Field of the invention
[0001] This application relates to a method of ligating two or more molecules, for example,
small organic molecules, labels, peptides etc. In particular it relates to a method
of ligating a peptide, such as ligation of a synthetic peptide to a recombinant peptide.
Background to the Invention
[0002] Protein engineering methodologies have proven to be invaluable for generating protein
based tools for application in basic research, diagnostics, drug discovery and as
protein therapeutics. The ability to manipulate the primary structure of a protein
in a controlled manner opens up many new possibilities in the biological and medical
sciences. As a consequence, there is a concerted effort on developing methodologies
for the site-specific modification of proteins and their subsequent application.
[0003] The two main approaches to generating proteins are through recombinant methods or
chemical synthesis. To date, the two methods have proved to be complementary; recombinant
methodologies enable proteins of any size to be generated but in general they are
restricted to the assembly of the proteinogenic amino acids. Thus, in general, the
introduction of labels and probes into recombinant proteins has to be implemented
post-translationally and does not allow modifications to the protein backbone.
[0004] The most common methods for labelling a recombinant protein use an amino or a thiol
reactive version of the label that will covalently react with a lysine side chain
/ N
α amino group or a cysteine side chain within the protein respectively. For such labelling
methods to be site-specific, an appropriate derivative of the protein must be engineered
to contain a unique reactive functionality at the position to be modified. This requires
all the other naturally occurring reactive functionalities within the primary sequence
to be removed through amino acid mutagenesis. In the case of protein amino functionalities,
this is essentially impossible due to the abundance of lysine residues within proteins
and the presence of the amino functionality at the N-terminus of the sequence. Likewise,
for cysteine this process is laborious and is often detrimental to the function of
the protein.
[0005] The production of proteins having site-specific modifications and/or labels is more
readily achievable using chemical synthesis methods. The chemical synthesis of proteins
enables multiple modifications to be incorporated into both side-chain and backbone
moieties of the protein in a site-specific manner, but, in general, the maximum size
of sequence that can be synthesised and isolated is circa 50 - 100 amino acids.
Protein Ligation
[0006] A further approach to the generation of proteins is protein / peptide ligation. In
this approach mutually reactive chemical functionalities (orthogonal to the chemistry
of the naturally occurring amino acids i.e. which react by mutually exclusive chemistries
compared to the reactions of the reactive moieties of the naturally occuring amino
acids) are incorporated at the N- and C-termini of unprotected polypeptide fragments
such that when they are mixed, they react in a chemoselective manner to join the two
sequences together (
Cotton GJ and Muir TW. Chem.Biol., 1999, 6, R247-R254). The principle of chemical ligation is shown schematically in Figure 1.
[0007] A number of chemistries have been utilised for the ligation of two synthetic peptides
where a diverse range of different chemical functionalities can be incorporated into
the termini of polypeptides using solid phase peptide synthesis. These include the
reaction between a thioacid and bromo- alkyl to form a thioester (
Schnolzer M and Kent SBH, Science, 1992, 256, 221-225), reaction of an aldehyde with an N-terminal cysteine or threonine to form thiazolidine
or oxazolidine respectively (
Liu C-F and Tam J P. Proc. Natl. Acad. Sci. USA, 1994, 91, 6584 - 6588), reaction between a hydrazide and an aldehyde to form a hydrazone (
Gaertner HF et al, et al Bioconj. Chem., 1992, 3, 262 - 268) reaction of an aminoxy group and an aldehyde to form an oxime (
Rose K. J. Am. Chem. Soc., 1994, 116, 30-33), reaction of azides and aryl phosphines to form an amide bond (Staudinger ligation)(
Nilsson BL, Kiessling LL, and Raines RT. Org. Lett., 2001, 3, 9-12,
Kiick et al Proc. Natl. Acad. Sci. USA, 2002, 99, 19-24) , and the reaction of a peptide C-terminal thioester and an N-terminal cysteine
peptide to form a native amide bond (
Dawson et al. Science, 1994, 266, 776) (Native chemical ligation
US6184344,
EP 0832 096 B1). This native chemical ligation method is an extension of studies by Wieland and
coworkers who showed that the reaction of ValSPh and CysOH in aqueous buffer yielded
the dipeptide ValCysOH (
Wieland T et al,. Liebigs Ann. Chem., 1953, 583, 129-149).
[0008] Although the native chemical ligation method has proved popular, it requires an N-terminal
cysteine containing peptide for the reaction and thus, if a cysteine is not present
at the appropriate position in the protein, a cysteine needs to be introduced at the
ligation site. However, the introduction of extra thiol groups into a protein sequence
may be detrimental to its structure / function, especially since cysteine has a propensity
to form disulfide bonds which may disrupt the folding pathway or compromise the function
of the folded protein.
[0009] As a consequence of the difficulties and problems associated with known ligation
techniques, the ligation of two synthetic fragments generally only enables proteins
of circa 100 - 150 amino acids to be chemically synthesised. Although larger proteins
have been synthesised by ligating together more than two fragments, this has proved
to be technically difficult (
Camarero et al. J. Pept. Res., 1998, 54, 303-316,
Canne LE et al, J. Am. Chem. Soc., 1999, 121, 8720-8727).
Protein semi-synthesis
[0010] Protein ligation technologies that enable both synthetic and recombinantly derived
protein fragments to be joined together have been described. This enables large proteins
to be constructed from combinations of synthetic and recombinant fragments, allowing
proteins to be site-specifically modified with both natural and unnatural entities.
By utilising such so-called protein semi-synthesis, many different synthetic moieties
can be site-specifically incorporated at multiple different sites within a target
protein.
[0011] In order to utilise recombinant proteins in ligation strategies the recombinant fragments
must contain the appropriate reactive functionalities to facilitate ligation. One
approach to introduce a unique reactive functionality into a recombinant protein has
been through the periodate oxidation of N-terminal serine containing sequences. Such
treatment converts the N-terminal serine into a glyoxyl moiety, which contains an
N-terminal aldehyde. Synthetic hydrazide containing peptides have then been ligated
to the N-terminus of these proteins in a chemoselective manner through hydrazone bond
formation with the protein N-terminal glyoxyl group (
Gaertner HF et al, et al Bioconj. Chem., 1992, 3, 262 - 268,
Gaertner HF, et al. J. Biol. Chem., 1994, 269, 7224-7230). Another approach has been to generate recombinant proteins with N-terminal cysteine
residues. Synthetic peptides containing C-terminal thioesters have then been site-specifically
attached to the N-terminus of these proteins via amide bond formation in a manner
analogous to 'native chemical ligation' (
Cotton GJ and Muir TW. Chem. Biol., 2000, 7, 253-261). However as with the ligation of synthetic peptides using native chemical ligation
techniques, the technology requires a cysteine to be introduced at the ligation site
if the primary sequence does not contain one at the appropriate position.
Protein Splicing Techniques
[0012] Recently technologies have been developed which enable recombinant proteins containing
C-terminal thioester groups to be generated. The C-terminal thioester functionality
provides a unique reactive chemical group within the protein that can be utilised
for protein libation. Recombinant C-terminal thioester proteins are produced by manipulating
a naturally occurring biological phenomenon known as protein splicing (
Paulus H. Annu Rev Biochem 2000, 69, 447-496). Protein splicing is a post-translational process in which a precursor protein undergoes
a series of intramolecular rearrangements which result in precise removal of an internal
region, referred to as an intein, and ligation of the two flanking sequences, termed
exteins (Figure 2). While there are generally no sequence requirements in either of
the exteins, inteins are characterised by several conserved sequence motifs and well
over a hundred members of this protein domain family have now been identified.
[0013] The first step in protein splicing involves an N→S (or N→O) acyl shift in which the
N-extein unit is transferred to the sidechain SH or OH group of a conserved Cys/Ser/Thr
residue, always located at the immediate N-terminus of the intein. Insights into this
mechanism have led to the design of a number of mutant inteins which can only promote
the first step of protein splicing (
Chong et al Gene. 1997, 192, 271-281, (
Noren et al., Anew. Chem. Int. Ed. Engl., 2000, 39, 450-466). Proteins expressed as in frame N-terminal fusions to one of these engineered inteins
can be cleaved by thiols via an intermolecular transthioesterification reaction, to
generate the recombinant protein C-terminal thioester derivative (Figure 3) (
Chong et al Gene. 1997, 192, 271-281, (
Noren et al., Angew. Chem. Int. Ed. Engl., 2000, 39, 450-466)(New England Biolabs Impact System
WO 00/18881,
WO 0047751). Peptide sequences containing an N-terminal cysteine residue can then be specifically
ligated to the C-termini of such recombinant C-terminal thioester proteins (
Muir et al Proc. Natl. Acad. Sci. USA., 1998, 95, 6705-6710,
Evans Jr et al. Prot. Sci., 1998, 7, 2256-2264) , in a procedure termed expressed protein ligation (EPL) or intein-mediated protein
ligation (IPL).
[0014] The chemoselective ligation of N-terminal cysteine containing peptides to C-terminal
thioester containing peptides, be they synthetic or recombinant, is performed typically
at slightly basic pH and in the presence of a thiol cofactor. The strategy also requires
a cysteine to be introduced at the ligation site, if one is not suitably positioned
within the primary sequence. These requirements of this ligation approach have the
potential to alter the structure and / or function of both the protein ligation product
and the initial reactants.
[0015] For example, the chemokine RANTES is unstable in a buffer of 100 mM NaCl, 100 mM
sodium phosphate pH 7.4 containing 100 mM 2-mercaptoethanesulfonic acid (MESNA); a
buffer typically used for the ligation of C-terminal thioester molecules to N-terminal
cysteine containing molecules (expressed protein ligation and native chemical ligation).
RANTES contains two disulphide bonds critical for maintaining the structure and function
of the protein. In the typical ligation buffer described above, the folded protein
was found to be converted within 48 hours to a mixture of the reduced protein and
MESNA protein adducts. The majority of the protein mixture subsequently formed a precipitate,
presumably reflecting the unfolded nature of these species (Cotton, unpublished).
[0016] Accordingly, the inventors believe that ligation reactions that require thiol containing
buffers are, in general, not suitable for maintaining the integrity of disulphide
bond containing proteins, such as antibodies, antibody fragments and antibody domains,
cytokines, growth factors etc. Thus there is a requirement for ligation approaches
that are typically performed in the absence of thiols. For example, when monitored
over a number of days, it was found that RANTES was stable in 100 mM NaCl, 100 mM
sodium phosphate buffer pH 7.4 and 100 mM sodium acetate buffer pH 4.5 (inventor's
unpublished results). Ligation reactions that can be performed under such conditions
should therefore be applicable for both disulphide and non-disulphide containing proteins.
Protein labelling
[0017] Historically protein ligation means the joining together of two peptide / protein
fragments but this is synonymous with protein labelling whereby the label is a peptide
or derivatised peptide. Equally if a small non-peptidic synthetic molecule contains
the necessary reactive chemical functionality for protein ligation, then ligation
of the synthetic molecule directly to either the N- or C- termini of the protein affords
site-specific labelling of the protein. Thus technologies developed for the ligation
of protein fragments can also be used for the direct labelling of either the N- or
C- termini of peptides or proteins in a site - specific manner irrespective of their
sequence.
[0018] Recombinant proteins containing N-terminal glyoxyl functions (generated through periodate
oxidation of the corresponding N-terminal serine protein) have been site-specific
N-terminally labelled through reaction with hydrazide or aminoxy derivatives of the
label (
Geoghegan KF and Stroh JG. Bioconj Chem., 1992, 3, 138-146,
Alouni S et al. Eur. J. Biochem., 1995, 227, 328 - 334). Also recombinant proteins containing N-terminal cysteine residues have been N-terminally
labelled through reaction with labels containing thioester functionalities, the label
being the acyl substituent of the thioester (
Schuler B and Pannell LK. Bioconjug. Chem., 2002, 13, 1039-43) and aldehyde functionalities (
Zhao et al. Bioconj. Chem., 1999, 10, 424-430) to form amides and thiazolidines respectively.
[0019] Though a number of methods for ligation of proteins exist each one has its potential
drawbacks. There is thus a need for novel ligation methodologies, especially those
that are compatible with both synthetic and recombinant fragments, and which may be
used in the ligation of disulphide bond containing proteins as well as non disulphide
bond containing proteins, which will complement the existing technologies and add
another string to the protein engineer's bow.
Summary of the Invention
[0020] The present inventors have overcome a number of problems associated with the prior
art and have developed a new method for ligating peptide molecules which overcomes
a number of the problems of the prior art.
