| (19) |
 |
|
(11) |
EP 1 644 333 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
23.09.2009 Bulletin 2009/39 |
| (22) |
Date of filing: 25.06.2004 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/EP2004/006893 |
| (87) |
International publication number: |
|
WO 2005/005391 (20.01.2005 Gazette 2005/03) |
|
| (54) |
IN-SITU TREATMENT OF PYRIDINE-2,3-DICARBOXYLIC ACID ESTERS WITH AN OXIDIZING AGENT
IN-SITU-BEHANDLUNG VON PYRIDIN-2,3-DICARBONSÄUREESTERN MIT EINEM OXIDATIONSMITTEL
TRAITEMENT IN SITU D'ESTERS D'ACIDE PYRIDINE-2,3-DICARBOXYLIQUE A L'AIDE D'UN AGENT
OXYDANT
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR
|
|
Designated Extension States: |
|
AL HR LT LV MK |
| (30) |
Priority: |
02.07.2003 US 484485 P
|
| (43) |
Date of publication of application: |
|
12.04.2006 Bulletin 2006/15 |
| (73) |
Proprietor: BASF SE |
|
67056 Ludwigshafen (DE) |
|
| (72) |
Inventor: |
|
- LEVY, Michael, A.
Hannibal, MO 63401 (US)
|
| (56) |
References cited: :
US-A- 5 334 576 US-A- 5 614 635
|
US-A- 5 378 843 US-A- 6 080 867
|
|
| |
|
|
|
|
| |
|
|
|
Remarks: |
|
The file contains technical information submitted after the application was filed
and not included in this specification |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The invention relates to methods for improving product quality of pyridine-2,3-dicarboxylic
acids. In particular, the invention relates to the in-situ treatment of saponified
pyridine-2,3-dicarboxylic acid esters with hydrogen peroxide to produce high quality
diacids.
BACKGROUND OF THE INVENTION
[0002] Pyridine-2,3-dicarboxylate derivatives are useful intermediates for the preparation
of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts. Several such
herbicidal compounds are described in
U.S. Patent No. 5,334,576 and
U.S. Patent No. 4,798,619. A number of processes for the manufacture of pyridinc-2,3-dicarboxylatc derivatives,
and their intermediates, have been described previously. For example,
U.S. Patent No. 4,723,011 provides a method for preparing pyridine-2,3-dicarboxylic acid esters by reacting
an α-halo-β-ketoester with an α,β-unsaturated aldehyde or ketone in the presence of
an ammonium salt.
U.S. Patent No. 4,816,588 provides a method for converting 8-substituted quinolines into pyridine-2,3-dicarboxylic
acid esters by batch oxidation with large stoichiometric excesses of hydrogen peroxide
and base.
U.S. Patent No. 5,614,635 provides a method for the preparation of pyridine-2,3-dicarboxylic acid esters by
continuous oxidation of substituted quinolines with a large stoichiometric excess
of hydrogen peroxide and base. The methods provided by these patents and others in
the art have been criticized as being plagued with the problems of low yield and low
purity, and the use of unstable halogenated oxalacetate intermediates.
[0003] U.S. Patent No. 6,080,867 and
U.S. Patent No. 5,925,764 disclose methods of preparing pyridine-2,3-dicrboxylic acid esters that purports
to solve the problems described above. According to one method, an amino alkoxy (or
alkylthio) oxalacetate is reacted with an α,β-unsaturated ketone in the presence of
a solvent and an ammonia source. According to a second method, an amino alkoxy (or
alkylthio)maleate or fumarate is reacted with an α,β-unsaturated ketone in the presence
of a solvent.
[0004] While these methods overcome some of the problems of the earlier synthesis methods,
pyridine-2,3-dicarboxylic acid esters manufactured according to this process, and
their corresponding diacids, still contain impurities that affect the quality and
processing behavior of process streams, product streams, and effluent streams. In
particular, when the above-described method has been implemented for full-scale manufacturing
of pyridine-2,3-dicarboxylic acid analogs, such as 5-ethyl-pyridine-2,3-dicarboxylic
acid, product quality issues have been observed. Especially noted quality concerns
include problems with product purity, color, and odor, and problems resulting from
the formation of dark tars in process waste streams. As a direct result of these product
quality problems, extra processing costs must be expended to dry filter product, develop
procedures to remove impurities from below-specification diester and diacid, and clean
tars from effluent treatment systems.
[0005] In light of the aforementioned problems, there remains a need in the art for an improved
process for the manufacture of pyridine-2,3-dicarboxylic acid wherein the impurities
are removed during the manufacturing process. Such an improved process would provide
an improved diacid product and reduce manufacturing costs that are unnecessarily elevated
due to the requirement of removing impurities from product streams and effluent streams.
BRIEF SUMMARY OF THE INVENTION
[0006] The present invention provides a method for the in-situ treatment of a pyridine-2,3-dicarboxylic
acid ester process stream with an oxidizing agent to improve product quality. In particular,
it has been discovered that treating a pyridine-2,3-dicarboxylic acid ester process
stream with an oxidizing agent, such as hydrogen peroxide, during the manufacturing
process chemically removes impurities that would otherwise have to be later removed
from product and effluent streams at a much higher cost and with much greater effort.
For example, it has been found that the addition of relatively small amounts of hydrogen
peroxide to a saponified diester process stream produces rapid removal of dark organic
impurities.
[0007] In one aspect, the invention provides a method for the in-situ removal of impurities
from a saponified solution of pyridine-2,3-dicarboxylic acid ester. This method comprises
the steps of providing a process stream comprised of a saponified solution comprising
pyridine-2,3-dicarboxylic acid ester and a base, reacting the solution with an oxidizing
agent in an amount effective to remove impurities, thereby providing a purified saponified
solution, and collecting the purified saponified solution.
[0008] According to one embodiment, the method comprises the steps of providing a solution
of pyridine-2,3-dicarboxylic acid ester containing impurities, saponifying the solution
by adding a base, thereby forming a saponified solution of a pyridine-2,3-dicarboxylic
acid salt, reacting the solution with an oxidizing agent in an amount effective to
remove the impurities, adding an acid to the solution, thereby acidifying the solution
and converting the pyridine-2,3-dicarboxylic acid salt into the corresponding pyridine-2,3-dicarboxylic
acid, and collecting a purified solution of pyridine-2,3-dicarboxylic acid.
