(19)
(11) EP 1 640 361 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
04.11.2015 Bulletin 2015/45

(45) Mention of the grant of the patent:
27.05.2015 Bulletin 2015/22

(21) Application number: 04746819.4

(22) Date of filing: 25.06.2004
(51) International Patent Classification (IPC): 
C07C 205/51(2006.01)
C07C 205/55(2006.01)
C07C 269/06(2006.01)
C07C 275/30(2006.01)
C07C 335/18(2006.01)
C07C 205/53(2006.01)
C07C 231/10(2006.01)
C07C 271/22(2006.01)
C07C 335/16(2006.01)
C07D 209/08(2006.01)
(86) International application number:
PCT/JP2004/009350
(87) International publication number:
WO 2005/000803 (06.01.2005 Gazette 2005/01)

(54)

ASYMMETRIC UREA COMPOUNDS AND PROCESS FOR PRODUCING ASYMMETRIC COMPOUNDS BY ASYMMETRIC CONJUGATE ADDITION REACTION USING THE SAME AS CATALYST

ASYMMETRISCHE HARNSTOFF-VERBINDUNGEN UND VERFAHREN ZUR HERSTELLUNG VON ASYMMETRISCHEN VERBINDUNGEN DURCH ASYMMETRISCHE KONJUGAT-ADDITIONSREAKTION UNTER VERWENDUNG DIESER VERBINDUNGEN ALS KATALYSATOR

COMPOSÉS D'URÉE ASYMÉTRIQUE ET PROCÉDÉ POUR LA PRÉPARATION DES COMPOSÉS ASYMÉTRIQUES PAR RÉACTION D'ADDITION DE CONJUGUE ASYMÉTRIQUE EN UTILISANT LESDITS COMPOSÉS COMME CATALYSEUR


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

(30) Priority: 30.06.2003 JP 2003189096
18.12.2003 JP 2003421688

(43) Date of publication of application:
29.03.2006 Bulletin 2006/13

(73) Proprietor: Sumitomo Chemical Company, Limited
Chuo-ku, Tokyo 104 (JP)

(72) Inventor:
  • TAKEMOTO, Yoshiji
    Otsu-shi, Shiga 5200827 (JP)

(74) Representative: Duckworth, Timothy John et al
J A Kemp 14 South Square Gray's Inn
London WC1R 5JJ
London WC1R 5JJ (GB)


(56) References cited: : 
EP-A2- 0 903 349
WO-A-03/045393
WO-A2-03/045917
WO-A-03/022799
WO-A1-03/045937
   
  • DE COSTA, B.R. ET AL.: "A PRACTICAL SYNTHESIS, OPTICAL RESOLUTION AND DETERMINATION OF ABSOLUTE CONFIGURATION OF ENANTIOMERICALLY PURE 1S,2R-(+)- AND 1R,2S-(-)-CIS-2-(1-PYRROLIDINYL)CYCLOHEXYL AMINES: IMPORTANT PRECURSORS FOR A NEW CLASS OF SIGMA-RECEPTOR LIGANDS AND ANTICONVULSANT DRUGS" HETEROCYCLES, vol. 31, no. 10, 1990, pages 1837-1846, XP009088498 ISSN: 0385-5414
  • PANDEY, B.R. ET AL.: "Interrelationship between anticonvulsant and enzyme inhibitory properties of N-methyl-N-2-[1-(1-arylthiocarbamido)]cycl opentyl nitrobenzamides" PHARMACOLOGICAL RESEARCH COMMUNICATIONS, vol. 13, no. 1, 1981, pages 65-74, XP002977669 ISSN: 0031-6989
  • SOUTHWICK, P.L. ET AL.: "THE STEREOCHEMISTRY OF CONJUGATE ADDITIONS. A STUDY OF THE ADDITION OF AMINES TO (2-NITROPROPENYL)-BENZENE" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 79, 1957, pages 6222-6229, XP001056250 ISSN: 0002-7863
  • BARNES, D.M. ET AL.: "Development of a Catalytic Enantioselective Conjugate Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes for the Synthesis of Endothelin-A Antagonist ABT-546. Scope, Mechanism, and Further Application to the Synthesis of the Antidepressant Rolipram" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 122, no. 44, 2002, pages 13097-13105, XP002296066 ISSN: 0002-7863
  • JI, J. ET AL.: "CATALYTIC ENANTIOSELECTIVE CONJUGATE ADDITION OF 1,3-DICARBONYL COMPOUNDS TO NITROALKENES" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 121, no. 43, 1999, pages 10215-10216, XP000860750 ISSN: 0002-7863
  • TAKEMOTO Y. ET AL.: 'Enantioselective michel reaction of malonates to nitroolefines catalyzed by bifunctional organocatalysts' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY vol. 125, no. 42, 2003, pages 12672 - 12673, XP002983478
  • TOMMASINO M.L. ET AL.: 'Asymmetric hydrogenation of enamides with catalysts containing chiral thiourea ligands' TETRAHEDRON ASYMETRY vol. 11, no. 24, 2000, pages 4835 - 4841, XP002983479
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] The present invention relates to a novel asymmetric urea compound useful as a catalyst for asymmetric synthesis. Moreover, the present invention relates to a production method of asymmetric compounds, which comprises an asymmetric conjugate addition reaction using the asymmetric urea compound as a catalyst.

Background Art



[0002] Asymmetric compounds obtained by asymmetric conjugate addition reaction to electron-deficient olefin such as nitroolefin compound, α,β-unsaturated carbonyl compound and the like are useful as intermediates for synthesizing amines, amino acids, pharmaceutical agents, agricultural chemicals, food additives and the like (e.g., Journal of the American Chemical Society, vol. 124, No. 44, p. 13097-13105 (2002)), and various production methods have been reported so far.

[0003] However, many of them require a stoichiometric amount of an asymmetric reagent (Journal of the American Chemical Society, vol. 124, No. 39, p. 11689-11698 (2002)), and most of the catalytic asymmetric conjugate addition reactions require strict reaction conditions or involve use of a metal catalyst (Tetrahedron, vol. 58, No. 29, p. 5773-5778 (2002) and Synlett, special edition, p. 879-887 (2001)), which cause inefficient cost and operation, as well as environmental problems.

[0004] As a catalytic asymmetric conjugate addition reaction without using a metal catalyst, a Michael reaction to a nitroolefin compound using L-proline as a catalyst has been reported (Synlett, vol. 1, p. 26-28 (2002)). However, its stereoselectivity was unsatisfactorily low.

[0005] Furthermore, a Michael reaction to a nitroolefin compound using an asymmetric catalyst consisting of a magnesium salt and an asymmetric ligand has been reported (Journal of the American Chemical Society, vol. 121, No. 43, p. 10215-10216 (1999)). This method achieved high stereoselectivity, but is associated with limitations because it cannot be applied to bulky nucleophilic reagents having tertiary carbon etc., and the like.

Disclosure of the Invention



[0006] The present invention has been made to solve the above-mentioned problems found in the conventional asymmetric conjugate addition reactions and aims at providing a non-metallic asymmetric catalyst capable of achieving a highly stereoselective asymmetric conjugate addition reaction in a high yield, and a production method of an asymmetric compound useful as an intermediate for synthesizing amines, amino acids, pharmaceutical agents, agricultural chemicals, food additives and the like, which is more advantageous than conventional methods, by developing an asymmetric conjugate addition reaction using the asymmetric catalyst.

[0007] To solve the above-mentioned problems, the present inventors took note of a compound wherein both of an acidic moiety that activates an electron-deficient olefin and a basic moiety that activates a nucleophilic reagent are bonded to optically active scaffolds, as a non-metallic asymmetric catalyst for a conjugate addition reaction, and conducted intensive studies. Consequently, they found a novel asymmetric urea compound, which resulted in the completion of the present invention.

[0008] Accordingly, the present invention provides the following.
  1. (1) A compound represented by the formula (I):

    wherein

    X is a sulfur atom;

    C* and C** are each independently an asymmetric carbon, and the absolute configurations of C* and C** are both S-configurations or both R-configurations;

    R1 and R2 are the same or different and each is methyl, ethyl or isopropyl, or form isoindoline together with the nitrogen atom they are bonded to;

    R3 is a phenyl group optionally having substituent(s) selected from C1-12 haloalkyl group(s), nitro group(s), cyano group(s) and -COOR25 wherein R25 is a C1-12 alkyl group;

    R4 and R5 form a cyclohexane together with the asymmetric carbons they are respectively bonded to; and

    R6 and R7 are each a hydrogen atom,

    or a salt thereof.

    [hereinafter also referred to as asymmetric urea compound (I)], or a salt thereof.

  2. (2) A method of producing a compound represented by the formula (IV):

    or a salt thereof,
    which process comprises conjugately adding a nucleophilic reagent represented by the formula (III): H-CR16(COR17)(COR18) (III), to a compound represented by the formula (II):

    or a salt thereof, in the presence of asymmetric urea compound (I) or a salt thereof
    wherein

    C*** is an asymmetric carbon;

    R8, R9 and R10 are
    the same or different and each is

    1. (1) a hydrogen atom,
    2. (2) a C1-12 alkyl group optionally having substituent(s),
    3. (3) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),
    4. (4) a C6-20 aryl group optionally having substituent(s),
    5. (5) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),
    6. (6) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, optionally having substituent(s) selected from
      1. (a) a C1-12 alkyl group optionally having substituent(s),
      2. (b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),
      3. (c) a C6-20 aryl group optionally having substituent(s), and
      4. (d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s), or
    7. (7) an electron withdrawing group, or

    R9 and R10 form, together with the carbon atoms they are respectively bonded to,

    1. (1) a C3-7 homocyclic ring optionally having substituent(s), or
    2. (2) a 5- to 10-membered heterocycle containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom and optionally having substituent(s),
      provided that R8 and R9 are not the same groups;
      R16 is
      1. (1) a hydrogen atom,
      2. (2) a halogen atom,
      3. (3) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, having substituent(s) selected from

        (a) a C1-12 alkyl group optionally having substituent(s),

        (b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

        (c) a C6-20 aryl group optionally having substituent(s),

        (d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),

        (e) -COOR26 wherein R26 is a C1-12 alkyl group,

        (f) -COR27 wherein R27 is a C1-12 alkyl group, and

        (g) -SO2R28 wherein R28 is a C1-12 alkyl group,

      4. (4) a C1-12 alkyl group optionally having substituent(s) or
      5. (5) a C6-20 aryl group optionally having substituent(s); and
        R17 and R18 are the same or different and each is a hydrogen atom, a C1-12 alkyl group, a C1-12 alkoxy group, a mono-C1-12 alkylamino group or a di-C1-12 alkylamino group; or
        R16 and R17 optionally form, together with the carbon atoms they are respectively bonded to,
        1. (1) a C3-7 homocyclic ring substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and optionally has substituent(s), or
        2. (2) a 5- to 10-membered heterocycle substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and contains, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and optionally has substituent(s).
    3. (3) The method of the above-mentioned (2), wherein
      R16 is
      1. (1) a hydrogen atom,
      2. (2) a halogen atom,
      3. (3) a C1-12 alkyl group optionally having substituent(s), or
      4. (4) a C6-20 aryl group optionally having substituent(s); and
        R17 and R18 are the same or different and each is a hydrogen atom, a C1-12 alkyl group, a C1-12 alkoxy group, a mono-C1-12 alkylamino group or a di-C1-12 alkylamino group.
    4. (4) The method of any of the above-mentioned (2) or (3), wherein
      R8 and R10 are each a hydrogen atom, and
      R9 is
      1. (1) a C1-12 alkyl group optionally having substituent(s),
      2. (2) a C6-20 aryl group optionally having substituent(s), or
      3. (3) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s).
    5. (5) The method of the above-mentioned (2), wherein
      R16 is
      1. (1) a hydrogen atom,
      2. (2) a C1-12 alkyl group optionally having substituent(s),
      3. (3) a halogen atom, or
      4. (4) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom having substituent(s) selected from

        (a) a C1-12 alkyl group optionally having substituent(s),

        (b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

        (c) a C6-20 aryl group optionally having substituent(s),

        (d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),

        (e) -COOR26 wherein R26 is a C1-12 alkyl group,

        (f) -COR27 wherein R27 is a C1-12 alkyl group, and

        (g) -SO2R28 wherein R28 is a C1-12 alkyl group, and

        R17 and R18 are the same or different and each is a C1-12 alkyl group or a C1-12 alkoxy group.
    6. (6) The method of the above-mentioned (5), wherein R16 is a hydrogen atom, methyl, a chlorine atom, methoxy or tert-butoxycarbonylamino, and R17 and R18 are each methoxy or ethoxy.
    7. (7) The method of the above-mentioned (2), wherein R16 and R17 form, together with the carbon atoms they are respectively bonded to, a C3-7 homocyclic ring substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and optionally has substituent(s).
    8. (8) The method of the above-mentioned (7), wherein the homocyclic ring is 1,2,3,4-tetrahydronaphthalen-1-one.
    9. (9) The method of any of the above-mentioned (2) to (8), which is performed in at least one solvent selected from toluene and methylene chloride.
    10. (10) The method of any of the above-mentioned (2) to (8), which is performed without a solvent.


