

Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 642 686 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

05.04.2006 Patentblatt 2006/14

(51) Int Cl.: **B25H 1/00** (2006.01)

(11)

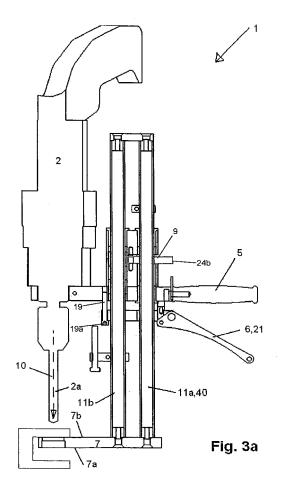
(21) Anmeldenummer: 05021312.3

(22) Anmeldetag: 29.09.2005

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:


AL BA HR MK YU

(30) Priorität: 29.09.2004 DE 102004047337

- (71) Anmelder: Völkl, Thomas 83052 Bruckmühl (DE)
- (72) Erfinder: Völkl, Thomas 83052 Bruckmühl (DE)
- (74) Vertreter: Alber, Norbert et al Patentanwalt Albert-Rosshaupter-Strasse 65 81369 München (DE)

(54) Bohrständer

(57) Die Erfindung betrifft einen Bohrständer für Handbohrmaschinen. Im Gegensatz zu handelsüblichen Bohrständern kann dabei der Vorschub mit der gleichen Hand betätigt werden, mit der der Bohrständer selbst, mittels eines festen Handgriffes in Position gehalten wird, und ohne diesen Handgriff loszulassen. Durch diesen Einhandbetrieb ist der Bohrständer auch gut für einen mobilen Einsatz geeignet. Für den Vorschub wird bevorzugt ein Schrittantrieb am Bohrständer eingesetzt, der einfach und kostengünstig herzustellen ist.

20

30

1. Anwendungsgebiet

[0001] Die Erfindung betrifft einen Bohrständer zur Aufnahme und Führung einer insbesondere elektrischen Handbohrmaschine und vor allem dem Vorwärtsdrücken der Bohrmaschine mit einer hohen Vorschubkraft gegen das Werkstück.

1

II. Technischer Hintergrund

[0002] Die Führung einer Handbohrmaschine lediglich durch die Hand oder die beiden Hände des Benutzers hat den Nachteil, dass die aufbringbare Vorschubkraft von der Körperkraft und Arbeitsstellung des Benutzers gegenüber dem Werkstück abhängt.

[0003] Die Folge ist, dass größere Bohrungen vor allem in harten Werkstoffen wie Stahl nicht auf einmal, sondern durch Vorbohren mit einem kleinen Durchmesser und Aufweiten mit einem größeren Bohrdurchmesser zeitintensiv hergestellt werden müssen, und auch die exakte Positionierung der Bohrung schwierig ist und die auch immer gleich bleibende winklige Ausrichtung des Bohrers mit der Bohrmaschine während des Bohrvorganges nicht sichergestellt ist.

[0004] Dadurch kommt es ferner auch häufig zu falsch positionierten oder schräg stehenden oder nicht runden, sondern ausgefrästen Bohrungen oder auch zum Bruch des Bohrers, zumal auch die Druckkraft die oft auch schräg aufgebracht wird durch den Benutzer nur grob durch den Benutzer selbst gesteuert werden kann. Auch das Durchfallen des Bohrers nach Durchbohren ist kaum vermeidbar und führt zu Schäden an Bohrer oder Werkstück.

[0005] Auch das Einhalten einer immer exakten Bohrungstiefe ist ebenfalls nur schlecht möglich.

[0006] Es sind bisher bereits Bohrständer verfügbar, die eine Aufnahmevorrichtung zum Einsetzen und Festklemmen der Bohrmaschine aufweisen, sowie eine Vorschubeinrichtung, mit deren Hilfe die Aufnahmeeinrichtung, zusammen mit der Bohrmaschine entlang einer Führungsstange des Bohrständers definiert und immer exakt in Bohrrichtung vorwärts geschoben werden kann. [0007] Das Werkstück kann dabei auch die Oberseite der Fußplatte, die sich am unteren Ende der Führungsstange quer abragend von dieser befindet, aufgelegt werden, wobei diese Fußplatte - die sich i. R. seitlich über die Bohrungsachse hinaus erstreckt und in deren Bereich einen Durchlass aufweist - noch einstellbare Anschläge oder andere Befestigungs- und Spannteile aufweisen kann, sodass mehrere gleiche Bohrungen hintereinander an verschiedenen Werkstücken ohne Neujustierung schnell durchgeführt werden können.

[0008] Derartige Bohrständer sind also primär für das Auflegen oder Einlegen eines kleineren, zumindest noch bewegbaren, Werkstückes auf die Oberseite der Fußplatte des Bohrständers gedacht, der z.B. durch sein

Eigengewicht stabil steht oder auf der Werkbank verschraubt ist.

[0009] Als Antrieb für das Vorwärtsbewegen der Aufnahmeeinrichtung zusammen mit der Bohrmaschine wird ein seitlich am Bohrständer angeordnetes Handrad oder ein schwenkbarer Hebelantrieb verwendet, der vom Benutzer während des Bohrvorganges fortlaufend betätigt wird zur Erreichung des Bohrfortschrittes.

[0010] Derartige Bohrständer sind jedoch aufgrund ihrer Größe und ihres Gewichts und Ausführung der Fußplatte nicht gut geeignet für

- das Ansetzen und Bohren mit einer Handbohrmaschine an vor allem großen Werkstücken, die nicht in den stationär stehenden Bohrständer eingelegt werden können und
- für einfache Handhabung im mobilen Einsatz.

III. Darstellung der Erfindung

a) Technische Aufgabe

[0011] Es ist daher die Aufgabe der Erfindung, einen Bohrständer zu schaffen, der neben dem stationären Einsatz der bekannten Bohrständer auch einen praktikablen mobilen Einsatz an großen Werkstücken erlaubt und dabei insbesondere das Aufbringen hoher Vorschubkräfte sowie das Einhalten eines exakten Winkels während des Bohrens zum Werkstück.

b) Lösung der Aufgabe

[0012] Diese Aufgabe wird durch die Ansprüche 1, 11, 16 und 36 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.

(Funktionale Merkmale:)

[0013] Dadurch, dass der Bohrständer einerseits einen quer abstehenden Haltegriff und andererseits einen Betätigungsgriff zum Betätigen der Vorschubeinrichtung aufweist, kann der gesamte Bohrständer überhaupt erst in einer beliebigen Lage relativ zum Werkstück, also auch horizontal oder über Kopf, in Position gehalten und dennoch gleichzeitig die Vorschubeinrichtung betätigt werden.

[0014] Durch eine entsprechende Übersetzung der Bewegung des Betätigungsgriffes kann die Vorschubeinrichtung mit sehr hoher Vorschubkraft gegen das Werkstück vorgeschoben werden, ohne dass die dafür notwendige Handkraft des Benutzers allzu groß sein muss.
[0015] Durch die Anordnung des Haltegriffes und/oder des Betätigungsgriffes an der Aufnahmevorrichtung bewegen sich diese Griffe zusammen mit der Bohrmaschine relativ zum Werkstück, wodurch das Gefühl für den Bohrfortschritt erhalten bleibt.

[0016] In dem die gleiche Hand, die den Haltegriff hält, gleichzeitig mit den vier Fingern dieser Hand den Betä-

tigungsgriff ergreifen und betätigen kann, ist zum Halten und Betätigen des Bohrständers nur eine einzige Hand notwendig, sodass die andere, i. R. die rechte Hand, den Griff der Bohrmaschine selbst halten kann.

(1. Alternativlösung:)

[0017] Haltegriff und Betätigungsgriff können auch funktionsvereinigt sein, indem der Haltegriff selbsttätig bspw. drehbar oder schwenkbar, gegenüber der Aufnahmevorrichtung ist.

[0018] So kann z. B. eine Drehbewegung des Griffes um seine Längsachse über ein Getriebe, bspw. ein Schnecken/Schneckenradgetriebe und/oder eine Zahnstange, in eine Bewegung der Aufnahmevorrichtung relativ zur Führungsstange umgesetzt werden.

[0019] Derartige Schnecken/Schneckenrad-Getriebe können selbsthemmend sein, so dass nach Beenden der Drehbewegung und Loslassen des Griffes der Bohrer nicht oder nur sehr geringfügig zurückgezogen wird. Ein weiterer Vorteil dabei ist, dass auch ein Zurückbewegen des Bohrers mit der gleichen Übersetzung und damit einer hohen Kraft in Rückwärtsrichtung möglich ist.

[0020] Dementsprechend ist für diese Lösung nicht einmal ein Freilauf an dem drehbaren Griff notwendig, da nach entsprechender Drehung um etwa eine Viertel Umdrehung die Hand des Benutzers loslassen, umgreifen und den Griff weiterdrehen kann. Will man dieses Umgreifen vermeiden, ist ein Freilauf notwendig, der bewirkt, dass beim Zurückdrehen des Griffes der Bohrer nicht zurückgezogen wird. Nachteil dabei ist, dass dann für die Rückwärtsbewegung eine separate Vorrichtung benötigt wird.

[0021] Auch eine Schwenkbewegung eines solchen Griffes um eine Achse quer zu seiner Längserstreckung, beispielsweise nach Art einer Ratsche und unter Umständen auch umschaltbar in ihrer Wirkrichtung, ist denkbar. Vorzugsweise wird die Schwenkachse dabei nicht nur quer zur Längserstreckung des Griffes, sondern auch quer zur Erstreckungsrichtung der Führungsstange liegen.

[0022] Dennoch ist in diesem Fall der funktionsvereinigten Griffe der um seine Längsachse drehbare Griff zu bevorzugen, da dadurch die grundsätzliche Position des Griffes unverändert bleibt, was für das Halten des Bohrständers vorteilhaft ist.

(Hauptlösung und deren Vorteile)

[0023] Durch eine Rückzugvorrichtung zum schnellen Zurückfahren der Vorschubeinrichtung relativ zum Bohrständer entgegen der Bohrrichtung wird der Bohrer nach Fertigstellen der Bohrung schnell aus dem Bohrloch zurückgezogen, um die Nebenzeiten zu minimieren gegenüber einem manuellen Zurückziehen.

[0024] Durch Anordnung eines Rückzugschalters und insbesondere eine Federvorspannung der Rückzugvorrichtung erfolgt der schnelle Rückzug nach Betätigen ei-

nes Rückzugschalters selbsttätig und ohne Kraftaufwand

[0025] Wenn der Rückzugschalter dabei im Griffbereich des Daumens oder eines der anderen Finger einer Hand, die den Haltegriff hält, angeordnet ist, kann auch die Rückzugvorrichtung mit der selben Hand des Benutzers, die den Haltegriff hält, betätigt werden, sodass die andere Hand an der Bohrmaschine bleiben kann.

[0026] In einer besonders vorteilhaften Ausführungsform ist jedoch der Betätigungsgriff ein separater Griff, ausgebildet als verschwenkbarer Spannhebel, der so relativ zum Haltegriff an der Aufnahmevorrichtung angeordnet ist, dass er mit den vier Fingern derjenigen Hand, welche den Haltegriff hält, an den Haltegriff herangezogen werden kann und nach Loslassen wieder von dort aus zurückschwenkt aufgrund seiner Federvorspannung.

[0027] Im Normalfall wird der erfindungsgemäße Bohrständer so eingesetzt, dass das Werkstück zwischen dem Bohrer der Bohrmaschine und der Fußplatte des Bohrständers, in der die in Vorschubrichtung vorderen Enden der Führungsstange befestigt sind, eingelegt wird, und damit während des Bohrens sich das Werkstück auf der Oberseite der Fußplatte abstützt, gegen die es durch die Vorschubkraft, die mittels des Spannhebels bzw. Betätigungsgriffes aufgebracht wird, gepresst wird.

[0028] Die Höhe der aufbringbaren Vorschubkraft hängt somit — neben der Stabilität der gesamten Vorrichtung — vor allem von dem Übersetzungsverhältnis zwischen Betätigungsgriff und der Vorschubeinrichtung ab.