[0009] In another aspect of the invention there is provided a method for the preparation
of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts. This method
comprises the steps of providing a solution of pyridine-2,3-dicarboxylic acid ester,
saponifying the solution by adding a base, thereby forming a saponified solution of
pyridine-2,3-dicarboxylic acid salt, reacting the solution with an oxidizing agent
in an amount effective to remove the impurities, adding an acid to the solution, thereby
acidifying the solution and converting the pyridine-2,3-dicarboxylic acid salt into
the corresponding pyridine-2,3-dicarboxylic acid, and using the pyridine-2,3-dicarboxylic
acid as an intermediate in the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic
acids, esters, and salts.
[0010] These and other features and advantages of the present invention will become more
readily apparent to those skilled in the art upon consideration of the following detailed
description, which describes both the preferred and alternative embodiments of the
present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0011] The present invention provides a method for the in-situ treatment of a pyridine-2,3-dicarboxylic
acid ester process stream wherein said pyridine-2,3-dicarboxylic acid ester is a compound
of the formula

wherein R
4 and R
6 are each independently H, C
1-C
6 alkyl, C
1-C
6 alkenyl, phenyl or substituted phenyl; R
5 is H; halogen; C
1-C
6 alkyl optionally substituted with one or more C
1-C
4 alkoxy groups; C
1-C
6 alkenyl; phenyl or substituted phenyl; and R
2 and R
3 are each independently C
1-C
6 alkyl, phenyl or substituted phenyl, with an oxidizing agent selected from the group
consisting of peroxides, peroxyacids, and hypohalite salts to improve product quality.
As described above, various methods are known in the art for preparing pyridine-2,3-dicarboxylic
acid ester. Particularly relevant to the present invention are the methods described
in
U.S. Patent No. 6,080,867 and
U.S. Patent No. 5,925,764. One method involves the reaction of an amino alkoxy (or alkylthio)oxalacetate with
an α,β-unsaturated ketone in the presence of a solvent and an ammonia source. This
method can be illustrated as shown below in flow diagram I.

wherein X is O or S; R
1 is C
1-C
6 alkyl, phenyl or substituted phenyl; R
2 and R
3 are each independently C
1-C
6 alkyl, phenyl or substituted phenyl; R
4 and R
6 are each independently H, C
1-C
6 alkyl, C
1-C
6 alkenyl, phenyl or substituted phenyl; and R
5 is H, halogen, C
1-C
6 alkyl optionally substituted with one or more C
1-C
4 alkoxy groups, C
1-C
6 alkenyl, phenyl, or substituted phenyl. Another method involves the reaction of an
amino alkoxy (or alkylthio)maleate or fumarate with an α,β-unsaturated ketone in the
presence of a solvent. This method can be illustrated as shown below in flow diagram
II.

wherein X and R
1-R
6 are as described above.
[0012] The present invention, however, provides a method for the preparation of pyridine-2,3-dicarboxylic
acid that includes a distinct improvement over the known production methods. The improvement
resides in the discovery that the addition of an oxidizing agent, such as hydrogen
peroxide (H
2O
2), to a process stream during the manufacturing of the product chemically removes
impurities from the product.
[0013] In the manufacture of pyridine-2,3-dicarboxylic acid according to the prior known
methods, impurities remain in the product and effluent streams and must be removed,
leading to increased process complexity and cost. Addition of an oxidation treatment
step to the prior known method described above has been shown to produce higher quality
diacids, which also improves the manufacturing process of additional products made
using pyridine-2,3-dicarboxylic acids as intermediate, such as imidazolinone herbicides.
[0014] The purified pyridine-2,3-dicarboxylic acid of the present invention can be used
according to prior known methods in the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic
acids, esters, and salts, such as the methods provided in
U.S. Patent No. 5,334,576.
[0015] Accordingly, the present invention provides a method for the in-situ treatment of
a pyridine-2,3-dicarboxylic acid ester process stream wherein the pyridine-2,3-dicarboxylic
acid ester is a compound of the formula given above, with an oxidizing agent selected
from peroxides, peroxyacids and hypohalite salts, to improve product quality. In one
preferred embodiment of the invention, the method comprises the steps of providing
a process stream comprised of a saponified solution comprising a pyridine-2,3-dicarboxylic
acid ester and a base, reacting the solution with an oxidizing agent in an amount
effective to remove impurities, thereby providing a purified saponified solution,
and collecting the purified saponified solution.
[0016] It is well known in the art that esters are hydrolyzed, either by aqueous base or
aqueous acid, to yield carboxylic acid plus alcohol. A general scheme for such a reaction
is shown below in flow diagram III.

[0017] Ester hydrolysis with a base is known to have an intermediate step wherein a salt
of the carboxylic acid is formed. The final carboxylic acid product is formed upon
the addition of an acid. The entire scheme for a base-promoted ester hydrolysis would
be understood to proceed according to flow diagram IV.

[0018] Ester hydrolysis in a basic solution is generally known by the common phrase "saponification,"
and is commonly used in the art to convert an ester, such as pyridine-2,3-dicarboxylate,
into the corresponding acid. Any base effective in achieving hydrolysis of an ester
into its corresponding carboxylic acid could be used in the method of the present
invention. Generally, strong bases capable of producing water-soluble salts can be
used, and hydroxides, such as sodium hydroxide (NaOH) and potassium hydroxide (KOH),
have been found particularly useful in the present invention. Other bases useful according
to the method of the present invention would be readily apparent to one of ordinary
skill in the art and therefore are also contemplated by the present invention. The
action of hydrolysis of an ester to form the corresponding carboxylic acid is generally
understood to require the acid or base used for hydrolysis to be in an aqueous solution.
It is thus understood that the saponified solution of the present invention would
also include an aqueous component. Further, a saponified ester is fully converted
to the corresponding carboxylic acid through an acidification step following the hydrolysis.
