TECHNICAL FIELD
[0001] The present invention relates in general to the field of optical communication systems
and more in particular to a packet and optical routing equipment and method.
PRIOR ART
[0002] As is known, the growth of the Internet has brought to ever-increasing traffic volumes
that in turn require the use of broader-band communication systems. Thus, the use
of optical communication systems, employing fiber optics, has already been proposed
for transmitting IP packets. The resulting increasing and progressive integration
of data and voice traffic brings about the need of systems and equipment adapted to
manage transmission of both traditional optical signals (e.g. SONET/SDH, Synchronous
Optical Network/Synchronous Digital Hierarchy or ATM, Asynchronous Transfer Mode signals)
and packet-based signals (e.g. IP/MPLS, Internet Protocol/Multi-Protocol Label Switching
signals).
[0003] Currently, IP/MPLS routers and non-IP equipment are attached to networks using WDM
(Wavelength Division Multiplexing) systems through optical interfaces and the control
of the different systems is not integrated. This leads to complex and expensive network
configurations that do not facilitate the introduction of new services in communication
network.
[0004] To solve this problem, integration of packet and optical forwarding capabilities
in a same node of the network is desired.
[0005] US 2002/0018269 discloses a method and system for controlling optical connections in an optical network,
wherein every node in the network consists of a router and an optical cross-connect
and intelligence for resource management is concentrated in the IP layer. This document
however does not disclose in detail the architecture of the nodes of the network and
in particular how IP and non-IP signals are multiplexed in the nodes.
[0006] EP-A-1 076 468 teaches the architecture of IP packet transmission equipment connected by optical
backbone transmission lines to form an IP packet transmission network. According to
this document, each arbitrary signal is converted into IP packets that are routed
by an IP routing part to optical path conversion parts. Optical path signals from
the optical path signal conversion parts are provided directly to an optical path
route switching part of the IP packet transmission equipment. The optical path route
switching part also receives optical path signals obtained by wavelength demultiplexing
and optical/electric/optical converting OTM (Optical Transport Module) signals from
optical backbone transmission lines. The optical path route switching part cross-connects
the optical path signals, to output routes according to their destinations.
[0007] Applicant remarks that this architecture is complex and involves a substantial processing
of both the OTM signals from the optical backbone transmission lines and the arbitrary
signals that are directly inputted in the IP packet transmission equipment.
EP1091529 published on 11.04.2001,
[0008] discloses a Telecommunication network node and relating routing method according
to the preamble of claim 1.
DISCLOSURE OF THE INVENTION
[0009] The aim of the invention is thus to provide a packet and optical routing equipment
and method that are simple and offer savings in the expenditure as regards implementation
and operation.
[0010] Applicant has developed a simple architecture in which both packet and non-packet
signals are forwarded and routed in the same node, with an integrated control of the
different parts managing the packet and non-packet signals. The presence of non-packet
interfaces, not requiring packet elaboration, as well as packet interfaces, both connected
to a WDM interface unit by a switching unit, allows a smooth evolution from a network
based on traditional TDM (Time Division Multiplexing) circuits to a network based
on more modern IP/MPLS and/or GMPLS (Generalized Multi-Protocol Label Switching) services.
[0011] In particular, the reconfigurability of the electric switching unit allows a variable
proportion of input/outputs for packet and non packet signals to be connected each
time to the WDM interface unit. The ratio of connected non-packet input/outputs to
connected packet input/outputs is thus variable according to the need, offering a
great deal of flexibility and cost saving due to the fact that in general is possible
to reduce the number of lasers equipped in the WDM interfaces.
[0012] According to the invention, a packet and optical routing equipment, an optical network
of wavelength multiplexing type and a method for packet and non-packet optical signal
routing are provided, according to claims 1, 13, and 14, respectively.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] For an understanding of the present invention preferred embodiments thereof are now
described, purely by way of non-limiting example, with reference to the attached drawings,
wherein:
- Figure 1 illustrates a wavelength division multiplexed optical network of the ring-type,
according to an embodiment of the invention;
- Figure 2 is a block diagram of one of the nodes of the network of Figure 1;
- Figure 3 is a more detailed block diagram of one component of the node of Figure 2;
- Figure 4 is a more detailed block diagram of the node of Figure 2;
- Figure 5 represents the flow of control and a data signals on the network of Figure
1;
- Figure 6 is a block diagram of a node of wavelength division multiplexed optical network
of a meshed type;
- Figure 7 is a more detailed block diagram of some components of the diagram of Figure
6;
- Figure 8 is a more detailed block diagram of the node of Figure 2, in an embodiment
alternative to that of Fig. 4.
[0014] In the following description, the expression "non-packet interface" indicates any
type of interface that processes signals that do not require processing at a packet
level, independently from the presence or not of packet or non-packet traffic within
the signals (e.g. SDH, ATM, Gigabit Ethernet, Fibre Channel); conversely, the expression
"packet interface" indicates any type of interface that processes signals at a packet
level. Correspondingly, the expression "non-packet signals" indicates any type of
signals that are output or directed toward a non-packet interface, independently from
the presence or not of packet or non-packet traffic within the signals (e.g. SDH,
ATM, Gigabit Ethernet, Fibre Channel).
BEST MODE OF IMPLEMENTING THE INVENTION
[0015] Figure 1 illustrates an optical network 1 implementing a wavelength division multiplexing
(WDM) technique and having a ring-like configuration. The ring-like configuration
is only an example, and the invention is applicable to also meshed-type networks,
as will be clear later on.
[0016] According to Figure 1, the optical network 1 comprises a number of nodes 2, here
four, each defining a packet and optical routing equipment (P&ORE). Each node 2 is
connected to a neighboring node 2 through optical fibers 3, each optical fiber 3 being
able to carry a certain number (e.g. 40) of optical wavelengths λ1, λ2, ..., λN. The
optical fibers 3 form an external ring 4a and an internal ring 4b. For example, the
external ring 4a is designed to carry signals in a counter-clockwise direction and
the internal ring 4b is designed to carry signals in a clockwise direction.