Detailed Description of the Invention



[0009] The present invention is described in detail in the following.

[0010] First, each symbol used in the present description is defined in the following.

[0011] The alkyl used in the present invention is linear when it is free of a prefix (e.g., iso, neo, sec-, tert- and the like). For example, a simple propyl means linear propyl.

[0012] The "halogen atom" for R16 is fluorine atom, chlorine atom, bromine atom or iodine atom, and preferred are chlorine atom and bromine atom.

[0013] The "lower alkyl group" for R17 or R18 is a straight chain or branched chain alkyl group having 1 to 12 carbon atoms, and, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and the like can be mentioned. Preferred are methyl, ethyl and propyl.

[0014] The "lower alkoxy group" for R17 or R18 is an alkoxy group wherein the alkyl moiety is the "lower alkyl group" defined above, and, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, neopentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy and the like can be mentioned. Preferred are methoxy and ethoxy.

[0015] The "mono-lower alkylamino group" for R17 or R18 is a mono-alkylamino group wherein the alkyl moiety is the "lower alkyl group" defined above, and, for example, N-methylamino, N-ethylamino, N-propylamino, N-isopropylamino, N-butylamino, N-isobutylamino, N-sec-butylamino, N-tert-butylamino, N-pentylamino, N-isopentylamino, N-neopentylamino, N-hexylamino, N-heptylamino, N-octylamino, N-nonylamino, N-decylamino, N-undecylamino, N-dodecylamino and the like can be mentioned.

[0016] The "di-lower alkylamino group" for R17 or R18 is a di-alkylamino group wherein the alkyl moieties are the same or different and each is the "lower alkyl group" defined above, and, for example, N,N-dimethylamino, N,N-diethylamino, N,N-dipropylamino, N,N-diisopropylamino, N,N-dibutylamino, N,N-diisobutylamino, N,N-di-sec-butylamino, N,N-di-tert-butylamino, N,N-dipentylamino, N,N-diisopentylamino, N,N-dineopentylamino, N,N-dihexylamino, N,N-diheptylamino, N-methyl-N-ethylamino, N-methyl-N-propylamino, N-methyl-N-isopropylamino, N-methyl-N-butylamino, N-methyl-N-isobutylamino, N-methyl-N-sec-butylamino, N-methyl-N-tert-butylamino, N-methyl-N-pentylamino, N-methyl-N-isopentylamino, N-methyl-N-neopentylamino, N-methyl-N-hexylamino, N-methyl-N-heptylamino, N-methyl-N-octylamino, N-methyl-N-nonylamino, N-methyl-N-decylamino, N-methyl-N-undecylamino, N-methyl-N-dodecylamino and the like can be mentioned.

[0017] As the "lower alkyl group" of the "lower alkyl group optionally having substituent(s)" for R8, R9, R10, R16, R17 or R18, alkyl groups same as the "lower alkyl group" defined above can be mentioned.

[0018] The lower alkyl group optionally has substituent(s) at substitutable position(s), and as such substituent(s), a lower alkoxy group (exemplified by those defined above), a mono-lower alkylamino group (exemplified by those defined above), a di-lower alkylamino group (exemplified by those defined above), a halogen atom (exemplified by those defined above), a nitro group, a cyano group, -COOR25 wherein R25 is a lower alkyl group as defined above, and the like can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0019] The "aryl group" of the "aryl group optionally having substituent (s)" for R8, R9, R10 or R16 is an aryl group having 6 to 20 carbon atoms, and, for example, phenyl, 1- or 2-naphthyl, biphenyl, binaphthyl and the like can be mentioned.

[0020] The aryl group optionally has substituent(s) at substitutable position(s), and as such substituent(s), a lower alkyl group (exemplified by those defined above), a lower alkoxy group (exemplified by those defined above), a mono-lower alkylamino group (exemplified by those defined above), a di-lower alkylamino group (exemplified by those defined above), a halogen atom (exemplified by those defined above), a haloalkyl group (lower alkyl group substituted by one or more halogen atoms, such as trifluoromethyl etc.), a nitro group, a cyano group, -COOR25 wherein R25 is as defined above, and the like can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0021] The "substituent" of the "aryl group optionally having substituent(s)" for R3 is a haloalkyl group, a nitro group, a cyano group, -COOR25 wherein R25 is a C1-12 alkyl group, more preferably a haloalkyl group.

[0022] The "aralkyl group" of the "aralkyl group optionally having substituent(s)" for R8, R9, R10 or R16 is an aralkyl group wherein the "lower alkyl group" defined above is substituted by the "aryl group" defined above at optional position(s), and, for example, benzyl, 1- or 2-phenethyl, 1-, 2- or 3-phenylpropyl, 1- or 2-naphthylmethyl, benzhydryl, trityl and the like can be mentioned.

[0023] The aralkyl group optionally has substituent(s) at substitutable position(s), and as such substituent(s), the substituents recited for the above-mentioned "aryl group optionally having substituent(s)" can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0024] As the "heteroaryl group" of the "heteroaryl group optionally having substituent(s)" for R8, R9, R10, for example, a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and a fused heterocyclic group thereof and the like can be mentioned. For example, 2-or 3-thienyl, 2- or 3-furyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4-or 5-imidazolyl, 2-, 4- or 5-oxazolyl, 2-, 4- or 5-thiazolyl, 1-, 3-, 4- or 5-pyrazolyl, 3-, 4- or 5-isoxazolyl, 3-, 4- or 5-isothiazolyl, 1,2,4-triazol-1, 3, 4 or 5-yl, 1,2,3-triazol-1, 2 or 4-yl, 1H-tetrazol-1 or 5-yl, 2H-tetrazol-2 or 5-yl, 2-, 3-or 4-pyridyl, 2-, 4- or 5-pyrimidinyl, 1-, 2-, 3-, 4-, 5-, 6-or 7-indolyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 4-, 5-, 6- or 7-benzimidazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl, 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl and the like can be mentioned.

[0025] The heteroaryl group optionally has substituent(s) at substitutable position(s), and as such substituent(s), the substituents recited for the above-mentioned "aryl group optionally having substituent(s)" can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0026] The "hetero atom" of the "hetero atom optionally having substituent(s)" for R8, R9 or R10 is a nitrogen atom, an oxygen atom or a sulfur atom.

[0027] As the substituents that the hetero atom may have, the "lower alkyl group optionally having substituent(s)", "aralkyl group optionally having substituent(s)", "aryl group optionally having substituent(s)" and "heteroaryl group optionally having substituent(s)" are mentioned.

[0028] The "hetero atom" of the "hetero atom having substituent(s)" for R16 is a nitrogen atom, an oxygen atom or a sulfur atom.

[0029] As the substituents that the hetero atom has, the "lower alkyl group optionally having substituent(s)", "aralkyl group optionally having substituent(s)", "aryl group optionally having substituent(s)" and "heteroaryl group optionally having substituent(s)", each defined above, -COOR26, -COR27, -SO2R28 wherein R26, R27 and R28 are the same or different and each is a lower alkyl group as defined above, are mentioned.

[0030] The "homocyclic ring" and heterocycle optionally have substituent(s) at substitutable position(s), and as such substituent(s), the substituents recited for the above-mentioned "aryl group optionally having substituent(s)" can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0031] The "homocyclic ring" of the "homocyclic ring optionally having substituent(s)", which R16 and R17 optionally form together with the carbon atoms they are respectively bonded to, is a homocyclic ring substituted by oxo, for example, a cycloalkanone having 3 to 7 carbon atoms (e.g., cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone etc.), a cycloalkenone having 4 to 7 carbon atoms (e.g., cyclobutenone, cyclopentenone, cyclohexenone, cycloheptenone etc.). Preferred are cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, and more preferred is cyclohexanone.

[0032] The "heterocycle" of the "heterocycle optionally having substituent (s) ", which R16 and R17 optionally form together with the carbon atoms they are respectively bonded to, is a 5- to 10-membered heterocycle substituted by oxo and containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, (e.g., tetrahydropyranone, tetrahydrofuranone, pyrrolidone, piperidone).

[0033] The "homocyclic ring" and "heterocycle" are optionally further condensed with an aromatic hydrocarbon (e.g., benzene, naphthalene, biphenyl, binaphthyl etc.).

[0034] The "homocyclic ring" and "heterocycle" optionally have substituent(s) at substitutable position(s), and as such substituent(s), the substituents recited for the above-mentioned "aryl group optionally having substituent(s)" can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0035] In compound (II), as the "homocyclic ring" of the "homocyclic ring optionally having substituent(s)", which R9 and R10 optionally form together with the carbon atoms they are respectively bonded to, a homocyclic ring having the double bond in compound (II), for example, a cycloalkene having 3 to 7 carbon atoms (e.g., cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene etc.) and the like can be mentioned.

[0036] In compound (II), as the "heterocycle" of the "heterocycle optionally having substituent(s)", which R9 and R10 optionally form together with the carbon atoms they are respectively bonded to, a 5- to 10-membered heterocycle having the double bond in compound (II) and containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, (e.g., 5,6-dihydro-2H-pyran, 3,4-dihydro-2H-pyran, 2,3- or 2,5-dihydrofuran, 2- or 3-pyrroline, 1,2,3,4- or 1,2,3,6-tetrahydropyridine and the like) can be mentioned.

[0037] The "homocyclic ring" and "heterocycle" are optionally further condensed with an aromatic hydrocarbon (e.g., benzene, naphthalene, biphenyl, binaphthyl etc.).

[0038] The "homocyclic ring" and "heterocycle" optionally have substituent(s) at substitutable position(s), and as such substituent(s), the substituents recited for the above-mentioned "aryl group optionally having substituent(s)" can be mentioned. The number of substituents is not particularly limited, but is preferably 1 to 3. When it is 2 or more, the substituents may be the same or different.

[0039] In compound (II), the "electron withdrawing group" for R8, R9, R10 is not particularly limited as long as it sufficiently absorbs the electron of the double bond in compound (II), so that the conjugate addition of nucleophilic reagent (III) to the double bond can be afforded, and, for example, a nitro group, a cyano group, -COR11, -SO2R12, -COOR13 and -PO (OR14) (OR15)
wherein
R11, R12, R13, R14 and R15 are a hydrogen atom, a C1-12 alkyl group optionally having substituents, an aralkyl group optionally having substituents, an aryl group optionally having substituents, or a heteroaryl group optionally having substituents. R14 and R15 may be the same or different.