Any acid useful in a common acidification process can be used according to the method
of the present invention. Particularly preferred is sulfuric acid (H
2SO
4).
[0019] A process stream wherein saponification of an ester is performed is referred to herein
as an aqueous saponification process stream. Further, a pyridine-2,3-dicarboxylic
acid ester processed through such a stream could be referred to as a saponified diester,
or, in a method where sodium hydroxide is used as the saponification base, as a NaOH-saponified
diester. As the saponification step hydrolyzes the diester into a diacid salt, the
process stream wherein the saponification reaction occurs would be expected to contain
a mixture of diester and the corresponding diacid salt. A further acidification step
could then be used to prepare the final diacid product.
[0020] The method of the present invention comprises an additional processing step that
involving introduction of an oxidization agent before final product isolation, which
removes impurities from the product stream. This added step involves the addition
of an effective amount of an oxidizing agent to a selected process stream containing
a saponified diester. As used herein, an "oxidizing agent" is an agent that participates
in an oxidation-reduction reaction with a reducing agent, wherein electrons are transferred
from the reducing agent to the oxidizing agent. The phrase "effective amount" as used
herein is intended to refer to an amount that has the desired effect of chemically
removing impurities normally found in the diester process stream. Any known oxidizing
agent would be expected to be useful according to the method of the present invention;
however, oxidizing agents commonly known in the art as peroxides and peroxyacids have
been found to be particularly effective. Peroxides are compounds that, when in a solution,
provide ions comprised of two oxygen atoms (having an overall charge of -2), and can
be structurally shown as O
22-. A common example of a peroxide is hydrogen peroxide (H
2O
2). Peroxyacids are acids derived from hydrogen peroxide and also provide an O
22- group in solution. Examples of peroxyacids that could be used according to the present
invention are peracetic acid (CH
3COOOH) and perbenzoic acid (C
6H
5COOOH). Additionally, hypohalite salts, such as sodium hypochlorite (NaOCl) or sodium
hypobromite (NaOBr), are also contemplated as oxidizing agents useful according to
the present invention. Strong oxidizers, such as chromates, could also be used in
the method of the present invention so long as the oxidization was not allowed to
proceed to the point of oxidizing the alkyl portion of the diacid molecule.
[0021] In one embodiment of the present invention, it has been found that relatively small
amounts of oxidizer are required to be effective at removing the impurities. For example,
when hydrogen peroxide is used as the oxidizer, ratios in the range of about 0.1 to
about 2.0 moles of H
2O
2 per mole of diester, preferably about 0.2 to about 0.8 moles of H
2O
2 per mole of diester, have been found effective for removing impurities.
[0022] The method according to the present invention is easily adaptable to any known method
of preparing pyridine-2,3-dicarboxylic acid, especially methods, such as those described
above, wherein pyridine-2,3-dicarboxylic acid ester is prepared. As would be readily
understood by one of ordinary skill in the art, processing conditions (such as temperature,
amount of oxidizer, reaction time, and added shear) should generally be considered
as a whole when establishing preferred ranges individually. For example, it would
be expected that reaction temperature would have an effect on the amount of oxidizer
necessary to remove the impurities, and vice versa. Further, the amount of impurities
present in the saponified solution is another factor that must be considered when
determining the amount of oxidizing agent required and the process conditions that
should be utilized. In one particular embodiment, an effective processing temperature
has been found to be in the range of from about 60°C to about 110°C.
[0023] The rate of addition of the oxidizer to the saponified diester process stream can
also affect the purity of the resultant diacid product. According to one embodiment
of the present invention, removal of impurities normally present in the product and
effluent streams associated with the method described above is generally achieved
when the oxidizer is added over a period of about 15 minutes to about 120 minutes.
Additionally, it has been found useful to allow additional reaction time after addition
of the oxidizer to the saponified diester process stream in order to allow for removal
of any residual oxidizing agent. Further, adding shear to the solution, such as in
the form of stirring or other similarly effective method of agitation, has also been
found useful. In one embodiment of the present invention, the added reaction time
after addition of the oxidizer in association with the added shear is preferably sustained
for a period of about 15 minutes to about 120 minutes.
[0024] It is generally desirable to add the oxidizing agent and stir the reaction mixture
over a period that both minimizes cycle time (increasing productivity) and minimizes
foaming of the reaction mixture. Additionally, it would be expected that conditions,
such as temperature, time of addition, and stirring time, would be different for a
continuous process than for a batch process. Optimization of such parameters would
be expected to be readily apparent to one of ordinary skill in the art without undue
experimentation.
[0025] It is commonly understood that a by-product of the saponification step is an alcohol
corresponding to the R group removed during the hydrolysis step. See flow diagram
III above. For example, saponification of a simple ester, such as ethyl propanoate,
would be readily understood by one of ordinary skill in the art to produce propanoic
acid and, as a by-product, ethanol. The production of such alcohol by-products would
be similarly expected in the saponification of a diester as described above. When
performed according to the method of the present invention, alcohol by-products can
be present during the chemical removal of the impurities through addition of the oxidizing
agent and be later removed during isolation of the diacid product, or the alcohol
by-product can be removed prior to the addition of the oxidizing agent. Removal of
the alcohol by-product, whether before or after addition of the oxidizing agent, can
be performed by any method readily apparent to one of ordinary skill in the art, such
as by distillation.
[0026] Typically, the diester to be treated according to the present invention has a purity
level of about 85 to about 92%. Following treatment according to the present invention,
the resulting diacid product typically has a purity of at least about 97%, more preferably
at least about 98%. Due to the impurities normally found in a pyridine-2,3-dicarboxylic
acid ester saponification mixture, the solution is generally a dark or black color.
Chemical removal of the impurities through the addition of the oxidizing agent can
usually be visually detected by a color change in the saponification mixture. A color
change from black to a lighter tint, such as a light amber color, will generally indicate
that the chemical removal of the impurities is substantially complete, and the mixture
can be tested to confirm that residual oxidizing agent is not present. Such testing
method would be immediately recognizable to one of ordinary skill in the art. For
example, when hydrogen peroxide is used as the oxidizing agent, standard testing strips,
such as KI/starch paper, could be used.