[0029] Zusätzlich zur Fußplatte, kann der Bohrständer eine Basisplatte umfassen, in die die Fußplatte einsetzbar, insbesondere von der Seite her einschiebbar und dann formschlüssig in und gegen die Bohrrichtung gehalten ist.

[0030] Die Basisplatte kann bspw. der festen Anordnung, z.B. Verschraubung, auf einer Werkbank dienen oder auch einer vorübergehenden Fixierung z.B. mittels Unterdruck an einem größeren Werkstück.

[0031] Mit Hilfe einer solchen, auf dem Werkstück z.B. mittels Vakuum zu befestigenden, Basisplatte können dann auch Bohrungen mit einem größeren Abstand zum Außenrand des Werkstückes hergestellt werden, als es der Abstand der Bohrachse von den Führungsstangen zulässt, indem die Basisplatte und damit auch die Fußplatte des Bohrständers mit ihrer Unterseite auf dem Werkstück aufgesetzt und mittels externen Spanneinrichtungen fixiert werden.

[0032] Die Fixierungskraft am Werkstück muss dabei natürlich höher sein als die Vorschubkraft, mit der anschließend der Bohrer gegen das Werkstück gepresst wird, denn ansonsten würde dies zum Ablösen der Basisplatte führen.

Zum Fixieren wird dabei vorzugsweise eine in der Unterseite der Basisplatte vom Rand zurückversetzte, vorstehende, umlaufend Ringdichtung verwendet, deren um-

schlossener Freiraum einer Unterdruckquelle verbindbar ist. Die Unterdruckquelle wird vorzugsweise ein Injektor-Unterdruckerzeuger sein, der mittels Druckluft betrieben wird, und bei dem durch eine spezielle Düsenanordnung, durch welche die Druckluft geführt wird, ein Unterdruck erzeugt wird.

[0033] Für den üblichen Einsatz, also einem auf der Oberseite der Fußplatte aufliegenden Werkstück, können auf dieser Oberseite auch übliche Spannpratzen oder andere Befestigungsvorrichtungen vorhanden sein. Dadurch wird es möglich, die Fußplatte des Bohrständers an einer bestimmten Position des Werkstückes fest anzuordnen und ohne Veränderung der Position des Bohrständers an dieser Position des Werkstückes mehr-Bohr-Bearbeitungsvorgänge, beispielsweise Durchbohren und anschließendes Anbringen einer z.B. Gewindebohrung, durchzuführen, indem dazwischen bei im Bohrständer belassener Bohrmaschine dort der Bohrer gegen einen Senker etc. gewechselt wird. Dies ist auch im mobilen Einsatz problemlos möglich wegen der Fixierung am Werkstück.

[0034] Als Antrieb für die Aufnahmevorrichtung relativ zu den Führungsstangen des Bohrständers wird vorzugsweise ein Schrittantrieb verwendet, der die Bohrmaschine schrittweise gegen das Werkstück verschiebt.

[0035] Durch die Anordnung eines Schrittantriebes mit einem hin und her bewegbaren Spannhebel (Betätigungsgriff) an der Vorschubeinrichtung wird die Betätigung des Bohrständers zunächst einmal in einer Richtung, der Bohrrichtung, mittels der haltenden Hand des Benutzers selbst möglich.

[0036] Indem die Vorschubeinrichtung einen griffartig geformten Teil (Haltegriff) aufweist, und der Spannhebel (Betätigungsgriff) dort ebenfalls angeordnet ist, ist das gleichzeitige Halten und Betätigen des Bohrständers mit einer Hand des Benutzers möglich.

[0037] Durch Betätigen eines ggf. vorhandenen Umschalters kann die Bewegungsrichtung der Vorschubeinrichtung in die entgegengesetzte Richtung verstellt werden, was also bedeutet, dass von Bohren auf Zurückziehen umgestellt wird.

[0038] Durch Anordnung des Umschalters an der Vorschubeinrichtung im Griffbereich der Hand des Benutzers, insbesondere des Daumens des Benutzers, kann diese Umschaltung von wiederum der gleichen Hand des Benutzers durchgeführt werden, ohne dass eine zweite Hand benötigt wird.

[0039] Indem der Umschalter neben den beiden Endpositionen, die den beiden Bewegungsrichtungen entsprechen, eine Mittelposition einnehmen kann, kann diese Mittelposition dafür benutzt werden, dass die Vorschubeinrichtung gegenüber der Fußplatte in beide Bewegungsrichtungen frei verschiebbar ist.

(Schrittantrieb)

[0040] Dabei weist der in dem Bohrständer zu verwendende Schrittantrieb, der prinzipiell in Fig. 2 erläutert ist,

ggf. folgende Besonderheiten auf:

[0041] So kann die Wirkrichtung des Schrittantriebes verstellt werden, indem umgestellt werden kann, ob die Schwenkrichtung des Schubarmes von der Ausgangsstellung in den Betätigungszustand im Uhrzeigersinn oder im Gegenuhrzeigersinn verläuft, und insbesondere kann zu diesem Zweck der Schubarm, wenn er die Ausgangsstellung einnimmt, verlagert werden, vor allem in Längsrichtung verlagert werden, sodass sein Betätigungsende mit einem anderen Bereich als vorher, also mit einer anderen Wirkfläche des Spannhebels, in Kontakt gerät.

[0042] Vorzugsweise wird bei dieser Umstellung der Schubarm, der sich dabei vorzugsweise in seiner deaktivierten Lage befindet, relativ zur Schubstange in Längsrichtung verschoben und verschwenkt, und zwar von einem positiven Winkel relativ zur Querrichtung auf einen negativen Winkel und umgekehrt.

[0043] Durch die Verschiebbarkeit des Halterungsendes des Schubarmes kann dies sehr einfach erfolgen, vor allem mit Hilfe des Umschalters, zu dem eine Wirkverbindung besteht, beispielsweise mittels einer Feder, insbesondere einer kombinierten Zugdruckfeder, die sowohl in Druckrichtung als auch in Zugrichtung federt, die somit für beide Wirkrichtungen nahe des Halterungsendes und deshalb verkantungsfrei den Schubarm in die Ausgangsstellung vorspannt.

[0044] Auch der Stützarm ist mittels einer Stützarmfeder in der Ausgangsstellung vorgespannt.

[0045] Auch der Spannhebel selbst ist mittels einer Spannhebelfeder in seine Ausgangsstellung vorgespannt, in welche er nach Loslassen zurückgeht, um durch erneute Betätigung den Schubarm zu verlagern.

[0046] Durch Einnehmen einer von zwei Über-Totpunkt-Positionen des Schubarmes, insbesondere dessen Betätigungsendes, gegenüber dem Spannhebel wird sichergestellt, dass sich

- bei aktiver Positionierung des Umschalters in einer der beiden Endstellungen (Über-Totpunkt-Positionen) in der gewählten Funktionsstellung verbleibt, und
- ohne aktive Positionierung der Umschalter die neutrale Mittelstellung anfährt, in der die Schubstange in beide Richtungen frei verschiebbar ist.

[0047] Durch die unterschiedliche Konturierung der Wirkflanken am Spannhebel für die beiden Funktionsstellungen des Schubarmes kann der Kraftverlauf als auch die absolute Krafthöhe, die während der Betätigung des Spannhebels von dem Wirkantrieb aufgebracht werden, unterschiedlich vorgegeben werden.

[0048] Durch die Verschwenkbarkeit auch des Stützarmes relativ zur Querrichtung von der einen in die andere Schrägstellung wird auch der Stützarm umstellbar entsprechend der beiden Wirkrichtungen.

[0049] Indem der Stützarm ebenfalls vom Umschalter

40

aus mittels einer vorzugsweise mechanischen Verbindung, insbesondere einer kombinierten Zugdruckfeder, umgestellt wird, kann mittels eines einzigen Umschalters der gesamte Schrittantrieb in seiner Wirkrichtung auf einmal umgestellt werden.

[0050] Durch die Lagerung des Spannhebels um einen Lagerbolzen, dessen Position nicht feststeht, sondern beweglich ist, und der insbesondere in einem verschwenkbaren Lagerarm steckt, kann die Wirkung der Feder, welche den Stützarm vorspannt, unterstützt werden, indem der Lagerbolzen im schwenkbaren Lagerarm bezüglich des Schwenkpunktes des Lagerarmes so angeordnet ist, dass der vom Spannhebel - bei dessen Betätigung - auf den Lagerarm ausgeübte Druck die Vorspannung des Stützarmes in die vorgespannte Stützstellung verstärkt und umgekehrt bei Umstellung der Wirkrichtung damit das Lösen der Klemmung des Stützarmes begünstigt.

[0051] Dadurch, da sich sowohl der Spannhebel als auch der Stützarm im Griffbereich des dazwischen angeordneten Haltegriffes befinden, können beide von derjenigen Hand, die den Haltegriff hält, bei Bedarf betätigt werden.

[0052] Die Vorspannung des Stützarmes in seine aktivierte Stellung wird dabei so gewählt, dass sie durch Drücken auf das freie Ende, das Betätigungsende, des Stützarmes, durch den Daumen des Benutzers gelöst werden kann. Auf diese Art und Weise ist eine Handhabungsweise des Bohrständers möglich, bei der der Bohrständer selbst, mit der einen Hand und die darin aufgenommene Bohrmaschine am Bohrmaschinengriff mit der anderen Hand ergriffen, an der gewünschten Stelle des Werkstückes positioniert und angepresst und der Bohrer mit der gewünschten Vorspannkraft gegen das Werkstück vorgeschoben wird. Wegen der Führung durch Bohrständer und dessen Fußplatte ist die rechtwinklige [0053] Positionierung des Bohrers zum Werkstück ohne Probleme einnehmbar und auch einhaltbar.

[0054] Durch den feinfühlig bewegbaren Spannhebel kann eine hohe Vorpresskraft dennoch gut dosiert aufgebracht und damit ein gleichmäßiger Vorschub erreicht werden, was das Einbringen auch großer Bohrungen ohne Vorbohren ermöglicht und damit das effiziente Setzen von Bohrungen.

c) Ausführungsbeispiele

[0055] Ausführungsformen gemäß der Erfindung sind im Folgenden beispielhaft näher beschrieben. Es zeigen:

- Fig.1: den erfindungsgemäßen Bohrständer in perspektivischen Darstellungen,
- Fig. 2: einen Schrittantrieb gemäß dem Stand der Technik,
- Fig. 3: einen ersten Schrittantrieb des Bohrständers,

- Fig. 4: eine Basisplatte für den Bohrständer, und
- Fig. 5: einen zweiten Schrittantrieb für den Bohrständer.
- Fig. 6: einen weiteren Schrittantrieb sowie
- Fig. 7: zum Schrittantrieb alternative Antriebe.

[0056] Figur 1 a zeigt den Bohrständer 1 mit den beiden parallelen, senkrecht auf der Fußplatte 7 stehenden Führungsstangen 11, die einen runden Außenumfang besitzen, und entlang denen die Aufnahmevorrichtung 3 in Bohrrichtung 10 verschiebbar ist, in welcher die Handbohrmaschine 2 mit ihrem Hals geklemmt und mit dem Bohrer nach unten in Richtung Fußplatte 7, weisend gespannt ist.

[0057] Zu diesem Zweck umfasst die Aufnahmevorrichtung 3, die von den beiden Führungsstangen 11a,b durchdrungen wird, eine quer zu den Führungsstangen 11 verlaufenden Querplatte 11a auf, in deren einem frei auskragenden Ende eine verspannbare Aufnahme-Öse 3b zum Einstecken und Festklemmen des Außenumfanges des Halses einer Handbohrmaschine aufweist, und am bzgl. der Führungsstangen 11 gegenüberliegenden freien Ende einen Haltegriff 5, der mit seiner Längserstreckung quer zur Bohrrichtung 10 ragt, zum Halten mit der meist linken Hand des Benutzers, während die rechte Hand des Benutzers den pistolenartigen Griff der Handbohrmaschine 2 hält.