[0017] Each node 2 is connected to a first and a second group of interfaces 5, 6. The first
group of interfaces 5 connects the node 2 to non-packet clients (e.g. SDH equipment);
the second group of interfaces 6 connects the node 2 to packet clients (e.g. edge
routers).
[0018] Figure 2 shows a simplified block diagram of a node 2. The node 2 comprises an optical
forwarding and multiplexing unit 10 having two input ends 10a1, 10a2 and two output
ends 10b1, 10b2 connected to the optical fibers 3 through fiber interfaces 11, shown
only schematically. The optical forwarding and multiplexing unit 10 has the task of
adding/dropping to/from an exiting/entering multiplexed signal the optical signals
that are to be inserted/extracted in the node; furthermore, it has the task of transferring
the optical signals coming from an entering optical fiber 3 and to be transferred
to a next node 2 toward an exiting optical fiber 3.
[0019] The optical forwarding and multiplexing unit 10 is associated, as more clearly described
later on, to a WDM interface unit 12 converting the optical signals extracted in the
node 2 into electrical signals and converting the electrical signals to be inserted
on the optical fibers 3 into optical signals of suitable wavelength.
[0020] The WDM interface unit 12 is connected to an electric switching unit 13 switching
electrical signals between the WDM interface unit 12, on one side, and a non-packet
interface 14 and a packet forwarding module 15, on the other side. To this end, the
electric switching unit 13 has non-packet input/outputs 18a connected to the non-packet
interface 14, packet input/outputs 18b connected to the packet forwarding module 15
and switch input/outputs 19 connected to the WDM interface unit 12.
[0021] The non-packet interface 14 has the main task of converting the electrical signals
coming from the electric switching unit 13 (also called branch non-packet signals)
into optical signals supplied to the first group of interfaces 5 through non-packet
ports 21, and vice versa. Furthermore, the non-packet interface 14 has the task, if
necessary, of performing specific signal processing, such as Client Overhead processing.
[0022] The packet forwarding module 15 has the task of managing packet-like signals and
may be the forwarding plane of commercially available packet routers (e.g. IP/MPLS
routers - Internet Protocol/ Multi-Protocol Label Switching routers). The packet forwarding
module 15 thus interconnects the electric switching unit 13 to packet interfaces 16
that have the main task of converting the electrical signals coming from the packet
forwarding module 15 (also called branch packet signals) into optical signals supplied
to the second group of interfaces 6 through packet ports 22, and vice versa. Furthermore,
the packet interfaces 16 have the task of performing specific signal processing, as
known for any standard packet interface. The packet forwarding module 15 has also
the task of forwarding control signals to/from a packet and optical control plane
20 through a connection line 24 in particular operative conditions and in case of
particular setting of the network, as explained hereinbelow.
[0023] The packet and optical control plane 20 is connected to all the components of the
node 2 and controls the operation thereof, as explained in more detail later on; the
packet and optical control plane 20 is also connected to outside equipment with which
it exchanges information/controls. The packet and optical control plane 20 can be
a software enhancement of a commercially available packet control plane with the capacity
of monitoring signaling coming from the optical fibers 3 and/or from Management Systems
and/or from legacy equipment (e.g. by Optical User-to-network interface O-UNI that
has been defined in OIF-Optical Internetworking Forum), to send commands to the components
of the node 2, as indicated, and to drive packet routing of the packet forwarding
module 15. The packet and optical control plane 20 and the packet forwarding module
15 form, together, a packet forwarding stage, suitable for processing packet signals.
[0024] In the node 2 of Figure 2, optical packet and non-packet signals supplied by the
first and second group of interfaces 5, 6 are converted into electrical signals and
processed in the non-packet and packet interfaces 14, 16, (and in the packet forwarding
unit 15 in the case of packet signals), then they are supplied to the WDM interfaces
12 through the switching unit 13. The WDM interfaces 12 convert the electric signals
into optical signals of suitable wavelength and supply them to the optical forwarding
and multiplexing unit 10. The optical forwarding and multiplexing unit 10 inserts
the converted optical signals into the outgoing fibers 3. Conversely, optical signals
of preselected wavelengths, to be terminated at the node 2, are extracted by the optical
forwarding and multiplexing unit 10, converted into electric signals and in case processed
by WDM interfaces 12. These signals are then switched to the non-packet interface
14 and supplied to the first group of interfaces 5 in the case of non-packet signals
or to the packet forwarding module 15 in the case of packet signals. Packet signals
are then supplied to second group of interfaces 6 or towards WDM interfaces 12 in
case of packets directed to other nodes 2, according to their destination.
[0025] Thereby, with a simple architecture, both packet and non-packet signals are forwarded
and routed in the same node, with an integrated control of the different parts managing
the packet and non-packet signals. Thus, a cost reduction is achieved, due to the
reduction of expensive Optical/electric/optical interfaces between the router and
the optical forwarding and multiplexing unit 10. This advantage is enhanced by the
additional presence of parts (non-packet interfaces 14) not requiring packet elaboration,
connected to the optical forwarding and multiplexing unit 10 by only the switching
unit 13. This approach allows a smooth evolution from a network based on traditional
TDM (Time Division Multiplexing) circuits to a network based on more modern IP/MPLS
and/or GMPLS (Generalized Multi-Protocol Label Switching) services.
[0026] According to an aspect of the invention, the electric switching unit 13 is of a reconfigurable
type, and allows a variable proportion of input/outputs 1-8a and 18b to be connected
each time to the switching input/outputs 19, according to the needs. To this end,
the electric switching unit 13 has m1 non-packet input/outputs 18a connected to the
non-packet interface 14, m2 packet input/outputs 18b connected to the packet forwarding
module 15 and n switching input/outputs 19 connected to the WDM interface unit 12,
with m = m1 + m2 being generally greater than or equal to n. Thus, generally not all
the non-packet and packet input/outputs 18a, 18b may be simultaneously connected to
the switching input/outputs 19, and typically no fixed connection exists between the
non-packet and packet input/outputs 18a, 18b, on one side, and the switching input/outputs
19, on the other side. The packet and optical control plane 20 decides during operation
the specific connections to be activated, according to the non-packet and packet signals
to be exchanged between the non-packet interface 14 and the packet forwarding module
15, on one side, and the WDM interface unit 12, on the other side. The ratio of connected
non-packet input/outputs 18a to connected packet input/outputs 18b is thus variable
according to the need, offering a great deal of flexibility and cost saving due to
the fact that in general is possible to reduce the number of lasers equipped in the
WDM interfaces 12.