[0027] The purified saponification mixture can then be further processed depending upon
the desired end-product. For example, purified diacid salt, as described above, could
be isolated and recovered. Alternatively, acidification could be performed and the
purified pyridine-2,3-dicarboxylic acid could be isolated and recovered. According
to either recovery, known recovery and isolation procedures that would be readily
apparent to one of ordinary skill in the art could be used.
[0028] The method according to the present invention is capable of providing a product stream
that is essentially free from problematic impurities, and also capable of providing
effluent streams that are essentially free from impurities. As the recycle and reuse
of the filtrate from the washed product, as well as other effluent streams, is common
in large scale manufacturing of pyridine-2,3-dicarboxylic acid and ester, the impurities
in the product are also susceptible to recycling. This leads to an amplification effect
wherein impurities are being introduced into the process stream through recycled filtrate
as well as being produced anew during the esterification process. The method of the
present invention also solves this problem, though, as the impurities are removed
during manufacturing rather than after product recovery. Thus, the present invention
also contemplates a method for removing impurities from a pyridine-2,3-dicarboxylic
acid manufacturing process such that the resultant effluent streams, filtrates, and
process by-products are essentially free from impurities.
[0029] As the introduction of the oxidizing agent is effective at removing impurities during
the manufacturing process, particularly in a saponified diester process stream, a
further embodiment of the present invention is a method for the preparation of pyridine-2,3-dicarboxylic
acid salt that are essentially free from impurities. According to this embodiment
of the invention, the method comprises providing a process stream comprising a saponified
solution of pyridine-2,3-dicarboxylic acid ester, reacting the saponified solution
with an oxidizing agent in an amount effective to remove impurities, and recovering
the essentially pure pyridine-2,3-dicarboxylic acid salt.
[0030] As described previously, the saponified esters form carboxylic acid salts corresponding
to the base used in the saponification. For example, a 5-ethyl-pyridine-2,3-dicarboxylate
saponified with NaOH would be expected to form a 5-ediyl-pyridine-2,3-dicarboxylic
acid sodium salt. The intermediate salt in the process stream could be recovered as
a product or recovered for later use in preparing other compounds, including carboxylic
acids. Alternatively, the diacid salt could be allowed to remain in the process stream
for later conversion to the carboxylic acid through acidification. While such salt
can be produced according to the prior known methods disclosed above, the diacid salt
is still plagued with the undesirable impurities formed during the preparation of
the diester. The method according to the present invention solves this problem through
the addition of an oxidizing agent to the saponification solution. The impurities
are removed from the saponified solution in situ, normally prior to the acidification
of the diacid salt. Thus, pyridine-2,3-dicarboxylic acid salt that is essentially
free from impurities can be prepared.
[0031] In yet another aspect, the present invention provides a method for the preparation
of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts, such as imazethapyr.
This method comprises the steps of providing a solution of pyridine-2,3-dicarboxylic
acid ester, saponifying the solution by adding a base, thereby forming a saponified
solution of pyridine-2,3-dicarboxylic acid salt, reacting the solution with an oxidizing
agent in an amount effective to remove the impurities, adding an acid to the solution,
thereby acidifying the solution and converting the pyridine-2,3-dicarboxylic acid
salt into the corresponding pyridine-2,3-dicarboxylic acid, and using the pyridine-2,3-dicarboxylic
acid as an intermediate in the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic
acids, esters, and salts. The processing steps that may be utilized to form such herbicides
with a pyridine-2,3-dicarboxylic acid intermediate are well known in the art. For
example, the diacid can be converted to the corresponding anhydride using a dehydrating
agent, and the anhydride can be used in the reaction scheme described in
U.S. Patent Nos. 4,658,030 and
4,782,157.
EXPERIMENTAL
Example I
[0032] A saponification mixture of crude diester (100 grams), water (103 grams), and 50%
NaOH (76 grams) was heated to 100°C. The alcohol distillate by-product of the saponification
mixture was collected (33 grams). This was followed by the slow addition of 30 grams
of 35% H
2O
2 to the diacid salt solution over 1 hour, maintaining the temperature at 95°C. The
solution was initially black in color. Addition of the H
2O
2 caused foaming. Foaming and reaction color were both markedly reduced as the addition
of the H
2O
2 proceeded. After addition of all H
2O
2, the solution was stirred for 2 hours while maintaining a temperature of 95°C. This
was followed by testing for residual peroxide using KI/starch paper, which tested
negative. Water was then added (67 grams) to the oxidized solution.
[0033] The product was isolated by precipitation and the filtercake was washed with H
2O (50 grams). The wet filtercake had a mass of 76.3 grams, and the mother liquor (310
grams) containing 4.0% diacid was recycled. The resulting off-white filtercake was
dried overnight. The dried recovered diacid product had a mass of 61.0 grams at 98.9%
purity.
1. A method for the in-situ removal of impurities from a saponified solution of pyridine-2,3-dicarboxylic
acid ester, said method comprising the steps of:
providing a saponified solution comprising a pyridine-2,3-dicarboxylic acid ester
and a base;
reacting said solution with an oxidizing agent in an amount effective to remove impurities,
thereby providing a purified saponified solution; and
collecting said purified saponified solution,
wherein said pyridine-2,3-dicarboxylic acid ester is a compound of the formula

wherein R4 and R6 are each independently H, C1-C6 alkyl, C1-C6 alkenyl, phenyl or substituted phenyl;
R5 is H; halogen; C1-C6 alkyl optionally substituted with one or more C1-C4 alkoxy groups; C1-C6 alkenyl; phenyl or substituted phenyl; and R2 and R3 are each independently C1-C6 alkyl, phenyl or substituted phenyl; and
wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids,
and hypohalite salts.
2. The method of Claim 1 wherein said base is a hydroxide.
3. The method of Claim 2 wherein said hydroxide is sodium hydroxide.
4. The method of Claim 1 wherein said oxidizing agent is hydrogen peroxide.
5. The method of Claim 1 wherein said oxidizing agent is sodium hypochlorite or sodium
hypobromite.
