür können vom Spindelantrieb entkoppelt werden, wenn in der dargestellten Lage das Anschlagstück 24 nach unten gezogen wird und daher außer Kontakt mit dem Mitnehmer 19 kommt. Wenn das Anschlagstück 25 ebenfalls nach unten gezogen wird, lässt sich die Tür frei verschieben, was beispielsweise für einen Notbetrieb erforderlich sein kann. Die Verstellung der Anschlagstükke 24 und 25 kann manuell über entsprechende Getriebeanordnungen oder auch über Servomotoren erfolgen. [0024] Die Fig. 3 macht nun überdies deutlich, dass die gewählte Führung durch Gleitstangen 20 den Vorteil aufweist, dass Toleranzen zwischen der Türlagerung oben und unten, d.h. also zwischen der Führung 14 und der nicht gezeigten unteren Türschiene in einfacher Weise dadurch ausgeglichen werden können, dass sich das Gleitstück 22 bzw. die Gleitstücke 15, 16 um ihre Achse verschwenken lassen, ohne dass dadurch Nachteile hinsichtlich der Tragfunktion der Gleitstücklagerung zu erwarten sind.

[0025] Die Fig. 4 schließlich macht deutlich, was Fig. 3 schon andeutet, dass die Spindel 13 und die Gleitstückführung 14 mit den Gleitstangen 20 in einem Gehäuse 30 untergebracht sind, das als Strangpressprofil insbesondere aus Aluminium hergestellt ist. Vorteil dieser Ausführungsform ist es, dass das Strangpressprofil 30 einen modularen Aufbau der Antriebsvorrichtung erlaubt. Wenn die Außenabmessungen des Strangpressprofils

40

45

50

5

15

20

35

30 den Abmessungen eines Tragkanals im oberen Bereich des Türausschnittes entsprechen, dann lässt sich dieses Strangpressprofil von der lichten Türöffnung aus in einfacher Weise in den Tragkanal einschieben und dort auch verankern. Es kann zu einem späteren Zeitpunkt in ebenso einfacher Weise wieder von der lichten Türöffnung aus aus dem Tragkanal entnommen und beispielsweise gewartet werden. Diese letzte Ausführungsform, die Fig. 4 zeigt, kann auch für andere Antriebseinrichtungen vorgesehen werden, bei denen die Spindel beispielsweise nicht mit einem Stahlkern versehen ist. Dies gilt auch für die Ausführungsform der Fig. 2, weil hier die Spindel selbst nicht die Tragfunktion für die Tür übernimmt.

Patentansprüche

- Antriebsvorrichtung für Ein- und Ausstiegeinrichtungen, insbesondere für Türen von Schienenfahrzeugen, mit einer motorbetriebenen Spindel (3) und mit einer auf dieser geführten Spindelmutter (8), die mit mindestens einem in einer Führung gehaltenen Türabschnitt verbunden ist, dadurch gekennzeichnet, dass die Spindel (3) als Führung für den Türabschnitt dient und aus einem Stahlkern (3a) besteht, der mit einem den Spindelgang aufweisenden Kunststoffmantel (3b) umgeben ist.
- 2. Antriebsvorrichtung, insbesondere nach Anspruch 1, dadurch gekennzeichnet, dass die Spindelmutter (8) mit einem in den Spindelgang eingreifenden Mitnehmernocken (9) versehen ist, und dass mindestens ein Abschnitt des Spindelganges im Bereich des Stellweges die Steigung null aufweist, wobei dieser Abschnitt am Spindelmantel (3b) über einen Winkel von weniger als 360° verläuft.
- Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zur Arretierung des Türabschnittes in der Schließlage und in der geöffneten Stellung Spindelgangabschnitte mit der Steigung null vorgesehen sind.
- 4. Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass zum Auffangen der Trägheit des sich bewegenden Türabschnittes Spindelgangabschnitte mit negativer Steigung vorgesehen sind.
- Antriebsvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Spindelgang mit variabler Steigung versehen ist, die ein sanftes Anlaufen und Abbremsen der Bewegung des Türabschnittes erlaubt.
- **6.** Antriebsvorrichtung nach Anspruch 2, **dadurch gekennzeichnet**, **dass** der Mitnehmernocken (9) radial zur Spindel (3) bewegbar aber arretierbar ist und

so eine Entkopplung ermöglicht.