[0027] The reconfigurability of the electric switching unit 13 allows a simple implementation
of protection procedures, allowing splitting of a signal received on either the non-packet
or the packet input/outputs 18a, 18b into two equal signals which are assigned different
wavelengths and/or transmitted onto both rings 4a, 4b to obtain a redundancy transmission.
Furthermore, in case of an electric switching unit 13 configured so as to allow connection
between two different switching input/outputs 19, it is also possible to route signals
traveling onto one of the rings (e.g. the external ring 4a) toward the other ring
(e.g. the internal ring 4b), for overcoming any failure on the network.
[0028] The electric switching unit 13 may be implemented as shown schematically in the block
diagram of Figure 3 by a crosspoint switch array 25 and a controlling electronics
26.
[0029] The controlling electronics 26 should generally include one or more processors for
controlling the effective switching of the crosspoint switch array 25, as well as
a circuitry, e.g. for operation and maintenance purposes.
[0030] The signals entering the crosspoint switch array 25, at high frequency (e.g. a few/tens
of GHz) may be divided into parallel flows so as to reduce the frequency thereof,
and switched at a lower frequency. Then, the split signals are grouped together again
at the output, to obtain the original entering signal at high frequency.
[0031] The crosspoint switch array 25 may be a commercial component. For example, for a
network operating under the specification G.709, with a frequency of 10.709 Gb/s,
assuming 8+8 switching input/-outputs 19 (ability of adding/dropping 8 channels for
each ring 4a, 4b), taking into account that each channel is bidirectional, so that
16 channels are to be exchanged for each ring, and assuming that each channel is demultiplexed
into e.g. four channel operating in parallel at a lower frequency, thus requiring
in practice the switching of 128 channels, the crosspoint switch array 25 may be implemented
by the component VSC 3140 of Vitesse Semiconductor Corporation (144x144 channels at
3.6 Gb/s).
[0032] Figure 4 shows an embodiment of node 2, representing, in particular, the structure
of the WDM interface unit 12 and the optical forwarding and multiplexing unit 10.
Figure 4 also shows the connections among the functional blocks. Such connections
do not represent necessarily physical links but in general data and/or signaling logical
flows and a different mix of fibers and electrical connections could be used. In general,
thick lines represent optical connections, thin lines represent electrical connections
for data exchange and dashed lines represent control connections between the packet
and optical control plane 20 and the control logic units of each block.
[0033] Specifically, the optical forwarding and multiplexing unit 10 comprises two groups
of optical add/drop multiplexers (OADMs) 27. The groups of OADMs 27 can be either
used to add/drop a wavelength from a single ring entering on one side of the node
2 and exiting from the other (ring 4a or 4b), as shown in Figure 4, or to add/drop
a wavelength from the two -optical fibers 3 on the same multiplexed interface 11,
as shown in Figure 8. Each group comprises a plurality of OADMs 27 cascade-connected,
to allow passage of the signals toward a next node 2 in the preset direction as well
as extraction of the signals to be terminated in the node 2 and insertion of the signal
to be added to the respective optical fiber 3. Preferably, the OADMs 27 are tunable,
so as to allow selection of the wavelengths of the signals to be added/dropped, and
have known structure (see e.g. the optical recirculators and associated optical channel
selectors described in
US 2002/0024698 A1; suitable OADMs may be also the commercial components "Lambda Flow" commercialized
by Lambda Crossing; "CP-3204" commercialized by Clarendon Photonics; or "Fasma tunable
filters" commercialized by Ondax).
[0034] In case of OADMs 27 connected on ring 4a or 4b, Figure 4, each group of OADMs 27
is connected at the input and output ends 10a1, 10a2, 10b1, 10b2 to the respective
ring 4a, 4b by control channel termination units 31, of known type. Optical amplifiers
30 may be included between control channel termination units 31 and OADMs 27, if needed
for power budget purposes. In particular, the control channel termination units 31
are connected to the packet and optical control plane 20 and to the packet forwarding
module 15 and operate to extract/insert the signals traveling on the control channel,
before reaching the optical amplifiers 30 if present, as below explained.
[0035] The WDM interface unit 12 comprises two batteries of transceivers 28, one for each
set of each OADM 27. Each transceiver 28 is connected to a respective OADM 27 and
to a respective switch input/output 19 and is formed by three parts, in a per se known
manner and shown only schematically in Figure 4. In detail, each transceiver 28 comprises
a transmitter, a receiver and a processing electronics. The transmitters are implemented
by lasers that convert the electrical signal supplied on the respective switch input/output
19 into an optical signal to be added to the respective optical fiber by the associated
OADMs 27. Preferably, the lasers are tunable and are operated at a wavelength set
by the packet and optical control plane 20. Thus, they perform wavelength adaptation
between the client signals and the optical ring network. The receivers are photodectors
of gray type, and are able to receive the optical signals extracted by the respective
OADMs 27 and convert them into electric signals. The processing electronics performs
specific functions on the network wavelengths, such as overhead processing (e.g. channel
identifying, performance monitoring, etc.).
[0036] Although in Figure 4 the transceivers 28 are shown grouped in a stand-alone module
(WDM interface unit 12), they may be integrated partially in the optical forwarding
and multiplexing unit 10; e.g. only the transmitters, the receivers or the opto-electronic
components (transmitters + receivers) may be integrated in the optical forwarding
and multiplexing unit 10.
[0037] Figure 4 also shows a client apparatus 33, connected to the first group of interfaces
5, a packet routing equipment 34 (e.g. an IP router), connected to the second group
of interfaces 6 and a network master manager 35. The client apparatus 33 and the packet
routing equipment 34 are connected to the packet and optical control plane 20, for
exchanging control signals; the network master manager 35 may be connected to the
packet and optical control plane 20 through intermediate layers, not shown.