[0040] For R8, R9 or R10 a nitro group is preferable.

[0041] The "asymmetric carbon" of C*, C** or C*** each has an independent absolute configuration, and is not particularly limited. The absolute configurations of C* and C** in asymmetric thiourea compound (I) can be appropriately selected to obtain asymmetric compound (IV) having a desired configuration.

[0042] The asymmetric thiourea compound (I), compound (II) and asymmetric compound (IV) may be in the form of a salt. As such a salt, for example, inorganic acid salts (e.g., hydrochloride, sulfate, nitrate, phosphate etc.); organic acid salts (e.g., acetate, propionate, methanesulfonate, 4-toluenesulfonate, oxalate, maleate etc.); alkali metal salts (e.g., sodium salt, potassium salt etc.); alkaline earth metal salts (e.g., calcium salt, magnesium salt etc.); organic base salts (e.g., trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, dicyclohexylamine salt etc.) and the like can be mentioned.

[0043] R4 and R5 form cyclohexane together with the asymmetric carbons they are respectively bonded to and R6 and R7 are each a hydrogen atom. The absolute configurations of C* and C** are both S-configurations or both R-configurations.

[0044] R1 and R2 in asymmetric urea compound (I) are methyl, ethyl or isopropyl, or form isoindoline together with the nitrogen atom they are bonded to, preferably methyl or isopropyl.

[0045] R3 in asymmetric urea compound (I) is a phenyl group substituted by haloalkyl group(s), nitro group(s), cyano group (s) or -COOR25 wherein R25 is as defined above, preferably a phenyl group substituted by haloalkyl group(s), still more preferably a phenyl group substituted by trifluoromethyl.

[0046] Since C*** in compound (IV) is an asymmetric carbon, R8 and R9 in compound (II) cannot be the same group simultaneously.

[0047] R8, R9 and R10 in compound (II) are each preferably an aryl group optionally having substituent(s) or a heteroaryl group optionally having substituent(s), more preferably R8 and R10 are each a hydrogen atom, and R9 is an aryl group optionally having substituent(s) or a hereroaryl group optionally having substituent(s).

[0048] In a preferable embodiment R16 is a hydrogen atom, a lower alkyl group optionally having substituent(s), a halogen atom or a hetero atom having substituent(s), more preferably a hydrogen atom, methyl, chlorine atom, methoxy or tert-butoxycarbonylamino, and R17 and R18 are each a lower alkyl group or a lower alkoxy group, more preferably a lower alkoxy group, still more preferably methoxy or ethoxy. In another preferable embodiment, R16 and R17 form, together with the carbon atoms they are respectively bonded to, a homocyclic ring optionally having substituent(s) (the homocyclic ring is optionally condensed with an aromatic hydrocarbon), more preferably 1,2,3,4-tetrahydronaphthalen-1-one.

[0049] The asymmetric thiourea compound (I) of the present invention can be produced according to Production Method 1 shown by the following reaction scheme.

wherein each symbol is as defined above.

[0050] That is, asymmetric thiourea compound (I) can be synthesized, for example, by reacting a compound represented by the formula (V) [hereinafter to be also referred to as compound (V)] with an isocyanate compound or isothiocyanate compound represented by the formula (VI) [hereinafter to be also referred to as isocyanates (VI)] in a solvent.

[0051] In Production Method 1, the order of addition of compound (V) and isocyanates (VI) is not particularly limited, and they may be added to a solvent simultaneously or successively.

[0052] The amount of isocyanates (VI) to be used in Production Method 1 is preferably 0.5 mol to 5 mol, more preferably 0.9 mol to 1.5 mol, per 1 mol of compound (V).

[0053] As the solvent to be used in Production Method 1, any can be used as long as it does not inhibit the reaction and, for example, halogen solvents such as methylene chloride, chloroform, chlorobenzene, α, α, α-trifluorotoluene and the like; methyl-tert-butyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, ethyl acetate, isopropyl acetate, tert-butyl acetate, toluene, xylene, acetonitrile and the like can be used alone or in a mixture. When a mixed solvent is used, they can be admixed at any ratio.

[0054] The amount of the solvent to be used is generally 1 L to 100 L, more preferably 10 L to 30 L, per 1 kg of compound (V).

[0055] The reaction temperature in Production Method 1 is generally -78°C to 100°C, preferably 0°C to 40°C.

[0056] While the reaction time varies depending on the reagent to be used and reaction temperature, it is generally 1 hr to 10 hr.

[0057] The asymmetric thiourea compound (I) produced according to Production Method 1 can be isolated and purified according to a conventional method. For example, asymmetric urea compound (I) can be isolated by pouring a reaction mixture into water to partition the mixture, and washing and concentrating the organic layer under reduced pressure; or by concentrating the reaction mixture. After isolation, the obtained product is purified, for example, by, but not limited to, silica gel column chromatography.

[0058] The compound (V), which is a starting material in Production Method 1, can be produced according a known method (e.g., a method described in Tetrahedron, 57, 1765-1769 (2001)). For example, a compound represented by the formula (Va), which is a preferable mode of the present invention:

wherein each symbol is as defined above, can be produced according a method described in Tetrahedron Letters, 41, 8431-8434(2000).

[0059] The isocyanates (VI), which is the other starting material in Production Method 1, can be synthesized from an amine represented by R3-NH2 wherein R3 is as defined above according to a known method (e.g., a method described in Eur. J. Org. Chem., 3004-3014 (2002)), or a commercially available product can also be used.

[0060] Now, the production method of asymmetric compound (IV) of the present invention by an asymmetric conjugate addition reaction (hereinafter to be also simply referred to as the production method of the present invention) is explained.

[0061] The production method of the present invention is shown by the following reaction scheme:

wherein each symbol is as defined above, Nu is -CR16(COR17)(COR18)

[0062] That is, according to the production method of the present invention, for example, asymmetric compound (IV) is produced by conjugately adding nucleophilic reagent (III) to compound (II) in the presence of asymmetric thiourea compound (I) in a solvent or without a solvent.

[0063] The asymmetric compound (IV) produced according to the production method of the present invention is optically active, wherein the optical purity is not particularly limited. As an enantiomer excess measured by HPLC chiral analysis, it is generally not less than 50% e.e., preferably not less than 90% e.e.

[0064] In the production method of the present invention, the conjugate addition means, in compound (II), an addition reaction of nucleophilic reagent (III) to a carbon not bonded to NO2 (i.e., β-carbon) from the carbons of the double bond conjugate-bonded to the electron withdrawing group for NO2.

[0065] In production method of the present invention, the order of addition of the reagents is not particularly limited, and asymmetric thiourea compound (I), compound (II) and nucleophilic reagent (III) can be added simultaneously or successively.

[0066] The amount of asymmetric thiourea compound (I) to be used in the production method of the present invention can be a catalytic amount and it is, for example, preferably 0.01 mol to 1.00 mol, more preferably 0.05 mol to 0.20 mol, per 1 mol of compound (II). When the amount of asymmetric thiourea compound (I) to be used is less than this range, the reaction tends to be slow and when it exceeds this range, the effect tends to be less than comparable to its amount of use, which is economically disadvantageous.

[0067] The amount of nucleophilic reagent (III) to be used in the production method of the present invention is preferably 1 mol to 10 mol, more preferably 1.2 mol to 3 mol, per 1 mol of compound (II). When the amount of nucleophilic reagent (III) to be used is less than the range, the reaction tends to be incomplete, and when it exceeds this range, the effect tends to be less than comparable to its amount of use, which is economically disadvantageous.

[0068] The production method of the present invention can be performed in a solvent or without a solvent. The production method performed without a solvent is economically advantageous because the solvent is not necessary, and is industrially advantageous because the volume efficiency can be increased.

[0069] When a solvent is used for the production method of the present invention, the solvent may be any as long as it does not inhibit the reaction and, for example, halogen solvents such as methylene chloride, chloroform, chlorobenzene, α, α, α-trifluorotoluene and the like; methyl-tert-butyl ether, 1,2-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, ethyl acetate, isopropyl acetate, tert-butyl acetate, toluene, xylene, acetonitrile and the like can be used alone or in a mixture. In view of superior yield and stereoselectivity, toluene or methylene chloride is preferably used.

[0070] When a mixed solvent is used, they may be mixed at any ratio.

[0071] The amount of the solvent to be used is generally 1 L to 100 L, more preferably 10 L to 30 L, per 1 kg of compound (II).

[0072] The reaction temperature in the production method of the present invention is generally -78°C to 100°C, preferably 0°C to 40°C.

[0073] While the reaction time varies depending on the reagent to be used and reaction temperature, it is generally 0.1 hr to 100 hr.

[0074] The asymmetric compound (IV) produced according the production method of the present invention can be isolated and purified according to a conventional method. For example, asymmetric compound (IV) can be isolated by pouring a reaction mixture into water to partition the mixture, and washing and concentrating the organic layer under reduced pressure; or by concentrating the reaction mixture. After isolation, the obtained product is purified, for example, by, but not limited to, silica gel column chromatography.

[0075] The asymmetric thiourea compound (I) can be easily separated and recovered during isolation and purification of asymmetric compound (IV). For example, since basic amine is present in asymmetric thiourea compound (I), compound (I) can be separated from asymmetric compound (IV) during extraction by transferring compound (I) in the form of a salt into the aqueous layer by treating the mixture with an aqueous acidic solution (e.g., hydrochloric acid, nitric acid, sulfuric acid etc.). After neutralization of the aqueous solution, it is extracted with an organic solvent (e.g., ethyl acetate, toluene, chloroform, methylene chloride etc.) to recover asymmetric thiourea compound (I). It may also be separated and recovered by silica gel column chromatography.

[0076] The asymmetric thiourea compound (I) separated and recovered in this manner can be re-used for the production method of the present invention. That is, since asymmetric thiourea compound (I) of the present invention is non-metal, degradation of catalytic activity as observed in metal catalysts etc. does not occur easily, and compound (I) can be re-used as many times as desired upon recovery, which is economically advantageous.

[0077] As asymmetric thiourea compound (I), which is a starting material in the production method of the present invention, for example, one produced according to the above-mentioned Production Method 1 can be used.

[0078] The compound (II), which is a starting material in the production method of the present invention, can be produced according a known method, such as dehydrative condensation of a carbonyl compound represented by the following formula (VII) and an active methylene compound represented by the following formula (VIII) :

wherein each symbol is as defined above.

[0079] As such a dehydrative condensation reaction, the Knoevenagel reaction, and modification of this method can be mentioned.

[0080] In addition, commercially available products may be used for trans-β-nitrostyrene and the like, which are preferable examples of compound (II).

[0081] The nucleophilic reagent (III), which is a starting material in the present invention, can be produced according a known method, such as the methods described in Tetrahedron Letters, 39, 8013-8016 (1998), Bull. Chem. Soc. Jpn., 61, 4029-4035 (1988) and the like. In addition, commercially available products may be used for diethyl malonate and the like, which are preferable examples of nucleophilic reagent (III).

[0082] The asymmetric compound (IV) produced according to the production method of the present invention is useful as an intermediate for synthesizing amines, amino acids, pharmaceutical agents, agricultural chemicals, food additives and the like. For example, ethyl (R)-3-(3-cyclopentyl-4-methoxyphenyl)-2-ethoxycarbonyl-4-nitrobutyrate, which is one example of compound (IV), can be converted to (R)-Rolipram (antidepressant) according to a method described in Journal of the American Chemical Society, vol. 124, No. 44, p. 13097-13105 (2002).

Examples



[0083] The present invention is explained more specifically in the following by referring to Examples.