- 7. Antriebsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Mitnehmernocken (9) in der Richtung des Spindelganges eine Länge aufweist, die größer als die Spindelgangbreite ist, und dass die Spindel bzw. der Spindelmantel (3b) mit einem zweiten Spindelgang gleicher Breite aber mit größerer Steigung und geringerer Tiefe versehen ist, so dass ein manueller Notbetrieb möglich ist, wenn der Mitnehmernocken sich im zweiten Spindelgang befindet.
- 8. Antriebsvorrichtung für Ein- und Ausstiegeinrichtungen, insbesondere für Türen von Schienenfahrzeugen, mit einer motorbetriebenen Spindel (13) und mit einer auf dieser geführten Mutter (23), die mit mindestens einem an einer Führung gehaltenen Türabschnitt verbunden ist, dadurch gekennzeichnet, dass in der Führung ein Gleitstück aufgenommen ist, das in Richtung einer Längsachse der Führung verschiebbar und um einen Toleranzausgleichswinkel um die Längsachse der Führung drehbar ist.
- Antriebsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Führung aus mehreren, insbesondere aus vier parallel zur Führungsachse (10) verlaufenden Stangen (20) besteht, die zueinander einen Abstand aufweisen, der dem Durchmesser eines zylindrischen Gleitstückes (15, 16, 22) entspricht, an dem der Türabschnitt gehalten ist.
 - 10. Antriebsvorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Stangen Rundstangen (20) sind, deren Achsen in den Ecken eines Rechteckes verlaufen, das symmetrisch zu einer das Gleitstück (15, 16, 22) durchlaufenden Längsmittelebene (21) liegt.
- 40 11. Antriebsvorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Längsmittelebene (21) auch die Längsmittelebene für die Spindel (13), einen von der Spindelmutter (23) nach unten ragenden Mitnehmer (19) und für Befestigungsstücke (17) für den Türabschnitt bildet.
- 12. Antriebsvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Türabschnitt an zwei im Abstand zueinander in der Führung (14) angeordneten Gleitstücken (15, 16) angebracht ist, wobei ein Gleitstück (16) mit einem weiteren Gleitstück (22) gekoppelt ist, das mit dem nach unten ragenden Mitnehmer (19) der Spindelmutter (23) verbindbar ist.
- 55 13. Antriebsvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass das weitere Gleitstück (22) mit Federkraft beaufschlagte Anschlagstücke (24, 25) aufweist, die sich jeweils an einer Seite des Mit-

nehmers (19) anlegen und manuell oder auch fernbetätigt gegen die Federkraft bewegbar sind und **dadurch** das Gleitstück (22) in einer Bewegungsrichtung von der Spindelmutter (13) entkoppeln.

14. Antriebsvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Anschlagstücke (24, 25) auf der vom Mitnehmer (19) abgewandten Seite mit einer Anlaufschräge (26) versehen sind, die beim Wiederauftreffen auf den Mitnehmer ein selbsttätiges Einrasten am Mitnehmer bewirken.

15. Antriebsvorrichtung nach den Ansprüchen 1, 2 oder 8, dadurch gekennzeichnet, dass Spindel (3, 13) und Spindelmutter (8, 23) und gegebenenfalls gesonderte Führung (14) für die Türabschnitte in einem Strangpressprofil (30) mit Außenabmessungen untergebracht sind, die den Innenabmessungen eines vorzugsweise im oberen Bereich der Türöffnung der Wagenkarosserie angeordneten hohlen Tragprofils angepasst sind, das von der lichten Türöffnung aus zugänglich ist. 5