[0038] With the architecture shown in Figures 1-4, a link between two generic nodes 2 may
be established as an explicit request from a non-packet client 33, or a packet routing
equipment 34; as an internal decision from the packet and optical control plane 20
due to some packet traffic needs or as a request from the master manager 35.
[0039] According to a possible implementation, the request is communicated to the node 2
through a direct communication between the client and the source node 2, using the
direct line connecting the client apparatus 33 or the packet routing equipment 34
to the packet and optical control plane 20, by a standard protocol such as OIF (Optical
Internetworking Forum) O-UNI (Optical User Network Interface) interface or by other
protocols. In the alternative, an indirect communication between client and the node
2 is performed, by signaling involving the master manager 35.
[0040] When the packet and optical control plane 20 of a node 2 generates a request (coming
from clients or internally generated) of setting up a connection (lightpath setup
request), it chooses a certain wavelength (λx) on either the external or internal
ring 4a, 4b and signals the request to a destination node 2, e.g. by GMPLS signaling.
The request is sent onto a control channel that, in the shown embodiment, is implemented
as an in-fiber/out-of-band mode, that is it uses, on the optical fibers 3, a specific
wavelength, not comprised in the common band of the data signals (e.g. at 1510 nm,
outside the known C and L band of optical amplifiers for the data signals).
[0041] In the alternative, by providing specific interfaces to the node 2 or exploiting
already existing traffic interface towards packet (e.g. IP) equipment, it is possible
to implement an out-of-fiber control channel, e.g. by a separate packet (such as IP)
network.
[0042] According to a different embodiment, the control channel may be implemented in an
in-fiber/in-band mode, at a preset wavelength, in which case the control signals are
extracted and added on the internal or external ring 4a, 4b by an own OADM 27 and
an own transceiver 28, that operate at a fixed wavelength, selected for control signaling.
In this case, the control signals extracted by the associated OADM 27 and converted
by the associated transceiver 28 are routed by the electric switching unit 13 to the
packet forwarding module 15 and then (through connection line 24) to the packet and
optical control plane 20, where they are processed. Analogously, control signals to
be sent to a subsequent node 2 are transmitted by the packet and optical control plane
20 to the associated transceiver 28 through the connection line 24, the packet forwarding
module 15 and the switching unit 13, converted into optical signals and added to the
other optical signals on the selected ring 4a, 4b by the associated OADM 27.
[0043] The lightpath setup request is extracted either by the channel termination unit 31
(in case of in-fiber/out-of-band mode) or by the associated OADM 27 (in case of in-fiber/in-band
mode) of a subsequent node 2 on the selected ring 4a, 4b and sent to the relative
packet and optical control plane 20 that processes the request, verifies internally
the availability of resources (e.g. a certain wavelength) and performs any other necessary
elaboration (e.g. policy, priorities). If the request is accepted, the packet and
optical control plane 20 books the required resources and propagates the request to
the next node 2 on the selected ring 4a, 4b; otherwise, the request is refused, sending
a refuse message to the source node 2. At the destination node 2, the packet and optical
control plane 20 verifies the availability of a transceiver 28 and relative OADM 27,
as well as all other requirements, as above described. Moreover, the packet and optical
control plane 20 must verify the availability of resources towards the client and
in general it should agree on the way to perform the connectivity with the client.
[0044] If all checks are passed, the request is accepted, resources are allocated and a
positive response is sent towards the source node 2 by the destination node 2. Depending
on the implementation, for a bidirectional connection, the backward path may be established
either on the same part of ring 4a, 4b on the optical fibers 3 not used previously,
or on the complementary part of ring 4a, 4b. In the latter case, a new signaling procedure,
as described above, has to be activated; the wavelength required and any other requirement
(e.g. priority), may be different from the one used from the source node 2.
[0045] In case of an out-of-fiber/out-of-band mode, the same procedure as above described
applies, except for the control signals travelling on a separate network, e.g. an
IP network.
[0046] The connection is thus set up by properly setting the electric switching unit 13
and tuning the tunable laser of the transceivers 28 of both the source and destination
nodes 2, if applicable, and by tuning the OADMs 27 of the source and the destination
nodes 2, if applicable.
[0047] Therefore, as above explained, the source node 2 may send non-packet and packet data
on the reserved channel (specified wavelength on the selected external or internal
ring 4a, 4b), through the lasers of transceivers 28 and through OADMs 27, either or
both being suitably tuned if applicable. Data signals exiting the source/destination
node 2 thus pass the intermediate nodes 2, without being processed therein, until
the destination/source node 2, where they are extracted by the OADMs 27 and converted
by the transceivers 28, either or both being suitably tuned if applicable. According
to the signal nature, data signals are then switched by the electric switching unit
13 of the destination node 2 (and source node 2 for the contradirectional flow coming
from destination node) and passed to the non-packet interface 14 or to the packet
forwarding module 15, wherefrom they are transmitted to the client apparatus 33 or
to the packet routing equipment 34.
[0048] The above operation of the network is schematically shown in Figure 5, wherein only
three nodes are shown more in detail and only with regard to the specific blocks necessary
to show the different processing of control signals (the transmission whereof is represented
by dashed lines passing through and processed, if necessary, at the packet and optical
control plane -POCP- 20 of all nodes), and data (packet and non-packet) signals (whose
optical path is represented by dash-and-dot lines passing through all nodes along
the path but processed at only the source and destination nodes 2). Here, the optical
forwarding and multiplexing unit 10, the WDM interface unit 12 and the electric switching
unit 13 have been shown as a single block 37 (forwarding and switching).