6. The method of Claim 4 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide
per mole of pyridine-2,3-dicarboxylic acid ester.
7. The method of Claim 4 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide
per mole of pyridine-2,3-dicarboxylic acid ester.
8. The method of Claim 1 wherein said reaction is performed at a temperature of about
60°C to about 114°C.
9. The method of Claim 1 wherein said oxidizing agent is added over a time period of
about 15 to about 120 minutes.
10. The method of Claim 1 wherein said reaction further comprises stirring said saponified
solution.
11. The method of Claim 10 wherein said stirring is carried out for a time period of about
15 to about 120 minutes.
12. A method for the in-situ removal of impurities from a solution of pyridine-2,3-dicarboxylic
acid ester, said method comprising the steps of:
providing a solution comprising a pyridine-2,3-dicarboxylic acid ester;
saponifying said solution by adding a base, thereby forming a saponified solution
comprising a pyridine-2,3-dicarboxylic acid salt;
reacting said solution with an oxidizing agent in an amount effective to remove impurities,
thereby providing a purified saponified solution;
adding an acid to said solution, thereby acidifying said solution and converting said
pyridine-2,3-dicarboxylic acid salt into the corresponding pyridine-2,3-dicarboxylic
acid; and
collecting a purified solution comprising the pyridine-2,3-dicarboxylic acid, wherein
said pyridine-2,3-dicarboxylic acid ester is a compound of the formula

wherein R4 and R6 are each independently H, C1-C6 alkyl, C1-C6 alkenyl, phenyl or substituted phenyl,;
R5 is H; halogen; C1-C6 alkyl optionally substituted with one or more C1-C4 alkoxy groups; C1-C6 alkenyl; phenyl or substituted phenyl; and R2 and R3 are each independently C1-C6 alkyl, phenyl or substituted phenyl; and
wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids,
and hypohalite salts
13. The method of Claim 12 wherein said base is a hydroxide.
14. The method of Claim 13 wherein said hydroxide is sodium hydroxide.
15. The method of Claim 12 wherein said oxidizing agent is hydrogen peroxide.
16. The method of Claim 12 wherein said oxidizing agent is sodium hypochlorite or sodium
hypobromite.
17. The method of Claim 15 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide
per mole of pyridine-2,3-diearboxylic acid ester.
18. The method of Claim 15 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide
per mole of pyridine-2,3-dicarboxylic acid ester.
19. The method of Claim 12 wherein said reaction is performed at a temperature of about
60°C to about 110°C.
20. The method of Claim 12 wherein said oxidizing agent is added over a time period of
about 15 to about 120 minutes.
21. The method of Claim 12 wherein said reaction further comprises stirring said saponified
solution.
22. The method of Claim 21 wherein said stirring is carried out for a time period of about
15 to about 120 minutes.
23. The method of Claim 12 wherein said acid is sulfuric acid.
24. The method of Claim 12, wherein said pyridine-2,3-dicarboxylic acid is 5-methyl-pyridine-2,3-dicarboxylic
acid or 5-ethyl-pyridine-2,3-dicarboxylic acid.
25. A method for the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters,
and salts, said method comprising the steps of:
providing a solution comprising a pyridine-2,3-dicarboxylic acid ester;
saponifying said solution by adding a base, thereby forming a saponified solution
comprising a pyridine-2,3-dicarboxylic acid salt;
reacting said solution with an oxidizing agent in an amount effective to remove impurities,
thereby providing a purified saponified solution;
adding an acid to said purified saponified solution, thereby acidifying said solution
and converting said pyridine-2,3-diearboxylic acid salt into the corresponding pyridine-2,3-dicarboxylic
acid; and
using said pyridine-2,3-dicarboxylic acid as an intermediate in the preparation of
herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts, wherein said pyridinc-2,3-dicarboxylic
acid ester is a compound of the formula

wherein R4 and R6 are each independently H, C1-C6 alkyl, C1-C6 alkenyl, phenyl or substituted phenyl;
R5 is H; halogen; C1-C6 alkyl optionally substituted with one or morse C1-C4 alkoxy groups; C1-C6 alkenyl; phenyl or substituted phenyl; and R2 and R3 are each independently C1-C6 alkyl, phenyl or substituted phenyl; and
wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids,
and hypohalite salts.
26. The method of Claim 25 wherein said base is a hydroxide.
27. The method of Claim 26 wherein said hydroxide is sodium hydroxide.
28. The method of Claim 25 wherein said oxidizing agent is hydrogen peroxide.
29. The method of Claim 25 wherein said oxidizing agent is sodium hypochlorite or sodium
hypobromite.
30. The method of Claim 28 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide
per mole of pyridine-2,3-dicarboxylic acid ester.
31. The method of Claim 28 wherein said amount of hydrogen peroxide effective to remove
impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide
per mole of pyridine-2,3-dicarboxylic acid ester.
32. The method of Claim 25 wherein said reaction is performed at a temperature of about
60°C to about 110°C.
33. The method of Claim 25 wherein said oxidizing agent is added over a time period of
about 15 to about 120 minutes.
34. The method of Claim 25 wherein said reaction further comprises stirring said saponified
solution.
35. The method of Claim 34 wherein said stirring is carried out for a time period of about
15 to about 120 minutes.
36. The method of Claim 25 wherein said acid is sulfuric acid.
37. The method of Claim 25 wherein said pyridine-2,3-dicarboxylic acid is 5-methyl-pyridine-2,3-dicarboxylic
acid or 5-ethyl-pyridine-2,3-dicarboxylic acid.