Example 1A


(R,R)-trans-1-[3,5-bis (trifluoromethyl)phenyl]-3-[2-(N,N-dimethylamino)cyclohexyl]thiourea



[0084] 



[0085] To a solution (1.0 ml) of 3,5-bis(trifluoromethyl)phenylisothiocyanate (605 mg, 2.23 mmol) in dry tetrahydrofuran was added (R,R)-trans-N,N-dimethyl-1,2-diaminocyclohexane (317 mg, 2.23 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature for 3 hr, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (elution solvent: chloroform/methanol/triethylamine=100/5/1) to give the title compound as a white amorphous solid (597 mg, yield 65 %).
[α]D16 -32.7 (c 0.99, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 10.0 (s, 1H), 8.21 (s, 1H), 8.17 (s, 2H), 7.66 (s, 1H), 4.09 (brs, 1H), 2.54 (brs, 1H), 2.21 (s, 7H), 1.82 (brs, 1H), 1.74 (brs, 1H), 1.63 (brd, J=11.0Hz, 1H), 1.31-1.01 (m, 4H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 178.6, 142.0, 130.8, 130.5, 130.3, 130.0, 126.5, 124.3, 122.2, 120.9, 120.0, 115.3, 65.0, 55.3, 45.7, 31.6, 24.6, 24.5, 21.0 ppm;
IR (CHCl3) ν 3402, 3200, 2942, 2865, 1528, 1469, 1383, 1278 cm-1;
MS (FAB+) 414 (MH+, 100);
Elemental analysis
Calculated (for C17H21F6N3S): C, 49.39; H, 5.12; N, 10.16; F, 27.57.
Found: C, 49.36; H, 5.28; N, 10.11; F, 27.71.

Example 1B


(R,R)-trans-1-[3,5-bis (trifluoromethyl)phenyl]-3-[2-(N,N-dimethylamino)cyclohexyl]urea



[0086] 



[0087] To a solution (0.60 ml) of 3,5-bis(trifluoromethyl)phenylisocyanate (0.26 ml, 1.5 mmol) in dry benzene was added (R,R)-trans-N,N-dimethyl-1,2-diaminocyclohexane (213 mg, 1.5 mmol) under an argon atmosphere. The reaction mixture was stirred at room temperature for 1 hr, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (CHCl3/MeOH=20/1-7/1) to give the title compound as a white amorphous solid.
[α]D25 -35.3 (c 0.93, CHCl3) ;
1H-NMR (500MHz, DMSO-d6) δ 9.39 (s, 1H), 8.02 (s, 2H), 7.51 (s, 1H), 6.21 (d, J=5.5Hz, 1H), 3.35 (ddd, J=15.2, 10.5, 4.3Hz, 1H), 2.28 (dt, J=3.1, 10.2Hz, 1H), 2.18 (brs, 1H), 2.15 (s, 6H), 1.85-1.66 (m, 2H), 1.63-1.52 (m, 1H), 1.31-0.96 (m, 4H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 154.9, 142.9, 131.3, 131.1, 130.8, 130.5, 126.9, 124.7, 122.5, 120.4, 117.12, 117.09, 113.4, 113.3, 65.6, 50.9, 39.9, 33.2, 24.9, 24.5, 21.4 ppm;
IR (CHCl3) v 3424, 3332, 2939, 2864, 2792, 1695, 1549, 1473 cm-1;
MS (FAB+) 398 (MH+, 100) ;
Elemental analysis
Calculated (for C17H21F6N3O): C, 51.38; H, 5.33; N, 10.57; F, 28.69.
Found: C, 51.30; H, 5.22; N, 10.58; F, 28.46.

Example 2


(R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(isoindolin-2-yl)cyclohexyl]thiourea



[0088] 



[0089] In the same manner as in Example 1A except that (R,R)-trans-N-[2-(isoindolin-2-yl)cyclohexyl]amine was used instead of (R,R)-trans-N,N-dimethyl-1,2-diaminocyclohexane, the title compound was obtained as colorless crystals (yield 21%). melting point: 154-156°C (n-hexane/ethyl acetate).
[α]D17 -18.1 (c 1.01, CHCl3) ;
1H-NMR (500MHz, DMSO-d6) δ 10.00 (s, 1H), 8.30 (d, J=7.0Hz, 1H), 8.15 (s, 2H), 7.67 (s, 1H), 7.24 (dd, J=3.4, 5.2Hz, 2H), 7.18 (dd, J= 3.2, 5.3Hz, 2H), 4.31 (brs, 1H), 4.04 (d, J=11.6Hz, 2H), 3.99 (d, J=11.9Hz, 2H), 2.87 (dt, J=2.7, 9.8Hz, 1H), 2.18 (brd, J=8.2Hz, 1H), 1.88 (brd, J=11.6Hz, 1H), 1.76 (brd, J=7.9Hz, 1H), 1.65 (m, 1H), 1.44 (m, 1H), 1.30 (m, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 184.1, 147.0, 144.9, 135.6, 135.3, 131.6, 129.5, 127.5, 127.3, 126.4, 120.8, 65.6, 60.5, 58.3, 29.0, 28.82, 28.77, 28.1 ppm;
IR (CHCl3) ν 3402, 2941, 2862, 1539, 1495, 1470, 1382, 1279, 1179 ,1140 cm-1;
MS (FAB+) 488 (MH+, 100);
Elemental analysis
Calculated (for C23H23F6N3S) : C, 56.67; H, 4.76; N, 8.62; F, 23.38.
Found: C, 56.66; H, 4.74; N, 8.46; F, 23.45.

Example 3


(R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(N-isopropyl-N-methylamino)cyclohexyl]thiourea



[0090] 



[0091] In the same manner as in Example 1A except that (R,R)-trans-N-isopropyl-N-methyl-1,2-diaminocyclohexane was used instead of (R,R)-trans-N,N-dimethyl-1,2-diaminocyclohexane, the title compound was obtained as a colorless amorphous solid (yield 64%).
[α]D26 +51.3 (c 0.98, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 10.10 (s, 1H), 8.21 (s, 2H), 7.87 (s, 1H), 7.69 (s, 1H), 4.08 (brs, 1H), 2.96-2.78 (m, 1H), 2.62 (brs, 1H), 2.37-2.07 (m, 4H), 1.82 (brd, J=10.7Hz, 1H), 1.71 (brd, J=6.7Hz, 1H), 1.61 (brd, J=7.7Hz, 1H), 1.31-1.07 (m, 4H), 0.98 (d, J=6.1Hz, 6H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 179.2, 142.0, 130.7, 130.5, 130.2, 129.9, 126.6, 124.4, 122.2, 121.4, 120.1, 115.6, 63.6, 55.0, 31.8, 31.3, 25.6, 25.0, 24.5, 21.4, 20.1 ppm;
IR (CHCl3) ν 3402, 2943, 2863, 1496, 1470, 1384, 1279, 1179, 1141 cm-1;
MS (FAB+) 442 (MH+, 100);
HRMS (FAB+)
Calculated (for [C19H26F6N3S]+): 442.1752;
Found: 442.1743.

Example 4


(R,R)-trans-1-[2-(N,N-dimethylamino)cyclohexyl]-3-phenylthiourea



[0092] 



[0093] In the same manner as in Example 1A except that phenylisothiocyanate was used instead of 3,5-bis(trifluoromethyl)phenylisothiocyanate, the title compound was obtained as a colorless amorphous solid (yield 95%).
[α]D21-112 (c 0.98, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 7.38 (t, J= 7.8Hz, 2H), 7.30-7.14 (m, 4H), 6.79 (s, 1H), 3.86 (brs, 1H), 2.73 (brs, 1H), 2.33 (dt, J=2.9, 11.1Hz, 1H), 2.24 (s, 6H), 1.93-1.75 (m, 2H), 1.70 (brd, J=13.7Hz, 1Hz), 1.42-1.28 (m, 1H), 1.28-1.11 (m, 2H), 1.10-0.96 (m, 1H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 179.1, 137.4, 128.9, 125.5, 124.3, 66.0, 55.4, 39.4, 32.4, 24.6, 24.2, 21.0 ppm;
IR (CHCl3) ν 3411, 2939, 2864, 2790, 1529, 1500 cm-1;
MS (FAB+) 278 (MH+, 100);
HRMS (FAB+)
Calculated (for [C15H24N3S]+) : 278.1691;
Found: 278.1692.

Example 5


1-[(R,R)-2-(N,N-dimethylamino)cyclohexyl]-3-(2-methoxyphenyl)thiourea



[0094] 



[0095] In the same manner as in Example 1A except that 2-methoxyphenylisothiocyanate was used instead of 3,5-bis(trifluoromethyl)phenylisothiocyanate, the title compound was obtained as a colorless amorphous solid (yield 100%).
[α]D19-116 (c 1.10, CHCl3) ;
1H-NMR (500MHz, DMSO-d6) δ 8.19 (s, 1H), 7.41 (d, J=7.3Hz, 1H), 7.15-6.92 (m, 2H), 6.89-6.69 (m, 2H), 3.79 (brs, 1H), 3.67 (s, 3H), 2.60 (d, J=10.7Hz, 1H), 2.35-2.22 (m, 1H), 2.09 (s, 6H), 1.83-1.60 (m, 2H), 1.54 (d, J=13.7Hz, 1H), 1.20 (q, J=13.0Hz, 1H), 1.15-0.97 (m, 2H), 0.96-0.81 (m, 1H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 179.5, 151.5, 126.3, 125.0, 124.1, 120.2, 111.1, 66.3, 55.9, 55.3, 39.5, 32.3, 24.8, 24.3, 21.2 ppm;
IR (CHCl3) ν 3406, 2939, 2863, 1600, 1512 cm-1;
MS (FAB+) 308 (MH+, 100);
HRMS (FAB+)
Calculated (for [C16H26N3OS]+) : 308.1757;
Found: 308.1790

Comparative Example 1


(R,R)-trans-N-[2-(N',N'-dimethylamino)cyclohexyl]acetamide



[0096] In the same manner as in Example 1A except that acetic anhydride was used instead of 3,5-bis(trifluoromethyl)phenylisothiocyanate, the title compound was obtained as a colorless amorphous solid (yield 87%).

Comparative Example 2


1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexylthiourea



[0097] In the same manner as in Example 1A except that cyclohexylamine was used instead of (R,R)-trans-N,N-dimethyl-1,2-diaminocyclohexane, the title compound was obtained as colorless crystals (yield 88%).

Example 6A


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0098] To a solution (0.40 ml) of trans-β-nitrostyrene (29.8 mg, 0.20 mmol) and diethyl malonate (0.061 ml, 0.40 mmol) in toluene was added, as an asymmetric catalyst, (R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(N,N-dimethylamino)cyclohexyl]thiourea (8.2 mg, 0.02 mmol) obtained in Example 1A at room temperature under an argon atmosphere. After 24 hr, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (elution solvent: n-hexane/diethyl ether) to give the title compound as colorless needle crystals (53.3 mg, yield 86%). The yield and optical purity are shown in Tables 1 - 3. melting point: 45-47°C (n-hexane/diethyl ether)
HPLC analysis conditions:

column: CHIRALCEL AD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/ethanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: (S)-isomer (main peak); 11.1 min, (R)-isomer; 13.9 min.

[α]D30-6.00 (c 1.00, CHCl3) ;
1H-NMR (500MHz, DMSO-d6) δ 7.42-7.10 (m, 5H), 4.93 (dd, J=4.6, 13.1Hz, 1H), 4.86 (dd, J=9.2, 13.1Hz, 1H), 4.33-4.15 (m, 3H), 4.00 (q, J=7.2Hz, 2H), 3.82 (d, J=9.5Hz, 1H), 1.25 (t, J=7.2Hz, 3H), 1.03 (t, J=7.2Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 167.4, 166.7, 136.2, 128.8, 128.2, 127.9, 77.6, 62.0, 61.8, 54.9, 42.9, 13.9, 13.6 ppm; IR (CHCl3) ν 2989, 2938, 1731, 1557 cm-1;
MS (FAB+) 310 (MH+, 100);
Elemental analysis
Calculated (for C15H19NO6) : C, 58.24; H, 6.19; N, 4.53.
Found: C, 58.43; H, 6.20; N, 4.56.