[0058] Aufgrund der symmetrischen Ausführung des Bohrständers auch für Linkshänder geeignet.

[0059] Zusätzlich befindet sich parallel zu diesem Haltegriff 5 darunter liegend ein Betätigungsgriff 6 in Form eines Hebelgriffes 21, der wie der Bremshebel an einem Fahrradgriff gegen den Haltegriff 5 herangezogen werden kann und nach Loslassen wieder in die Ausgangslage zurück geht, und somit ohne Loslassen des Haltegriffes 5 von der gleichen Hand des Benutzers betätigt werde kann.

[0060] Oberhalb der Querplatte 3a erstreckt sich ein Gehäuse 3c der Aufnahmevorrichtung 3 entlang der Führungsstangen 11 nach oben, aus welchem oberhalb des Haltegriffes 5 in die gleiche Richtung quer abstrebend ein Rückzugsschalter 9 vorsteht, der somit vom Daumen der Hand des Benutzers durch Drücken nach unten, in Richtung des Haltegriffes 5 betätigt werden kann, wiederum ohne dass der Benutzer seine Hand vom Haltegriff 5 nehmen muss.

50 [0061] Der Betätigungsgriff 6 wirkt auf einen etwa parallel unterhalb der Querplatte 3a angeordneten Schubarm 23, durch den sich ebenfalls die beiden Führungsstangen 11a hindurch erstrecken, wobei die Wirkungsweise anhand der Figuren 2 und 3 anschließend 55 erläutert wird.

[0062] Figur 1 a zeigt ferner - quasi als Zusatzausstattung - unterhalb der Aufnahmevorrichtung 3 einen entlang der Führungsstange 11 b verschiebbaren und arre-

35

40

tierbaren sowie justierbaren Bohr-Tiefenanschlag 14a, der die Bewegung der Aufnahmevorrichtung 3 in Bohrrichtung 10 beendet.

[0063] Ebenso ist oberhalb der Aufnahmevorrichtung 3 an einer der beiden Führungsstangen 11 ein Höhenanschlag 14b verstellbar und arretierbar angeordnet, der beim Zurückbewegen der Aufnahmevorrichtung 3 den Rückhub begrenzt, damit die Fußplatte 7 nicht zu weit ausfährt.

[0064] Die beiden Führungsstangen 11 a,b sind an ihrem oberen freien Ende über eine quer verlaufende Brükke 15 miteinander verbunden und gegeneinander stabilisiert und enden mit ihren unteren Enden in einer Fußplatte 7, die quer verlaufend zu der Vorrichtung 10 im Bereich der Bohrachse einen ausreichend großen Durchlass aufweist.

[0065] Da die Führungsstangen 11 mit der Fußplatte 7 fest verbunden sind, kann das Durchbohren eines Werkstückes auf zweierlei Art erfolgen:

- entweder (in den weitaus meisten Fällen) durch Einlegen eines in Figur 3a dargestellten Werkstückes zwischen die Oberseite 7b der Fußplatte 7 und dem Bohrer der Bohrmaschine mit der gewünschten Stelle unterhalb der Bohrachse, also dem Bohrer 12a der Handbohrmaschine 2, oder
- durch Aufsetzen und Fixieren der Fußplatte 7 mit ihrer Unterseite 7a auf der Oberfläche des Werkstükkes, wie in Figur 1 b dargestellt.

[0066] In beiden Fällen wird durch meist mehrfaches Betätigen des Betätigungsgriffes 6 hintereinander die Bohrmaschine 2 gegen das Werkstück vorgeschoben und das Werkstück von der Spitze des Bohrers kontaktiert und die Bohrung rechtwinklig hergestellt.

[0067] Nach Erreichen der gewünschten Bohrtiefe oder vollständigem Durchbohren des Werkstückes wird der Rückzugschalter 9 betätigt durch Drücken nach unten, in Richtung des Haltegriffes 5, woraufhin die Fußplatte 7 selbsttätig in Bohrrichtung 10 vorfährt mit den Führungsstangen 11, gegebenenfalls bis zum Erreichen des Höhenanschlages 14b, der in Figur 1 b nicht eingezeichnet ist.

[0068] Im Gegensatz dazu zeigt Figur 1c, dass der Bohrständer 1 mit seiner Fußplatte 7 nicht lose auf ein Werkstück aufgesetzt wird, sondern von der Seite her formschlüssig in eine passende Aussparung einer größeren Basisplatte 12 eingeschoben wird, sodass z.B. die Oberseite 7b der Fußplatte 7 mit der Oberseite der Basisplatte 12 vorzugsweise fluchtet.

[0069] Die Basisplatte 12 kann bspw. auf einer Werkbank fest verschraubt sein für das Bohren handhabbar kleiner Werkstücke. Durch Einschieben des Bohrständers 1 in die festmontierte Basisplatte 12 wird eine stabile ortsfeste Positionierung des Bohrständers 1 erreicht. Durch einfaches seitliches Herausschieben ist dagegen der Bohrständer 1 für den mobilen Einsatz bereit, wobei

dazwischen nicht einmal die Bohrmaschine aus dem Bohrständer entfernt werden muss.

[0070] In diesem Zusammenhang zeigen die Figuren 4 eine etwas andere Bauform der Basisplatte 12', die zwar die gleiche formschlüssige, vorzugsweise an den Flanken schwalbenschwanzförmig gestaltete, Ausnehmung 16 zur Aufnahme der Fußplatte 7 aufweist, jedoch zusätzlich auf der in Figur 4b sichtbaren Unterseite 12b eine geschlossen umlaufende Vertiefung in dieser Unterseite 12b, also eine Ringnut 13, zum Einlegen einer vorstehenden, flexiblen Dichtung vorzugsweise geringfügig vom äußeren Rand zurückversetzt aufweist, welche - in den Figuren nicht dargestellt - über Kanäle im Inneren der Basisplatte 12' mit einem Unterdruckanschluss 17 in Verbindung steht, der bspw. auf der Oberseite 12a der Basisplatte 12' mündet.

[0071] Durch Aufsetzen der ansonsten glatten und ebenen Unterseite 12b auf einer glatten Werkstückfläche und Beaufschlagen des Unterdruckanschlusses 17 mit Unterdruck wird die Basisplatte 12' fest und sicher am Werkstück gehalten, womit eine Befestigung auch an Werkstücken aus Aluminium und Edelmetall möglich ist. [0072] Damit ist dann das Setzen von Bohrungen auch weiter entfernt vom Rand eines Werkstückes möglich, wenn die Haltekraft, mit der die Basisplatte am Werkstück gehalten wird, größer ist als die Vorschubkraft, die durch den Bohrständer gegen das Werkstück aufgebracht wird.

[0073] Bei der Unterdruckquelle handelt es sich vorzugsweise um eine mittels Druckluft betriebene Injektordüse, so dass mittels jedes beliebigen Druckluftanschlusses, insbesondere der in gewerblichen Betrieben meist vorhandenen Druckluftnetze oder eines mobilen Kompressors, der gewünschte Unterdruck erzeugt werden kann.

[0074] Eine von mehreren Möglichkeiten zur Ausbildung der Vorschubeinrichtung 4, welche die Aufnahmevorrichtung 3 zusammen mit der Handbohrmaschine 2 relativ zu dem Führungsstangen 11 bewegt, ist der in den Figuren 3a,b dargestellte Schrittantrieb.

[0075] Zunächst soll jedoch das Funktionsprinzip eines Schrittantriebes erläutert werden:

[0076] Figur 2 zeigt einen üblichen Schrittantrieb gemäß dem Stand der Technik, wie er beispielsweise in einem Kartuschenhalter zum Auspressen des Kartuscheninhalts verwendet wird.

[0077] Dabei wird eine in Längsrichtung 10 im Inneren des Basisteiles 2', in deren Querwänden gelagerte Schubstange 4', die das Klemmteil darstellt, vorwärts geschoben, also in Figur 1 nach links geschoben, mit Hilfe vor allem des Schubarmes 23':

[0078] Im Folgenden werden anhand der Funktion des Schrittantriebes auch die Begriffe "Ausgangsstellung" und "Betätigungszustand" definiert:

[0079] Die Schubstange 4' erstreckt sich durch eine Schubarmöffnung 23a des Schubarmes 23' hindurch, wofür in einer definierten Winkelstellung, der Ausgangsstellung, des Schubarmes 23' ausreichendes Spiel zwi-

schen dem Innenumfang der Schubarmöffnung 23a und dem Außenumfang der Schubstange 4' vorhanden ist, um leichtes Schieben der Schubstange zu ermöglichen. [0080] Von dieser Ausgangsstellung aus kann der Schubarm 23' mit seinem einen Ende in Pressrichtung 12, also in Figur 1 nach links, verschwenkt werden (Betätigungszustand), wobei die Erstreckungsrichtung der Schubarmöffnung 23a immer stärker von der Längsrichtung 10 der Schubstange 4' abweicht und sich auf deren Außenumfang verklemmt und dadurch die Schubstange 4' in Pressrichtung 12 mitnimmt.

[0081] In der Regel ist die Erstreckungsrichtung der Schubarmöffnung 23a genau lotrecht zur Ebene des Schubarmes 23', und die Ausgangsstellung die genau rechtwinklige Stellung des Schubarmes 23' zur Längsrichtung 10 oder bereits geringfügig mit dem Betätigungsende in Pressrichtung schräg gestellt.

[0082] Das Verschwenken erfolgt mittels eines von der Hand des Benutzers betätigten Schwenkhebels 21' (Betätigungszustand), der nach Loslassen zusammen mit dem Schubarm 23' in die Ausgangsstellung zurückbewegt wird, z.B. aufgrund einer um die Schubstange 4 sich herum erstreckenden Schubarmfeder 26', die den Schubarm 23' in die Ausgangsstellung vorspannt.

[0083] Dieses Zurückbewegen des Schubarmes würde jedoch in der Regel dazu führen, dass sich die Schubstange 4' ebenfalls zumindest teilweise zurück bewegt. Um dies zu vermeiden, erstreckt sich die Schubstange 4' durch eine ebenfalls quer verlaufenden Stützarm 24' durch dessen Stützarmöffnung 24a hindurch, in der - abhängig von der Schrägstellung des Stützarmes - ebenfalls eine Verklemmung möglich ist.

[0084] Da der Stützarm 24 jedoch durch eine Stützarmfeder 25' in Richtung maximale Schrägstellung und damit Verkantung des Stützarmes 24' gegenüber der Schubstange 4' vorgespannt ist (Ausgangsstellung), und zwar in diejenige Richtung, in die sich die Schubstange 4' bei Rückwärtsbewegung ebenfalls bewegen würde, kann sich die Schubstange 4' beim Loslassen des Spannhebels 21' nicht durch den Stützarm 24' hindurch zurückbewegen.

[0085] Die Schubstange 4' kann also erst dann nach hinten, in Figur 1 nach rechts, zurückgezogen werden, wenn der Stützarm 24' aktiv entgegen der Kraft der Stützarmfeder 25' in eine Position verschwenkt wird (Betätigungszustand), in welcher er nicht auf der Schubstange 4' durch Verkanten klemmt und somit die Schubstange 4' dann von Hand nach hinten heraus gezogen werden kann (Betätigungszustand). Auch ein Durchlaufen der Schubstange 4' durch den Schubarm 23' ist dabei problemlos möglich, da diese ja ohnehin von der Feder in die Ausgangsstellung vorgespannt wird, in der das Verschieben der Schubstange 4' entgegen der Pressrichtung, also in Fig. 1 nach rechts, möglich ist.

[0086] Mit einem solchen Schrittantrieb ist jedoch weder eine Umschaltung der Pressrichtung 12 möglich, erst recht nicht mit derselben Hand.

[0087] Figur 3a zeigt - in einer Schnittdarstellung ent-

lang der Bohrrichtung 10 durch die Führungsstangen 11 a,b hindurch — die Umsetzung dieses Funktionsprinzips mit einigen Spezialisierungen als Vorschubeinrichtung 4 bei dem erfindungsgemäßen Bohrständer 1.