1. Verfahren zur in-situ-Entfernung von Verunreinigungen aus einer verseiften Lösung
von Pyridin-2,3-dicarbonsäureester, bei dem man:
eine verseifte Lösung, die einen Pyridin-2,3-dicarbonsäureester und eine Base umfaßt,
bereitstellt;
die Lösung mit einem Oxidationsmittel in einer zur Entfernung von Verunreinigungen
wirksamen Menge umsetzt, wodurch man eine gereinigte verseifte Lösung erhält; und
die gereinigte verseifte Lösung sammelt,
wobei es sich bei dem Pyridin-2,3-dicarbonsäure-ester um eine Verbindung der Formel

worin R4 und R6 jeweils unabhängig voneinander für H, C1-C6-Alkyl, C1-C6-Alkenyl, Phenyl oder substituiertes Phenyl stehen;
R5 für H; Halogen; gegebenenfalls durch eine oder mehrere C1-C4-Alkoxygruppen substituiertes C1-C6-Alkyl; C1-C6-Alkenyl; Phenyl oder substituiertes Phenyl steht und
R2 und R3 jeweils unabhängig voneinander für C1-C6-Alkyl, Phenyl oder substituiertes Phenyl stehen;
handelt und
wobei man das Oxidationsmittel aus der Gruppe bestehend aus Peroxiden, Peroxysäuren
und Hypohalogenitsalzen auswählt.
2. Verfahren nach Anspruch 1, bei dem es sich bei der Base um ein Hydroxid handelt.
3. Verfahren nach Anspruch 2, bei dem es sich bei dem Hydroxid um Natriumhydroxid handelt.
4. Verfahren nach Anspruch 1, bei dem es sich bei dem Oxidationsmittel um Wasserstoffperoxid
handelt.
5. Verfahren nach Anspruch 1, bei dem es sich bei dem Oxidationsmittel um Natriumhypochlorit
oder Natriumhypobromit handelt.
6. Verfahren nach Anspruch 4, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,1 bis etwa
2,0 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
7. Verfahren nach Anspruch 4, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,2 bis etwa
0,8 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
8. Verfahren nach Anspruch 1, bei dem man die Umsetzung bei einer Temperatur von etwa
60°C bis etwa 110°C durchführt.
9. Verfahren nach Anspruch 1, bei dem man das Oxidationsmittel über einen Zeitraum von
etwa 15 bis etwa 120 Minuten zugibt.
10. Verfahren nach Anspruch 1, bei dem man bei der Umsetzung ferner die verseifte Lösung
rührt.
11. Verfahren nach Anspruch 10, bei dem man das Rühren über einen Zeitraum von etwa 15
bis etwa 120 Minuten durchführt.
12. Verfahren zur in-situ-Entfernung von Verunreinigungen aus einer Lösung von Pyridin-2,3-dicarbonsäureester,
bei dem man:
eine Lösung, die einen Pyridin-2,3-dicarbonsäureester umfaßt, bereitstellt;
die Lösung durch Zugabe einer Base verseift, wodurch man eine verseifte Lösung, die
ein Pyridin-2,3-dicarbonsäuresalz umfaßt, erhält;
die Lösung mit einem Oxidationsmittel in einer zur Entfernung von Verunreinigungen
wirksamen Menge umsetzt, wodurch man eine gereinigte verseifte Lösung erhält;
die Lösung mit einer Säure versetzt, wodurch die Lösung angesäuert und das Pyridin-2,3-dicarbonsäuresalz
in die entsprechende Pyridin-2,3-dicarbonsäure umgewandelt wird; und eine gereinigte
Lösung, die die Pyridin-2,3-dicarbonsäure umfaßt, sammelt,
wobei es sich bei dem Pyridzn-2,3-dicarbonsäure-ester um eine Verbindung der Formel

worin R4 und R6 jeweils unabhängig voneinander für H, C1-C6-Alkyl, C1-C6-Alkenyl, Phenyl oder substituiertes Phenyl stehen;
R5 für H; Halogen; gegebenenfalls durch eine oder mehrere C1-C4-Alkoxygruppen substituiertes C1-C6-Alkyl; C1-C6-Alkenyl; Phenyl oder substituiertes Phenyl steht und
R2 und R3 jeweils unabhängig voneinander für C1-C6-Alkyl, Phenyl oder substituiertes Phenyl stehen;
handelt und
wobei man das Oxidationsmittel aus der Gruppe bestehend aus Peroxiden, Peroxysäuren
und Hypohalogenitsalzen auswählt.
13. Verfahren nach Anspruch 12, bei dem es sich bei der Base um ein Hydroxid handelt.
14. Verfahren nach Anspruch 13, bei dem es sich bei dem Hydroxid um Natriumhydroxid handelt.
15. Verfahren nach Anspruch 12, bei dem es sich bei dem Oxidationsmittel um Wasserstoffperoxid
handelt.
16. Verfahren nach Anspruch 12, bei dem es sich bei dem Oxidationsmittel um Natriumhypochlorit
oder Natriumhypobromit handelt.
17. Verfahren nach Anspruch 15, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,1 bis etwa
2,0 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
18. Verfahren nach Anspruch 15, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,2 bis etwa
0,8 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
19. Verfahren nach Anspruch 12, bei dem man die Umsetzung bei einer Temperatur von etwa
60°C bis etwa 110°C durchführt.
20. Verfahren nach Anspruch 12, bei dem man das Oxidationsmittel über einen Zeitraum von
etwa 15 bis etwa 120 Minuten zugibt.
21. Verfahren nach Anspruch 12, bei dem man bei der Umsetzung ferner die verseifte Lösung
rührt.
22. Verfahren nach Anspruch 21, bei dem man das Rühren über einen Zeitraum von etwa 15
bis etwa 120 Minuten durchführt.
23. Verfahren nach Anspruch 12, bei dem es sich bei der Säure um Schwefelsäure handelt.
24. Verfahren nach Anspruch 12, bei dem es sich bei der Pyridin-2,3-dicarbonsäure um 5-Methylpyridin-2,3-dicarbonsäure
oder 5-Ethylpyridin-2,3-dicarbonsäure handelt.