[0021] Accordingly, in a first aspect of the present invention, there is provided a method
of producing an oligopeptide product, the method comprising the steps:
- a) providing a first oligopeptide, the first oligopeptide having a reactive moiety,
wherein the reactive moiety is a hydrazine moiety, a hydrazide moiety, or an aminooxy
moiety
- b) providing a second oligopeptide, the second oligopeptide having an activated ester
moiety, wherein the activated ester moiety is a thioester moiety, a phenolic ester
moiety, an hydroxysuccinimide moiety, or an O-acylisourea moiety
- c) allowing the reactive moiety of the first oligopeptide to react with the activated
ester moiety of the second oligopeptide to form an oligopeptide product, in which
the first and second oligopeptides are linked via a linking moiety having Formula
I, Formula II or Formula III.



[0022] In preferred embodiments, in step (c), where said oligopeptides are linked via a
linking moiety having Formula II and where said activated ester moiety of step (b)
is not a thioester, said activated ester is a terminal activated ester moiety.
[0023] In further preferred embodiments of the invention, said linking moieties are linked
via a linking moiety having Formula I or Formula III.
[0024] Unless the context demands otherwise, the terms peptide, oligopeptide, polypeptide
and protein are used interchangeably.
[0025] The activated ester moiety of the first oligopeptide is a thioester moiety,a phenolic
ester moiety, an hydroxysuccinimide moiety, or an O-acylisourea moiety.
[0026] In preferred embodiments of the invention, the activated ester moiety is a thioester
moiety. Any suitable thioester peptides wherein the peptide is the acyl substituent
of the thioester may be used in the present invention (Figure 4).
[0027] Such thioester peptides may be synthetically or recombinantly produced. The skilled
person is well aware of methods known in the art for generating synthetic peptide
thioesters. For example, synthetic peptide thioesters may be produced via synthesis
on a resin that generates a C-terminal thioester upon HF cleavage (
Hojo et al, Bull. Chem. Soc. Jpn., 1993, 66, 2700-2706). Further, the use of 'safety catch' linkers has proved to be popular for generating
C-terminal thioesters through thiol induced resin cleavage of the assembled peptide
(
Shin Y et al, J. Am. Chem. Soc., 1999, 121, 11684-11689).
[0028] Moreover, recently technologies have been developed which enable recombinant C-terminal
thioester proteins to be generated. Recombinant C-terminal thioester proteins may
be produced by manipulating a naturally occurring biological phenomenon known as protein
splicing. As described above, protein splicing is a post-translational process in
which a precursor protein undergoes a series of intramolecular rearrangements which
result in precise removal of an internal region, referred to as an intein, and ligation
of the two flanking sequences, termed exteins.
[0029] As described above, a number of mutant inteins which can only promote the first step
of protein splicing have been designed (
Chong et al Gene. 1997, 192, 271-281,
Noren et al., Angew. Chem. Int. Ed. Engl., 2000, 39, 450-466). Proteins expressed as in frame N-terminal fusions to one of these engineered inteins
can be cleaved by thiols via an intermolecular transthioesterification reaction, to
generate the recombinant protein C-terminal thioester derivative (
Chong et al Gene. 1997, 192, 271-281,
Noren et al., Angew. Chem. Int. Ed. Engl., 2000, 39, 450-466) (New England Biolabs Impact System
WO 00/18881,
WO 0047751). Such protein thioesters may be used in the methods of the invention (See Figure
3).
[0030] Accordingly, in a preferred aspect of the present invention, in step (b), the second
oligopeptide is generated by thiol reagent induced cleavage of an intein fusion protein.
[0031] Accordingly, in a second aspect of the present invention, there is provided a method
of producing an oligopeptide product, the method comprising the steps:
- a) providing a first oligopeptide, the first oligopeptide having a reactive moiety,
- b) (i) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a precursor second oligopeptide fused N-terminally to an intein domain
(ii) allowing thiol reagent dependent cleavage of the precursor molecule to generate
a second oligopeptide molecule, said second oligopeptide molecule having a thioester
moiety at its C-terminus
- c) allowing the reactive moiety of the first oligopeptide to react with the second
oligopeptide molecule to form an oligopeptide product, in which the first and second
oligopeptides are linked via a linking moiety having Formula I, II or III.
[0032] In preferred embodiments of the invention, the reactive moiety is a hydrazine moiety,
an amino-oxy moiety or a hydrazide moiety having general formula IV, V or VI respectively.
Formula IV -NH-NH
2
Formula V -O-NH
2

[0033] For example, in a particular preferred embodiment, the reactive moiety has Formula
IV and, in the oligopeptide product produced by the method of the invention, the first
and second oligopeptides are linked via a linking moiety having Formula I.
[0034] In a further preferred embodiment, the reactive moiety has Formula V and, in the
oligopeptide product produced by the method of the invention, the first and second
oligopeptides are linked via a linking moiety having Formula II.
[0035] In another preferred embodiment, the reactive moiety has Formula VI and, in the oligopeptide
product produced by the method of the invention, the first and second oligopeptides
are linked via a linking moiety having Formula III.
[0036] As described above, the first oligopeptide comprises a reactive moiety, which, may
be a hydrazine moiety (e.g. Formula IV), an amino-oxy moiety (e.g. Formula V) or an
hydrazide moiety (e.g. Formula VI).
[0037] A particular advantage of the ligation method of the invention is that it may be
performed in the absence of thiols. This enables efficient ligation of proteins/peptides
comprising disulphide bonds as well as of proteins without such bonds.
[0038] Accordingly, in an embodiment of the first and second aspects of the invention, at
least one of the first and second oligopeptides comprises one or more disulphide bonds.
[0039] Hydrazine, hydrazide or aminooxy containing derivatives of synthetic oligopeptides
may be readily produced using known methods, for example, solid phase synthesis techniques.
[0040] Further, the present inventors have also found that proteins fused N-terminal to
an intein domain can be cleaved from the intein by hydrazine treatment in a selective
manner to liberate the desired protein as its corresponding hydrazide derivative (for
example, see Figure 5).
[0041] Accordingly, in further preferred embodiments of the invention, the first oligopeptide
is generated by reaction of hydrazine with an oligopeptide molecule comprising the
first oligopeptide fused N-terminal to an intein domain.
[0042] Indeed the discovery that such protein hydrazides may be produced by means of such
a reaction forms an independent aspect of the present invention.
[0043] Accordingly, a third aspect of the invention provides a method of generating a protein
hydrazide, said method comprising the steps:
- (a) providing an protein molecule comprising an oligopeptide fused N-terminal to an
intein domain,
- (b) reacting said protein molecule with hydrazine, such that the intein domain is
cleaved from the oligopeptide to generate a protein hydrazide.
[0044] Moreover, as well as using such a reaction to generate a first oligopeptide having
a hydrazide moiety at its C-terminal, the first oligopeptide thus being available
for reaction with the second oligopeptide having the activated ester moiety, the present
invention further extends to a "one-step" process for ligating two peptides to generate
an oligopeptide product.
[0045] This may be achieved by reacting a suitable protein linked N-terminal to an intein
directly with a polypeptide having a hydrazine, hydrazide or amino-oxy moiety.
[0046] Accordingly, in a fourth aspect, the invention provides a method of producing an
oligopeptide product, the method comprising the steps:
a) providing a first oligopeptide, the first oligopeptide having a reactive moiety,
wherein the reactive moiety is a hydrazine moiety, a hydrazide moiety or an amino-oxy
moiety;
(i) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a second oligopeptide fused N-terminally to an intein domain;
(c) allowing the reactive moiety of the first oligopeptide to react with the precursor
oligopeptide molecule to form an oligopeptide product, in which the first and second
oligopeptides are linked via a linking moiety having Formula I, Formula II or Formula
III.
[0047] The ligation technology of the present invention can thus utilise both synthetic
and recombinant proteins and peptides. It thus enables the ligation of two or more
synthetic peptides, the ligation of two or more recombinant peptides or the ligation
of at least one synthetic peptide with at least one recombinant peptide.
[0048] Moreover, as well as providing a novel method of ligating peptides, the present invention
may be used for the labelling of synthetic or recombinant peptides.
[0049] Accordingly, in a fifth aspect of the present invention, there is provided a method
of labelling an oligopeptide, the method comprising the steps:
- a) providing a label molecule, the label molecule having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety, or an aminooxy moiety
- b) providing the oligopeptide, the oligopeptide having an activated ester moiety,
wherein the activated ester moiety is a thioester moiety, a phenolic ester moiety,
an hydroxysuccinimide moiety, or an O-acylisourea moiety
- c) allowing the reactive moiety of the label molecule to react with the activated
ester moiety of the oligopeptide to form the labelled oligopeptide, in which the label
molecule and the oligopeptide are linked via a linking moiety having Formula I, Formula
II or Formula III as defined above,
wherein, in step (c), where said label molecule and the oligopeptide are linked via
a linking moiety having Formula II said activated ester is a thioester.
[0050] In a preferred aspect of the present invention, in step (b) the oligopeptide is generated
by thiol induced cleavage of an intein fusion protein.
[0051] Accordingly, in a sixth aspect of the present invention, there is provided a method
of labelling an oligopeptide, the method comprising the steps:
a) providing a label molecule, the label molecule having a reactive moiety,
c) (i) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a precursor oligopeptide fused N-terminally to an intein domain
(ii) allowing thiol reagent dependent cleavage of the precursor molecule to generate
an oligopeptide molecule, said oligopeptide molecule having a thioester moiety at
its C-terminus
c) allowing the reactive moiety of the label molecule to react with the oligopeptide
to form the labelled oligopeptide, in which the label molecule and the oligopeptide
are linked via a linking moiety having Formula I, II or III.
[0052] Alternatively, a label molecule having a terminal activated ester moiety may be used
to label an oligopeptide having a reactive moiety. Thus, in a seventh aspect of the
invention, there is provided a method of labelling an oligopeptide, the method comprising
the steps:
- a) providing a label molecule, the label molecule having an activated ester moiety
of which the label is the acyl substituent, wherein the activated ester moiety is
a thioester moiety, a phenolic ester moiety, an hydroxysuccinimide moiety, or an O-acylisourea
moiety
- b) providing the oligopeptide, the oligopeptide having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety, or an aminooxy moiety
- c) allowing the activated ester moiety of the label molecule to react with the reactive
moiety of the oligopeptide to form the labelled oligopeptide, in which the label molecule
and the oligopeptide are linked via a linking moiety having Formula I, Formula II
or Formula III
wherein, in step (c), where said label molecule and the oligopeptide are linked via
a linking moiety having Formula II and where said activated ester moiety of step (b)
is not a thioester, said activated ester is a terminal activated ester moiety.
[0053] As with the ligation technology, an oligopeptide present as a precursor molecule
linked to an intein molecule may be labelled directly. Thus, an eighth aspect of the
present invention provides a method of labelling an oligopeptide, the method comprising
the steps:
- a) providing a label molecule, the label molecule having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety, or a an aminooxy moiety
- b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising an oligopeptide fused N-terminally to an intein domain,
- c) allowing the reactive moiety of the label molecule to react with the precursor
oligopeptide molecule to form a labelled oligopeptide product, in which the label
molecule and the oligopeptide are linked via a linking moiety having Formula I, Formula
II or Formula III as defined above.
[0054] Any suitable label molecule known to the skilled person may be used in methods of
the invention. The choice of label will depend on the use to which the labelled peptide
is to be put. For example labels which may be used in the methods of the invention
may include fluorophores, crosslinking reagents, spin labels, affinity probes, imaging
reagents, for example radioisotopes, chelating agents such as DOTA, polymers such
as PEG, lipids, sugars, cytotxic agents, and solid surfaces and beads.
[0055] In particular embodiments of the fifth, sixth, and seventh aspects of the invention,
at least one of the label and oligopeptides comprises one or more disulphide bonds.
[0056] The methods of the invention are particularly useful in the ligation of peptides,
in particular the ligation of peptides, which, using conventional ligation techniques,
would require various protecting groups. The inventors have shown that the methods
of the invention may be performed under pH conditions in which only the reactive moieties
will react.
[0057] In preferred embodiments of the first and second and in preferred embodiments of
the fourth to eighth aspects of the invention, step (c) of the method is performed
at a pH in the range pH 4.0 to pH 8.5, preferably pH 4.0 to 8.0, for example, pH 4.0
to 7.5, more preferably in the range pH 5.0 to pH 8.0, more preferably in the range
pH 6.0 to pH 7.5, most preferably in the range pH 6.5 to pH 7.5.