[0088] Die Funktion kann dabei besser anhand der Vergrößerten Darstellung der Figur 3b aus Figur 3a erläutert werden, in der weitere Details eingezeichnet sind.
[0089] Zunächst soll jedoch klar gestellt werden, dass die Funktion der Schubstange 40 aus Figur 2 beim Bohrständer 1 gemäß Figur 3 von der einen, in Figur 3 linken Führungsstange 11 b erfüllt wird.

[0090] Die andere Führungsstange 11a dient lediglich der Verdrehsicherung der Vorschubeinrichtung 4, also des Schlittens 3d, gegenüber der runden Führungsstande 11 b, was jedoch auch durch deren unrunden Querschnitt erzielbar ist.

[0091] Dabei dient der Betätigungsgriff 6 als Spannhebel 21 für den Schrittantrieb 20, dessen Schubarm 23 unterhalb der Querplatte 3a und ebenfalls von beide Führungsstangen 11 durchdrungen angeordnet ist.

[0092] Die Querplatte 3a, welche einer der Hauptbestandteile der Aufnahmevorrichtung 3 ist, ist dabei mit dem Schlitten 3d entlang der beiden Führungsstangen 11 a,b verschiebbar geführt, mit Hilfe von in das Gehäuse der Vorschubeinrichtung 4 eingesetzten Führungsbuchsen 18 und kann gegenüber den Führungsstangen 11 nicht verklemmen.

[0093] Der Betätigungsgriff 6 ist mittels eines ersten Querbolzens 6a in einem zwischen den Führungsstangen und dem Handgriff 5 nach unten ragenden Fortsatz 3' der Querplatte 3a gelagert, und greift mit einem zweiten Querbolzen 6b in eine entsprechende, zur Stirnseite hin offene, Ausnehmung im Betätigungsende 23b der Schubplatte 23 ein, sodass dieses Betätigungsende 23b bei Heranziehen des Betätigungsgriffes 6 an den Haltegriff 5 ebenfalls Richtung Haltegriff bewegt wird, wodurch der Betätigungsgriff 6 als Spannhebel 21 für diesen Schubarm 23 dient.

[0094] Das entgegengesetzte Lagerungsende 23c dieses plattenförmigen Schubarmes 23 dient als Schwenkachse die damit quer zur Bohrrichtung 10 und damit auch quer zur Ebene, in der die beiden Führungsstangen 11 liegen, verläuft, indem eine Schubarmfeder 26 als Druckfeder zwischen der Querplatte 3a und dem Schubarm 23 angeordnet ist, und zwar vorzugsweise als Spiralfeder um den Außenumfang der Führungsstange 11 b herum ausgebildet.

[0095] Da das Lagerungsende 23c von einer von unten her eingeschraubten Halteschraube 19 im gewünschten Maximalabstand zur Querplatte 3a gehalten wird, in der die Halteschraube 19 eingeschraubt ist, drückt die Haltefeder 26 die Unterseite des Schubarmes 23 gegen den Kopf 19a der Halteschraube 19, deren gegen das Betätigungsende 23b weisende Kante somit im Ruhezustand als Schwenkachse dient, bei Druck auf das Betätigungsende 23b jedoch von dieser Kante abhebt.

[0096] Im entspannten Zustand des Spannhebels 21 befindet sich der Schubarm 23 somit in der deaktivier-

baren, die freie Verschiebung des Schubarmes 40 und damit der Führungsstange 11 b zulassenden, Position. [0097] Wird dagegen der Spannhebel 21 betätigt, schwenkt der Schubarm 23 in Figur 3b nach oben, verklemmt sich an der Führungsstange 11 b und versucht diese nach oben zu schieben, was wegen der festen Kopplung mit der Führungsstange 11 b nicht möglich ist. Stattdessen bewegt sich die gesamte Aufnahmevorrichtung 3 einschließlich des Schubarmes 23 entlang der beiden Führungsstangen 11a,b nach unten, also in Bohrrichtung 10.

[0098] Zu diesem Zweck ist im Schubarm 23 die zweite Durchgangsöffnung zum Hindurchführen der Führungsstange 11 a so dimensioniert, dass sie in keiner Lage des Schubarmes gegenüber der Führungsstange 11 b verklemmt.

[0099] Ein Rückwärtsbewegen nach Loslassen des Spannhebels 21 wird verhindert durch den Stützarm 24, der in diesem Fall im Gehäuse 3c oberhalb des Handgriffes 5 angeordnet ist und quer aus diesem Gehäuse 3c vorsteht.

[0100] Der Stützarm 24 ist wie erläutert mittels der Stützfeder 25 in die aktivierte Position vorgespannt, wobei sich die Stützfeder als Spiralfeder um die Führungsstange 11 b herum angeordnet als Druckfeder wirkend zwischen der Querplatte 3a und dem Stützarm 24 befindet und sich an diesen abstützt.

[0101] Das im Gehäuse 3c befindliche Lagerungsende 24c ist dabei im Gehäuse 3c im Bereich zwischen den beiden Führungstangen 11a und b in einer entsprechenden Aussparung gelagert, deren gegen das entgegengesetzte Betätigungsende 24b des Stützarmes 24 gerichtete Stützkante 3e somit als Schwenkachse für den Stützarm 24 dient.

[0102] Drückt man mit dem Daumen auf die Oberseite des Betätigungsende 24b des Stützarmes 24 also auf den Rückzugschalter 9, überwindet dabei die Kraft der Stützfeder 25, sodass sich die Führungsstange 11a frei durch den Stützarm 24 hindurch verschieben lässt, so fährt — sofern keine anderweitigen Belastungen vorliegen — daraufhin die gesamte Aufnahmevorrichtung 3 entgegen der Bohrrichtung 10 relativ der Führungsstangen 11 nach oben, aufgrund der Vorspannung durch eine Druckfeder 11 b1, die als Spiralfeder um den Außenumfang der Führungstange 11a herum zwischen der Fußplatte 7 und dem Schlitten 3d angeordnet ist.

[0103] Damit ist vor allem folgender mobiler Einsatz des erfindungsgemäßen Bohrständers 1 möglich:

[0104] Wenn bspw. an einem mehrere Meter langen Stahlteil auf einer Baustelle Bohrungen mit 20mm Durchmesser gesetzt werden müssen, jeweils einige Zentimeter von der Außenkante beabstandet, so geht der Bediener wie folgt vor:

[0105] Die im Bohrständer 1 aufgenommene Bohrmaschine hält der Bediener mit der einen, meist der rechten, Hand an ihrem hinteren Hauptgriff, während er mit der linken Hand den quer abstehenden Haltegriff 5 des Bohrständers 1 hält, und dabei gegebenenfalls zusätzlich mit

der gleichen Hand entweder den Betätigungsgriff 6 beliebig oft heranzieht oder den Rückzugschalter 9 mit dem Daumen drückt.

[0106] Bei einer Stellung gemäß Figur 3a wird er das Werkstück in den Freiraum zwischen Bohrer 2a und Fußplatte 7 einführen und die Spitze des Bohrers 2a auf die gewünschte Bohrungsposition aufsetzen.

[0107] Durch ein- oder mehrfaches Betätigen des Spannhebels 21 wird die Fußplatte 7 mit ihrer Oberseite 7b gegen die Rückseite des Werkstückes herangezogen, dabei rechtwinklig ausgerichtet und sobald diese dort anlegt der Bohrer 2a durch Anschalten der Bohrmaschine 2 in Drehung versetzt, unter gleichzeitigem weiteren Vorschub gegen das Werkstück, indem der Betätigungsgriff 6, also der Spannhebel 21, ständig weiter betätigt wird, entsprechend dem Bohrfortschritt und der Zerspannbarkeit des Werkstückmateriales, bis die gewünschte Bohrtiefe erreicht ist.

[0108] Dabei kann der Bediener mit Hilfe des Spannhebels 21 eine Vorschubkraft aufbringen, wie er sie allein durch Anpressen der Bohrmaschine 2 gegen das Werkstück kaum, zumindest nicht bei gleich bleibender Ausrichtung der Bohrmaschine, aufbringen könnte.

[0109] Nach Fertigstellen der Bohrung betätigt der Bediener mit dem Daumen den Rückzugschalter 9, woraufhin sich die Fußplatte 7 und die Aufnahmevorrichtung 3 auseinander bewegen und man den Bohrer 2 aus dem Bohrloch zurückziehen kann und mit dem Setzen der nächsten Bohrung begonnen werden kann.

[0110] Falls die herzustellende Bohrung vom äußeren Rand des Werkstückes weiter entfernt ist als der Abstand zwischen Bohrer 2a und der nächstliegenden Führungsstange 11 b, wird gemäß Figur 1 b die Fußplatte 7 mit ihrer Unterseite 7a auf die Außenseite des Werkstückes aufgesetzt, entweder direkt oder mittels einer dazwischen angeordneten Basisplatte 12, die auch selbst vorfixiert werden kann am Werkstück, bspw. mittels Magnetkraft, Unterdruck, Verschraubung oder Verklemmung.

[0111] Dagegen sind die Figuren 5a und 5b vergrößerte Detaildarstellungen einer anderen Lösung eines Schrittantriebes für den Bohrständer und unterscheiden sich lediglich durch die mittels der Stellung des Umschalters 22 dargestellte Pressrichtung 12a/b, die entlang der Längsrichtung 10', die die Bohrrichtung 10 sein kann, aber nicht sein muss, in Figur 5a nach unten und in Figur 5b nach oben gerichtet ist. Im Folgenden wird Fig. 5a beschrieben.

[0112] Die Umschaltbarkeit der Pressrichtung 12 wird durch einen in diesem Fall in Längsrichtung 10' verschiebbaren Umschalter 22 bewirkt, dessen Griffteil 22d aus einem Langloch des Basisteiles 2 vorsteht und ergriffen und eingestellt werden kann, und mit einem Stützteil 22e verbunden ist, welches im Inneren des Basisteiles 2 in Längsrichtung 10' verschiebbar geführt ist.

[0113] Das Lagerungsende 23c des Schubarmes 23 befindet sich auf der gleichen Seite der Schubstange 40 wie das Stützteil 22e des Umschalters 22, und ist mit diesem über eine Zugdruckfeder 27a verbunden, die auf

eine entsprechenden Zapfen am Lagerungsende 23c fest aufgesteckt ist, was - neben der seitlichen Führung durch die Schalen des Basisteiles 2 bzw. der Schlitten 3d der Aufnahmevorrichtung 3 - die Lagerung des Schubarmes 23 darstellt. Der Schwenkpunkt des Schubarmes 23 ist somit mittels des Umschalters 22 von oben nach unten verstellbar entsprechend den Endpositionen 22a, b des Umschalters 22 im Basisteil 2.

[0114] Da das Betätigungsende 23b des Schubarmes 23 nicht an einer Außenkontur, sondern an einer Innenkontur 21' des Spannhebels 21 angreift, die etwa dreieckförmig gestaltet ist, wird die auf dem Betätigungsende 23b sitzende Rolle 31 in den Endpositionen des Umschalters 22 wahlweise mit einer der Wirkflanken 21a, b dieser Innenkontur 21' in Kontakt stehen, die so gestaltet sind, dass bei Betätigung des Spannhebels 21 diese Wirkfläche den Schubarm 23 von der deaktivierten Position, in der die Schubarmöffnung 23a die Schubstange 40 lose umschließt, so verschwenkt wird, dass die Schubstange 4 zunehmend schräg in der Schubarmöffnung 23a steht und sich mit dessen Seitenfläche verklemmt und von diesem in Pressrichtung 12 mitgenommen wird.