25. Verfahren zur Herstellung von herbiziden 2-(2-Imidazolin-2-yl)nicotinsäuren, -estern
und -salzen, bei dem man:
eine Lösung, die einen Pyridin-2,3-dicarbonsäure-ester umfaßt, bereitstellt;
die Lösung durch Zugabe einer Base verseift, wodurch man eine verseifte Lösung, die
ein Pyridin-2,3-dicarbonsäuresalz umfaßt, erhält;
die Lösung mit einem Oxidationsmittel in einer zur Entfernung von Verunreinigungen
wirksamen Menge umsetzt, wodurch man eine gereinigte verseifte Lösung erhält;
die gereinigte verseifte Lösung mit einer Säure versetzt, wodurch die Lösung angesäuert
und das Pyridin-2,3-dicarbonsäuresalz in die entsprechende Pyridin-2,3-dicarbonsäure
umgewandelt wird; und
die Pyridin-2,3-dicarbonsäure als Zwischenprodukt bei der Herstellung von herbiziden
2-(2-Imidazolin-2-yl)nicotinsäuren, -estern und -salzen verwendet,
wobei es sich bei dem Pyridin-2,3-dicarbonsäure-ester um eine Verbindung der Formel

worin R4 und R6 jeweils unabhängig voneinander für H, C1-C6-Alkyl, C1-C6-Alkenyl, Phenyl oder substituiertes Phenyl stehen;
R5 für H; Halogen; gegebenenfalls durch eine oder mehrere C1-C4-Alkoxygruppen substituiertes C1-C6-Alkyl; C1-C6-Alkenyl; Phenyl oder substituiertes Phenyl steht und
R2 und R3 jeweils unabhängig voneinander für C1-C6-Alkyl, Phenyl oder substituiertes Phenyl stehen; handelt und
wobei man das Oxidationsmittel aus der Gruppe bestehend aus Peroxiden, Peroxysäuren
und Hypohalogenitsalzen auswählt.
26. Verfahren nach Anspruch 25, dem es sich bei der Base um ein Hydroxid handelt.
27. Verfahren nach Anspruch 26, bei dem es sich bei dem Hydroxid um Natriumhydroxid handelt.
28. Verfahren nach Anspruch 25, bei dem es sich bei dem Oxidationsmittel um Wasserstoffperoxid
handelt.
29. Verfahren nach Anspruch 25, bei dem es sich bei dem Oxidationsmittel um Natriumhypochlorit
oder Natriumhypobromit handelt.
30. Verfahren nach Anspruch 28, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,1 bis etwa
2,0 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
31. Verfahren nach Anspruch 28, bei dem es sich bei der zur Entfernung von Verunreinigungen
wirksamen Menge von Wasserstoffperoxid um eine Menge im Bereich von etwa 0,2 bis etwa
0,8 mol Wasserstoffperoxid pro mol Pyridin-2,3-dicarbonsäure-ester handelt.
32. Verfahren nach Anspruch 25, bei dem man die Umsetzung bei einer Temperatur von etwa
60°C bis etwa 110°C durchführt.
33. Verfahren nach Anspruch 25, bei dem man das Oxidationsmittel über einen Zeitraum von
etwa 15 bis etwa 120 Minuten zugibt.
34. Verfahren nach Anspruch 25, bei dem man bei der Umsetzung ferner die verseifte Lösung
rührt.
35. Verfahren nach Anspruch 34, bei dem man das Rühren über einen Zeitraum von etwa 15
bis etwa 120 Minuten durchführt.
36. Verfahren nach Anspruch 25, bei dem es sich bei der Säure um Schwefelsäure handelt.
37. Verfahren nach Anspruch 25, bei dem es sich bei der Pyridin-2,3-dicarbonsäure um 5-Methylpyridin-2,3-dicarbonsäure
oder 5-Ethylpyridin-2,3-dicarbonsäure handelt.
1. Procédé pour l'élimination
in-situ d'impuretés d'une solution saponifiée d'ester d'acide pyridine-2,3-dicarboxylique,
ledit procédé comprenant les étapes consistant à :
à fournir une solution saponifiée comprenant un ester d'acide pyridine-2,3-dicarboxylique
et une base ;
à faire réagir ladite solution avec un agent oxydant en une quantité efficace pour
éliminer les impuretés, produisant ainsi une solution saponifiée purifiée ; et
à collecter ladite solution saponifiée purifiée,

dans laquelle R4 et R6 représentent chacun indépendamment un atome H, un groupe alkyle de C1 à C6, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ;
R5 représente un atome H, un halogène, un groupe alkyle de C1 à C6 éventuellement substitué par un ou plusieurs groupes alcoxy de C1 à C4, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ; et
R2 et R3 représentent chacun indépendamment un groupe alkyle de C1 à C6, un groupe phényle ou phényle substitué ; et
dans lequel ledit agent oxydant est choisi dans le groupe constitué de peroxydes,
de peroxyacides et de sels hypohalites.
2. Procédé selon la revendication 1, dans lequel ladite base est un hydroxyde.
3. Procédé selon la revendication 2, dans lequel ledit hydroxyde est l'hydroxyde de sodium.
4. Procédé selon la revendication 1, dans lequel ledit agent oxydant est le peroxyde
d'hydrogène.
5. Procédé selon la revendication 1, dans lequel ledit agent oxydant est l'hypochlorite
de sodium ou l'hypobromite de sodium.
6. Procédé selon la revendication 4, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,1
à environ 2,0 moles de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2,3-dicarboxylique.
7. Procédé selon la revendication 4, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,2
à environ 0,8 mole de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2-3-dicarboxylique.
8. Procédé selon la revendication 1, dans lequel ladite réaction est effectuée à une
température d'environ 60 °C à environ 110 °C.
9. Procédé selon la revendication 1, dans lequel ledit agent oxydant est ajouté sur une
période d'environ 15 à environ 120 minutes.
10. Procédé selon la revendication 1, dans lequel ladite réaction comprend l'agitation
de ladite solution saponifiée.
11. Procédé selon la revendication 10, dans lequel ladite agitation est réalisée sur une
période d'environ 15 à environ 120 minutes.