[0049] According to a peculiarity of the present network, the connectivity of data packet
signals can be implemented in a flexible way. Thereby, if data packet traffic is below
a certain threshold, a base connectivity is established, using the control channel
also for packet communication. That approach allows a wavelength to be saved as long
as traffic is below a certain threshold. In this case, data packet signals are processed
at all nodes 2, including the intermediate nodes 2, where packets reach the respective
packet forwarding modules 15 and are routed by those ones to the appropriate next
node 2. When the traffic becomes higher and goes above the threshold, data packets
are routed on an optical path on purpose established as above described with reference
to Figures 1-4, with direct connection between the source and destination nodes 2
and no processing at the intermediate nodes 2. If, thereafter, traffic reduces below
the threshold (or a different threshold) on the established optical path, the base
connectivity is used again for transmitting data packet signals as above explained.
[0050] According to one solution, in case of low volume traffic, base connectivity of packet
(e.g., IP) data traffic is implemented using the optical path previously established
for control signals, as above described; in an alternative, base connectivity is implemented
using a specific wavelength among those used for transmitting data.
[0051] Figure 6 shows the simplified block diagram of a node 200 suitable for an optical
network implementing a wavelength division multiplexing (WDM) technique and having
a meshed-like configuration. The basic structure of the node 200 is the same as that
of the node 2 shown in Figure 2, and thus similar parts have been identified by the
same reference numerals and will not be described again. The node 200 of Figure 6
differs from the node 2 of Figures 2, 4 basically for the optical forwarding and multiplexing
part, as below discussed.
[0052] According to Figure 6, the optical forwarding and multiplexing unit 10 comprises
a multiplexing/demultiplexing unit 201 having inputs 10a and outputs 10b connected
to a plurality of optical fibers 3 connected to the other nodes of the network and
carrying optical signals to and from the node 200. The multiplexing/demultiplexing
unit 201, shown more in detail in Figure 7 and described hereafter, is connected to
the WDM interface 12 through an optical switching unit 202 routing the optical signals
according to their destination.
[0053] In detail, as shown in Figure 7, the multiplexing/demultiplexing unit 201 comprises
a set of demultiplexing elements 204 and a set of multiplexing elements 205. Each
demultiplexing element 204 has an input connected to an own optical fiber 3 carrying
entering signals and a plurality of outputs connected to the optical switching unit
202. Each output of each demultiplexing element 204 thus supplies a single signal
at a preset wavelength. Each multiplexing element 205 has a plurality of inputs connected
to the optical switching unit 202 and receiving an own signal at a preset wavelength,
and an output connected to an own optical fiber 3 and supplying a plurality of exiting
signals.
[0054] The optical switching unit 202 is connected to all the outputs of the demultiplexing
elements 204, all the inputs of the multiplexing elements 205 and all the input/outputs
of the transceivers 28 and connects them according to the desired routing of the optical
signals. In particular, the optical switching unit 202 may connect a specific output
of a demultiplexing element 204 to the receiver of one of the transceivers 28 of the
WDM interface 12 or to an input of a multiplexing element 205, according to the destination
of the optical signal, analogously to what described for the OADMs 27 with reference
to Figure 5. Furthermore, the optical switching unit 202 may connect an output of
the transceivers 28 of the WDM interface 12 to an input of a multiplexing element
205; each multiplexing element 205 then adds the optical signals at its inputs (either
coming from an entering optical fiber 3 through a demultiplexing element 204 or from
the WDM interface 12) and supplies them together to an own output optical fiber 3.
[0055] The actual connections implemented by the optical switching unit 202 between the
demultiplexing elements 204, the multiplexing elements 205 and the WDM interface 12
is controlled by the packet and optical control plane 20 according to the settings
established following optical path requests and network status, analogously to what
described above for a ring-type network.
[0056] The electric switching unit 13 then handles the routing of signals entering the node
200 and supplied to the WDM interface 12 toward the packet forwarding module 15 and
the non-packet interface 14, and the routing of signals from the packet forwarding
module 15 and the non-packet interface 14 toward the WDM interface 12, providing a
high switching flexibility according to the connection requirements of the packet
and the non-packet signals, as above described.
[0057] Finally, it is clear that numerous modifications and variants can be made to the
equipment, network and method described and illustrated herein, all falling within
the scope of the invention, as defined in the attached claims.
1. A. packet and optical routing equipment (2; 200), comprising:
- optical input means (10a1, 10a2; 10a) suitable for receiving input optical multiplexed
signals;
- optical output means (10b1, 10b2; 10b) suitable for supplying output optical multiplexed
signals;
- a non-packet optical port (21) suitable for exchanging branch non-packet optical
signals;
- a packet optical port (22) suitable for exchanging branch packet optical signals;
- an optical forwarding and multiplexing stage (10) coupled between said optical input
means (10a1, 10a2; 10a) and said optical output means (10b1, 10b2; 10b);
- a packet forwarding stage (15, 20) connected between said optical packet port (22)
and said optical forwarding and multiplexing stage (10);
- a non-packet optical/electric converter (14) connected to said non-packet optical
port (21) and suitable for converting said branch non-packet signals into and from
non-packet electric signals;
- an electric switching unit (13), connected to said non-packet optical/electric converter
(14) and said packet forwarding stage (15, 20) for exchanging therewith said electric
non-packet and packet signals; and
- an interface converter (12) coupled between said electric switching unit (13) and
said optical forwarding and multiplexing stage (10) for converting said electric non-packet
signals into and from optical signals supplied to and from said optical forwarding
and multiplexing stage (10),
characterized in that:
- the equipment (2; 200) comprises a packet optical/electric converter (16) directly
connected to said optical packet port (22) and to said packet forwarding stage (15,
20) and is arranged between them; said packet optical/electric converter (16) being
suitable for converting said branch packet optical signals into and from electric
packet signals exchanged with said packet forwarding stage (15, 20);
- said interface converter (12) converts said electric packet signals into and from
optical signals supplied to and from said optical forwarding and multiplexing stage
(10);
- said optical forwarding and multiplexing stage is adapted to optically exchange
optical branch signals between said optical input/output means and said interface
means, by optically extracting said optical branch signals from said input-optical
multiplexed signals, and by optically adding said optical branch signals to said output
optical multiplexed signals.