[0058] For example, the inventors have demonstrated that synthetic peptide C-terminal thioesters
specifically react with hydrazine under aqueous conditions at pH 6.0 to form the corresponding
peptide hydrazide. This allows ligation methods as described herein to be performed
at pH 6.0, without the need for a potentially harmful thiol cofactor (useful if either
fragment or final construct is thiol sensitive) and does not lead to the introduction
of potentially reactive side-chain groups (such as a thiol) into the protein. Similarly,
the inventors have demonstrated that synthetic peptide C-terminal thioesters specifically
react with hydroxylamine under aqueous conditions at pH 6.0 and pH 6.8 to form the
corresponding peptide hydroxamic acid. In addition, as described below, the inventors
have demonstrated that both synthetic peptide C-terminal thioesters and recombinant
protein C-terminal thioesters specifically react with O-methylhydroxylamine under
aqueous conditions at pH 7.5, to form the corresponding C-terminal N-methoxy amide
derivatives. This allows ligation methods as described herein to be performed at pH
7.5, without the need for a potentially harmful thiol cofactor.
[0059] Peptides and proteins that contain thioester groups (where the peptide is the acyl
substituent of the thioester) can be reacted with hydrazine, hydrazide or aminooxy
derivatives of a label or a peptide to afford site-specific labelling and chemoselective
ligation respectively (see, for example, figures 4 and 5).
[0060] In an analogous fashion, peptides that contain hydrazine, hydrazide or aminooxy groups
can be reacted with thioester derivatives of a label or a peptide to afford site-specific
labelling and chemoselective ligation respectively (see, for example, figures 4 and
5).
[0061] Furthermore, having demonstrated that recombinant protein hydrazides can be generated
by cleavage of protein-intein fusions with hydrazine, the inventors have shown that
such protein hydrazides may be ligated by reaction of the hydrazide moiety with reactive
groups other than activated ester moieties, for example an aldehyde functionality
or a ketone functionality. For example, as described below, the inventors have shown
that a pyruvoyl derivative of a synthetic peptide can be chemoselectively ligated
to the C-terminus of recombinant protein hydrazides using the described approach,
and in an analogous fashion, a pyruvoyl derivative of fluorescein was used to site-specifically
label the C-terminus of recombinant protein hydrazides using the described approach.
[0062] This aspect of the invention provides a further novel method of ligating a recombinant
peptide to a second peptide or indeed a label.
[0063] Thus, a ninth aspect of the invention provides a method of producing an oligopeptide
product, the method comprising the steps:
- a) providing a first oligopeptide, the first oligopeptide having an aldehyde or ketone
moiety,
- b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a second oligopeptide fused N-terminally to an intein domain,
- c) reacting said precursor oligopeptide molecule with hydrazine to generate an oligopeptide
molecule comprising an intermediate oligopeptide, said intermediate oligopeptide having
a C-terminal hydrazide moiety,
- d) allowing the aldehyde or ketone moiety of the first oligopeptide to react with
the hydrazide moiety of the intermediate oligopeptide molecule to form an oligopeptide
product, in which first oligopeptide and the second oligopeptide are linked via a
hydrazone linking moiety.
[0064] An example of this aspect is shown in Figure 6.
[0065] A tenth aspect of the invention provides a method of labelling an oligopeptide, the
method comprising the steps:
- a) providing a label molecule, the label molecule having a aldehyde or ketone moiety,
- b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a first oligopeptide fused N-terminally to an intein domain,
- c) reacting said precursor oligopeptide molecule with hydrazine to generate an oligopeptide
molecule comprising an intermediate oligopeptide , said intermediate oligopeptide
having a terminal hydrazide moiety,
- d) allowing the aldehyde or ketone moiety of the label molecule to react with the
hydrazide moiety of the intermediate oligopeptide molecule to form a labelled oligopeptide
product, in which the label molecule and oligopeptide are linked via a hydrazone linking
moiety.
[0066] In preferred embodiments of the ninth and tenth aspects of the invention, the hydrazone
moiety has Formula VII:

where R is H or any substituted or unsubstituted, preferably unsubstituted, alkyl
group.
[0067] In preferred aspects of the ninth and tenth aspects of the invention, the method
is performed at a pH in the range pH 1.0 to pH 7.0, preferably pH 1.0 to pH 6.0, more
preferably in the range pH 2.0 to pH 5.5, most preferably in the range pH 2.0 to pH
4.5.
[0068] In a particular embodiment of the ninth and tenth aspects of the invention, the aldehyde
or ketone containing moiety of the oligopeptide or of the label is an α-diketone group
or an α-keto aldehyde group.
[0069] In an eleventh aspect of the present invention, there is provided an oligopeptide
product produced using a method according to the first, second or fourth aspect of
the invention, in which the first and second oligopeptides are linked via a linking
moiety having Formula II or Formula III.
[0070] In a twelfth aspect, there is provided a labelled oligopeptide comprising an oligopeptide
labelled by the method of any one of the fifth to eighth aspects of the invention,
in which the label and the oligopeptide are linked via a linking moiety having Formula
II or Formula III.
[0071] Preferred features of each aspect of the invention are as for each of the other aspects
mutatis mutandis.
[0072] The invention will now be described further in the following non-limiting examples
with reference made to the accompanying drawings in which:
Figure 1 illustrates schematically the general principle of chemical ligation.
Figure 2 illustrates schematically the mechanism of protein splicing.
Figure 3 illustrates the generation of recombinant C-terminal thioester proteins.
Figure 4 illustrates ligation of protein and peptide thioesters with hydrazine and
aminooxy containing entities, such as labels, peptides and proteins.
Figure 5 illustrates the generation of synthetic and recombinant peptide hydrazides
for ligation with thioester containing molecules. Note the peptide or label is is
the acyl substituent of the thioester.
Figure 6 illustrates the generation of recombinant peptide hydrazides for ligation
with aldehyde and ketone containing molecules.
Figure 7 illustrates SDS-PAGE analysis of Grb2-SH2 - GyrA - CBD (immobilised on chitin
beads) treated with DTT and MESNA. Molecular weight markers (lane 1); purified Grb2-SH2
- GyrA - CBD immobilised on chitin beads (lane 4). Grb2-SH2 - GyrA - CBD treated with
100 mM DTT (lanes 5 and 7) or 120 mM MESNA (lanes 8 and 10). Both the whole reaction
slurries (lanes 5 and 8) and the reaction supernatants (lanes 7 and 10) were analysed.
Figure 8 illustrates SDS-PAGE analysis of Grb2-SH2 - GyrA - CBD (immobilised on chitin
beads) treated with hydrazine. Molecular weight markers (lane 1); Purified Grb2-SH2
- GyrA - CBD immobilised on chitin beads after 20h treatment with phosphate buffer
only (lane 2). Grb2-SH2 - GyrA - CBD treated with 200 mM hydrazine in phosphate buffer
for 20 h. The whole reaction slurries were analysed.
Figure 9 illustrates an ESMS spectrum of the C-terminal hydrazide derivative of Grb2-SH2.
Figure 10 shows SDS-PAGE analysis of the reaction between synthetic ketone containing
peptide CH3COCO-myc with Grb2-SH2 - C-terminal hydrazide and Cytochrome C. Molecular weight markers
(lane 1); Grb2-SH2 - C-terminal DTT thioester (lane 2). Reaction between Grb2-SH2
- C-terminal hydrazide and CH3COCO-myc at time points t=0 h (lane 3), t=24 h (lane 4), t= 48h (lane 5) and t= 72
h (lanes 6). Reaction between Cytochrome C and CH3COCO-myc at time points t=0 h (lane 7), t=24 h (lane 8), t= 48h (lane 9) and t= 72
h (lanes 10)
Figure 11 shows the structure of CH3COCO-Lys(F1). The 5-carboxy fluorescein positional isomer is shown.
Figure 12 illustrates SDS-PAGE analysis of the reaction between CH3COCO-Lys(F1) with Grb2-SH2 C-terminal hydrazide in 50 mM sodium acetate buffer pH
4.5. Molecular weight markers (lane 1); Grb2-SH2 C-terminal hydrazide (lane 2). Reaction
between Grb2-SH2 C-terminal hydrazide and CH3COCO-Lys(F1) at time points t=4 h (lane 3), t=24 h (lane 4), t= 48h (lane 5)
Figure 13 illustrates SDS-PAGE analysis of the reaction between CH3COCO-Lys(F1) with Cytochrome C in 100 mM sodium acetate buffer pH 4.5. Molecular weight
markers (lane 1); Cytochrome C (lane 2). Reaction between Cytochrome C and CH3COCO-Lys (F1) at time points t=4 h (lane 3), t=24 h (lane 4), t= 48h (lane 5).
Figure 14 illustrates SDS-PAGE analysis of the reaction of CH3COCO-Lys(F1) with Grb2-SH2 C-terminal hydrazide and with Cytochrome C in 50 mM sodium
acetate buffer pH 4.5.(A) total protein stain of gel. Prior to this coomassie staining
(A), the gel was imaged for green fluorescence (B). Molecular weight markers (lane
1); Grb2 SH2 C-terminal hydrazide (lane 2); Reaction between Grb2 SH2 C-terminal hydrazide
and CH3COCO-Lys(F1) at time points t=4 h (lane 3), t=24 h (lane 4), t= 48h (lane 5). Cytochrome
C (lane 6); Reaction between Cytochrome C and CH3COCO-Lys(F1) at time points t=4 h (lane 7), t= 24 h (lane 8) and t= 48 h (lanes 9).
Figure 15 shows SDS-PAGE analysis of the reaction between CH3COCO-Lys(F1) and Grb2 SH2 C-terminal hydrazide in 40% aqueous acetonitrile containing
0.1% TFA; reaction after 4 h (lane 1), 24 h (lane 2), 48h (lane 3), Grb2 SH2 C-terminal
hydrazide (lane 4).
Examples
Example 1 -Protein ligation / site specific protein labelling using the reaction of
peptide / protein thioesters with compounds containing hydrazine / hydrazide or aminoxy
functionalities.
A) Reaction of a peptide C-terminal thioester with 100mM hydrazine at pH 6. 0
[0073] 200 mM sodium phosphate buffer pH 6.0 containing 100mM hydrazine monohydrate (200
µL) was added to a model synthetic C-terminal thioester peptide termed AS626p1A (200
µg) to yield a final peptide concentration of 317 µM. AS626p1A has sequence ARTKQ
TARK(Me)
3 STGGKAPRKQ LATKAARK-COS-(CH
2)
2-COOC
2H
5 (SEQ ID NO: 1) wherein a single Alanine residue (which may be any one of the Alanine
residues of SEQ ID NO: 1) is substituted by an Arginine residue. The reaction was
incubated at room temperature and monitored with time by analytical reversed phase
HPLC. Vydac C18 column (5 µM, 0.46 x 25 cm). Linear gradients of acetonitrile water
/ 0.1% TFA were used to elute the peptides at a flow rate of 1 mL min
-1. Individual peptides eluting from the column were characterised by electrospray mass
spectrometry.
B) Reaction of a peptide C-terminal thioester with 100mM hydroxylamine at pH 6.0
[0074] 200 mM sodium phosphate buffer pH 6.0 containing 100mM hydroxylamine hydrogen chloride
(200 µL) was added to AS626p1A (200 µg) to yield a final peptide concentration of
317 (µM. The reaction was incubated at room temperature and monitored with time by
analytical reversed phase HPLC. Vydac C18 column (5 µM, 0.46 x 25 cm). Linear gradients
of acetonitrile water / 0.1% TFA were used to elute the peptides at a flow rate of
1 mL min
-1. Individual peptides eluting from the column were characterised by electrospray mass
spectrometry.
C) Reaction of a peptide C-terminal thioester with 100 mM hydroxylamine at pH 6.8
[0075] 200 mM sodium phosphate buffer pH 6.8 containing 100mM hydroxylamine hydrogen chloride
(200 µL) was added to AS626p1A (200 µg) to yield a final peptide concentration of
317 µM. The reaction was incubated at room temperature and monitored with time by
analytical reversed phase HPLC. Vydac C18 column (5 µM, 0.46 x 25 cm). Linear gradients
of acetonitrile water / 0.1% TFA were used to elute the peptides at a flow rate of
1 mL min
-1. Individual peptides eluting from the column were characterised by electrospray mass
spectrometry.
D) Reaction of a peptide C-terminal thioester with 10mM hydroxylamine at pH 6.8
[0076] The procedure as described in C) was repeated, replacing 100mM hydroxylamine with
10mM hydroxylamine.