12. Procédé pour l'élimination
in-situ d'impuretés d'une solution d'ester d'acide pyridine-2,3-dicarboxylique, ledit procédé
comprenant les étapes consistant à :
à fournir une solution comprenant un ester d'acide pyridine-2,3-dicarboxylique ;
à saponifier ladite solution en ajoutant une base, formant ainsi une solution saponifiée
comprenant un sel de l'acide pyridine-2,3-dicarboxylique ;
à faire réagir ladite solution avec un agent oxydant en une quantité efficace pour
éliminer les impuretés, produisant ainsi une solution saponifiée purifiée ;
à ajouter un acide à ladite solution, acidifiant ainsi ladite solution et convertissant
ledit sel d'acide pyridine-2,3-dicarboxylique en l'acide pyridine-2,3-dicarboxylique
correspondant ; et
à collecter ladite solution purifiée comprenant l'acide pyridine-2,3-dicarboxylique,
dans laquelle ledit ester d'acide pyridine-2,3-dicarboxylique est un composé de la
formule

dans laquelle R4 et R6 représentent chacun indépendamment un atome H, un groupe alkyle de C1 à C6, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ;
R5 représente un atome H, un halogène, un groupe alkyle de C1 à C6 éventuellement substitué par un ou plusieurs groupes alcoxy de C1 à C4, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ; et
R2 et R3 représentent chacun indépendamment un groupe alkyle de C1 à C6, un groupe phényle ou phényle substitué ; et
dans lequel ledit agent oxydant est choisi dans le groupe constitué de peroxydes,
de peroxyacides et de sels hypohalites.
13. Procédé selon la revendication 12, dans lequel ladite base est un hydroxyde.
14. Procédé selon la revendication 13, dans lequel ledit hydroxyde est l'hydroxyde de
sodium.
15. Procédé selon la revendication 12, dans lequel ledit agent oxydant est le peroxyde
d'hydrogène.
16. Procédé selon la revendication 12, dans lequel ledit agent oxydant est l'hypochlorite
de sodium ou l'hypobromite de sodium.
17. Procédé selon la revendication 15, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,1
à environ 2,0 moles de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2-3-dicarboxylique.
18. Procédé selon la revendication 15, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,2
à environ 0,8 mole de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2-3-dicarboxylique.
19. Procédé selon la revendication 12, dans lequel ladite réaction est effectuée à une
température d'environ 60 °C à environ 110 °C.
20. Procédé selon la revendication 12, dans lequel ledit agent oxydant est ajouté sur
une période d'environ 15 à environ 120 minutes.
21. Procédé selon la revendication 12, dans lequel ladite réaction comprend l'agitation
de ladite solution saponifiée.
22. Procédé selon la revendication 21, dans lequel ladite agitation est réalisée sur une
période d'environ 15 à environ 120 minutes.
23. Procédé selon la revendication 12, dans lequel ledit acide est l'acide sulfurique.
24. Procédé selon la revendication 12, dans lequel ledit acide pyridine-2,3-dicarboxylique
est l'acide 5-méthyl-pyridine-2,3-dicarboxylique ou l'acide 5-éthyl-pyridine-2,3-dicarboxylique.
25. Procédé de préparation d'acides 2-(2-imidazolin-2-yl)nicotinique herbicides, d'esters
et de sels associés, ledit procédé comprenant les étapes consistant à :
à fournir une solution comprenant un ester d'acide pyridine-2,3-dicarboxylique ;
à saponifier ladite solution en ajoutant une base, formant ainsi une solution saponifiée
comprenant un sel de l'acide pyridine-2,3-dicarboxylique ;
à faire réagir ladite solution avec un agent oxydant en une quantité efficace pour
éliminer les impuretés, produisant ainsi une solution saponifiée purifiée ;
à ajouter un acide à ladite solution saponifiée purifiée, acidifiant ainsi ladite
solution et convertissant ledit sel d'acide pyridine-2,3-dicarboxylique en l'acide
pyridine-2,3-dicarboxylique correspondant ; et
à utiliser ledit acide pyridine-2,3-dicarboxylique comme un intermédiaire dans la
préparation d'acides 2-(2-imidazolin-2-yl)nicotinique herbicides, d'esters et de sels
associés,
dans lequel ledit ester d'acide pyridine-2,3-dicarboxylique est un composé de la formule

dans laquelle R4 et R6 représentent chacun indépendamment un atome H, un groupe alkyle de C1 à C6, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ;
R5 représente un atome H, un halogène, un groupe alkyle de C1 à C6 éventuellement substitué par un ou plusieurs groupes alcoxy de C1 à C4, un groupe alcényle de C1 à C6, un groupe phényle ou phényle substitué ; et
R2 et R3 représentent chacun indépendamment un groupe alkyle de C1 à C6, un groupe phényle ou phényle substitué ; et
dans lequel ledit agent oxydant est choisi dans le groupe constitué de peroxydes,
de peroxyacides et de sels hypohalites.
26. Procédé selon la revendication 25, dans lequel ladite base est un hydroxyde.
27. Procédé selon la revendication 26, dans lequel ledit hydroxyde est l'hydroxyde de
sodium.
28. Procédé selon la revendication 25, dans lequel ledit agent oxydant est le peroxyde
d'hydrogène.
29. Procédé selon la revendication 25, dans lequel ledit agent oxydant est l'hypochlorite
de sodium ou l'hypobromite de sodium.
30. Procédé selon la revendication 28, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,1
à environ 2,0 moles de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2-3-dicarboxylique.
31. Procédé selon la revendication 28, dans lequel ladite quantité de peroxyde d'hydrogène
efficace pour éliminer les impuretés est une quantité dans la plage d'environ 0,2
à environ 0,8 mole de peroxyde d'hydrogène par mole d'ester d'acide pyridine-2-3-dicarboxylique.
32. Procédé selon la revendication 25, dans lequel ladite réaction est effectuée à une
température d'environ 60 °C à environ 110 °C.
33. Procédé selon la revendication 25, dans lequel ledit agent oxydant est ajouté sur
une période d'environ 15 à environ 120 minutes.
34. Procédé selon la revendication 25, dans lequel ladite réaction comprend l'agitation
de ladite solution saponifiée.
35. Procédé selon la revendication 34, dans lequel ladite agitation est réalisée sur une
période d'environ 15 à environ 120 minutes.
36. Procédé selon la revendication 25, dans lequel ledit acide est l'acide sulfurique.
37. Procédé selon la revendication 25, dans lequel ledit acide pyridine-2,3-dicarboxylique
est l'acide 5-méthyl-pyridine-2,3-dicarboxylique ou l'acide 5-éthyl-pyridine-2,3-dicarboxylique.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description