2. the equipment according to claim 1, wherein said electric switching unit (13) has
a first plurality of input/outputs (18a) connected to said non-packet optical/electric
converter (14), a second plurality of input/outputs (18b) connected to said packet
forwarding stage (15, 20) and a third plurality of input/outputs (19) connected to
said interface converter (12), said electric switching unit (13) being configured
to connect a variable number of input/outputs (18a, 18b) of said first and second
plurality to said third plurality of input/outputs (19).
3. The equipment according to claim 1 or 2, wherein said optical input means comprises
a first and a second input (10a1, 10a2) and said optical output means comprises a
first and a second output (10b1, 10b2); said optical forwarding and multiplexing stage
(10) comprising a first set of cascade-connected optical add/drop multiplexers (27)
and a second set of cascade-connected optical add/drop multiplexers (27).
4. The equipment according to claim 3, wherein said first set of optical add/drop multiplexers
(27) is coupled between said first input (10al) and said first output (10bl) and said
second set of optical add/drop multiplexers (27) is coupled between said second input
(10a2) and said second output (10b2).
5. The equipment according to any of claims 3-4, wherein said optical add/drop multiplexers
(27) are of a tunable type.
6. The equipment according to any of claims 3-5, wherein said interface converter (12)
comprises a plurality of transceivers (28), each transceiver (28) being connected
to a respective one of said optical add/drop multiplexers (27).
7. The equipment according to claim 6, wherein each said transceiver (28) comprises a
transmitter laser of tunable type, a gray receiver and an electronic unit.
8. The equipment according to any of claims 1-7, wherein said packet forwarding stage
(15, 20) comprises a packet forwarding module (15), coupled between said electric
switching unit (13) and said packet optical/electric converter (16), and a packet
and optical control plane (20), suitable for generating control signals for said optical
input and output means, said optical forwarding and multiplexing stage (10), said
interface converter (12), said electric switching unit (13) and said non-packet and
packet optical/electric converters (14, 16).
9. The equipment according to claim 8, wherein said optical input and output means comprise
channel termination units (31) suitable for extracting and/or adding control signals
having a different wavelength with respect to said input and output multiplexed signals.
10. The equipment according to claim 9, wherein said channel termination units (31) are
connected with said packet forwarding module (15)for exchanging said control signals
therewith.
11. The equipment according to any of claims 8-10, wherein said packet and optical control
plane (20) is suitable for generating control signals for said optical forwarding
and multiplexing stage (10) and wherein said optical forwarding and multiplexing stage
(10) is configured to route first selected of said input multiplexed signals toward
said optical output means (10b1, 10b2; 10b), to extract second selected of said input
multiplexed signals toward said interface converter (12) and to add said optical signals
to said output multiplexed signals.
12. The equipment according to claim 1 or 2, wherein said optical input means comprises
a plurality of inputs (10a) and said optical output means comprises a plurality of
outputs (10b) and wherein said optical forwarding and multiplexing stage (10) comprises
an optical switching unit (202) connected to said interface converter (12) and a multiplexing/demultiplexing
unit (201) connected between said optical switching unit (202) and said inputs and
outputs.
13. An optical network of wavelength multiplexing type, comprising a plurality of packet
and optical routing equipment (2; 200) according to one or more claims 1-12 and a
plurality of optical connections (3) extending between pairs of packet and optical
routing equipment (2; 200).
14. A method for packet and optical signal routing, comprising the steps of:
receiving input multiplexed optical signals;
receiving branch non packet optical signals;
forwarding first selected of said input multiplexed optical signal5, extracting second
selected of said input multiplexed optical signals and adding said branch non-packet
and packet optical signals to said output multiplexed optical signals;
converting said received branch non-packet optical signals into non-packet electric
signals;
switching non-packet and packet electric signals according to available resources;
converting the switched non-packet electric signals into optical signals;
characterized in that said step of adding said branch non-packet and packet optical signals to said output
multiplexed optical signals comprises:
receiving branch packet optical signals;
converting said received branch packet optical signals into packet electric signals;
converting the switched packet electric signals into optical signals;
adding said optical signal to said output multiplexed signals;
and that said forwarding, said extracting and said adding is performed optically.
15. The method according to claim 14, further comprising the steps of converting said
second selected of said input multiplexed signals into extracted electric signals;
switching said extracted electric signals to obtain first and second electric signals;
converting said first electric signals into branch non-packet optical signals; sending
said branch non-packet optical signals to a non-packet destination; converting said
second electric signals into branch packet optical signals; and routing said branch
packet optical signals toward a packet destination.
16. The method according to claim 14 or 15, comprising the step of:
- generating control signals in a first packet and optical routing equipment;
- transmitting said control signals onto a first optical connection line;
- receiving said control signals at a second packet and optical routing equipment;
- checking the destination of said control signals at a second packet and optical
routing equipment and, if said second packet and optical routing equipment is not
a destination equipment,
- routing said control signals onto a second optical connection line toward a further
packet and optical routing equipment and
- repeating the previous step at the further packet and optical routing equipment
until a destination packet and optical routing equipment for the control signals is
reached, so as to establish a path for said control signals including the packet and
optical routing pieces of equipment between said first and said destination packet
and optical routing equipment;
- checking a traffic condition to detect a low or high traffic condition for said
branch packet signals;
- in case of low traffic condition, implementing a base connectivity for said branch
packet optical signals including the packet and optical routing pieces of equipment
between said first and said destination packet and optical routing equipment;
- in case of high traffic condition, implementing a direct connectivity for said branch
packet optical signals between said first and said destination packet and optical
routing equipment.
17. The method according to claim 16, wherein said step of implementing a base connectivity
comprises transmitting said branch packet optical signals together with said control
signals from said first to said destination packet and optical routing equipment.