[0115] In diesen Endstellungen ist ein manuelles Vorwärtsschieben der Schubstange 4 in Pressrichtung 12 ebenfalls möglich, jedoch nicht entgegen der Pressrichtung 12, denn dies wird ja durch den Stützarm 24 verhindert:

[0116] Auch der Stützarm 24 ist an seinem, dem Umschalter 22 benachbarten Ende mittels wiederum einer Zug-/Druckfeder 27b mit dem Griffteil 22d des Umschalters 22 verbunden und wird somit ebenfalls in seiner Schrägstellung von der einen Seite auf die andere Seite bzgl. der zur Längsrichtung 10' lotrecht stehenden Querrichtung 11 umgestellt, so dass jeweils eine Bewegung der Schubstange 4 entgegen der Pressrichtung verhindert ist.

[0117] Zu diesem Zweck befindet sich die Schwenkachse des Stützarmes 24 auf der vom Umschalter 22 abgewandten Seite und wird in diesem Fall durch Aufnahme des Lagerungsendes 24c des Stützarmes 24 zwischen zwei prismenförmigen Vorsprüngen des Basisteiles 2 gebildet.

[0118] Die Lagerungsenden 23c, 24c der beiden Arme befinden sich somit auf einander gegenüberliegenden Seiten bzgl. der Schubstange 4, und ebenso die beiden Betätigungsenden 23b, 24b, wobei das Betätigungsende 23b des Schubarmes 23 auf der Seite des Spannhebels 21 und das Betätigungsende 24b des Stützarmes 24 auf der Seite des Umschalters 22 und damit auf der vom Spannhebel 21 abgewandten Seite liegt.

[0119] Zusätzlich ist in der Mittelstellung 22c des Umschalters 22 auch der Stützarm 23 in einer deaktivierten Stellung, so dass in dieser Mittelstellung des Umschalters 22 der Schubarm 23 in beide Richtungen frei zum Basisteil 2 verschiebbar ist.

[0120] Dementsprechend befindet sich in Figur 5a die Rolle 31 in der Anlage an der oberen Wirkfläche 21 a

und damit auch der Umschalter 22 an der oberen Endposition 22a ebenso wie das Betätigungsende 24b des Stützarmes 24.

[0121] In dem der Benutzer das pistolengriffartige untere Teil des Basisteilteiles 2 in der Hand hält und dabei mit seinen Fingern den Spannhebel 21 an das Basisteil 2 heranzieht, wird das Betätigungsende 23b mittels der Wirkfläche 21 a nach unten verlagert und in der Schubarmöffnung 23a die Schubstange 4 zunächst verklemmt und bei weiterer Klemmbewegung des Schubarmes 23 in Pressrichtung 12a, also nach unten, mitgenommen.

[0122] Nach dem Loslassen des Spannhebels 21 wird dieses durch die Hebelfeder 30 in die Ausgangslage zurückgezogen (wie Fig. 5a zeigt) und der Schubarm 23 durch die Zugdruckfeder 27a beaufschlagt und dadurch ebenfalls in die Ausgangslage zurückgeschwenkt.

[0123] In den Figuren 5b befindet sich der Umschalter 22 in seiner unteren Endposition 22b und dementsprechend auch das Betätigungsende 24b des Stützarmes 24 und ebenso das Lagerungsende 23c des Schubarmes 23, durch eine Pressrichtung 12b gerichtet nach oben erreicht wird. Fig. 5b1 zeigt die Situation bei entspanntem Spannhebel 21, Fig. 5b2 bei an das Basisteil 2 herangezogener Stellung.

[0124] Die Figuren 5 zeigen weiterhin, dass der verschwenkbare Spannhebel 21 nicht direkt im Basisteil 2 gelagert ist, sondern über einen Lagerbolzen 28 in einem selbst beweglichen, nämlich verschwenkbaren, Lagerarm 29, der sich vorzugsweise doppelt in den Figuren 5 nicht nur hinter sondern auch vor der Schubstange 40 quer verlaufend erstreckt.

[0125] Das Lagerungsende 29c befindet sich dabei auf der vom Umschalter 22 abgewandten Seite, während das Betätigungsende 29b sich auf der Seite des Umschalters 22 befindet und mit dem Betätigungsende 24b des Stützarms 24 verbunden ist.

[0126] Dies bewirkt, dass beim Umstellen des Umschalters 22 von einer auf die andere Endposition 22a auf 22b nicht nur der Stützarm 24 in seiner Schwenkstellung bezüglich der Querrichtung 11 umgestellt wird, sondern auch die Schrägstellung des Lagerarmes 29 analog verstellt wird.

[0127] Durch Anordnung des Lagerbolzens 28 zwischen dem Lagerungsende 29c und dem Betätigungsende 29b wird beim Betätigen des Spannhebels 21 mittels des Lagerbolzens 28 auf den Lagerarm 29 eine Schwenkkraft ausgeübt, die jeweils in diejenige Schwenkrichtung wirkt, dass der mit dem Lagerarm 29 am Betätigungsende fest verbundene Stützarm 24 in die sperrende, aktivierte Schwenkstellung vorgespannt wird.

[0128] Die Wirkung der den Stützarm 24 in diese aktivierte Stellung vorspannenden Zug-/Druckfeder 27b wird also durch den Schwenkarm 29 massiv verstärkt, so dass eine wesentlich stärkere Klemmwirkung des Stützarmes 24 erreicht werden kann, als allein durch dessen Feder 27b erreichbar wäre.

30

35

[0129] Auch dies wirkt wiederum in beide möglichen Pressrichtungen 12a,b, abhängig jeweils von der Stellung des Umschalters 22.

[0130] Das Basisteil 2 der Schlitten 3d besteht dabei aus zwei gegeneinander gelegten Halbschalen, mit entsprechenden Vertiefungen auf den zueinander gewandten Kontaktflächen, um die vorher erwähnten beweglichen Teile aufzunehmen und einen Durchlass für die Schubstange 40 frei zu lassen.

[0131] Die beschriebenen Bewegungen verlaufen dabei alle in derselben Ebene, nämlich der Zeichenebene der Figuren 5, also der Kontaktfläche der beiden spiegelbildlichen Halbschalen 2a, b des Basisteiles 2.

[0132] Figuren 7 zeigen jeweils andere Antriebe, jedoch ist allen drei Darstellungen gemeinsam, dass dort jeweils ein Werkstück 40 im Bohrständer 1, nämlich zwischen der Oberseite 2a, dargestellt ist, welches mittels einer Hilfsvorrichtung, etwa der dargestellten Spannpratze 39, Werkstück 40 und Fußplatte 7 fest gegeneinander gepresst und dadurch relativ gegeneinander fixiert sind. Die Spannpratze 39 ist ebenfalls auf der Oberseite der Fußplatte 7, am Absatz des Werkstückbereiches befestigt.

[0133] Ansonsten unterscheiden sich die Figuren 6 und 7 durch die Art des Antriebes der Vorschubeinrichtung 4, während alle übrigen Bauteile identisch mit den Darstellungen in den Figuren 3 und 4 sind:

[0134] In Figur 6 ist eine Antriebslösung mittels einer Ratsche 38 dargestellt, wie sie heute in üblichen Steckschlüssel-Sätzen verwendet wird:

[0135] Vom Ratschenkopf 38a aus erstreckt sich ein Haltegriff 5' in einer Längserstreckung im rechten Winkel stehend zur Ratschenachse 37, auf der sich auf einer handelsüblichen Ratsche 38 ein Vierkant zum Aufsetzen des gewünschten Schraubeinsatzes befindet.

[0136] Im vorliegenden Fall ist die Ratsche 38 vorzugsweise unverlierbar am Schlitten 3d, in der die Vorschubeinrichtung 4 untergebracht ist, angeordnet, und zwar mit der Ratschenachse 37 vorzugsweise senkrecht zur Längsrichtung 10 und treibt in der Vorschubeinrichtung bspw. ein - nicht dargestelltes - auf der selben Achse drehendes Ritzel an, welches mit einer entlang der Längsrichtung 10 der Führungsstangen 11 angeordnete Zahnstange kämmt.

[0137] Der Haltegriff 5' ist also in diesem Fall gleichzeitig Betätigungsgriff 6, denn durch das Auf- und Abbewegen des Betätigungsgriffes um die Ratschenachse 37 wird die Vorschubeinrichtung schrittweise angetrieben.

[0138] Die Figuren 7a,b zeigen zum Schrittantrieb alternative Antriebe die keine sind, bei denen jedoch ebenfalls der Haltegriff 5" gleichzeitig Betätigungsgriff 6 ist:

[0139] In gleicher Ausrichtung wie die Ratschenachse 37, also vorzugsweise lotrecht zur Längsrichtung 10 der Führungsstange 11, verläuft beim Antrieb der Figur 7a eine Kegelrad-Achse 36' auf der ein Kegelrad drehend auf dem Schlitten 3d angeordnet ist. Mit dem Kegelrad 36 klemmt ein Kegelritzel 35, welches mit dem Haltegriff 5", dadurch Betätigungsgriff 6 ist, drehfest verbunden ist,

der um seine Längsachse 5 drehbar ebenfalls am Schlitten 3d gehaltert ist.

[0140] Durch Vorwärtsdrehen - und dazwischen umgreifen mit der haltenden Hand - das für 5" bzw. 6 wird Kegelritzel 35, Kegelrad 36 und damit ein mit dem Kegelrad 36 verbundenes Zahnrad, welches mit der wiederum nicht dargestellten Zahnstange entlang der Führungsstange 11 klemmt, angetrieben, und dadurch der Schlitten 3d in Längsrichtung 10 relativ zu den Führungsstangen 11 a,b, also den Rest des Bohrständers bewegt. Die Bewegungsrichtung hängt von der Drehrichtung des Griffes 5" bzw. 6 ab.

[0141] Figur 7b bietet die gleiche Funktion, jedoch ist hier auf dem ebenfalls um seine Längsachse 5a drehbaren Griff 5" bzw. 6 eine verzahnte Schnecke 34 anstelle und mit der Ausrichtung des Kegelritzels 35 angeordnet. Die Schnecke 34 klemmt mit einem Schneckenrad 33, welche mit ihrer Drehachse vorzugsweise parallel zur Längsrichtung 10, nämlich vorzugsweise konzentrisch zur einen Führungsstange 11 a, im Schlitten 3d angeordnet ist bei Antrieb mittels des Griffes 5" bzw. 6 ebenfalls eine Relativverschiebung 3d in Längsrichtung 10 entlang der Führungstangen 11 bewirkt.

[0142] Dies kann erreicht werden mittels der Außenradverzahnung des Schneckenrades 33 in eine entsprechend schrägverzahnte Zahnstange, die in Längsrichtung verläuft, oder auch durch Eingriff einer Innenverzahnung des Schneckenrades 33 eine Gewindespindel, die sich auf dem Außenumfang der entsprechenden Führungsstange befindet.

BEZUGSZEICHENLISTE

Bohrständer

[0143]

	2	Handbohrmaschine
	3	Aufnahmevorrichtung
	3a	Querplatte
40	3b	Aufnahmeöse
	3c	Gehäuse
	3d	Schlitten
	3e	Stützkante
	4	Vorschubeinrichtung
45	5	Haltegriff
	6	Betätigungsgriff
	7	Fußplatte
	7a	Unterseite
	7b	Oberseite
50	8	Rückzugvorrichtung
	9	Rückzugschalter
	10	Bohrrichtung
	11	Führungsstange
	11 a1	Druckfeder
55	12	Basisplatte
	13	Ringnut
	14a	Tiefenanschlag
	14b	Höhenanschlag

15

20

25

15	Brücke
16	Ausnehmung
17	Unterdruckanschluß
18	Führungsbuchse
19	Halteschraube
19a	Kopf
20	Schrittantrieb
21	Spannantrieb
21'	Innenkontur
21 a/b	Wirkflanke
22	Umschalter
22a/b	Endposition
22c	Mittelposition
23	Schubarm
23a	Schubarmöffnung
23b	Betätigungsende
23c	Lagerungsende
24	Stützarm
24a	Stützarmöffnung
25	Stützfeder
26	Schubarmfeder
27a	Zug-/Druckfeder
28	Lagerbolzen
29	Lagerarm
30	Hebeifeder
33	Schneckenrad
34	Schnecke
35	Kegelritzel
36	Kegelrad
37	Ratschenachse
38	Ratsche
39	Spannpratze
40	Werkstück

Patentansprüche

- 1. Bohrständer zum Halten sowie Vorwärtsschieben einer Hand-Bohrmaschine (2) in Bohrrichtung (10) mit
 - einer Aufnahmevorrichtung (3) für die Bohrmaschine (2),
 - einer Vorschubeinrichtung (4) zum Vorwärtsschieben der Bohrmaschine (2) relativ zu wenigstens einer Führungsstange (11),

dadurch gekennzeichnet, dass

der Bohrständer (1) einen von der Bohrrichtung (10) quer insbesondere rechtwinklig abstehenden Haltegriff (5) und einen Betätigungsgriff (6) zum Betätigen der Vorschubeinrichtung aufweist.