E) Reaction of a peptide C-terminal thioester with 10mM hydroxylamine at pH 7.5
[0077] The procedure as described in D) was repeated, at pH7.5.
F) Reaction of a peptide C-terminal thioester with 2mM hydroxylamine at pH 7 . 5
[0078] The procedure as described in E) was repeated, replacing 10mM hydroxylamine with
2mM hydroxylamine.
G) Reaction of a peptide C-terminal thioester with 100 mM O-Methylhydroxylamine (NH2-O-CH3) at pH 7.5
[0079] 200 mM sodium phosphate buffer pH 7.5 containing 100mM
O-methylhydroxylamine (200 µL) was added to synthetic C-terminal thioester peptide
AS626p1A (200 µg) to yield a final peptide concentration of 317 µM. The reaction was
incubated at room temperature and monitored with time by analytical reversed phase
HPLC. Vydac C18 column (5 µM, 0.46 x 25 cm). Linear gradients of acetonitrile water
/ 0.1% TFA were used to elute the peptides at a flow rate of 1 mL min
-1. Individual peptides eluting from the column were characterised by electrospray mass
spectrometry.
H) Reaction of a peptide C-terminal thioester with 10 mM O-Methylhydroxylamine at
pH 7.5
[0080] The procedure as described in G) was repeated, replacing 100 mM
O-methylhydroxylamine with 10 mM
O-methylhydroxylamine.
I) Reaction of a recombinant protein C-terminal thioester with 100 mM O-Methylhydroxylamine
at pH 7.5
[0081] The C-terminal mercaptoethanesulfonic acid thioester derivative of recombinant Grb2-SH2,
was generated through cleavage of the fusion protein Grb2-SH2 - GyrA intein - CBD
as described in Example 2 below. This recombinant C-terminal thioester protein (100
µg) was reacted with 100mM
O-methylhydroxylamine in 200 mM sodium phosphate buffer pH 7.5 (200 µL). The reaction
was incubated at room temperature and monitored with time by analytical reversed phase
HPLC. Vydac C5 column (5 µM, 0.46 x 25 cm). Linear gradients of acetonitrile water
/ 0.1% TFA were used to elute the peptides at a flow rate of 1 mL min
-1. Individual peptides eluting from the column were characterised by electrospray mass
spectrometry.
Results
[0082] These examples demonstrate the novel strategy for protein ligation / site specific
protein labelling of both synthetic and recombinant protein sequences of the invention
using the reaction of peptide / protein C-terminal thioesters with compounds containing
hydrazine / hydrazide or aminoxy functionalities.
[0083] As described above, a purified synthetic 27 amino acid C-terminal thioester peptide
(the ethyl 3-mercaptopropionate thioester derivative) was treated with hydrazine and
hydroxylamine under various conditions (Table 1).
[0084] Treatment with 100 mM hydrazine at pH 6.0 formed a peptide species that eluted earlier
than the starting thioester peptide as analysed by HPLC. This material was identified
as the expected peptide hydrazide by ESMS: observed mass = 3054 Da, expected (av.
isotope comp) 3053 Da. The reaction of the peptide C-terminal thioester with hydrazine
to form the peptide hydrazide was monitored with time by reverse phase HPLC. Only
the desired material was formed with no side product formation even after 3 days.
The stability of the peptide hydrazide, under the reaction conditions, indicates that
the reaction occurs at the C-terminal thioester moiety and is chemoselective in nature.
It also highlights the applicability of this reaction for protein ligation and labelling
(2 h 70% conversion , 4h >95% conversion).
[0085] To ascertain whether aminooxy containing compounds chemoselectively react with peptide
/ protein C-terminal thioesters, to afford protein ligation and site-specific labelling,
a synthetic C-terminal thioester peptide was treated with hydroxylamine under various
conditions (Table 1).
[0086] A purified synthetic 27 amino acid C-terminal thioester peptide (ethyl 3-mercaptopropionate
thioester, observed mass 3155 Da) was incubated at room temperature with different
hydroxylamine concentrations in aqueous buffers of varying pH. In all cases the peptide
C-terminal thioester reacted to form a single product that eluted earlier than the
starting thioester peptide as analysed by reverse phase HPLC. This material corresponds
to the expected hydroxamic acid peptide as determined by ESMS: observed mass = 3052
Da, expected (av. isotope comp) 3054 Da. The kinetics of the reaction were monitored
using reverse phase HPLC. The peptide C-terminal thioester was converted to the corresponding
peptide hydroxamic acid in a clean fashion with no side-product formation. Increasing
the pH of the reaction buffer accelerated the rate of reaction. For instance, with
a concentration of 100mM NH
2OH, on moving from pH 6.0 to pH 6.8 the percentage product formation after 1h increased
from 25% to 91%. The rate of reaction with 100 mM NH
2OH atpH 6.0, was comparable with 10 mM NH
2OH at pH 6.8.
[0087] The rate of reaction of the peptide C-terminal thioester with hydroxalymine, to form
the corresponding hydroxamic acid, increases with increasing pH and decreases with
decreasing NH
2OH concentrations. To identify conditions of pH and reactant concentration suitable
for peptide / protein labelling and ligation, the labelling was performed under increasing
pH and decreasing NH
2OH concentrations.
[0088] The reaction with 10 mM NH
2OH was 83% complete after 4h at pH 6.8, while at pH 7.5 it was 83% complete after
2h. On further decreasing the NH
2OH concentration to 2 mM the reaction rate at pH 7.5 decreased markedly, 70% of the
starting peptide α-thioester being converted to the corresponding hydroxamic acid
after 8hrs. It was noted that a small amount of a side-product, corresponding in mass
to the peptide acid, was formed during the reaction. Presumably this was formed by
a competing hydrolysis side reaction at pH 7.5, which was not observed with 10 mM
NH
2OH at pH 7.5 due to the faster reaction at this higher reactant concentration.
Table 1
Reactant |
Concentration |
pH |
Percentage product formation with time |
|
|
|
1hr |
2hr |
4hr |
8hr |
72hr |
NH2NH2 |
100 mM |
6.0 |
- |
70 |
100 |
|
|
NH2OH |
100 mM |
6.0 |
25 |
48.1 |
76.3 |
- |
100 |
NH2OH |
100 mM |
6.8 |
91 |
100 |
|
|
|
NH2OH |
10 mM |
6.8 |
26 |
- |
83 |
100 |
|
NH2OH |
10 mM |
7.5 |
- |
82.7 |
100 |
100 |
|
NH2OH |
2 mM |
7.5 |
11.2 |
17 |
38 |
70 |
80* |
*All starting material has reacted with 80% conversion to the desired product and
∼20% to the hydrolysis side-product. |
[0089] To further investigate the chemoselective reaction of aminooxy containing compounds
with peptide / protein C-terminal thioesters, to afford protein ligation and site-specific
labelling, the synthetic C-terminal thioester peptide AS626p1 was treated with
O-methylhydroxylamine.
[0090] The purified synthetic 27 amino acid C-terminal thioester peptide (ethyl 3-mercaptopropionate
thioester, observed mass 3155 Da) was incubated at room temperature with 100mM
O-methylhydroxylamine in 200 mM sodium phosphate buffer pH 7.5. The peptide C-terminal
thioester reacted to form a single product that eluted earlier than the starting thioester
peptide as analysed by reverse phase HPLC. This material corresponded to the expected
N-methoxy peptide amide as determined by ESMS: observed mass = 3070 Da, expected mass
3068 Da. The kinetics of the reaction were monitored using reverse phase HPLC (Table
II). The peptide C-terminal thioester was converted to the corresponding N-methoxy
peptide amide derivative in a clean fashion with no side-product formation, with the
reaction 75% complete after 24 h. Under these conditions no thioester hydrolysis was
observed.
Table II
Reactant |
Concentration |
pH |
Percentage product formation with time |
|
|
|
1hr |
2hr |
5hr |
24hr |
72hr |
NH2OCH3 |
100 mM |
7.5 |
- |
7.5 |
28 |
76 |
|
[0091] When the reaction was repeated under the same conditions but with 10 mM
O-methylhydroxylamine replacing 100 mM
O-methylhydroxylamine, the reaction rate was slower. However, after 72h, 88% of the
starting C-terminal thioester peptide had reacted. Under these conditions side-product
formation was observed, in addition to the desired reaction product formation. Even
so, after 72h, 30-40% of the reaction product was estimated to be the desired ligation
reaction product (N-methoxy peptide amide) from HPLC analysis of the reaction mixture.
[0092] The reaction of
O-methylhydroxylamine with recombinant C-terminal thioester proteins was also investigated.
Recombinant Grb2-SH2 was generated as the C-terminal mercaptoethanesulfonic acid thioester
derivative, through thiol mediated cleavage of the fusion protein Grb2-SH2 - GyrA
intein - CBD, as described in Example 2. This recombinant C-terminal thioester protein
was reacted with 100mM
O-methylhydroxylamine at pH 7.5. Analysis of the reaction mixture after 18h by HPLC
and ESMS showed that all of the C-terminal thioester protein had been completely converted
into two protein species. These two protein derivatives corresponded to the desired
ligation reaction product, namely Grb2-SH2 C-terminal N-methoxy amide (expected mass
12067 Da; observed mass 12067 Da), and an oxidised form of the desired reaction product
(observed mass 12084 Da). No side products corresponding to hydrolysis of the C-terminal
protein thioester were observed. Thus all of the C-terminal thioester recombinant
protein had chemoselectively ligated with
O-hydroxylamine, via an amide bond forming reaction specifically at the C-terminus
of the protein. i.e. the reaction afforded site-specific C-terminal labelling of the
recombinant protein.
Example 2- Generation of recombinant C-terminal hydrazide Grb2 SH2 protein.
[0093] To investigate (i) the ability to generate recombinant C-terminal hydrazide proteins
through the selective cleavage of protein - intein fusions with hydrazine, and (ii)
their subsequent use in ligation / labelling reactions, the SH2 domain of the adapter
protein Grb2 was chosen as a model system.
Sequence of human Grb2 SH2 domain
[0094] 
Expression of Grb2-SH2 domain - GyrA intein fusion.
[0095] The DNA sequence encoding the SH2 domain of human Grb2 appended at its C-terminus
with an extra glycine residue was cloned into the pTXB1 expression plasmid (NEB).
This vector pTXB1
Grb2-SH2 (Gly) encodes for a fusion protein whereby the SH2 domain of Grb2 is linked via a glycine
residue to the N-terminus of the GyrA intein, which is in turn fused to the N-terminus
of a chitin binding domain region (CBD).
E. coli cells were transformed with this plasmid and grown in LB medium to mid log phase and protein
expression induced for 4h at 37°C with 0.5 mM IPTG. After centrifugation the cells
were re-suspended in lysis buffer (0.1 mM EDTA, 250 mM NaCl, 5% glycerol, 1 mM PMSF,
25 mM HEPES, pH 7.4) and lysed by sonication. The soluble fraction was loaded onto
a chitin column pre- equilibrated in lysis buffer. The column was then washed with
wash buffer (1 mM EDTA, 250 mM NaCl, 0.1% Triton-X 100, 25 mM HEPES, pH 7.0) to yield
purified Grb2-SH2 - GyrA-CBD immobilised on chitin beads (Figure 7).
Generation of Grb2-SH2 C-terminal thioesters by thiol induced cleavage of the Grb2-SH2
- GyrA intein fusion.
[0096] To ascertain that the intein domain within the protein was functional the fusion
protein was exposed to thiols to assess the extent of cleavage via transthioesterification.
Chitin beads containing immobilised Grb2-SH2 - GyrA-CBD were equilibrated into 200
mM NaCl, 200 mM phosphate buffer pH 7.4. Dithiothreitol (DTT) or 2-mercaptoethanesulfonic
acid (MESNA) were then added to the beads in 200 mM NaCl, 200 mM phosphate buffer
pH 7.4 to give a 50% slurry with a final thiol concentration of 100 mM or 120 mM respectively.
The mixtures were then rocked at room temperature and aliquots analysed by SDS-PAGE.
After 48 hours the supernatants from the reactions were isolated and subsequently
analysed by HPLC and ESMS.