Example 6B


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0099] To a solution (0.40 ml) of trans-β-nitrostyrene (29.8 mg, 0.20 mmol) and diethyl malonate (0.061 ml, 0.40 mmol) in toluene was added, as an asymmetric catalyst, (R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(N,N-dimethylamino)cyclohexyl]urea (7.9 mg, 0.02 mmol) obtained in Example 1B at room temperature under an argon atmosphere. After 24 hr, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (elution solvent: n-hexane/ethyl acetate=5/1) to give the title compound as colorless needle crystals (53.8 mg, 87%, 91% ee). The yield and optical purity are shown in Table 1.

Example 7


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0100] In the same manner as in Example 6A except that 0.20 mmol of diethyl malonate was used, the title compound was obtained. The yield and optical purity are shown in Table 1.

Example 8


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0101] In the same manner as in Example 7 except that methylene chloride was used as a solvent instead of toluene, the title compound was obtained. The yield and optical purity are shown in Table 1.

Example 9


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0102] In the same manner as in Example 7 except that acetonitrile was used as a solvent instead of toluene, the title compound was obtained. The yield and optical purity are shown in Table 1.

Example 10


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0103] In the same manner as in Example 7 except that tetrahydrofuran was used as a solvent instead of toluene, the title compound was obtained. The yield and optical purity are shown in Table 1.
Table 1
Example solvent nucleophilic reagent equivalent yield (%) optical purity (% ee)
6A toluene 2 86 93
6B toluene 2 87 91
7 toluene 1 60 92
8 methylene chloride 1 53 90
9 acetonitrile 1 47 75
10 tetrahydrofuran 1 29 88


[0104] It is clear that the use of 2 equivalents of the nucleophilic reagent increased the yield. When toluene or methylene chloride was used, the yield and selectivity were superior to the use of acetonitrile or tetrahydrofuran.

Example 11


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0105] In the same manner as in Example 6A except that the reaction time was set to 48 hr and (R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(isoindolin-2-yl)cyclohexyl]thiourea obtained in Example 2 was used as an asymmetric catalyst, the title compound was obtained. The yield and optical purity are shown in Table 2.

Example 12


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0106] In the same manner as in Example 6A except that the reaction time was set to 48 hr and (R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(N-isopropyl-N-methylamino)cyclohexyl]thiourea obtained in Example 3 was used as an asymmetric catalyst, the title compound was obtained. The yield and optical purity are shown in Table 2.

Example 13


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0107] In the same manner as in Example 6A except that the reaction time was set to 48 hr and (R,R)-trans-1-[2-(N,N-dimethylamino)cyclohexyl]-3-phenylthiourea obtained in Example 4 was used as an asymmetric catalyst, the title compound was obtained. The yield and optical purity are shown in Table 2.

Example 14


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0108] In the same manner as in Example 6A except that the reaction time was set to 48 hr and 1-[(R,R)-2-(N,N-dimethylamino)cyclohexyl]-3-(2-methoxyphenyl)thiourea obtained in Example 5 was used as an asymmetric catalyst, the title compound was obtained. The yield and optical purity are shown in Table 2.

Comparative Example 3


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0109] In the same manner as in Example 6A except that triethylamine was used instead of the asymmetric catalyst, the title compound was obtained. The yield is shown in Table 2.

Comparative Example 4


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0110] In the same manner as in Example 6A except that (R,R)-trans-N-[2-(N',N'-dimethylamino) cyclohexyl]acetamide obtained in Comparative Example 1 was used as an asymmetric catalyst, the title compound was obtained. The yield and optical purity are shown in Table 2.

Comparative Example 5


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate



[0111] In the same manner as in Example 6A except that 1-[3,5-bis(trifluoromethyl)phenyl]-3-cyclohexylthiourea obtained in Comparative Example 2 and 0.1 equivalent of triethylamine were used instead of the asymmetric catalyst, the title compound was obtained. The yield is shown in Table 2.
Table 2
Example asymmetric catalyst reaction time (hr) yield (%) optical purity (% ee)
6A Example 1A 24 86 93
11 Example 2 48 29 91
12 Example 3 48 76 87
13 Example 4 48 58 80
14 Example 5 48 40 52
Comparative Example 3 TEA 24 17 -
Comparative Example 4 Comparative Example 1 24 14 35
Comparative Example 5 Comparative Example 2 + TEA 24 57 -


[0112] Introduction of bulky substituents into R1 and R2 of asymmetric urea compound (I) tends to result in a decreased yield. When R3 is a substituted phenyl, the use of a compound wherein the phenyl is substituted by methoxy, which is electron-donative, tended to result in decreased yield and stereoselectivity.

[0113] A catalyst having an amine moiety or thiourea moiety alone caused a striking decrease in the yield, and when a catalyst having an amine moiety alone and a catalyst having thiourea moiety alone were added simultaneously, the yield was improved but only to a level not comparable to Example 6A and Example 6B.

Example 15


ethyl (S)-3-(2,6-dimethoxyphenyl)-2-ethoxycarbonyl-4-nitrobutyrate



[0114] In the same manner as in Example 6A except that the reaction time was set to 72 hr and trans-2,6-dimethoxy-β-nitrostyrene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3.
HPLC analysis conditions:

column: CHIRALCEL AD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=95/5,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: (S)-isomer (main peak); 12.8 min, (R)-isomer; 15.7 min.

[α]D24-11.4 (c 1.03, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 7.18 (t, J=8.4Hz, 1H), 6.52 (d, J=8.2Hz, 2H), 5.08-4.99 (m, 1H), 4.93 (dd, J=12.1, 9.0Hz, 1H), 4.85 (dd, J=12.1, 4.7Hz, 1H), 4.32-4.15 (m, 3H), 3.92-3.80 (m, 2H), 3.82 (s, 6H), 1.29 (t, J=7.2Hz, 3H), 0.95 (t, J=7.0Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 168.4, 167.3, 158.9, 129.6, 112.5, 104.3, 76.6, 61.8, 61.2, 52.8, 52.5, 33.2, 13.9, 13.5 ppm; IR (CHCl3) ν 3030, 2985, 2842, 1730, 1555 cm-1;
MS (EI+) 369 (M+), 249 (MH+, 100);
Elemental analysis
Calculated (for C17H23NO8): C, 55.28; H, 6.28; N, 3.79.
Found: C, 55.31; H, 6.13; N, 3.55.

Example 16


ethyl (S)-2-ethoxycarbonyl-3-(1-fluorophenyl)-4-nitrobutyrate



[0115] In the same manner as in Example 6A except that the reaction time was set to 12 hr and trans-4-fluoro-β-nitrostyrene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3.
HPLC analysis conditions:

column: CHIRALCEL AD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/ethanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: (S)-isomer (main peak); 16.3 min, (R)-isomer; 23.9 min.

[α]D28 -7.20 (c 1.00, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 7.28-7.18 (m, 2H), 7.05-6.96 (m, 2H), 4.91 (dd, J=13.1, 4.6Hz, 1H), 4.83 (dd, J=13.1, 9.5Hz, 1H), 4.30-4.15 (m, 3H), 4.03 (q, J=7.0Hz, 2H), 3.78 (d, J=9.2Hz, 1H), 1.27 (t, J=7.2Hz, 3H), 1.08 (t, J=7.0Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 167.4, 166.8, 163.6, 161.6, 132.02, 131.99, 129.9, 129.8, 116.0, 115.9, 77.6, 62.2, 61.9, 54.9, 42.2, 13.9, 13.7 ppm;
IR (CHCl3) v 3031, 2987, 1733, 1558 cm-1;
MS (EI+) 327 (M+), 207 (100) ;
Elemental analysis
Calculated (for C15H18FNO6): C, 55.04; H, 5.54; N, 4.28; F, 5.80.
Found: C, 55.24; H, 5.46; N, 4.15; F, 5.67.

Example 17


ethyl 2-ethoxycarbonyl-3-(1-naphthyl)-4-nitrobutyrate



[0116] In the same manner as in Example 6A except that trans-1-(2-nitrovinyl)naphthalene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3. The absolute configuration of the obtained compound was not identified.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: isomer (main peak); 14.6 min, isomer; 16.7 min.

[α]D32+1.60 (c 1.14, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 8.19 (d, J=8.6 Hz, 1H), 7.87 (d, J=7.9Hz, 1H), 7.79 (d, J=7.3Hz, 1H), 7.65-7.56 (m, 1H), 7.52 (t, J=7.5Hz, 1H), 7.47-7.34 (m, 2H), 5.29-5.18 (m, 1H), 5.18-5.10 (m, 1H), 5.06 (dd, J=4.7, 13.3Hz, 1H), 4.28-4.12 (m, 2H), 4.07 (d, J=8.6Hz, 1H), 4.01-3.88 (m, 2H), 1.23 (t, J=7.2 Hz, 3H), 0.93 (t, J=7.0Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 167.7, 167.0, 134.1, 132.4, 131.1, 129.2, 128.9, 127.0, 126.1, 125.1, 124.3, 122.4, 77.0, 62.0, 61.9, 54.7, 36.7, 13.8, 13.5 ppm;
IR (CHCl3) v 3025, 2987, 1732, 1557 cm-1;
MS (EI+) 359 (M+), 152 (100);
Elemental analysis
Calculated (for C19H21NO6): C, 63.50; H, 5.89; N, 3.90.
Found: C, 63.58; H, 5.96; N, 3.76.

Example 18


ethyl 2-ethoxycarbonyl-4-nitro-3-(2-thienyl)butyrate



[0117] In the same manner as in Example 6A except that the reaction time was set to 48 hr and trans-2-(2-nitrovinyl)thiophene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3. The absolute configuration of the obtained compound was not identified.
HPLC analysis conditions:

column: CHIRALCEL AD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: isomer (main peak); 12.0 min, isomer; 21.9 min.

[α]D32 +4.28 (c 0.90, CHCl3);
1H-NMR (500MHz, DMSO-d16) δ 7.22 (d, J=4.9Hz, 1H), 7.01-6.85 (m, 2H), 5.01-4.81 (m, 2H), 4.62-4.47 (m, 1H), 4.30-4.16 (m, 2H), 4.12 (q, J=7.1Hz, 2H), 3.87 (d, J=8.2Hz, 1H), 1.27 (t, J=7.2Hz, 3H), 1.15 (t, J=7.2Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 167.3, 166.8, 138.6, 127.0, 126.8, 125.6, 78.0, 62.2, 62.1, 55.5, 38.3, 13.9, 13.7 ppm; IR (CHCl3) ν 3031, 2988, 1733, 1558 cm-1;
MS (EI+) 315 (M+), 195 (100);
Elemental analysis
Calculated (for C13H17NO6S): C, 49.51; H, 5.43; N, 4.44.
Found: C, 49.67; H, 5.43; N, 4.23.

Example 19


ethyl (S)-2-ethoxycarbonyl-3-(nitromethyl)octanoate



[0118] In the same manner as in Example 6A except that the reaction time was set to 48 hr and trans-1-nitro-1-heptene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=98/2,

flow rate: 0.5 ml/min,

detection: λ=210 nm,

retention time: (S)-isomer (main peak); 12.7 min, (R)-isomer; 16.3 min.