2. Bohrständer nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

- der Haltegriff (5) und/oder der Betätigungsgriff (6) an der Aufnahmevorrichtung (3) angeordnet

ist, und/oder insbesondere

- der Betätigungsgriff (6) so angeordnet ist, dass er vom Benutzer mit derselben Hand betätigt werden kann, mit der er den Haltegriff (5) hält und ohne diesen loslassen zu müssen, und/oder insbesondere
- der Haltegriff (5) und Betätigungsgriff (6) funktionsvereinigt in einem Griff sind.
- Bohrständer nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

- der Bohrständer (1) eine Rückzugsvorrichtung (8) zum schnellen Zurückfahren der Vorschubeinrichtung (4) relativ zur Fußplatte (7) entgegen der Bohrrichtung (10) umfasst, und/oder insbesondere
- die Rückzugvorrichtung (8) nach Betätigen eines Rückzugschalters (9) den Rückzug selbst durchführt, und/oder insbesondere
- der Rückzugschalter (9) so am Bohrständer (1), insbesondere an der Aufnahmevorrichtung (3), so angeordnet ist, dass er von derjenigen Hand des Benutzers, die den Haltegriff (5) hält, betätigt werden kann, insbesondere mittels des Daumens, ohne den Haltegriff (5) loslassen zu müssen.
- **4.** Bohrständer nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

- der Haltegriff (5) für die Funktion als Betätigungsgriff (6) bewegt werden kann, insbesondere um seine Längsachse gedreht werden kann, oder um ein Schwenkachse quer zu seiner Verlaufsrichtung hin und her bewegt werden kann, und/oder insbesondere
- der für die Betätigungsfunktion drehbare Haltegriff (5) beim Vorwärtsdrehen über ein Getriebe, insbesondere ein Zahnradgetriebe, oder auch ein selbsthemmendes Schneckenrad-Getriebe die Aufnahmevorrichtung (3) relativ zu der Führungsstange (11) bewegt mittels einer entlang der Führungsstange verlaufenden Zahnstange, mit der das Getriebe im Eingriff steht, und/oder insbesondere
- der Haltegriff (5) für die Rückwärts-Drehrichtung einen Freilauf aufweist.
 (KONKRETE BAUFORM)
- 5. Bohrständer zum Halten sowie Vorwärtsschieben einer Hand-Bohrmaschine (2) in Bohrrichtung (10) mit
 - einer Aufnahmevorrichtung (3) für die Bohrmaschine (2),
 - einer Vorschubeinrichtung (4) zum Vorwärts-

40

35

45

schieben der Bohrmaschine (2) zu wenigstens einer Führungsstange (11),

dadurch gekennzeichnet, dass

die Vorschubeinrichtung (4) einen manuellen Antrieb, insbesondere einen Schrittantrieb (20) umfasst.

6. Bohrständer nach einem der vorhergehenden Ansprüche.

dadurch gekennzeichnet, dass

- der Betätigungsgriff (6) ein hin und her verschwenkbarer Spannhebel (21) ist, und/oder insbesondere
- der Bohrständer (1) eine Basisplatte (12) umfasst, insbesondere zum festen Verschrauben auf einer Werkbank etc., in welche die Fußplatte (7) in und gegen die Bohrrichtung (10) formschlüssig gehalten einsetzbar, insbesondere quer zur Bohrrichtung (10) seitlich einschiebbar, ist, und/oder insbesondere
- die Fußplatte (7) und/oder die Basisplatte (12) auf ihrer Unterseite eine Ausnehmung aufweist, die mit einem Unterdruckanschluss verbindbar ist, umgeben von einer vorstehende Ringdichtung, und/oder insbesondere
- als Unterdruckquelle ein Druckluftinjektor verwendet wird, der insbesondere von einem Druckluftnetz mit Druckluft gespeist wird. (SCHRITTANTRIEB)
- 7. Schrittantrieb (20), insbesondere zur Verwendung in einem Bohrständer (1) gemäß einem der vorhergehenden Ansprüche, mit
 - einem von der Schubstange (4) durchdrungenen, relativ zur Schubstange (4) mittels des Spannhebels (21) verschwenkbaren, querstehenden Schubarm (23) und
 - einem von der Schubstange (4) durchdrungenen, quer zu diesem stehenden Stützarm (20), der relativ zur Schubstange (4) verschwenkbar und/oder verschiebbar ist.
 - wobei deren Schubarmöffnung (23a) so dimensioniert sind, dass sie in der Ausgangsstellung lose von der Schubstange (4) durchlaufen werden kann und in dem demgegenüber verschwenkten Betätigungszustand der Innenumfang der Öffnung (23a) gegenüber dem Außenumfang der Schubstange (4) verklemmt.
- 8. Schrittantrieb nach einem der vorhergehenden Ansprüche.

dadurch gekennzeichnet, dass

- der Stützarm (24) mittels einer Stützfeder (25) in der Ausgangsstellung in die Richtung vorge-

- spannt ist, in der die Schubstange (4) bei versuchtem Verschieben entgegen der Pressrichtung (12) im Stützarm (24) verkantet und verklemmt, und/oder insbesondere
- der Schubarm (23) mittels des Spannhebels (21) von der Ausgangsstellung aus in den Betätigungszustand verschwenkt werden kann unter Mitnahme der Schubstange (4) in Klemmrichtung, und/oder insbesondere
- der Schubarm (23) mittels einer Schubarmfeder (26) in die Ausgangsstellung vorgespannt
- Schrittantrieb nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

- die Führungsstange (11a) eine von zwei parallel im Abstand geführten Führungsstangen (11a,b) mit rundem Außenquerschnitt, ist, und/ oder insbesondere
- die Führungsstange (11a) mit unrundem Außenquerschnitt aufweist, und/oder insbesonde-
- der Haltegriff (5) zwischen Schubarm (23) und Stützarm (24) angeordnet ist und sich der Schubarm (23) in Bohrrichtung (10) weiter vorne als der Haltegriff (5) befindet und der Spannhebel (21) im Griffbereich bzgl. des Haltegriffes (5) angeordnet ist, und/oder insbesondere
- der Stützarm (24) in Bohrrichtung (10) soweit hinter dem Haltegriff (5) angeordnet ist, dass er mit dem Daumen der Hand, die den Haltegriff (5) hält, an seinem Betätigungsende betätigt werden kann.
- 10. Schrittantrieb nach einem der vorhergehenden An-

dadurch gekennzeichnet, dass

- die Haltekraft des Stützarmes (24) so gewählt ist, dass sie mit der Kraft eines Daumes des Benutzers überwunden werden kann, und/oder insbesondere
- die Schwenkrichtung (von der Ausgangsstellung in den Betätigungszustand) des Schubarmes (23) von Uhrzeigersinn auf Gegenuhrzeigersinn und umgekehrt zwecks Umschaltung der Wirkrichtung verstellt werden kann, insbesondere durch Verlagerbarkeit des Schubarmes (23), insbesondere wenn er sich in seiner Ausgangsstellung befindet, insbesondere in Längsrichtung (10), sodass sein Betätigungsende (23b) mit einem anderen Bereich, insbesondere einer anderen Wirkflanke (21a/b) des Spannhebels (21), in Kontakt gerät, und/oder insbesondere
- die Verlagerung des Schubarmes (23) wenig-

12

10

20

15

25

30

35

45

40

50

15

20

25

35

45

50

55

stens auch eine Verschwenkung des Schubarmes (23) relativ zur Schubstange (4), insbesondere von der einen auf die andere Seite der Querrichtung (11), umfasst.

11. Schrittantrieb nach einem der vorhergehenden Ansprüche,

23

dadurch gekennzeichnet, dass

- das dem Betätigungsende (23b) entgegengesetzte, auf der anderen Seite der Schubarmöffnung (25) liegende, Halterungsende (23c) des Schubarmes (23) in Längsrichtung verschiebbar ist, insbesondere mittels des Umschalters (22) in Längsrichtung (10) verschiebbar und insbesondere arretierbar ist, und/oder insbesondere
- das Halterungsende (23c) des Schubarmes (23) insbesondere mittels einer kombinierten Zug-/Druckfeder (27a) gegenüber dem Umschalter (2) in die aktivierende Richtung des Schubarmes (23) vorgespannt ist, und/oder insbesondere
- der Spannhebel (21) mittels einer Schubarmfeder (26) Schubarm und Spannhebel gemeinsam in die deaktivierte Stellung vorspannt, und/ oder insbesondere
- dass die Wirkflanken (21 a/b) des Spannhebels (21) unterschiedlich konturiert sind und **dadurch** die auf den Spannhebel (21) aufgebrachte Kraft insbesondere unterschiedlich stark auf den Schubarm (23) übersetzt wird.
- **12.** Schrittantrieb nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass

- der Stützarm (24) verschwenkbar ist, insbesondere mittels des Umschalters (22) verschwenkbar ist, zwischen zwei bez. der Querrichtung (11) gegenüberliegenden Schrägstellungen, und/oder insbesondere
- der Stützarm (24) dabei jeweils in Richtung zunehmender Schrägstellung zur Querrichtung (11) mittels Federkraft vorgespannt ist, insbesondere mittels einer einzigen kombinierten Zug-/Druckfeder (27b), die insbesondere zwischen dem Umschalter (22) und dem einen Ende des Stützarms (24) angeordnet ist, und/oder insbesondere
- der Spannhebel (21) um einen Lagerbolzen (28) verschwenkbar ist, der verlagerbar, insbesondere in Längsrichtung (10), gegenüber dem Basisteil (2) verlagerbar ist, und/oder insbesondere
- der Lagerbolzen (28) in einem Lagerarm (29) aufgenommen ist, der quer zur Schubstange (4) verschwenkbar im Basisteil (2) aufgenommen

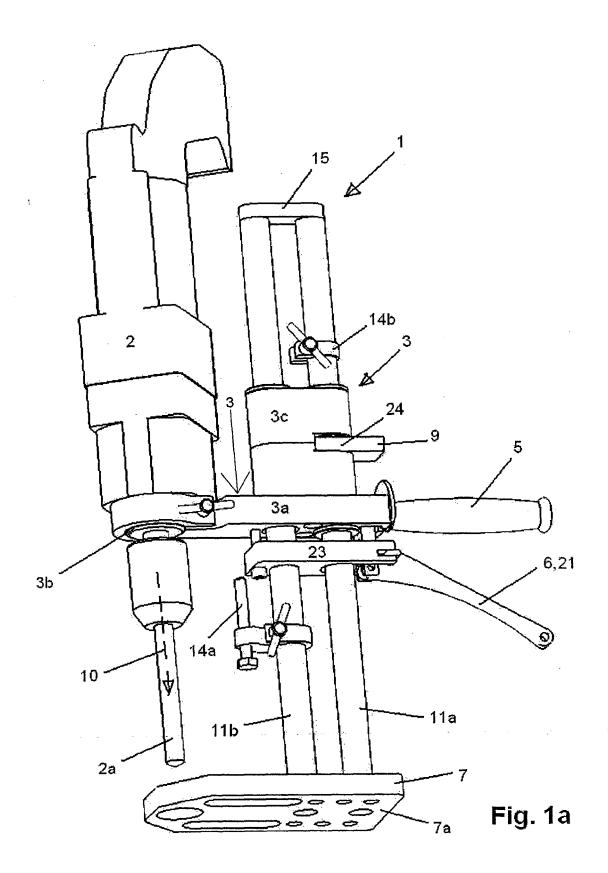
ist und insbesondere mittels des Umschalters (22) verschwenkbar ist, und/oder insbesondere - die mittels des Umschalters (22) wählbare Mittelposition (22c) des Schubarmes (26) relativ zum Spannhebel (21) sowohl Schubarm (23) als auch Stützarm (24) in der deaktivierten Position hält.