[0097] Treatment of Grb2-SH2 - GyrA intein - CBD fusion with both DTT and MESNA resulted
in cleavage of the fusion protein into two protein species (Figure 7). The molecular
size of the two fragments corresponds to that of the Grb2 - SH2 and the GyrA - intein
fusion, indicative that cleavage has taken place at the SH2 - intein junction. Cleavage
of the precursor fusion protein liberated the SH2 domain into the supernatant while
the GyrA intein-CBD portion remained immobilized on the chitin beads. After cleavage
with both DTT or MESNA, ESMS analysis of the supernatants confirmed that the Grb2-SH2
was generated as either the expected DTT or MESNA C-terminal thioester derivatives
respectively.
[0098] Expected mass of Grb2-SH2 DTT - C-terminal thioester = 12173.9 Da; observed mass
12173.5 Da. Expected mass of Grb2-SH2 MESNA - C-terminal thioester = 12162.0 Da; observed
mass 12163.0 Da.
Generation of Grb2-SH2 C-terminal hydrazide by hydrazine induced cleavage of the Grb2-SH2
- GyrA intein fusion.
[0099] The inventors hypothesised that the thioester linkage between Grb2-SH2 and the GyrA
intein in the precursor fusion protein is cleaved with hydrazine. The chemoselective
reaction of hydrazine, at the thioester moiety linking Grb2 SH2 to the intein, would
liberate the Grb2-SH2 domain into the supernatant as its corresponding C-terminal
hydrazide derivative. Chitin beads containing immobilised Grb2-SH2 - GyrA-CBD were
therefore equilibrated into 200 mM NaCl, 200 mM phosphate buffer pH 7.4 and hydrazine
monohydrate added in the same buffer to give a 50% slurry with a final hydrazine concentration
of 200 mM. The mixture was then rocked at room temperature and analysed by SDS-PAGE
(Figure 8). After 20 hours the supernatant was removed and analysed by HPLC and ESMS.
[0100] Treatment of Grb2-SH2 - GyrA intein - CBD fusion with hydrazine resulted in cleavage
of the fusion protein into two species. The molecular size of the two fragments as
analysed by SDS-PAGE corresponded to Grb2 - SH2 and the GyrA - intein fusion, indicative
that cleavage has taken place at the unique thioester linkage between the SH2 and
intein domains. Cleavage of the precursor fusion protein liberated the SH2 domain
into the supernatant while the GyrA intein-CBD portion remained immobilized on the
chitin beads. HPLC and ESMS analysis of the cleavage supernatant confirmed that a
single protein species was generated that corresponds to the C-terminal hydrazide
derivative of Grb2-SH2. Expected mass of Grb2-SH2 C-terminal hydrazide = 12051.7 Da;
observed mass 12053.0 Da. (Figure 9)
[0101] After 20 h of reaction Grb2-SH2 C-terminal hydrazide was isolated from the supernatant
by either (i) using RPHPLC followed by lyophilisation or (ii) by gel filtration. In
this later approach the Grb2-SH2 C-terminal hydrazide reaction solution was loaded
onto a superdex peptide column (Amersham Biosciences) and eluted with a running buffer
of 50 mM sodium acetate pH 4.5. This yielded a solution of purified Grb2-SH2 C-terminal
hydrazide in 50 mM sodium acetate pH 4.5. This solution was concentrated using a centricon
filter (3000 MWCO), then snap frozen and stored at -20°C until use.
[0102] A sample of the purified and lyophilised Grb2-SH2 C-terminal hydrazide (100 µg) was
treated with the protease Lys-C (5 µg) in 100mM ammonium bicarbonate buffer pH 8.2
(100 µL). After incubating at 30°C overnight the reaction was lyophilised and analysed
by MALDI mass spectrometry. The observed mass of the C-terminal proteolytic fragment
(FNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTG) corresponds to that of the desired C-terminal
hydrazide derivative (expected mass of C-terminal hydrazide proteolytic fragment 4229
Da; observed mass 4231 Da)
Example 3- Veneration of recombinant C-terminal hydrazide maltose binding protein.
[0103] As a further demonstration of the described approach, for generating recombinant
C-terminal hydrazide proteins through the selective cleavage of protein - intein fusions
with hydrazine, the generation of the C-terminal hydrazide derivative of maltose binding
protein (MBP) was investigated.
Sequence of human MBP used
[0104]

Expression of MBP - Sce VMA intein fusion.
[0105] The expression vector pMYB5 (New England Biolabs) encodes for a fusion protein comprising
maltose binding protein (sequence above) fused N-terminal to the
Sce VMA intein, which is in turn fused to the N-terminus of a chitin binding domain (CBD)
to facilitate purification.
[0106] E. coli cells were transformed with this plasmid and grown in LB medium to mid log phase and protein
expression induced for 4h at 37°C with 0.5 mM IPTG. After centrifugation the cells
were re-suspended in lysis buffer (0.1 mM EDTA, 250 mM NaCl, 5% glycerol, 1 mM PMSF,
25 mM HEPES, pH 7.4) and lysed by sonication. The soluble fraction was loaded onto
a chitin column pre- equilibrated in lysis buffer. The column was then washed with
wash buffer (1 mM EDTA, 250 mM NaCl, 0.1% Triton-X 100, , 25 mM HEPES, pH 7.0) to
yield the purified fusion protein (MBP-VMA-CBD) immobilised on chitin beads.
Generation of MBP C-terminal thioesters by thiol induced cleavage of the MBP - VMA-
intein fusion protein.
[0107] To ascertain that the intein domain within MBP-VMA-CBD was functional, the fusion
protein was exposed to 2-mercaptoethanesulfonic acid (MESNA) to assess the extent
of cleavage via transthioesterification. Chitin beads containing immobilised MBP-VMA-CBD
were equilibrated into 200 mM NaCl, 200 mM phosphate buffer pH 7.4. MESNA was then
added to the beads in 200 mM NaCl, 200 mM phosphate buffer pH 7.4 to give a 50% slurry
with a final thiol concentration of 120 mM. The mixture was then rocked at room temperature
and aliquots analysed by SDS-PAGE. After 48 hours the supernatants from the reactions
were isolated and subsequently analysed by HPLC and ESMS.
[0108] Treatment of MBP-VMA-CBD fusion with MESNA results in cleavage of the fusion protein
into two protein species. The molecular size of the two fragments corresponds to that
of the MBP and the VMA-CBD portion, indicative that cleavage has taken place at the
MBP - VMA intein junction. Cleavage of the precursor fusion protein liberates MBP
into the supernatant while the VMA-CBD portion remains immobilized on the chitin beads.
This was confirmed by ESMS analysis of the cleavage supernatant, which contained one
protein species. Expected mass of MBP C-terminal MESNA thioester 43064 Da; observed
mass 43098 Da.
Generation of MBP C-terminal hydrazide by hydrazine induced cleavage of the MBP-VMA
intein fusion protein.
[0109] Chitin beads containing immobilised MBP-VMA-CBD were equilibrated into 200 mM NaCl,
200 mM phosphate buffer pH 7.4 and hydrazine monohydrate added in the same buffer
to give a 50% slurry with a final hydrazine concentration of 200 mM. The mixture was
then rocked at room temperature and analysed by SDS-PAGE and by HPLC and ESMS.
[0110] After 20 h of reaction MBP C-terminal hydrazide was isolated from the supernatant
by either (i) using RPHPLC followed by lyophilisation or (ii) by gel filtration. In
this later approach the MBP C-terminal hydrazide reaction solution was loaded onto
a superdex peptide column (Amersham Biosciences) and eluted with a running buffer
of 50 mM sodium acetate buffer pH 4.5. This yielded a solution of purified MBP C-terminal
hydrazide in 50 mM sodium acetate buffer pH 4.5. This protein solution was concentrated
using a centricon filter (3000 MWCO), then snap frozen and stored at -20°C until use.
[0111] Treatment of MBP-VMA-CBD fusion with hydrazine results in cleavage of the fusion
protein into two species. The molecular size of the two fragments as analysed by SDS-PAGE
corresponds to MBP and the VMA-CBD portion, indicative that cleavage has taken place
at the unique thioester linkage between the MBP - VMA intein domain. Cleavage of the
precursor fusion protein liberates MBP into the supernatant, while the VMA-CBD portion
remains immobilized on the chitin beads. HPLC and ESMS analysis of the cleavage supernatant
confirms that a single protein species is generated with an observed mass of 42988
Da. The expected mass difference between the C-terminal MESNA thioester derivative
of a protein and its corresponding C-terminal hydrazide is 111 Da. The observed mass
of the C-terminal MESNA thioester of MBP was found to be 43098 Da. Thus the product
from the hydrazine cleavage of MBP-VMA- CBD is 110 Da lower, indicating that the desired
C-terminal hydrazide derivative of MBP had been formed.
Example 4- Ligation of aldehyde and ketone containing peptides and labels to recombinant
C-terminal hydrazide containing proteins: Ligation of a synthetic peptide c-myc to
recomnbinant Grb2 SH2 domain.
[0112] The inventors hypothesised that recombinant protein C-terminal hydrazides, generated
by hydrazine treatment of the corresponding intein fusion precursor, can be site-specifically
modified by chemoselective ligation with aldehyde and ketone containing peptides and
labels. To demonstrate such an approach, the ability of a synthetic ketone containing
peptide to ligate with the Grb2-SH2 C-terminal hydrazide generated above was investigated.
A synthetic peptide corresponding to the c-myc epitope sequence was synthesised GEQKLISEEDL-NH
2, whereby pyruvic acid was coupled to the amino terminus of the peptide as the last
step of the assembly. This peptide (designated CH
3COCO-myc) was purifed to > 95% purity by RPHPLC and lyophilised (ESMS expected monoisotopic
mass 1328.6 Da; observed mass 1328.6 Da).
[0113] A sample of CH
3COCO-myc peptide was dissolved in 100 mM sodium acetate buffer pH 4.5 to give a 4
mM peptide concentration. This peptide solution (100 µL) was then added to an aliquot
of lyophilised Grb2-SH2 C-terminal hydrazide protein (- 250 µg) and the reaction monitored
by SDS-PAGE (Figure 10) As a control CH
3COCO-myc was also incubated with Cytochrome C, a protein of similar same size to Grb2-SH2
but absent of a hydrazide functionality.
[0114] SDS-PAGE analysis shows that CH
3COCO-myc peptide has indeed ligated with Grb2-SH2 C-terminal hydrazide, as indicated
by the conversion of Grb2-SH2 C-terminal hydrazide into a protein species of a higher
molecular weight (approximately 1000-2000 Da higher). The reaction is virtually complete
after 24 h and the reaction product appears to be stable. On the other hand, there
was no observable change to Cytochrome C with time i.e no ligation, establishing that
the ligation reaction is occurring at the C-terminal hydrazide functionality of Grb2-SH2.
[0115] After 96 h of reaction the product from the Grb2-SH2 ligation reaction was isolated
by HPLC and characterised by ESMS. Chemoselective ligation of CH
3COCO-myc to Grb2-SH2 C-terminal hydrazide via hydrazone bond formation would give
a product of expected mass 13363.7 Da. The observed product mass was 13364.1 Da indicting
that the desired ligation product had been formed.
Example 5- Ligation of aldehyde and ketone containing peptides and labels to recombinant
C-terminal hydrazide containing proteins: Fluorescein labelling of Grb2-SH2.
[0116] In this example the recombinant C-terminal hydrazide derivative of Grb2-SH2, generated
through hydrazine cleavage of the precursor intein fusion protein, was reacted with
a ketone containing derivative of fluorescein to afford site-specific fluorescent
labelling of the protein.
[0117] To facilitate fluorescent labelling of C-terminal hydrazide recombinant proteins
using the described approach, the fluorophore needs to contain the appropriate reactive
group for ligation, namely an aldehyde or ketone functionality. To this end a derivative
of fluorescein was synthesized containing a pyruvoyl moiety. Initially, Fmoc-Lys(Mtt)-OH
was coupled to a rink amide resin, and the Mtt group removed using standard procedures
(1% TFA, 4% triisopropylsilane in dichloromethane). 5(6)-carboxyfluorescein was then
couple to the lysine ε-amino group. The Fmoc group was then removed and pyruvic acid
coupled to the free α-amino group of the lysine. After cleavage from the resin, the
desired fluorescein derivative [designated CH
3COCO-Lys(F1), see Figure 11] was purified to > 95% purity by RPHPLC and lyophilised
(ESMS, expected monoisotopic mass 576.2 Da; observed monoisotopic mass 576.0 Da).