[α]D30-4.87 (c 1.00, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 4.71 (dd, J=13.4, 4.9Hz, 1H), 4.54 (dd, J=13.3, 6.9Hz, 1H), 4.30-4.10 (m, 4H), 3.63 (d, J=5.8Hz, 1H), 3.02-2.76 (m, 1H), 1.51-1.42 (m, 2H), 1.53-1.19 (m, 12H), 0.88 (t, J=6.9Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 168.1, 167.9, 76.7, 61.9, 61.7, 52.6, 36.9, 31.4, 29.9, 26.2, 22.3, 14.0, 13.9, 13.8 ppm; IR (CHCl3) ν 3030, 2960, 2932, 2865, 1730, 1553 cm-1; MS (FAB+) 304 (MH+, 100);
HRMS (FAB+)
Calculated (for [C14H26NO6]+): 304.1760;
Found: 304.1762.

Example 20


ethyl (S)-2-ethoxycarbonyl-5-methyl-3-(nitromethyl)hexanoate



[0119] In the same manner as in Example 6A except that the reaction time was set to 48 hr and trans-4-methyl-1-nitro-1-pentene was used instead of trans-β-nitrostyrene, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 3.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=98/2,

flow rate: 0.5 ml/min,

detection: λ=210 nm,

retention time: (R)-isomer; 12.1 min, (S)-isomer (main peak); 16.2 min.

[α]D24 -6.92 (c 1.04, CHCl3) ;
1H-NMR (500MHz, DMSO-d6) δ 4.71 (dd, J=13.3, 5.0Hz, 1H), 4.53 (dd, J=13.3, 6.6 Hz, 1H), 4.31-4.14 (m, 4H), 3.62 (d, J=5.5Hz, 1H), 3.07-2.82 (m, 1H), 1.73-1.57 (m, 1H), 1.36-1.25 (m, 8H), 0.95-0.89 (m, 6H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 168.0, 167.9, 76.8, 61.8, 61.7, 52.6, 38.9, 34.8, 25.0, 22.3, 22.1, 13.93, 13.90 ppm;
IR (CHCl3) ν 3030, 2962, 2873, 1730, 1553 cm-1;
MS (EI+) 290 (MH+), 160 (100);
Elemental analysis
Calculated (for C13H23NO6) :C, 53.97; H, 8.01; N, 4.84.
Found: C, 54.20; H, 7.95; N, 4.85.
Table 3
Example compound (II) reaction time (hr) yield (%) optical purity (% ee)
EWG R8 R10 R9
6A NO2 H H Ph 24 86 93
15 NO2 H H 2,6-(OMe)2Ph 72 87 93
16 NO2 H H 4-F-Ph 12 87 92
17 NO2 H H 1-naphthyl 24 95 921)
18 NO2 H H 2-thienyl 48 74 901)
19 NO2 H H n-pentyl 48 78 81
20 NO2 H H isobutyl 48 88 81
1) absolute configuration: not identified

Example 21


methyl 2-methoxycarbonyl-2-methyl-4-nitro-3-phenylbutyrate



[0120] In the same manner as in Example 6A except that the reaction time was set to 36 hr and dimethyl methylmalonate was used instead of diethyl malonate, the title compound was obtained as colorless crystals (yield 82%, optical purity 93% ee). melting point: 130-132°C (n-hexane/ethyl acetate). The absolute configuration of the obtained compound was not identified.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=254 nm,

retention time: (R)-isomer; 8.9 min, (S)-isomer (main peak); 13.9 min.

[a]D32 +32.3 (c 1.06, CHCl3);
1H-NMR (500MHz, DMSO-d6) δ 7.39-7.23 (m, 3H), 7.21-7.09 (m, 2H), 5.12-4.95 (m, 2H), 4.18 (dd, J=9.9, 4.4Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 1.35 (s, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 171.4, 170.8, 135.0, 129.0, 128.8, 128.5, 77.5, 56.7, 53.0, 52.8, 48.3, 20.2 ppm;
IR (CHCl3) v 3032, 2955, 1735, 1557 cm-1;
MS (EI+) 295 (M+), 189 (100);
MS (FAB+) 310 (MH+, 100) ;
Elemental analysis
Calculated (for C14H17NO6): C, 56.94; H, 5.80; N, 4.74.
Found: C, 56.92; H, 5.82; N, 4.64.

Example 22


ethyl (S)-2-ethoxycarbonyl-4-nitro-3-phenylbutyrate (without solvent)



[0121] To a mixture of trans-β-nitrostyrene (149 mg, 1.0 mmol) and diethyl malonate (0.304 ml, 2.0 mmol) was added, as an asymmetric catalyst, (R,R)-trans-1-[3,5-bis(trifluoromethyl)phenyl]-3-[2-(N,N-dimethylamino)cyclohexyl]thiourea (20.7 mg, 0.05 mmol), obtained in Example 1A at room temperature under an argon atmosphere. After 12 hr, the reaction mixture was purified by preparative TLC (elution solvent: n-hexane/diethyl ether) to give the title compound as colorless needle crystals (257 mg, yield 83%, optical purity 88%).

Example 23


methyl (R)-2-methoxy-2-methoxycarbonyl-4-nitro-3-phenylbutyrate



[0122] In the same manner as in Example 6A except that dimethyl methoxymalonate was used instead of diethyl malonate, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 4.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 0.5 ml/min,

detection: λ=210 nm,

retention time: (R)-isomer (main peak); 16.3 min, (S)-isomer; 21.0 min.

[α]D28 -4.69 (c 1.13, CHCl3) ;
1H-NMR (500 MHz, CDCl3) δ 7.35-7.18 (m, 5H), 5.24 (dd, J=13.7, 3.4Hz, 2H), 4.84 (dd, J=10.1, 13.7Hz, 1H), 4.28 (dd, J=9.9, 3.5Hz, 1H), 3.83 (S, 3H), 3.58 (S, 3H), 3.46 (S, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 168.0, 167.4, 135.1, 129.4, 128.5, 128.4, 86.0, 76.8, 56.0, 52.9, 52.2, 48.8 ppm;
IR (CHCl3) ν 3032, 2954, 1742, 1556 cm-1;
MS (FAB+) 311 (MH+), 104 (100);
Elemental analysis
Calculated (for C14H17NO7) : C, 54.02; H, 5.50; N, 4.50.
Found: C, 54.18; H, 5.49; N, 4.43.

Example 24


methyl (R)-2-tert-butoxycarbonylamino-2-methoxycarbonyl-4-nitro-3-phenylbutyrate



[0123] In the same manner as in Example 6A except that dimethyl tert-butoxycarbonylaminomalonate was used instead of diethyl malonate, the title compound was obtained as a colorless oil. The yield and optical purity are shown in Table 4.
HPLC analysis conditions:

column: CHIRALCEL AD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 1.0 ml/min,

detection: λ=210 nm,

retention time: (R)-isomer (main peak); 11.5 min, (S)-isomer; 17.5 min.

[α]D24+27.1 (c 0.94, CHCl3);
1H-NMR (500 MHz, CDCl3) δ 7.36-7.17 (m, 5H), 5.94 (s, 1H), 5.50 (dd, J=13.1, 2.4Hz, 1H), 4.72 (t, J=12.5Hz, 1H), 4.62 (dd, J=11.9, 2.8Hz, 1H), 4.34-4.21 (m, 2H), 4.19-4.09 (m, 1H), 4.05-3.95 (m, 1H), 1.46 (s, 9H), 1.29 (t, J=7.2Hz, 3H), 1.19 (t, J=7.2Hz, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 166.4, 166.3, 154.8, 134.1, 129.0, 128.7, 128.7, 81.2, 77.0, 67.5, 63.4, 62.7, 48.2, 28.1, 13.8, 13.7 ppm;
IR (CHCl3) ν 3396, 3027, 2985, 1743, 1715, 1555, 1485 cm-1;
MS (FAB+) 425 (MH+), 325(100);
HRMS (FAB+)
Calculated (for [C20H29N2O8]+): 424.1846;
Found: 425.1932.

Example 25


methyl (R)-2-chloro-2-methoxycarbonyl-4-nitro-3-phenylbutyrate



[0124] In the same manner as in Example 6A except that dimethyl chloromalonate was used instead of diethyl malonate, the title compound was obtained as colorless needle crystals. The yield and optical purity are shown in Table 4. melting point: 175-177°C (n-hexane/ethyl acetate).
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 0.5 ml/min,

detection: λ=210 nm,

retention time: (R)-isomer (main peak); 18.6 min, (S)-isomer; 23.3 min.

[α]D20 -6.16 (c 0.85, CHCl3);
1H-NMR (500MHz, CDCl3) δ 7.42-7.25 (m, 3H), 5.21 (dd, J=13.4, 3.3Hz, 1H), 5.00 (dd, J=13.4, 10.4Hz, 1H), 4.63 (dd, J=10.5, 3.2Hz, 1H), 3.84 (s, 3H), 3.59 (s, 3H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 165.7, 164.5, 133.3, 129.4, 129.0, 128.6, 76.6, 72.3, 54.6, 54.3, 48.2 ppm;
IR (CHCl3) ν 3029, 2957, 1750, 1560 cm-1;
MS (FAB+) 316 (MH+), 154(100);
Elemental analysis
Calculated (for C13H14ClNO6): C, 49.46; H, 4.47; N, 4.44.
Found: C, 49.46; H, 4.44; N, 4.41.

Example 26


methyl 2-(2'-nitro-1'-phenylethyl)-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate



[0125] In the same manner as in Example 6A except that methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate was used instead of diethyl malonate, the title compound (diastereomer mixture) (90% d.e., optical purity of the main diastereomer: 90% e.e., yield 97%) was obtained. The obtained diastereomer mixture was recrystallized from n-hexane/ethyl acetate to give the main diastereomer of the title compound as colorless plate crystals. The yield and optical purity are shown in Table 4. melting point: 101-103°C (n-hexane/ethyl acetate). The absolute configuration of the obtained compound was not identified.
HPLC analysis conditions:

column: CHIRALCEL OD (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD.),

mobile phase: n-hexane/2-propanol=90/10,

flow rate: 0.5 ml/min,

detection: λ=254 nm,

retention time: isomer (main peak); 27.9 min, isomer; 46.7 min.

[α]D20 +51.0 (c 0.75, CHCl3);
1H-NMR (500 MHz, CDCl3) δ 8.03 (d, J=7.9Hz, 1H), 7.50 (t, J=7.5Hz, 1H), 7.41-7.23 (m, 6H), 7.19 (d, J=7.6Hz, 1H), 5.15 (dd, J=13.5, 3.5Hz, 1H), 5.05 (dd, J=13.5, 10.5Hz, 1H), 4.20 (dd, J=10.5, 3.5Hz, 1H), 3.65 (s, 3H), 3.05-2.89 (m, 2H), 2.47-2.39 (m, 1H), 2.10-1.98 (m, 1H) ppm;
13C-NMR (126MHz, DMSO-d6) δ 194.3, 170.3, 142.5, 135.9, 134.1, 131.6, 129.9, 128.8, 128.7, 128.5, 128.3, 127.1, 77.8, 59.7, 52.7, 47.1, 30.7, 25.5 ppm;
IR (CHCl3) ν 3031, 2954, 1736, 1687, 1601 cm-1;
MS (FAB+) 354 (MH+), 189 (100) ;
Elemental analysis
Calculated (for C20H19ClNO5): C, 67.98; H, 5.42; N, 3.96.
Found: C, 67.79; H, 5.43; N, 3.95.
Table 4
Example nucleophilic reagent (III) yield (%) optical purity (% ee)
  R16
23

OMe 89 94
24 NHCO2t-Bu 81 82
25 Cl 100 991)
26

972) 903)4)
1) after recrystallization
2) diastereomer mixture (90% d.e.)
3) main diastereomer
4) absolute configuration: not identified

Industrial Applicability



[0126] According to the present invention, a novel asymmetric urea compound (I), which is a non-metallic asymmetric catalyst enabling an asymmetric conjugate addition reaction in a high yield and with high stereoselectivity, is provided, and using this compound for an asymmetric conjugate addition reaction, an advantageous production method of an asymmetric compound [asymmetric compound (IV)] is provided.