1. Paket und optische Routing-Einrichtung (2; 200) mit:
- einer zum Empfang gemultiplexter optischer Eingangssignale geeigneten optischen
Eingabeeinrichtung (10al, 10a2; 10a);
- einer zur Zufuhr gemultiplexter optischer Ausgangssignale geeigneten optischen Ausgabeeinrichtung
(10b1, 10b2; 10b);
- einem zum Austausch von optischen Zweig-Nicht-Paket-Signalen geeigneten optischen
Nicht-Paket-Anschluss (21);
- einem zum Austausch von optischen Zweig-Paket-Signalen geeigneten optischen Paket-Anschluss
(22);
- einer zwischen der optischen Eingabeeinrichtung (10a1, 10a2; 10a) und der optischen
Ausgabeeinrichtung (10b1, 10b2; 10b) verbundenen optischen Weiterleitungs-und Multiplex-Stufe
(10);
- einer zwischen dem optischen Paket-Anschluss (22) und der optischen Weiterleitungs-
und Multipiex-Stufe (10) verbundenen Paket- Weiterleitungs-Stufe (15, 20),
- einem mit dem optischen Nicht-Paket-Anschluss (21) verbundenen und zur Umwandlung
der Zweig-Nicht-Paket-Signale in und aus elektrischen Nicht-Paket-Signalen geeigneten
optischen/elektrischen Nicht-Paket-Wandler (14);
- einer elektrischen Schalteinheit (13), die mit dem optischen/elektrischen Nicht-Paket-Wandler
(14) und der Paket-Weiterleitungs-Stufe (15, 20) zum Austausch der elektrischen Nicht-Paket-
und Paket-Signale damit verbunden ist; und
- einem zwischen der elektrischen Schalteinheit (13) und der optischen Weiterleitungs-
und Multiplex-Stufe (10) zum Umwandeln der elektrischen Nicht-Paket-Signale in und
aus zu und von der optischen Weiterleitungs- und Multiplex-Stufe (10) zugeführten
optischen Signalen verbundenen Schnittstellen-Wandler (12);
dadurch gekennzeichnet, dass
- die Einrichtung (2; 200) einen optischen/elektrischen Paket-Wandler (16) aufweist,
der direkt mit dem optischen Paket-Anschluss (22) und der Paket-Weiterleitungs-Stufe
(15, 20) verbunden und zwischen ihnen angeordnet ist; wobei der optische/elektrische
Paket-Wandler (16) zur Umwandlung der optischen Zweig-Paket-Signale in und aus mit
der Paket-Weiterleitungs-Stufe (15, 20) ausgetauschten elektrischen Paket-Signalen
geeignet ist;
- der Schnittstellen-Wandler (12) die elektrischen Paket-Signale in und aus von und
zu der optischen Weiterleitungs- und Multiplex-Stufe (10) zugeführten optischen Signalen
umwandelt;
- die optische Weiterleitungs- und Multiplex-Stufe ausgebildet ist, optisch optische
Zweig-Signale zwischen der optischen Eingabe/Ausgabeeinrichtung und der Schnittstelleneinrichtung
auszutauschen, indem die optischen Zweig-Signale aus den gemultiplexten optischen
Eingangssignalen optisch extrahiert werden und die optischen Zweig-Signale zu den
gemultiplexten optischen Ausgangssignalen optisch hinzugefügt werden.
2. Einrichtung nach Anspruch 1, wobei die elektrische Schalteinheit (13) eine erste Mehrzahl
von mit dem optisch/elektrischen Nicht-Paket-Wandler (14) verbundenen Eingängen/Ausgängen
(18a), eine zweite Mehrzahl von mit der Paket-Weiterleitungs-Stufe (15, 20) verbundenen
Eingängen/Ausgängen und eine dritte Mehrzahl von mit dem Schnittstellen-Wandler (12)
verbundenen Eingängen/Ausgängen (19) besitzt, wobei die elektrische Schalteinheit
(13) konfiguriert ist, eine veränderliche Anzahl von Eingänge/Ausgängen (18a, 18b)
der ersten und zweiten Mehrzahl mit der dritten Mehrzahl von Eingängen/Ausgängen (19)
zu verbinden.
3. Einrichtung nach Anspruch 1 oder 2, wobei die optische Eingabeeinrichtung einen ersten
und einen zweiten Eingang (10a1, 10a2) aufweist und die optische Ausgabeeinrichtung
einen ersten und einen zweiten Ausgang (10b1, 10b2) aufweist; wobei die optische Weiterleitungs-
und Multiplex-Stufe (10) einen ersten Satz von in Kaskade verbundenen optischen Abzweigmultiplexern
(27) und einen zweiten Satz von in Kaskade verbundenen optischen Abzweigmultiplexern
(27) aufweist.
4. Einrichtung nach Anspruch 3, wobei der erste Satz von optischen Abzweigmultiplexern
(27) zwischen dem ersten Eingang (10a1) und dem ersten Ausgang (10b1) und der zweite
Satz von optischen Abzweigmultiplexern (27) zwischen dem zweiten Eingang (10a2) und
dem zweiten Ausgang (10b2) verbunden ist.
5. Einrichtung nach einem der Ansprüche 3 bis 4, wobei die optischen Abzweigmultiplexer
(27) von einem abstimmbaren Typ sind.
6. Einrichtung nach einem der Ansprüche 3 bis 5, wobei der Schnittstellen-Wandler (12)
eine Mehrzahl von Sende/Empfangseinrichtungen (28) aufweist, wobei jede Sende/Empfangseinrichtung
(28) mit einem jeweiligen der optischen Abzweigmultiplexer (27) verbunden ist.
7. Einrichtung nach Anspruch 6, wobei jede Sende/Empfangseinrichtung (28) einen Sendelaser
vom abstimmbaren Typ, einen Grauempfänger und eine elektronische Einheit aufweist.
8. Einrichtung nach einem der Ansprüche 1 bis 7, wobei die Paket-Weiterleitungs-Stufe
(15,20) ein Paket-Weiterleitungs-Modul (15), das zwischen der elektrischen Schalteinheit
(13) und dem optischen/elektrischen Paket-Wandler (16) verbunden ist, und eine Paket
und optische Steuerebene (20) aufweist, die zur Erzeugung von Steuersignale für die
optische Eingabe- und Ausgabeeinrichtung, die optische Weitcrieitungs-und Multiplexer-Stufe
(10), den Schnittstellen-Wandler (12), die elektrische Schalteinheit (13) und die
optischen/elektrischen Nicht-Paket- und Paket-Wandler (14, 16) geeignet sind.