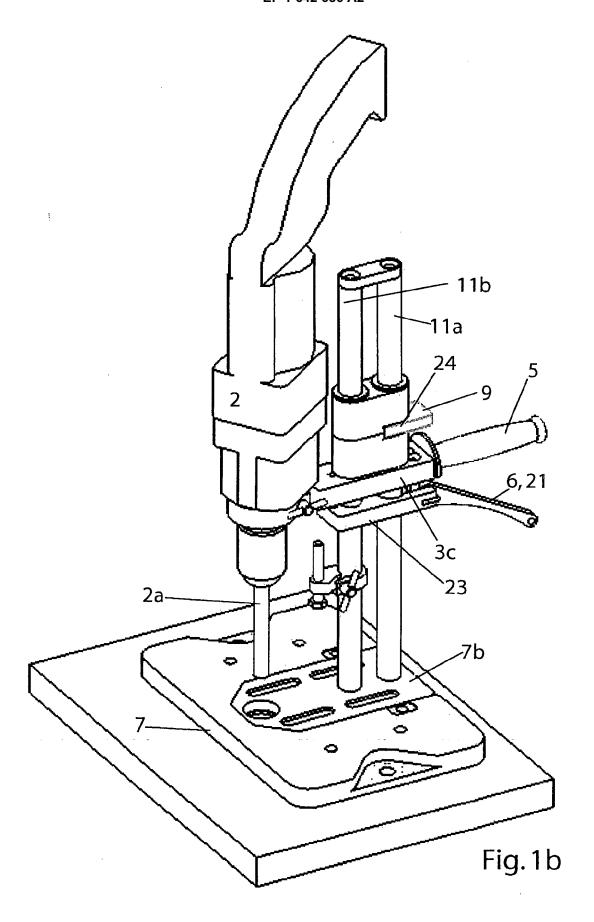
(HANDHABUNGSWEISE)

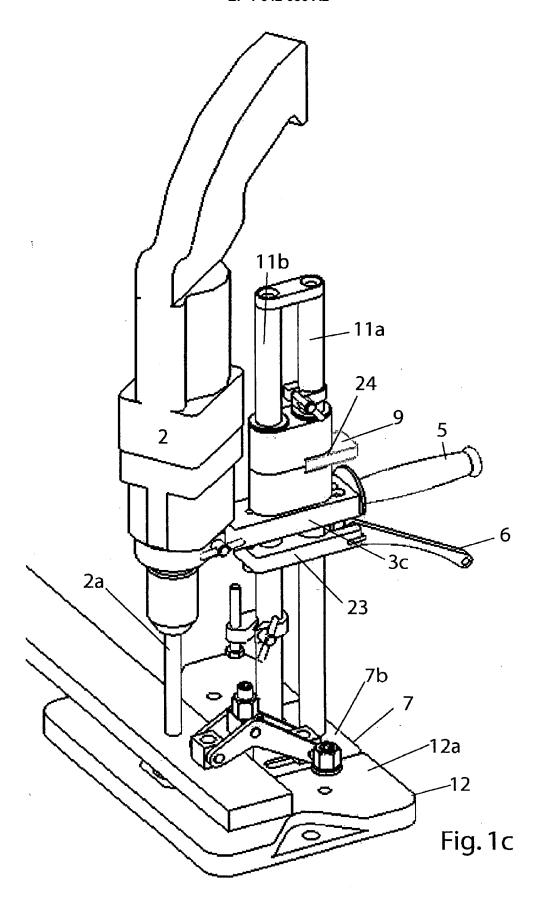
13. Verfahren zum Herstellen von Bohrungen in insbesondere großen Werkstücken mit einer großen aufzubringenden Presskraft in Bohrrichtung mittels einer Handbohrmaschine,

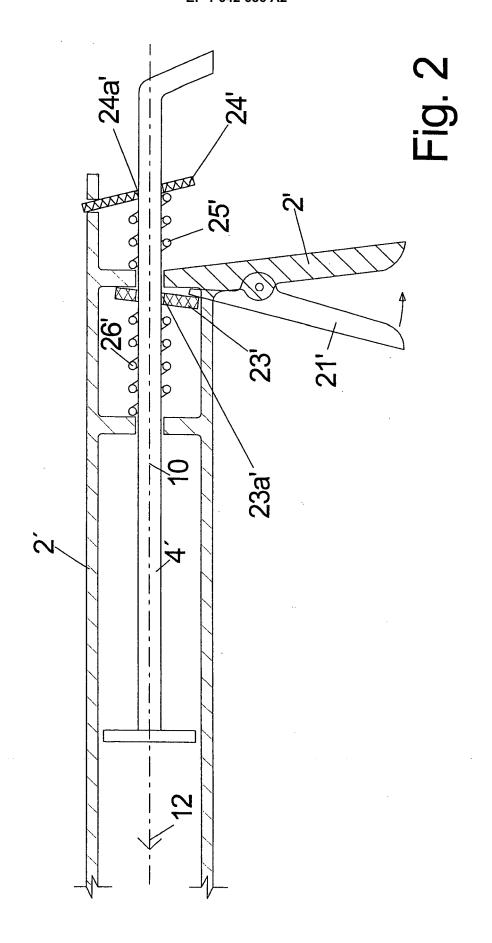
dadurch gekennzeichnet, dass

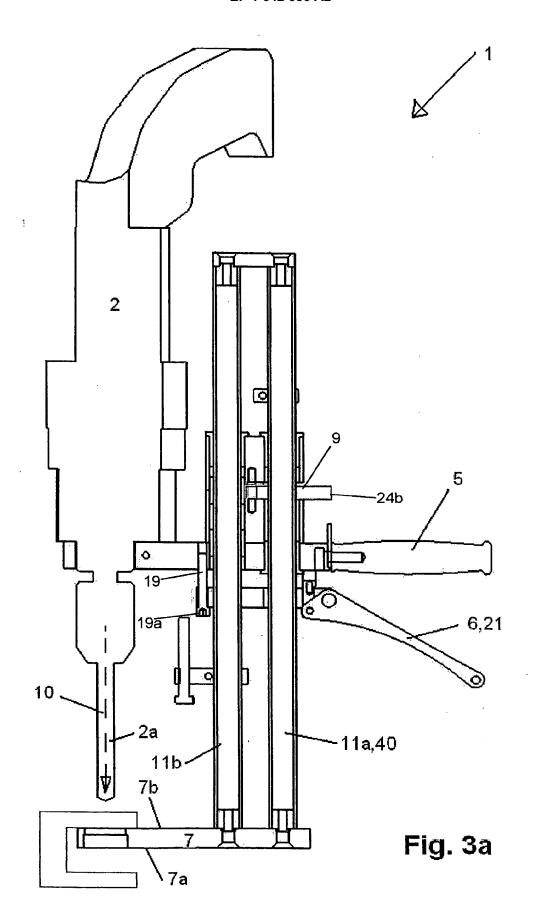
- die Handbohrmaschine (2) in die Aufnahmevorrichtung (3) des Bohrständers (1) eingesetzt und dort fixiert wird,
- der Bohrständer (1) mit seiner Fußplatte (7) vorzugsweise an der Rückseite am Werkstück angeordnet wird,
- und dann die Bohrerspitze am Zielpunkt positioniert wird.
- dabei die eine Hand des Benutzers den Pistolengriff der Handbohrmaschine (2) hält und die andere Hand des Benutzers den quer zur Bohrrichtung (10) abstehenden Haltegriff (5) des Bohrständers (1) hält, und
- die andere Hand unter gleichzeitiger Betätigung des Betätigungsgriffes (6) die Aufnahmevorrichtung (3) zusammen mit der Handbohrmaschine (2) gegen das Werkstück in Bohrrichtung (10) vorwärts bewegt und nach Erreichen der Werkstückoberfläche die Bohrung herstellt, bis zur gewünschten Tiefe unter fortlaufender Betätigung des Betätigungsgriffes (6),
- nach Beendigung der Betätigung des Betätigungsgriffes (6) die andere Hand ohne Loslassen des Haltegriffes (5) den Rückzugschalter (9) des Bohrständers (1) betätigt und nach dem resultierenden Wegfahren der Fußplatte (7) von der Aufnahmevorrichtung (3) und der Bohrmaschine (2) den Bohrer aus dem hergestellten Bohrloch zurückzieht und
- der nun frei gewordene Bohrständer (1) vom Werkstück entfernt wird.
- **14.** Verfahren nach einem der vorhergehenden Verfahrensansprüche,

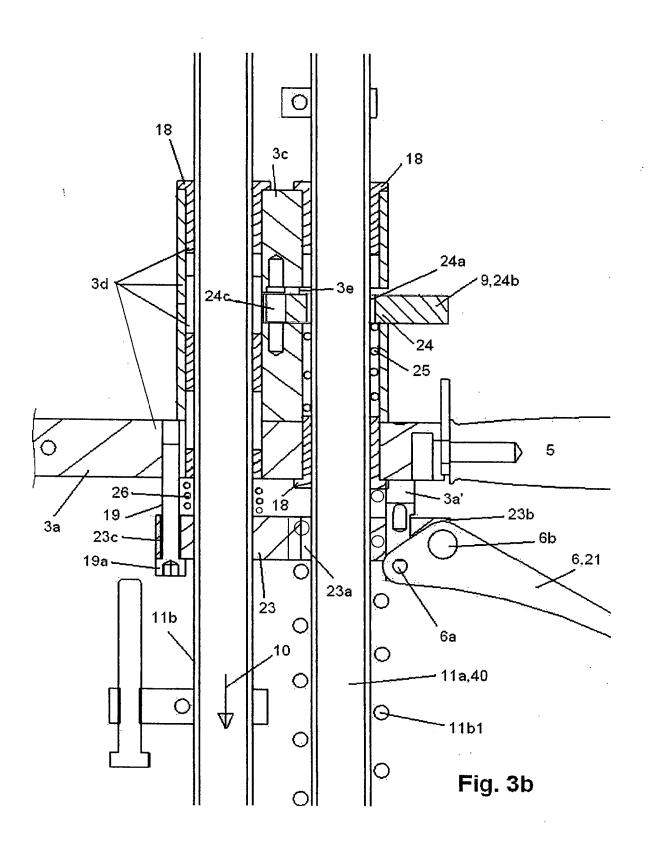

dadurch gekennzeichnet, dass


- vor Eintauchen des Bohrers in das Werkstück die andere Hand des Benutzers den Betätigungsgriff (6) betätigt, insbesondere entgegen der Bohrrichtung zieht, unter Heranziehen der Fußplatte (7) an das Werkstück, und/oder insbesondere
- das Anlegen der Fußplatte (7) mit der Unter-


seite (7a) auf der Oberfläche des Werkstückes erfolgt und die den Haltegriff (5) haltende Hand in Bohrrichtung (10) gegen den Haltegriff (5) drückt, und/oder insbesondere


- nach dem Aufsetzten der Fußplatte (7) mit ihrer Unterseite (7a) auf die Oberseite des Werkstükkes und vor Beginn des Bohrvorganges die Fußplatte (7) fest mit dem Werkstück verbunden wird, insbesondere so fest, dass die notwendige Lösekraft größer ist, als die vom Benutzer mittels des Bohrständers (1) aufzubringende Presskraft gegen das Werkstück.


. . . .