[0127] Since the asymmetric urea compound (I) of the present invention is non-metallic and does not require treatments of metal waste liquid and the like, it is an environmentally-friendly catalyst. Moreover, since it is non-metallic, the compound can be recovered and reused easily.

[0128] Since the production method of the present invention is applicable to bulky nucleophilic reagents such as tertiary carbon and the like, the method permits a broad range of application.

[0129] Furthermore, since the reaction conditions are mild and the method can also be performed without solvent, it is a highly practical method.


Claims

1. A compound represented by the formula (I):

wherein

X is a sulfur atom;

C* and C** are each independently an asymmetric carbon, and the absolute configurations of C* and C** are both S-configurations or both R-configurations;

R1 and R2 are the same or different and each is methyl, ethyl or isopropyl, or form isoindoline together with the nitrogen atom they are bonded to;

R3 is a phenyl group optionally having substituent(s) selected from C1-12 haloalkyl group (s), nitro group (s), cyano group(s) and -COOR25 wherein R25 is a C1-12 alkyl group;

R4 and R5 form a cyclohexane together with the asymmetric carbons they are respectively bonded to; and

R6 and R7 are each a hydrogen atom,

or a salt thereof.


 
2. A method of producing a compound represented by the formula (IV) :

or a salt thereof,
which process comprises conjugately adding a nucleophilic
reagent represented by the formula (III) : H-CR16(COR17) (COR18) (III), to a compound represented by the formula (II):

or a salt thereof, in the presence of a compound or a salt thereof of claim 1
wherein

C*** is an asymmetric carbon;

R8, R9 and R10 are
the same or different and each is

(1) a hydrogen atom,

(2) a C1-12 alkyl group optionally having substituent(s),

(3) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

(4) a C6-20 aryl group optionally having substituent(s),

(5) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),

(6) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, optionally having substituent(s) selected from

(a) a C1-12 alkyl group optionally having substituent(s),

(b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

(c) a C6-20 aryl group optionally having substituent(s), and

(d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s), or

(7) an electron withdrawing group, or

R9 and R10 form, together with the carbon atoms they are respectively bonded to,

(1) a C3-7 homocyclic ring optionally having substituent(s), or

(2) a 5- to 10-membered heterocycle containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom and optionally having substituent(s),
provided that R8 and R9 are not the same groups;
R16 is

(1) a hydrogen atom,

(2) a halogen atom,

(3) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom, having substituent(s) selected from

(a) a C1-12 alkyl group optionally having substituent(s),

(b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

(c) a C6-20 aryl group optionally having substituent(s),

(d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),

(e) -COOR26 wherein R26 is a C1-12 alkyl group,

(f) -COR27 wherein R27 is a C1-12 alkyl group, and

(g) -SO2R28 wherein R28 is a C1-12 alkyl group,

(4) a C1-12 alkyl group optionally having substituent(s) or

(5) a C6-20 aryl group optionally having substituent(s); and
R17 and R18 are the same or different and each is a hydrogen atom, a C1-12 alkyl group, a C1-12 alkoxy group, a mono-C1-12 alkylamino group or a di-C1-12 alkylamino group; or
R16 and R17 optionally form, together with the carbon atoms they are respectively bonded to,

(1) a C3-7 homocyclic ring substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and optionally has substituent(s), or

(2) a 5- to 10-membered heterocycle substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and contains, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and optionally has substituent(s).


 
3. The method of claim 2, wherein
R16 is

(1) a hydrogen atom,

(2) a halogen atom,

(3) a C1-12 alkyl group optionally having substituent(s), or

(4) a C6-20 aryl group optionally having substituent(s); and R17 and R18 are the same or different and each is a hydrogen atom, a C1-12 alkyl group, a C1-12 alkoxy group, a mono-C1-12 alkylamino group or a di-C1-12 alkylamino group.


 
4. The method of any of claims 2 or 3, wherein
R8 and R10 are each a hydrogen atom, and
R9 is

(1) a C1-12 alkyl group optionally having substituent(s),

(2) a C6-20 aryl group optionally having substituent(s), or

(3) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s).


 
5. The method of claim 2, wherein
R16 is

(1) a hydrogen atom,

(2) a C1-12 alkyl group optionally having substituent(s),

(3) a halogen atom, or

(4) a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom having substituent(s) selected from

(a) a C1-12 alkyl group optionally having substituent(s),

(b) a C6-20 aryl-C1-12 alkyl group optionally having substituent(s),

(c) a C6-20 aryl group optionally having substituent(s),

(d) a heteroaryl group selected from (i) a 5- to 10-membered aromatic heterocyclic group containing, besides carbon atoms, 1 to 3 hetero atoms selected from an oxygen atom, a sulfur atom and a nitrogen atom, and (ii) a fused heterocyclic group thereof, each of (i) and (ii) optionally having substituent(s),

(e) -COOR26 wherein R26 is a C1-12 alkyl group,

(f) -COR27 wherein R27 is a C1-12 alkyl group, and

(g) -SO2R28 wherein R28 is a C1-12 alkyl group, and

R17 and R18 are the same or different and each is a C1-12 alkyl group or a C1-12 alkoxy group.
 
6. The method of claim 5, wherein R16 is a hydrogen atom, methyl, a chlorine atom, methoxy or tert-butoxycarbonylamino, and R17 and R18 are each methoxy or ethoxy.
 
7. The method of claim 2, wherein R16 and R17 form, together with the carbon atoms they are respectively bonded to, a C3-7 homocyclic ring substituted by oxo, which is optionally condensed with an aromatic hydrocarbon and optionally has substituent(s).
 
8. The method of claim 7, wherein the homocyclic ring is 1,2,3,4-tetrahydronaphthalen-1-one.
 
9. The method of any of claims 2 to 8, which is performed in at least one solvent selected from toluene and methylene chloride.
 
10. The method of any of claims 2 to 8, which is performed without a solvent.
 


Ansprüche

1. Verbindung, die durch die Formel (I) dargestellt wird:

wobei

X ein Schwefelatom ist;

C* und C** jeweils unabhängig ein asymmetrisches Kohlenstoffatom sind und die absoluten Konfigurationen von C* und C** beides S-Konfigurationen oder beides R-Konfigurationen sind;

R1 und R2 gleich oder verschieden sind und jeweils Methyl, Ethyl oder Isopropyl sind oder zusammen mit dem Stickstoffatom, an das sie gebunden sind, Isoindolin bilden;

R3 eine Phenylgruppe ist, die gegebenenfalls einen oder mehrere Substituenten aufweist, die aus C1-12-Halogenalkylgruppen, Nitrogruppen, Cyanogruppen und -COOR25, wobei R25 eine C1-12-Alkylgruppe ist, ausgewählt sind;

R4 und R5 zusammen mit den asymmetrischen Kohlenstoffatomen, an die sie jeweils gebunden sind, ein Cyclohexan bilden; und

R6 und R7 jeweils ein Wasserstoffatom sind;

oder ein Salz davon.


 
2. Verfahren zur Herstellung einer Verbindung, die durch die Formel (IV) dargestellt wird:

oder eines Salzes davon,
wobei das Verfahren das Addieren eines nucleophilen Reagens, das durch die Formel (III), H-CR16(COR17)(COR18) (III), dargestellt wird, an eine Verbindung, die durch die Formel (II) dargestellt wird:

oder ein Salz davon, in Gegenwart einer Verbindung oder eines Salzes davon gemäß Anspruch 1 umfasst;
wobei

C*** ein asymmetrisches Kohlenstoffatom ist;

R8, R9 und R10 gleich oder verschieden sind und jeweils Folgendes sind:

(1) ein Wasserstoffatom;

(2) eine C1-C12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(3) eine C6-20-Aryl-C1-12-alkyl-Gruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(4) eine C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(5) eine Heteroarylgruppe, die aus (i) einer fünf- bis zehngliedrigen aromatischen heterocyclischen Gruppe, die neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält, und (ii) einer diese umfassenden kondensierten heterocyclischen Gruppe ausgewählt ist, wobei (i) und (ii) jeweils gegebenenfalls einen oder mehrere Substituenten aufweisen;

(6) ein Heteroatom, das aus einem Stickstoffatom, einem Sauerstoffatom und einem Schwefelatom ausgewählt ist, die gegebenenfalls einen oder mehrere Substituenten aufweisen, die ausgewählt sind aus

(a) einer C1-12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(b) einer C6-20-Aryl-C1-12-alkyl-Gruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(c) einer C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; und

(d) einer Heteroarylgruppe, die aus (i) einer fünf- bis zehngliedrigen aromatischen heterocyclischen Gruppe, die neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält, und (ii) einer diese umfassenden kondensierten heterocyclischen Gruppe ausgewählt ist, wobei (i) und (ii) jeweils gegebenenfalls einen oder mehrere Substituenten aufweisen; oder

(7) eine elektronenziehende Gruppe; oder

R9 und R10 zusammen mit den Kohlenstoffatomen, an die sie jeweils gebunden sind, Folgendes bilden:

(1) einen homocyclischen C3-7-Ring, der gegebenenfalls einen oder mehrere Substituenten aufweist; oder

(2) einen fünf- bis zehngliedrigen Heterocyclus, der neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält und gegebenenfalls einen oder mehrere Substituenten aufweist;

mit der Maßgabe, dass R8 und R9 nicht dieselben Gruppen sind;

R16 Folgendes ist:

(1) ein Wasserstoffatom;

(2) ein Halogenatom;

(3) ein Heteroatom, das aus einem Stickstoffatom, einem Sauerstoffatom und einem Schwefelatom ausgewählt ist, die gegebenenfalls einen oder mehrere Substituenten aufweisen, die ausgewählt sind aus

(a) einer C1-12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(b) einer C6-20-Aryl-C1-12-alkyl-Gruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(c) einer C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(d) einer Heteroarylgruppe, die aus (i) einer fünf- bis zehngliedrigen aromatischen heterocyclischen Gruppe, die neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält, und (ii) einer diese umfassenden kondensierten heterocyclischen Gruppe ausgewählt ist, wobei (i) und (ii) jeweils gegebenenfalls einen oder mehrere Substituenten aufweisen;

(e) -COOR26, wobei R26 eine C1-12-Alkylgruppe ist;

(f) -COR27, wobei R27 eine C1-12-Alkylgruppe ist; und

(g) -SO2R28, wobei R28 eine C1-12-Alkylgruppe ist;

(4) eine C1-12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; oder

(5) eine C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; und

R17 und R18 gleich oder verschieden sind und jeweils ein Wasserstoffatom, eine C1-12-Alkylgruppe, eine C1-12-Alkoxygruppe, eine Mono-C1-12-alkylamino-Gruppe oder eine Di-C1-12-alkylamino-Gruppe sind; oder

R16 und R17 gegebenenfalls zusammen mit dem Kohlenstoffatom, an das sie jeweils gebunden sind, Folgendes bilden:

(1) einen homocyclischen C3-7-Ring, der mit Oxo substituiert ist, gegebenenfalls mit einem aromatischen Kohlenwasserstoff kondensiert ist und gegebenenfalls einen oder mehrere Substituenten aufweist; oder

(2) einen fünf- bis zehngliedrigen Heterocyclus, der mit Oxo substituiert ist, gegebenenfalls mit einem aromatischen Kohlenwasserstoff kondensiert ist und neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält und gegebenenfalls einen oder mehrere Substituenten aufweist.


 
3. Verfahren gemäß Anspruch 2, wobei
R16 Folgendes ist:

(1) ein Wasserstoffatom;

(2) ein Halogenatom;

(3) eine C1-12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; oder

(4) eine C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; und

R17 und R18 gleich oder verschieden sind und jeweils ein Wasserstoffatom, eine C1-12-Alkylgruppe, eine C1-12-Alkoxygruppe, eine Mono-C1-12-alkylamino-Gruppe oder eine Di-C1-12-alkylamino-Gruppe sind.
 