[0118] To establish the reactivity of CH
3COCO-Lys(F1) with C-terminal hydrazide peptides and proteins, the reaction of CH
3COCO-Lys(F1) with a small synthetic C-terminal hydrazide peptide SLAYG-NHNH
2 was investigated. A sample of CH
3COCO-Lys(F1) and SLAYG-NHNH
2 peptide were co-dissolved in 100 mM sodium acetate buffer pH 4.5 to give final concentrations
of 0.3 mM and 2 mM respectively. After 20 h incubation at room temperature, the reaction
was deemed complete as determined by RPHPLC analysis. All the starting CH
3COCO-Lys(F1) had reacted to give predominantly a single product. The mass of which
corresponds to the desired ligation product, namely conjugation of the two reactants
via hydrazone bond formation (ESMS expected monoisotopic mass 1079 Da; observed mass
1080 Da).
[0119] Having established the specific reaction of CH
3COCO-Lys(F1) with hydrazide containing peptides, this fluorescein derivative was used
for the site-specific labeling of recombinant Grb2 SH2 C-terminal hydrazide (generated
through hydrazine cleavage of Grb2 SH2 - GyrA - CBD).
[0120] Two complementary methods were employed for the purification of Grb2 SH2 C-terminal
hydrazide from the fusion protein cleavage reaction (Example 2). The purified protein
was isolated as either a lyophilized solid or in a solution of 50 mM sodium acetate
buffer pH 4.5. This latter buffer system was chosen as the pH is suited to hydrazone
bond forming reactions. An aliquot of Grb2 SH2 C-terminal hydrazide in 50mM sodium
acetate pH 4.5 (250 µg, 200 µL) was added directly to a sample of CH
3COCO-Lys(Fl) to give a final concentration of fluorphore of circa 0.3 mM. The reaction
was incubated at room temperature and monitored by SDS-PAGE. As a control CH
3COCO-Lys(Fl) was also incubated under the same conditions with Cytochrome C, a protein
of similar same size to Grb2-SH2 but absent of a hydrazide functionality.
[0121] SDS-PAGE analysis shows that CH
3COCO-Lys(Fl) has indeed ligated with Grb2-SH2 C-terminal hydrazide (Figure 12) as
indicated by the conversion of Grb2-SH2 C-terminal hydrazide into a single protein
species with an apparent increase in molecular weight (approximately 1000-2000 Da
higher). After SDS-PAGE analysis of the reactions, fluorescence imaging of the gel
confirmed that the newly formed reaction product contains a fluorescein label, and
that the reaction is clean, with only a single fluorescent protein product being formed
(figure 14). The reaction is virtually complete after 24 h and the reaction product
appears to be stable under these conditions.
[0122] On the other hand there was no observable change to Cytochrome C over the time course
of the experiment i.e no ligation (Figure 13) with a complete absence of the formation
of any fluorescent protein products (Figure 14). Thus establishing that the ligation
reaction is occurring at the C-terminal hydrazide functionality of Grb2 SH2, to yield
site-specific C-terminal fluorescent labelling of the recombinant protein. After 48
h of reaction, the product from the ligation reaction with Grb2 SH2 was isolated by
HPLC. The mass of this product, by ESMS, confirmed the addition of one fluorescein
group to the protein.
[0123] In another example, lyophilised Grb2 SH2 C-terminal hydrazide was directly dissolved
into 100 mM sodium acetate pH 4.5 and added to CH
3COCO-Lys(Fl). Whilst some protein precipitation was observed, the soluble fraction
of the protein reacted with CH
3COCO-Lys(Fl) in the anticipated manner described above.
[0124] In an alternative strategy, a lyophilized sample of Grb2 SH2 C-terminal hydrazide
(250 µg) was dissolved in 40% aqueous acetonitrile containing 0.1% TFA (200 µL). This
solution was then added to a sample of CH
3COCO-Lys(Fl) to give a final fluorophore concentration of circa 0.3 mM. The solution
was incubated at room temperature and the reaction periodically analyzed. SDS-PAGE
analysis showed that the labeling reaction had occurred cleanly and rapidly under
these conditions (Figure 15). Grb2 SH2 C-terminal hydrazide was converted into a single
protein species with an apparent increased molecular weight expected for that of the
desired product, and this newly formed protein was green fluorescent when visualised
under a UV lamp. ESMS of the reaction product confirmed that one fluoresein molecule
had been added to the protein. The reaction is virtually complete after 4 h, with
prolonged incubation appearing to be detrimental to the formation of the ligation
product.
Example 6- Ligation of aldehyde and ketone containing peptides and labels to recombinant
C-terminal hydrazide containing proteins: Fluorescein labelling of MBP.
[0125] As a further exemplification, the described approach was used for the site-specific
C-terminal labeling of MBP with fluorescein. A sample (250 µg) of lyophilised recombinant
MBP C-terminal hydrazide (generated through hydrazine cleavage of MBP - VMA - CBD
precursor fusion protein) was dissolved in 40% aqueous acetonitrile containing 0.1%
TFA (200 µL). The solution was then added to a sample of CH
3COCO-Lys(Fl) to give a final fluorophore concentration of circa 0.3 mM. The reaction
was then incubated at room temperature and periodically analyzed by SDS-PAGE.
[0126] SDS-PAGE analysis showed that the fluorescein labelling reaction had occurred under
these conditions, as indicated by the formation of a single green fluorescent species
with a molecular weight of circa 42 KDa. MALDI analysis of the reaction mixture after
48 h was consistent with the addition of one fluorescein molecule to MBP.
[0127] In summary, the present invention provides novel methods of protein ligation and
protein labelling. These enable both synthetic and recombinantly derived protein fragments
to be efficiently joined together in a regioselective manner. This thus enables large
proteins to be constructed from combinations of synthetic and recombinant fragments
and allows proteins of any size to be site-specifically modified in an unprecedented
manner. This is of major importance for biological and biomedical science and drug
discovery when one considers that the - 30,000 human genes yield hundreds of thousands
of different protein species through post-translational modification. Such post-translationally
modified proteins cannot be accessed through current recombinant technologies.
[0128] The application of such protein ligation techniques may be used for protein based
tools, protein therapeutics and in de novo design and may open up many new avenues
in biological and biomedical sciences that have hitherto not been possible.
[0129] Various modifications and variations to the described embodiments of the inventions
will be apparent to those skilled in the art. Although the invention has been described
in connection with specific preferred embodiments, it should be understood that the
invention as claimed should not be unduly limited to such specific embodiments. Indeed,
various modifications of the described modes of carrying out the invention which are
obvious to those skilled in the art are intended to be covered by the present invention.
1. A method of producing an oligopeptide product, the method comprising the steps:
a) providing a first oligopeptide, the first oligopeptide having a reactive moiety,
wherein the reactive moiety is a hydrazine moiety, a hydrazide moiety or an aminooxy
moiety;
b) providing a second oligopeptide, the second oligopeptide having a activated ester
moiety,
wherein the activated ester moiety is a thioester moiety, a phenolic ester moiety,
an hydroxysuccinimide moiety, or an O-acylisourea moiety;
c) allowing the reactive moiety of the first oligopeptide to react with the activated
ester moiety of the second oligopeptide to form an oligopeptide product, in which
the first and second oligopeptides are linked via a linking moiety having Formula
I, Formula II or Formula III.




2. The method according to claim 1 wherein the terminal activated ester moiety is a thioester
wherein the peptide is the acyl substituent of the thioester.
3. The method according to claim 2, wherein said second polypeptide is generated by thiol
reagent dependent cleavage of a precursor molecule, said precursor molecule comprising
a second oligopeptide fused N-terminally to an intein domain.
4. The method according to any one of the preceding claims, wherein the reactive moiety
is an aminooxy moiety and the activated ester moiety is a thioester.
5. The method according to claim 4, wherein said first oligopeptide is produced by reaction
of hydrazine with a precursor molecule, said precursor molecule comprising a precursor
oligopeptide fused N-terminally to an intein domain via a thioester moiety.
6. A method of producing an oligopeptide product, said method comprising the steps:
a) providing a first oligopeptide, the first oligopeptide having a reactive moiety,
wherein the reactive moiety is a hydrazine moiety, a hydrazide moiety or an amino-oxy
moiety;
b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a second oligopeptide fused N-terminally to an intein domain;
c) allowing the reactive moiety of the first oligopeptide to react with the precursor
oligopeptide molecule to form an oligopeptide product, in which the first and second
oligopeptides are linked via a linking moiety having Formula I, Formula II or Formula
III.
7. The method according to any one of the preceding claims, wherein the first oligopeptide
or the second oligopeptide is a recombinant oligopeptide and the other of the first
oligopeptide and the second oligopeptide is a synthetic polypeptide.
8. The method according to any one of claims 1 to 6, wherein the first oligopeptide and
the second oligopeptide are recombinant oligopeptides.
9. The method according to any one of claims 1 to 6, wherein the first oligopeptide and
the second oligopeptide are synthetic oligopeptides.
10. A method of generating a protein hydrazide, said method comprising the steps:
(a) providing a protein molecule comprising an oligopeptide fused N-terminal to an
intein domain,
(b) reacting said protein molecule with hydrazine, such that the intein domain is
cleaved from the oligopeptide to generate a protein hydrazide.
11. The method according to any one of the claims 1 to 9 wherein step (c) of the method
is performed at a pH in the range pH 6.5 to 7.5.
12. A method of producing an oligopeptide product, the method comprising the steps:
a) providing a first oligopeptide, the first oligopeptide having an aldehyde or ketone
moiety,
b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a second oligopeptide fused N-terminally to an intein domain,
c) reacting said precursor oligopeptide molecule with hydrazine to generate an oligopeptide
molecule comprising an intermediate oligopeptide, said intermediate oligopeptide having
a terminal hydrazide moiety,
d) allowing the aldehyde or ketone moiety of the first oligopeptide to react with
the hydrazide moiety of the intermediate oligopeptide molecule to form an oligopeptide
product, in which first oligopeptide and the second oligopeptide are linked via a
hydrazone linking moiety.
13. An oligopeptide product produced by the method of any one of claims 1 to 9, in which
the first and second oligopeptides are linked via a linking moiety having Formula
II or Formula III.
14. A method of labelling an oligopeptide, the method comprising the steps:
a) providing a label molecule, the label molecule having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety or an aminooxy moiety;
b) providing the oligopeptide, the oligopeptide having a activated ester moiety, wherein
the activated ester moiety is a thioester moiety, a phenolic ester moiety, an hydroxysuccinimide
moiety, or an O-acylisourea moiety;
c) allowing the reactive moiety of the label molecule to react with the activated
ester moiety of the oligopeptide to form the labelled oligopeptide, in which the label
molecule and the oligopeptide are linked via a linking moiety having Formula I, Formula
II or Formula III.
15. The method according to claim 14, wherein in step (c), where said label molecule and
the oligopeptide are linked via a linking moiety having Formula II and where said
activated ester moiety of step (b) is not a thioester, said activated ester is a terminal
activated ester moiety.
16. A method of labelling an oligopeptide, the method comprising the steps:
a) providing a label molecule, the label molecule having an activated ester moiety
of which the label is the acyl substituent, wherein the activated ester moiety is
a thioester moiety, a phenolic ester moiety, an hydrocysuccinimide moiety, or an O-acylisourea;
b) providing the oligopeptide, the oligopeptide having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety or an aminooxy moiety;
c) allowing the activated ester moiety of the label molecule to react with the reactive
moiety of the oligopeptide to form the labelled oligopeptide, in which the label molecule
and the oligopeptide are linked via a linking moiety having Formula I, Formula II
or Formula III,
wherein, in step (c), where said label molecule and the oligopeptide are linked via
a linking moiety having Formula II, said activated ester is a thioester.
17. The method according to claim 16 wherein said oligopeptide is produced by reaction
of hydrazine with a precursor molecule, said precursor molecule comprising a precursor
oligopeptide fused N-terminally to an intein domain via a thioester moiety.
18. A method of labelling an oligopeptide, the method comprising the steps:
a) providing a label, the label having a reactive moiety,
b)(i) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising an oligopeptide fused N-terminally to an intein domain (ii) allowing thiol
reagent dependent cleavage of the precursor molecule to generate the oligopeptide
molecule, said oligopeptide molecule having a thioester moiety at its C-terminus,
c) allowing the reactive moiety of the label to react with the oligopeptide molecule
to form a labelled oligopeptide, in which the label and oligopeptide are linked via
a linking moiety having Formula I, II or III.
19. The method according to any one of claims 14 to 16, wherein the reactive moiety is
an aminooxy moiety and the activated ester moiety is a thioester.