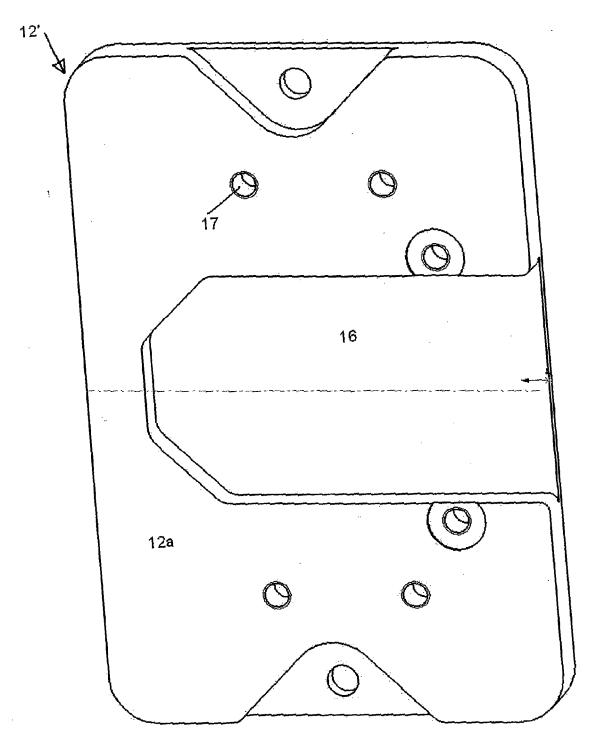
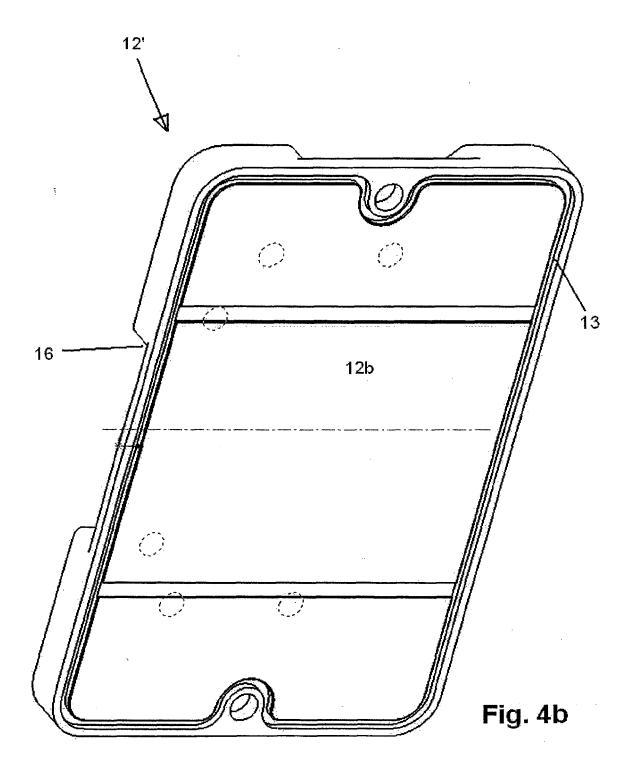



Fig. 4a

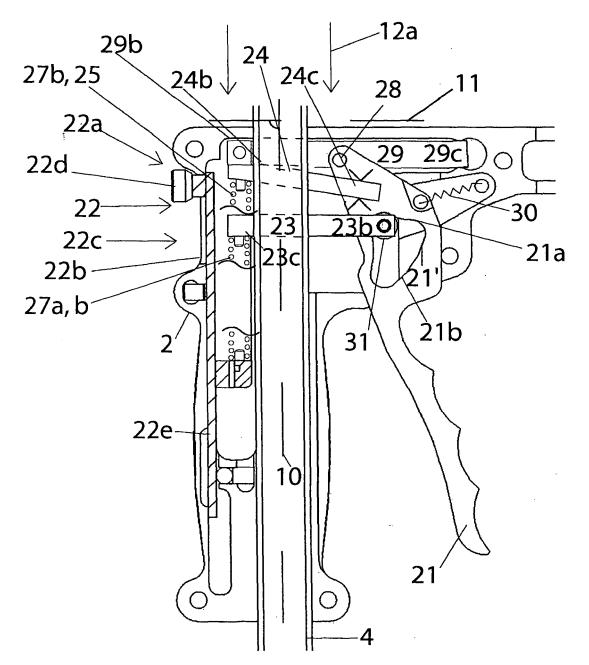


Fig. 5a

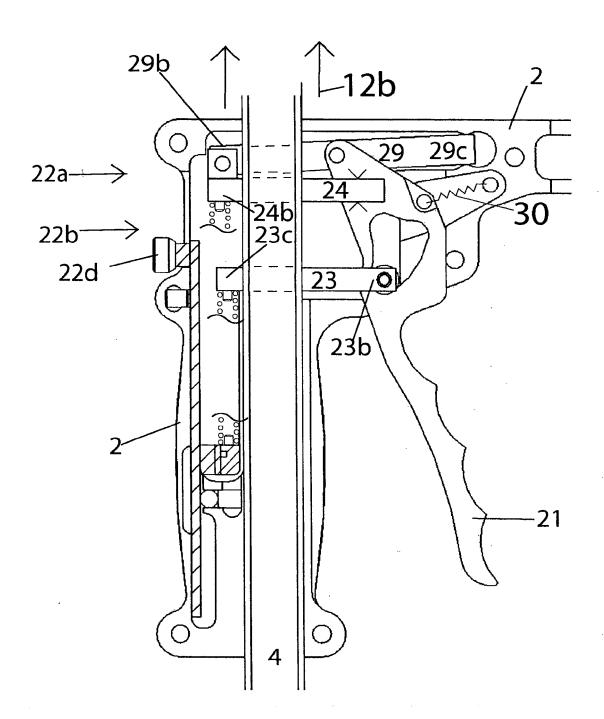


Fig. 5b1

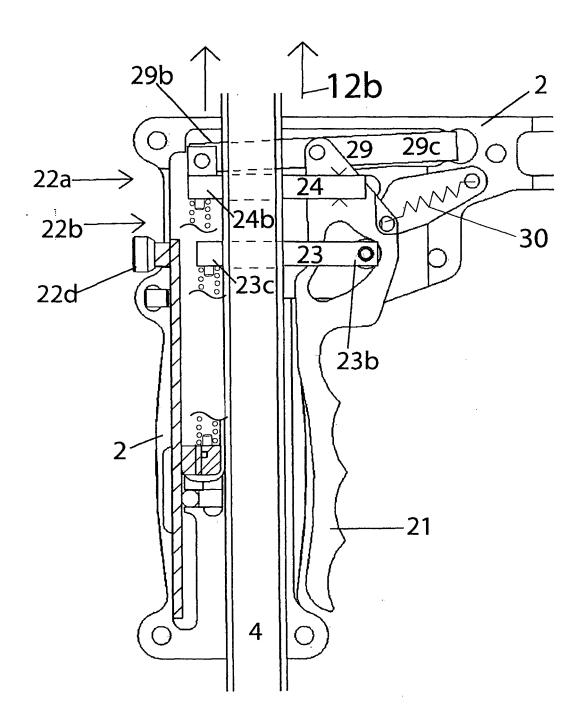
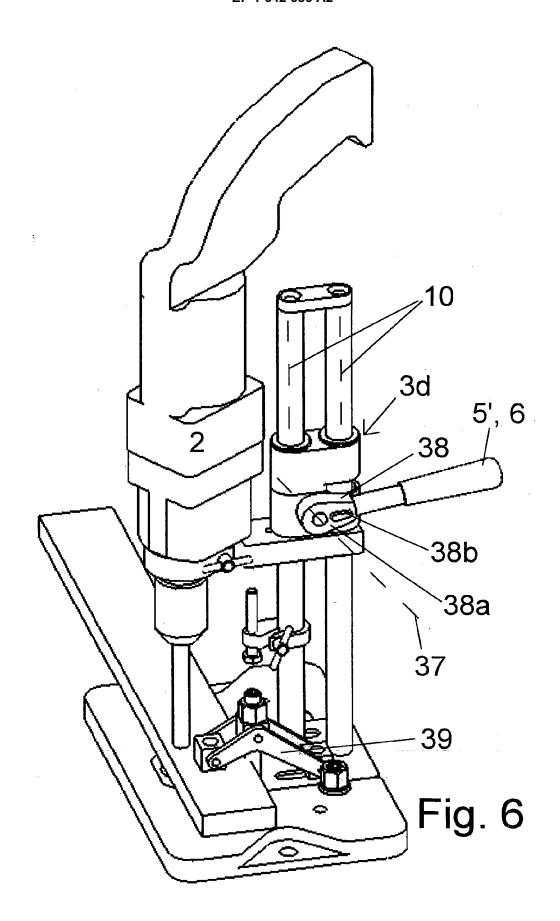
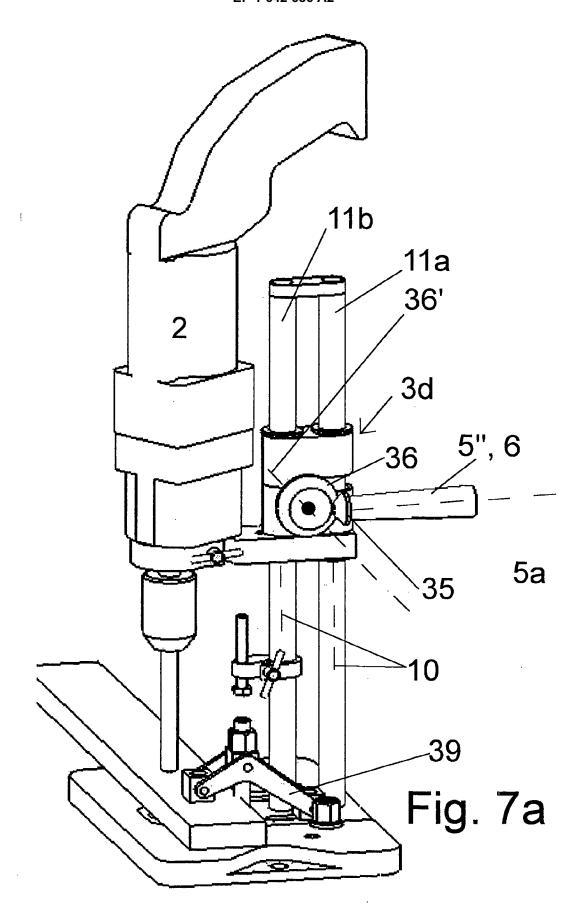
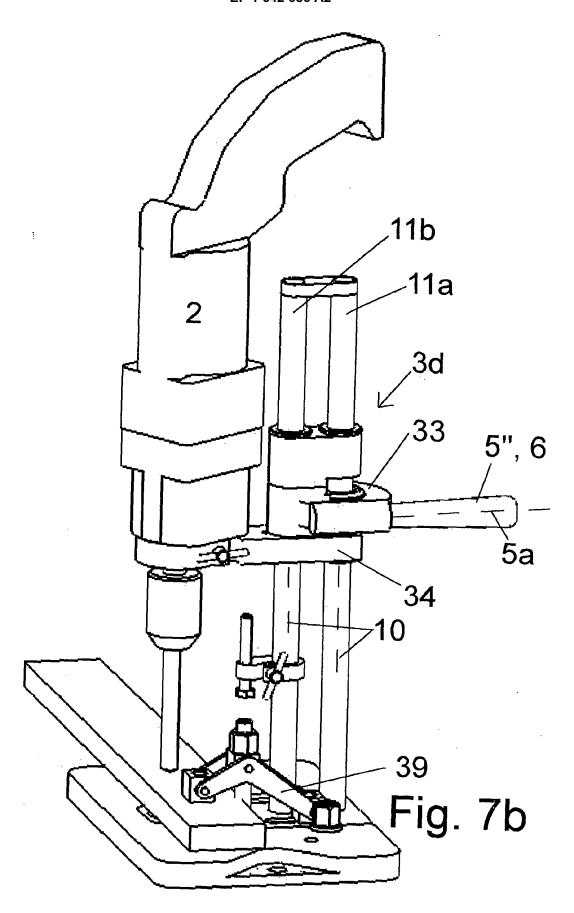





Fig. 5b2