4. Verfahren gemäß einem der Ansprüche 2 oder 3, wobei
R8 und R10 jeweils ein Wasserstoffatom sind; und
R9 Folgendes ist:

(1) eine C1-C12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(2) eine C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist; oder

(3) eine Heteroarylgruppe, die aus (i) einer fünf- bis zehngliedrigen aromatischen heterocyclischen Gruppe, die neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält, und (ii) einer diese umfassenden kondensierten heterocyclischen Gruppe ausgewählt ist, wobei (i) und (ii) jeweils gegebenenfalls einen oder mehrere Substituenten aufweisen.


 
5. Verfahren gemäß Anspruch 2, wobei
R16 Folgendes ist:

(1) ein Wasserstoffatom;

(2) eine C1-C12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(3) ein Halogenatom; oder

(4) ein Heteroatom, das aus einem Stickstoffatom, einem Sauerstoffatom und einem Schwefelatom ausgewählt ist, die gegebenenfalls einen oder mehrere Substituenten aufweisen, die ausgewählt sind aus

(a) einer C1-12-Alkylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(b) einer C6-20-Aryl-C1-12-alkyl-Gruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(c) einer C6-20-Arylgruppe, die gegebenenfalls einen oder mehrere Substituenten aufweist;

(d) einer Heteroarylgruppe, die aus (i) einer fünf- bis zehngliedrigen aromatischen heterocyclischen Gruppe, die neben Kohlenstoffatomen 1 bis 3 aus einem Sauerstoffatom, einem Schwefelatom und einem Stickstoffatom ausgewählte Heteroatome enthält, und (ii) einer diese umfassenden kondensierten heterocyclischen Gruppe ausgewählt ist, wobei (i) und (ii) jeweils gegebenenfalls einen oder mehrere Substituenten aufweisen;

(e) -COOR26, wobei R26 eine C1-12-Alkylgruppe ist;

(f) -COR27, wobei R27 eine C1-12-Alkylgruppe ist; und

(g) -SO2R28, wobei R28 eine C1-12-Alkylgruppe ist; und

R17 und R18 gleich oder verschieden sind und jeweils eine C1-12-Alkylgruppe oder eine C1-12-Alkoxygruppe sind.
 
6. Verfahren gemäß Anspruch 5, wobei R16 ein Wasserstoffatom, Methyl, ein Chloratom, Methoxy oder tert-Butoxycarbonylamino ist und R17 und R18 jeweils Methoxy oder Ethoxy sind.
 
7. Verfahren gemäß Anspruch 2, wobei R16 und R17 zusammen mit dem Kohlenstoffatom, an das sie jeweils gebunden sind, einen homocyclischen C3-7-Ring, der mit Oxo substituiert ist, gegebenenfalls mit einem aromatischen Kohlenwasserstoff kondensiert ist und gegebenenfalls einen oder mehrere Substituenten aufweist, bilden.
 
8. Verfahren gemäß Anspruch 7, wobei es sich bei dem homocyclischen Ring um 1,2,3,4-Tetrahydronaphthalin-1-on handelt.
 
9. Verfahren gemäß einem der Ansprüche 2 bis 8, das in wenigstens einem Lösungsmittel, welches aus Toluol und Methylenchlorid ausgewählt ist, durchgeführt wird.
 
10. Verfahren gemäß einem der Ansprüche 2 bis 8, das ohne Lösungsmittel durchgeführt wird.
 


Revendications

1. Composé représenté par la formule (I) :

dans laquelle

X est un atome de soufre ;

C* et C** sont chacun indépendamment un carbone asymétrique, et les configurations absolues de C* et C** sont toutes deux des configurations S ou toutes deux des configurations R ;

R1 et R2 sont identiques ou différents et sont chacun un méthyle, un éthyle ou un isopropyle, ou forment une isoindoline conjointement avec l'atome d'azote auquel ils sont liés ;

R3 est un groupe phényle ayant facultativement un (des) substituant(s) sélectionné(s) parmi un (des) groupe(s) C1-12 halogénoalkyle, un (des) groupe (s) nitro, un (des) groupe(s) cyano et -COOR25 dans lequel R25 est un groupe C1-12 alkyle ;

R4 et R5 forment un cyclohexane conjointement avec les carbones asymétriques auxquels ils sont respectivement liés ; et

R6 et R7 sont chacun un atome d'hydrogène,

ou un sel de celui-ci.


 
2. Méthode de production d'un composé représenté par la formule (IV) :

ou d'un sel de celui-ci ;
lequel procédé comprend l'ajout de façon conjuguée d'un réactif nucléophile représenté par la formule (III) : H-CR16(COR17) (COR18) (III), à un composé représenté par la formule (II) :

ou un sel de celui-ci, en présence d'un composé ou d'un sel de celui-ci selon la revendication 1
dans laquelle

C*** est un carbone asymétrique ;

R8, R9 et R10 sont

identiques ou différents et sont chacun

(1) un atome d'hydrogène,

(2) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(3) un groupe C6-20 aryl-C1-12 alkyle ayant facultativement un (des) substituant(s),

(4) un groupe C6-20 aryle ayant facultativement un (des) substituant(s),

(5) un groupe hétéroaryle sélectionné parmi (i) un groupe hétérocyclique aromatique à 5 à 10 chainons comprenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et (ii) un groupe hétérocyclique fusionné de celui-ci, chacun de (i) et (ii) ayant facultativement un (des) substituant(s),

(6) un hétéroatome sélectionné parmi un atome d'azote, un atome d'oxygène et un atome de soufre, ayant facultativement un (des) substituant(s) sélectionnés parmi

(a) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(b) un groupe C6-20 aryl-C1-12 alkyle ayant facultativement un (des) substituant(s),

(c) un groupe C6-20 aryle ayant facultativement un (des) substituant(s), et

(d) un groupe hétéroaryle sélectionné parmi (i) un groupe hétérocyclique aromatique à 5 à 10 chainons contenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et (ii) un groupe hétérocyclique fusionné de celui-ci, chacun de (i) et (ii) ayant facultativement un (des) substituant(s), ou

(7) un groupe électroattracteur, ou

R9 et R10 forment, conjointement avec les atomes de carbone auxquels ils sont respectivement liés,

(1) un cycle C3-7 homocyclique ayant facultativement un (des) substituant(s), ou

(2) un hétérocycle à 5 à 10 chainons contenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote et ayant facultativement un (des) substituant(s),

à condition que R8 et R9 ne soient pas les mêmes groupes ;

R16 est

(1) un atome d'hydrogène,

(2) un atome d'halogène,

(3) un hétéroatome sélectionné parmi un atome d'azote, un atome d'oxygène et un atome de soufre, ayant un (des) substituant(s) sélectionnés parmi

(a) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(b) un groupe C6-20 aryl-C1-12 alkyle ayant facultativement un (des) substituant(s),

(c) un groupe C6-20 aryle ayant facultativement un (des) substituant(s),

(d) un groupe hétéroaryle sélectionné parmi (i) un groupe hétérocyclique aromatique à 5 à 10 chainons contenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et (ii) un groupe hétérocyclique fusionné de celui-ci, chacun de (i) et (ii) ayant facultativement un (des) substituant(s),

(e) -COOR26 dans lequel R26 est un groupe C1-12 alkyle,

(f) -COR27 dans lequel R27 est un groupe C1-12 alkyle, et

(g) -SO2R28 dans lequel R28 est un groupe C1-12 alkyle,

(4) un groupe C1-12 alkyle, ayant facultativement un (des) substituant(s), ou

(5) un groupe C6-20 aryle ayant facultativement un (des) substituant(s), et

R17 et R18 sont identiques ou différents et sont chacun un atome d'hydrogène, un groupe C1-12 alkyle, un groupe C1-12 alcoxy, un groupe mono-C1-12 alkylamino ou un groupe di-C1-12 alkylamino ; ou

R16 et R17 forment facultativement, conjointement avec les atomes de carbone auxquels ils sont respectivement liés,

(1) un cycle C3-7 homocyclique substitué par oxo, qui est facultativement condensé avec un hydrocarbure aromatique et a facultativement un (des) substituant (s), ou

(2) un hétérocycle à 5 à 10 chainons substitué par oxo, lequel est facultativement condensé avec un hydrocarbure aromatique et contient, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et a facultativement un (des) substituant(s).


 
3. Méthode selon la revendication 2, dans laquelle R16 est

(1) un atome d'hydrogène,

(2) un atome d'halogène,

(3) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s), ou

(4) un groupe C6-20 aryle ayant facultativement un (des) substituant(s) ; et

R17 et R18 sont identiques ou différents et sont chacun un atome d'hydrogène, un groupe C1-12 alkyle, un groupe C1-12 alcoxy, un groupe mono-C1-12 alkylamino ou un groupe di-C1-12 alkylamino.
 
4. Méthode selon l'une quelconque des revendications 2 ou 3, dans laquelle
R8 et R10 sont chacun un atome d'hydrogène, et
R9 est

(1) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(2) un groupe C6-20 aryle ayant facultativement un (des) substituant(s), ou

(3) un groupe hétéroaryle sélectionné parmi (i) un groupe hétérocyclique aromatique à 5 à 10 chainons comprenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et (ii) un groupe hétérocyclique fusionné de celui-ci, chacun de (i) et (ii) ayant facultativement un (des) substituant(s).


 
5. Méthode selon la revendication 2, dans laquelle
R16 est

(1) un atome d'hydrogène,

(2) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(3) un atome d'halogène, ou

(4) un hétéroatome sélectionné parmi un atome d'azote, un atome d'oxygène et un atome de soufre ayant un (des) substituant(s) sélectionnés parmi

(a) un groupe C1-12 alkyle ayant facultativement un (des) substituant(s),

(b) un groupe C6-20 aryl-C1-12 alkyle ayant facultativement un (des) substituant(s),

(c) un groupe C6-20 aryle ayant facultativement un (des) substituant(s),

(d) un groupe hétéroaryle sélectionné parmi (i) un groupe hétérocyclique aromatique à 5 à 10 chainons contenant, outre des atomes de carbone, 1 à 3 hétéroatomes sélectionnés parmi un atome d'oxygène, un atome de soufre et un atome d'azote, et (ii) un groupe hétérocyclique fusionné de celui-ci, chacun de (i) et (ii) ayant facultativement un (des) substituant(s),

(e) -COOR26 dans lequel R26 est un groupe C1-12 alkyle,

(f) -COR27 dans lequel R27 est un groupe C1-12 alkyle, et

(g) -SO2R28 dans lequel R28 est un groupe C1-12 alkyle, et

R17 et R18 sont identiques ou différents et sont chacun un groupe C1-12 alkyle ou un groupe C1-12 alcoxy.
 
6. Méthode selon la revendication 5, dans laquelle R16 est un atome d'hydrogène, un méthyle, un atome de chlore, un méthoxy ou un tert-butoxycarbonylamino, et R17 et R18 sont chacun un méthoxy ou un éthoxy.
 
7. Méthode selon la revendication 2, dans laquelle R16 et R17 forment, conjointement avec les atomes de carbone auxquels ils sont respectivement liés, un cycle C3-7 homocyclique substitué par oxo, qui est facultativement condensé avec un hydrocarbure aromatique et a facultativement un (des) substituant(s).
 
8. Méthode selon la revendication 7, dans laquelle, le cycle homocyclique est la 1,2,3,4-tétrahydronaphtalén-1-one.
 
9. Méthode selon l'une quelconque des revendications 2 à 8, qui est réalisée dans au moins un solvant sélectionné parmi le toluène et le chlorure de méthylène.
 
10. Méthode selon l'une quelconque des revendications 2 à 8, qui est réalisée sans solvant.
 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description