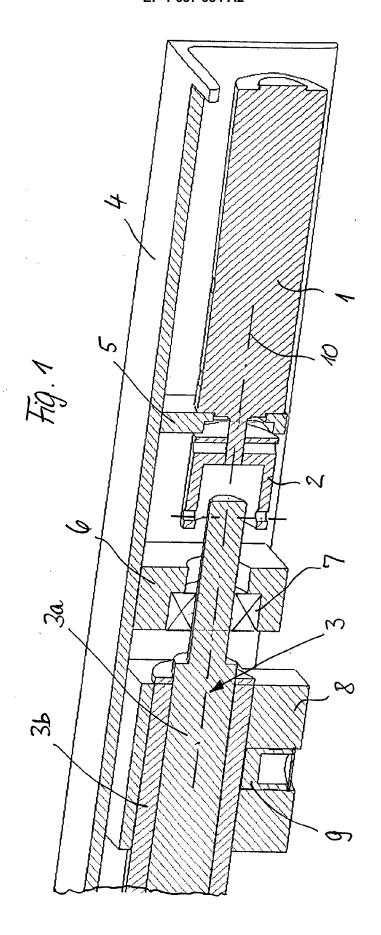
5) iit

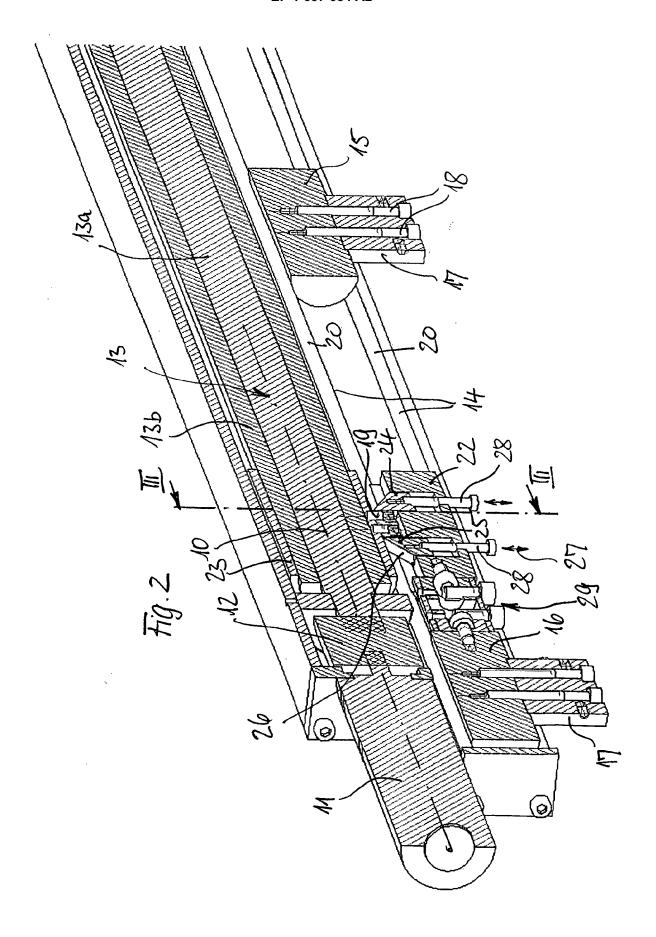
15

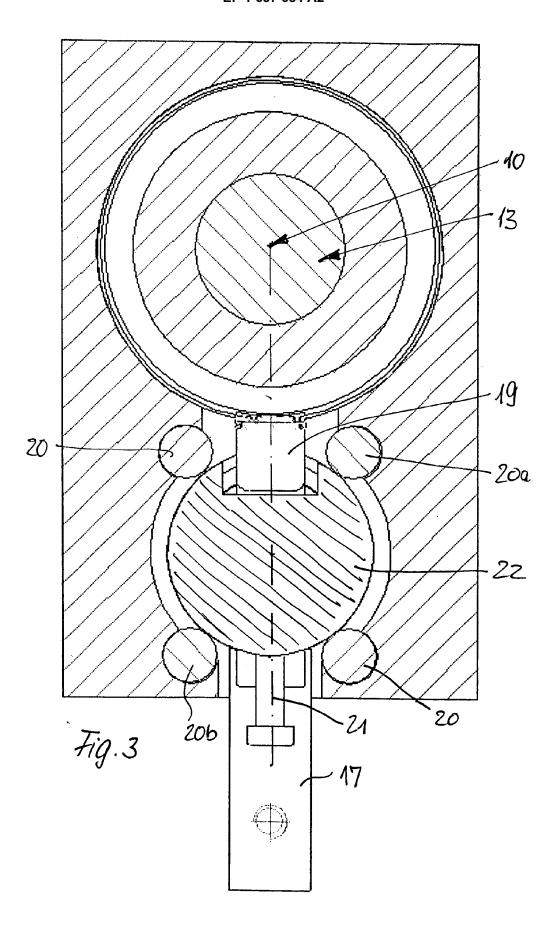
20

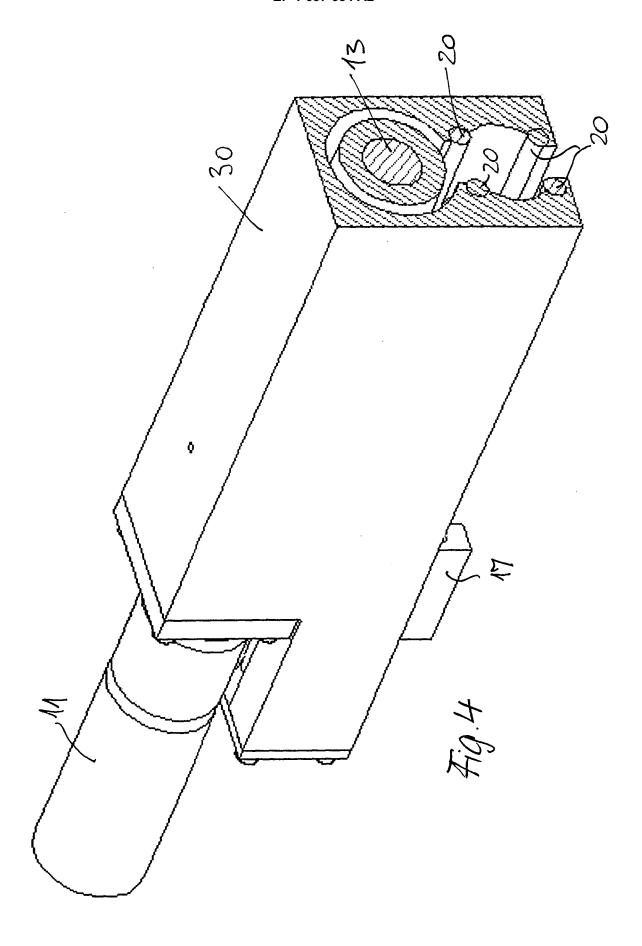
25

30


35


40


45


50

55