20. The method according to claim 18, wherein the reactive moiety is an aminooxy moiety.
21. A method of labelling an oligopeptide, the method comprising the steps:
a) providing a label molecule, the label molecule having a reactive moiety, wherein
the reactive moiety is a hydrazine moiety, a hydrazide moiety or an aminooxy moiety;
b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising an oligopeptide fused N-terminally to an intein domain,
c) allowing the reactive moiety of the label molecule to react with the precursor
oligopeptide molecule to form a labelled oligopeptide product, in which the label
molecule and the oligopeptide are linked via a linking moiety having Formula I, Formula
II or Formula III as defined above.
22. The method according to any one of claims 14 to 21 wherein step (c) of the method
is performed at a pH in the range pH 6.5 to pH 7.5.
23. A method of labelling an oligopeptide, the method comprising the steps:
a) providing a label molecule, the label molecule having a aldehyde or ketone moiety,
b) providing a precursor oligopeptide molecule, the precursor oligopeptide molecule
comprising a first oligopeptide fused N-terminally to an intein domain,
c) reacting said precursor oligopeptide molecule with hydrazine to generate an oligopeptide
molecule comprising an intermediate oligopeptide, said intermediate oligopeptide having
a terminal hydrazide moiety,
d) allowing the aldehyde or ketone moiety of the label molecule to react with the
hydrazide moiety of the intermediate oligopeptide molecule to form a labelled oligopeptide
product, in which the label molecule and oligopeptide are linked via a hydrazone linking
moiety.
24. The method according to claim 12 or claim 23, wherein the aldehyde or ketone moiety
is an α-diketone or an α-keto-aldehyde group.
25. A labelled oligopeptide produced by the method of any one of claims 14 to 22, in which
the label and the oligopeptide are linked via a linking moiety having Formula II or
Formula III.
1. Ein Verfahren zum Produzieren eines Oligopeptidprodukts,
wobei das Verfahren die folgenden Schritte beinhaltet:
a) Bereitstellen eines ersten Oligopeptids, wobei das erste Oligopeptid einen reaktiven
Teil aufweist, wobei der reaktive Teil ein Hydrazinteil, ein Hydrazidteil oder ein
Aminooxyteil ist;
b) Bereitstellen eines zweiten Oligopeptids, wobei das zweite Oligopeptid einen aktivierten
Esterteil aufweist, wobei der aktivierte Esterteil ein Thioesterteil, ein Phenolesterteil,
ein Hydroxysuccinimidteil oder ein O-Acylisoharnstoffteil ist;
c) Ermöglichen, dass der reaktive Teil des ersten Oligopeptids mit dem aktivierten
Esterteil des zweiten Oligopeptids reagiert, um ein Oligopeptidprodukt zu bilden,
bei dem das erste und das zweite Oligopeptid durch einen Verknüpfungsteil mit der
Formel I, der Formel II oder der Formel III verknüpft sind.




2. Verfahren gemäß Anspruch 1, wobei der terminale aktivierte Esterteil ein Thioester
ist, wobei das Peptid der Acylsubstituent des Thioesters ist.
3. Verfahren gemäß Anspruch 2, wobei das zweite Polypeptid mittels Thiolreagenz abhängiger
Spaltung eines Vorläufermoleküls erzeugt wird, wobei das Vorläufermolekül ein zweites
Oligopeptid beinhaltet, das N-terminal an eine Intein-Domäne gebunden ist.
4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei der reaktive Teil ein Aminooxyteil
ist und der aktivierte Esterteil ein Thioester ist.
5. Verfahren gemäß Anspruch 4, wobei das erste Oligopeptid mittels einer Reaktion von
Hydrazin mit einem Vorläufermolekül produziert wird, wobei das Vorläufermolekül ein
Vorläuferoligopeptid beinhaltet, das durch einen Thioesterteil N-terminal an eine
Intein-Domäne gebunden ist.
6. Ein Verfahren zum Produzieren eines Oligopeptidprodukts, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines ersten Oligopeptids, wobei das erste Oligopeptid einen reaktiven
Teil aufweist, wobei der reaktive Teil ein Hydrazinteil, ein Hydrazidteil oder ein
Aminooxyteil ist;
b) Bereitstellen eines Vorläuferoligopeptidmoleküls, wobei das Vorläuferoligopeptidmolekül
ein zweites Oligopeptid beinhaltet, das N-terminal an eine Intein-Domäne gebunden
ist;
c) Ermöglichen, dass der reaktive Teil des ersten Oligopeptids mit dem Vorläuferoligopeptidmolekül
reagiert, um ein Oligopeptidprodukt zu bilden, bei dem das erste und das zweite Oligopeptid
durch einen Verknüpfungsteil mit der Formel I, der Formel II oder der Formel III verknüpft
sind.
7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das erste Oligopeptid oder
das zweite Oligopeptid ein rekombinantes Oligopeptid ist und das andere von dem ersten
Oligopeptid und dem zweiten Oligopeptid ein synthetisches Polypeptid ist.
8. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei das erste Oligopeptid und das zweite
Oligopeptid rekombinante Oligopeptide sind.
9. Verfahren gemäß einem der Ansprüche 1 bis 6, wobei das erste Oligopeptid und das zweite
Oligopeptid synthetische Oligopeptide sind.
10. Ein Verfahren zum Erzeugen eines Proteinhydrazids, wobei das Verfahren die folgenden
Schritte beinhaltet:
(a) Bereitstellen eines Proteinmoleküls, das ein Oligopeptid beinhaltet, das N-terminal
an eine Intein-Domäne gebunden ist,
(b) Reagierenlassen des Proteinmoleküls mit Hydrazin, so dass die Intein-Domäne von
dem Oligopeptid abgespalten wird, um ein Proteinhydrazid zu erzeugen.
11. Verfahren gemäß einem der Ansprüche 1 bis 9, wobei Schritt (c) des Verfahrens bei
einem pH-Wert im Bereich von pH 6,5 bis 7,5 durchgeführt wird.
12. Ein Verfahren zum Produzieren eines Oligopeptidprodukts, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines ersten Oligopeptids, wobei das erste Oligopeptid einen Aldehyd-
oder einen Ketonteil aufweist,
b) Bereitstellen eines Vorläuferoligopeptidmoleküls, wobei das Vorläuferoligopeptidmolekül
ein zweites Oligopeptid beinhaltet, das N-terminal an eine Intein-Domäne gebunden
ist,
c) Reagierenlassen des Vorläuferoligopeptidmoleküls mit Hydrazin, um ein Oligopeptidmolekül
zu erzeugen, das ein Zwischenoligopeptid beinhaltet, wobei das Zwischenoligopeptid
einen terminalen Hydrazidteil aufweist,
d) Ermöglichen, dass der Aldehyd- oder der Ketonteil des ersten Oligopeptids mit dem
Hydrazidteil des Zwischenoligopeptidmoleküls reagiert, um ein Oligopeptidprodukt zu
bilden, bei dem das erste Oligopeptid und das zweite Oligopeptid durch einen Hydrazonverknüpfungsteil
verknüpft sind.
13. Ein Oligopeptidprodukt, das mittels des Verfahrens gemäß einem der Ansprüche 1 bis
9 produziert wird, bei dem das erste und das zweite Oligopeptid durch einen Verknüpfungsteil
mit der Formel 11 oder der Formel III verknüpft sind.
14. Ein Verfahren zum Markieren eines Oligopeptids, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines Markierungsmoleküls, wobei das Markierungsmolekül einen reaktiven
Teil aufweist, wobei der reaktive Teil ein Hydrazinteil, ein Hydrazidteil oder ein
Aminooxyteil ist;
b) Bereitstellen des Oligopeptids, wobei das Oligopeptid einen aktivierten Esterteil
aufweist, wobei der aktivierte Esterteil ein Thioesterteil, ein Phenolesterteil, ein
Hydroxysuccinimidteil oder ein O-Acylisoharnstoffteil ist;
c) Ermöglichen, dass der reaktive Teil des Markierungsmoleküls mit dem aktivierten
Esterteil des Oligopeptids reagiert, um das markierte Oligopeptid zu bilden, bei dem
das Markierungsmolekül und das Oligopeptid durch einen Verknüpfungsteil mit der Formel
I, der Formel II oder der Formel III verknüpft sind.
15. Verfahren gemäß Anspruch 14, wobei bei Schritt (c), bei dem das Markierungsmolekül
und das Oligopeptid durch einen Verknüpfungsteil mit der Formel II verknüpft werden
und bei dem der aktivierte Esterteil aus Schritt (b) kein Thioester ist, der aktivierte
Ester ein terminaler aktivierter Esterteil ist.
16. Ein Verfahren zum Markieren eines Oligopeptids, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines Markierungsmoleküls, wobei das Markierungsmolekül einen aktivierten
Esterteil aufweist, bei dem die Markierung der Acylsubstituent ist, wobei der aktivierte
Esterteil ein Thioesterteil, ein Phenolesterteil, ein Hydroxysuccinimidteil oder ein
O-Acylisoharnstoffteil ist;
b) Bereitstellen des Oligopeptids, wobei das Oligopeptid einen reaktiven Teil aufweist,
wobei der reaktive Teil ein Hydrazinteil, ein Hydrazidteil oder ein Aminooxyteil ist;
c) Ermöglichen, dass der aktivierte Esterteil des Markierungsmoleküls mit dem reaktiven
Teil des Oligopeptids reagiert, um das markierte Oligopeptid zu bilden, bei dem das
Markierungsmolekül und das Oligopeptid durch einen Verknüpfungsteil mit der Formel
I, der Formel II oder der Formel III verknüpft sind,
wobei bei Schritt (c), bei dem das Markierungsmolekül und das Oligopeptid durch einen
Verknüpfungsteil mit der Formel II verknüpft werden, der aktivierte Ester ein Thioester
ist.
17. Verfahren gemäß Anspruch 16, wobei das Oligopeptid mittels einer Reaktion von Hydrazin
mit einem Vorläufermolekül produziert wird, wobei das Vorläufermolekül ein Vorläuferoligopeptid
beinhaltet, das durch einen Thioesterteil N-terminal an eine Intein-Domäne gebunden
ist.
18. Ein Verfahren zum Markieren eines Oligopeptids, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen einer Markierung, wobei die Markierung einen reaktiven Teil aufweist,
b) (i) Bereitstellen eines Vorläuferoligopeptidmoleküls,
wobei das Vorläuferoligopeptidmolekül ein Oligopeptid beinhaltet, das N-terminal an
eine Intein-Domäne gebunden ist,
(ii) Ermöglichen der Thiolreagenz abhängigen Spaltung des Vorläufermoleküls, um das
Oligopeptidmolekül zu erzeugen, wobei das Oligopeptidmolekül an seinem C-Terminus
einen Thioesterteil aufweist,
c) Ermöglichen, dass der reaktive Teil der Markierung mit dem Oligopeptidmolekül reagiert,
um ein markiertes Oligopeptid zu bilden, bei dem die Markierung und das Oligopeptid
durch einen Verknüpfungsteil mit der Formel I, II oder III verknüpft sind.
19. Verfahren gemäß einem der Ansprüche 14 bis 16, wobei der reaktive Teil ein Aminooxyteil
ist und der aktivierte Esterteil ein Thioester ist.
20. Verfahren gemäß Anspruch 18, wobei der reaktive Teil ein Aminooxyteil ist.
21. Ein Verfahren zum Markieren eines Oligopeptids, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines Markierungsmoleküls, wobei das Markierungsmolekül einen reaktiven
Teil aufweist, wobei der reaktive Teil ein Hydrazinteil, ein Hydrazidteil oder ein
Aminooxyteil ist;
b) Bereitstellen eines Vorläuferoligopeptidmoleküls, wobei das Vorläuferoligopeptidmolekül
ein Oligopeptid beinhaltet, das N-terminal an eine Intein-Domäne gebunden ist,
c) Ermöglichen, dass der reaktive Teil des Markierungsmoleküls mit dem Vorläuferoligopeptidmolekül
reagiert, um ein markiertes Oligopeptidprodukt zu bilden, bei dem das Markierungsmolekül
und das Oligopeptid durch einen Verknüpfungsteil mit der Formel I, der Formel 11 oder
der Formel III, wie oben definiert, verknüpft sind.
22. Verfahren gemäß einem der Ansprüche 14 bis 21, wobei Schritt (c) des Verfahrens bei
einem pH-Wert im Bereich von pH 6,5 bis pH 7,5 durchgeführt wird.
23. Ein Verfahren zum Markieren eines Oligopeptids, wobei das Verfahren die folgenden
Schritte beinhaltet:
a) Bereitstellen eines Markierungsmoleküls, wobei das Markierungsmolekül einen Aldehyd-
oder einen Ketonteil aufweist,
b) Bereitstellen eines Vorläuferoligopeptidmoleküls, wobei das Vorläuferoligopeptidmolekül
ein erstes Oligopeptid beinhaltet, das N-terminal an eine Intein-Domäne gebunden ist,
c) Reagierenlassen des Vorläuferoligopeptidmoleküls mit Hydrazin, um ein Oligopeptidmolekül
zu erzeugen, das ein Zwischenoligopeptid beinhaltet, wobei das Zwischenoligopeptid
einen terminalen Hydrazidteil aufweist,
d) Ermöglichen, dass der Aldehyd- oder der Ketonteil des Markierungsmoleküls mit dem
Hydrazidteil des Zwischenoligopeptidmoleküls reagiert, um ein markiertes Oligopeptidprodukt
zu bilden, bei dem das Markierungsmolekül und das Oligopeptid durch einen Hydrazonverknüpfungsteil
verknüpft sind.
24. Verfahren gemäß Anspruch 12 oder Anspruch 23, wobei der Aldehyd- oder der Ketonteil
ein α-Diketon oder eine α-Ketoaldehydgruppe ist.
25. Ein markiertes Oligopeptidprodukt, das mittels des Verfahrens gemäß einem der Ansprüche
14 bis 22 produziert wird, bei dem die Markierung und das Oligopeptid durch einen
Verknüpfungsteil mit der Formel II oder der Formel III verknüpft werden.
1. Une méthode de production d'un produit d'oligopeptides, la méthode comprenant les
étapes de :
a) fournir un premier oligopeptide, le premier oligopeptide ayant un groupement réactif,
où le groupement réactif est un groupement hydrazine, un groupement hydrazide
ou un groupement aminooxy ;
b) fournir un deuxième oligopeptide, le deuxième oligopeptide ayant un groupement
ester activé, où le groupement ester activé est un groupement thioester, un groupement
ester phénolique, un groupement hydroxysuccinimide, ou un groupement 0-acylisourée
;
c) permettre au groupement réactif du premier oligopeptide d'entrer en réaction avec
le groupement ester activé du deuxième oligopeptide afin de former un produit d'oligopeptides,
dans lequel le premier et le deuxième oligopeptide sont liés par l'intermédiaire d'un
groupement de liaison ayant la Formule I, Ia Formule II
ou la Formule III.
2. La méthode selon la revendication 1 où le groupement ester activé terminal est un
thioester dans lequel le peptide est le substituant acyle du thioester.
3. La méthode selon la revendication 2, où ledit deuxième polypeptide est généré par
clivage dépendant d'un réactif thiol d'une molécule précurseur, ladite molécule précurseur
comprenant un deuxième oligopeptide fusionné en N-terminal à un domaine de l'intéine.
4. La méthode selon une quelconque des revendications précédentes, où le groupement réactif
est un groupement aminooxy et le groupement ester activé est un thioester.
5. La méthode selon la revendication 4, où ledit premier oligopeptide est produit par
réaction d'hydrazine avec une molécule précurseur, ladite molécule précurseur comprenant
un oligopeptide précurseur fusionné en N-terminal à un domaine de l'intéine par l'intermédiaire
d'un groupement thioester.
6. Une méthode de production d'un produit d'oligopeptides, ladite méthode comprenant
les étapes de :
a) fournir un premier oligopeptide, le premier oligopeptide ayant un groupement réactif,
où le groupement réactif est un groupement hydrazine, un groupement hydrazide
ou un groupement aminooxy ;
b) fournir une molécule oligopeptidique précurseur, la molécule oligopeptidique précurseur
comprenant un deuxième oligopeptide fusionné en N-terminal à un domaine de l'intéine
;
c) permettre au groupement réactif du premier oligopeptide d'entrer en réaction avec
la molécule oligopeptidique précurseur afin de former un produit d'oligopeptides,
dans lequel le premier et le deuxième oligopeptide sont liés par l'intermédiaire d'un
groupement de liaison ayant la Formule I, la Formule II ou la Formule III.
7. La méthode selon une quelconque des revendications précédentes, où le premier oligopeptide
ou bien le deuxième oligopeptide est un oligopeptide recombiné et l'autre oligopeptide
parmi le premier oligopeptide et le deuxième oligopeptide est un polypeptide synthétique.
8. La méthode selon une quelconque des revendications 1 à 6, où le premier oligopeptide
et le deuxième oligopeptide sont des oligopeptides recombinés.
9. La méthode selon une quelconque des revendications 1 à 6, où le premier oligopeptide
et le deuxième oligopeptide sont des oligopeptides synthétiques.
10. Une méthode de génération d'une hydrazide protéique, ladite méthode comprenant les
étapes de :
a) fournir une molécule de protéine comprenant un oligopeptide fusionné au N-terminal
à un domaine de l'intéine,
b) faire entrer en réaction ladite molécule de protéine avec de l'hydrazine, de sorte
que le domaine de l'intéine est clivé de l'oligopeptide pour générer une hydrazide
protéique.
11. La méthode selon une quelconque des revendications 1 à 9, où l'étape (c) de la méthode
est exécutée à un pH se trouvant dans la gamme de pH allant de 6,5 à 7,5.
12. Une méthode de production d'un produit d'oligopeptides, la méthode comprenant les
étapes de :
a) fournir un premier oligopeptide, le premier oligopeptide ayant un groupement aldéhyde
ou cétone,
b) fournir une molécule oligopeptidique précurseur, la molécule oligopeptidique précurseur
comprenant un deuxième oligopeptide fusionné en N-terminal à un domaine de l'intéine,
c) faire entrer en réaction ladite molécule oligopeptidique précurseur avec de l'hydrazine
afin de générer une molécule oligopeptidique comprenant un oligopeptide intermédiaire,
ledit oligopeptide intermédiaire ayant un groupement hydrazide terminal,
d) permettre au groupement aldéhyde ou cétone du premier oligopeptide d'entrer en
réaction avec le groupement hydrazide de la molécule oligopeptidique intermédiaire
afin de former un produit d'oligopeptides, dans lequel le premier oligopeptide et
le deuxième oligopeptide sont liés par l'intermédiaire d'un groupement de liaison
hydrazone.
13. Un produit d'oligopeptides produit par la méthode d'une quelconque des revendications
1 à 9, dans lequel le premier et le deuxième oligopeptide sont liés par l'intermédiaire
d'un groupement de liaison ayant la Formule II ou la Formule III.
14. Une méthode de marquage d'un oligopeptide, la méthode comprenant les étapes de :
a) fournir une molécule marqueur, la molécule marqueur ayant un groupement réactif,
où le groupement réactif est un groupement hydrazine, un groupement hydrazide
ou un groupement aminooxy ;
b) fournir l'oligopeptide, l'oligopeptide ayant un groupement ester activé, où le
groupement ester activé est un groupement thioester, un groupement ester phénolique,
un groupement hydroxysuccinimide, ou un groupement 0-acylisourée ;
c) permettre au groupement réactif de la molécule marqueur d'entrer en réaction avec
le groupement ester activé de l'oligopeptide afin de former l'oligopeptide marqué,
dans lequel la molécule marqueur et l'oligopeptide sont liés par l'intermédiaire d'un
groupement de liaison ayant la Formule I, Ia Formule II
ou la Formule III.
15. La méthode selon la revendication 14, où à l'étape (c), quand ladite molécule marqueur
et l'oligopeptide sont liés par l'intermédiaire d'un groupement de liaison ayant la
Formule II et quand ledit groupement ester activé de l'étape (b) n'est pas un thioester,
ledit ester activé est un groupement ester activé terminal.
16. Une méthode de marquage d'un oligopeptide, la méthode comprenant les étapes de :
a) fournir une molécule marqueur, la molécule marqueur ayant un groupement ester activé
dont le marqueur est le substituant acyle, où le groupement ester activé est un groupement
thioester, un groupement ester phénolique, un groupement hydroxysuccinimide, ou un
groupement 0-acylisourée ;
b) fournir l'oligopeptide, l'oligopeptide ayant un groupement réactif, où le groupement
réactif est un groupement hydrazine, un groupement hydrazide ou un groupement aminooxy
;
c) permettre au groupement ester activé de la molécule marqueur d'entrer en réaction
avec le groupement réactif de l'oligopeptide afin de former l'oligopeptide marqué,
dans lequel la molécule marqueur et l'oligopeptide sont liés par l'intermédiaire d'un
groupement de liaison ayant la Formule I, Ia Formule II
ou la Formule III,
où, à l'étape (c), quand ladite molécule marqueur et l'oligopeptide sont liés par
l'intermédiaire d'un groupement de liaison ayant la Formule II, ledit ester activé
est un thioester.
17. La méthode selon la revendication 16, où ledit oligopeptide est produit par réaction
d'hydrazine avec une molécule précurseur, ladite molécule précurseur comprenant un
oligopeptide précurseur fusionné en N-terminal à un domaine de l'intéine par l'intermédiaire
d'un groupement thioester.
18. Une méthode de marquage d'un oligopeptide, la méthode comprenant les étapes de :
a) fournir un marqueur, le marqueur ayant un groupement réactif,
b) (i) fournir une molécule oligopeptidique précurseur, la molécule oligopeptidique
précurseur comprenant un oligopeptide fusionné en N-terminal à un domaine de l'intéine,
(ii) permettre le clivage dépendant d'un réactif thiol de la molécule précurseur afin
de générer la molécule oligopeptidique, ladite molécule oligopeptidique ayant un groupement
thioester au niveau de son C-terminus,
c) permettre au groupement réactif du marqueur d'entrer en réaction avec la molécule
oligopeptidique afin de former un oligopeptide marqué, dans lequel le marqueur et
l'oligopeptide sont liés par l'intermédiaire d'un groupement de liaison ayant la Formule
I, II ou III.
19. La méthode selon une quelconque des revendications 14 à 16, où le groupement réactif
est un groupement aminooxy et le groupement ester activé est un thioester.
20. La méthode selon la revendication 18, où le groupement réactif est un groupement aminooxy.
21. Une méthode de marquage d'un oligopeptide, la méthode comprenant les étapes de :
a) fournir une molécule marqueur, la molécule marqueur ayant un groupement réactif,
où le groupement réactif est un groupement hydrazine, un groupement hydrazide ou un
groupement aminooxy ;
b) fournir une molécule oligopeptidique précurseur, la molécule oligopeptidique précurseur
comprenant un oligopeptide fusionné en N-terminal à un domaine de l'intéine,
c) permettre au groupement réactif de la molécule marqueur d'entrer en réaction avec
la molécule oligopeptidique précurseur afin de former un produit d'oligopeptides marqués,
dans lequel la molécule marqueur et l'oligopeptide sont liés par l'intermédiaire d'un
groupement de liaison ayant la Formule I, la Formule II ou la Formule III, telles
que définies plus haut.
22. La méthode selon une quelconque des revendications 14 à 21, où l'étape (c) de la méthode
est exécutée à un pH se trouvant dans la gamme de pH allant de 6,5 à 7,5.
23. Une méthode de marquage d'un oligopeptide, la méthode comprenant les étapes de :
a) fournir une molécule marqueur, la molécule marqueur ayant un groupement aldéhyde
ou cétone,
b) fournir une molécule oligopeptidique précurseur, la molécule oligopeptidique précurseur
comprenant un premier oligopeptide fusionné en N-terminal à un domaine de l'intéine,
c) faire entrer en réaction ladite molécule oligopeptidique précurseur avec de l'hydrazine
afin de générer une molécule oligopeptidique comprenant un oligopeptide intermédiaire,
ledit oligopeptide intermédiaire ayant un groupement hydrazide terminal,
d) permettre au groupement aldéhyde ou cétone de la molécule marqueur d'entrer en
réaction avec le groupement hydrazide de la molécule oligopeptidique intermédiaire
afin de former un produit d'oligopeptides marqués, dans lequel la molécule marqueur
et l'oligopeptide sont liés par l'intermédiaire d'un groupement de liaison hydrazone.
24. La méthode selon la revendication 12 ou la revendication 23, où le groupement aldéhyde
ou cétone est un groupe α-dicétone ou α-céto-aldéhyde.
25. Un oligopeptide marqué produit par la méthode d'une quelconque des revendications
14 à 22, où le marqueur et l'oligopeptide sont liés par l'intermédiaire d'un groupement
de liaison ayant la Formule II ou la Formule III.