9. Einrichtung nach Anspruch 8, wobei die optische Eingabe- und Ausgabeeinrichtung Kanalabschlusseinheiten
(31) aufweist, die zur Extraktion und/oder Addition von Steuersignalen mit einer unterschiedlichen
Wellenlänge im Hinblick auf die gemultiplexten Eingangs- und Ausgangssignale geeignet
ist.
10. Einrichtung nach Anspruch 9, wobei die Kanalabschlusseinheiten (31) mit dem Paket-Weiterleitungs-Modul
(15) zum Austausch der Steuersignale mit ihnen verbunden sind.
11. Einrichtung nach einem der Ansprüche 8 bis 10, wobei die Paket und optische Steuerebene
(20) zur Erzeugung von Steuersignalen für die optische Weiterleitungs- und Multiplexer-Stufe
(10) geeignet ist und die optische Weiterleitungs- und Multiplexer-Stufe (10) konfiguriert
ist, erste ausgewählte der gemultiplexten Eingangssignale zur optischen Ausgabeeinrichtung
(10b1, 10b2; 10b) zu leiten, zweite ausgewählte der gemultiplexten Eingangssignale
zum Schnittstellen-Wandler (12) zu extrahieren und die optischen Signale zu den gemultiplexten
Ausgangssignalen hinzuzufügen.
12. Einrichtung nach Anspruch 1 oder 2, wobei die optische Eingabeeinrichtung eine Mehrzahl
von Eingängen (10a) aufweist und die optische Ausgabeeinrichtung eine Mehrzahl von
Ausgängen (10b) aufweist und wobei die optische Weiterleitungs- und Multiplexer-Stufe
(10) eine mit dem Schnittstellen-Wandler (12) verbundene optische Schalteinheit (202)
und eine zwischen der optischen Schalteinheit (202) und den Eingängen und Ausgängen
verbundene Multiplexer/Demultiplexer-Einheit (201) aufweist.
13. Optisches Netz vom Wellenlängen-Multiplex-Typ, mit einer Mehrzahl von Paket und optischer
Routing-Einrichtungen (2; 200) gemäß einem oder mehreren der Ansprüche 1 bis 12 und
einer Mehrzahl von sich zwischen Paaren von Paket und optischen Routing-Einrichtungen
(2; 200) erstreckenden optischen Verbindungen (3).
14. Verfahren zum Paket und optischen Signal-Routing, mit den Schritten:
- Empfangen von gemultiplexten optischen Eingangssignalen;
- Empfangen von optischen Zweig-Nicht-Paket-Signalen;
- Weiterleiten von ersten ausgewählten der gemultiplexten optischen Eingangssignale,
Extrahieren von zweiten ausgewählten der gemultiplexten optischen Eingangssignale
und Hinzufügen der optischen Zweig-Nicht-Paket- und Paket-Signale zu den gemultzplexten
optischen Ausgangssignalen;
- Umwandeln der empfangenen optischen Zweig-Nicht-Paket-Signale in elektrische Nicht-Paket-Signale;
- Schalten von elektrischen Nicht-Paket- und Paket-Signalen gemäß verfügbaren Ressourcen;
- Umwandeln der geschalteten elektrischen Nicht-Paket-Signale in optische Signale;
dadurch gekennzeichnet, dass der Schritt des Hinzufügens der optischen Zweig-Nicht-Paket- und Paket-Signale zu
den gemultiplexten optischen Ausgangssignalen:
- ein Empfangen von optischen Zweig-Paket-Signalen;
- ein Umwandeln der empfangenen optischen Zweig-Paket-Signale in elektrische Paket-Signale;
- ein Umwandeln der geschalteten elektrischen Paket-Signale in optische Signale;
- ein Hinzufügen des optischen Signals zu den gemultiplexten Ausgangssignalen; aufweist;
und
dass das Weiterleiten, das Extrahieren und das Hinzufügen optisch durchgeführt wird.
15. Verfahren nach Anspruch 14, weiterhin mit den Schritten eines Umwandeln der zweiten
ausgewählten der gemultiplexten Eingangssignale in extrahierte elektrische Signale;
eines Schaltens der extrahierten elektrischen Signale, um erste und zweite elektrische
Signale zu erhalten; eines Umwandelns der ersten elektrischen Signale in optische
Zweig-Nicht-Paket-Signale; eines Sendens der optischen Zweig-Nicht-Paket-Signale zu
einem Nicht-Paket-Ziel; eines Umwandeins der zweiten elektrischen in optische Zweig-Paket-Signale;
und eines Leitens der optischen Zweig-Paket-Signale zu einem Paket-Ziel.
16. Verfahren nach Anspruch 14 oder 15, weiterhin mit dem Schritt:
- Erzeugen von Steuersignalen in einer ersten Paket und optischen Routing-Einrichtung;
- Senden der Steuersignale zu einer ersten optischen Verbindungsleitung;
- Empfangen der Steuersignale an einer zweiten Paket und optischen Routing-Einrichtung;
- Überprüfen des Ziels der Steuersignale an einer zweiten Paket und optischen Routing-Einrichtung
und, wenn die zweite Paket und optische Routing-Einrichtung nicht eine Ziel-Einrichtung
ist,
- Routen der Steuersignale auf einer zweiten optischen Verbindungsleitung zu einer
weiteren Paket und optischen Routing-Einrichtung und
- Wiederholen des vorhergehenden Schritts an der weiteren Paket und optischen Routing-Einrichtung
bis eine Ziel-Paket und optische Routing-Einrichtung für die Steuersignale erreicht
ist, um einen Pfad für die Steuersignale einschließlich der Paket und optischen Routing-Teile
der Einrichtung zwischen der ersten und der Ziel-Paket und optischen Routing-Einrichtung
einzurichten;
- Überprüfen einer Verkehrsbedingung, um eine niedrige und eine hohe Verkehrsbedingung
für die Zweig-Paket-Signale zu erfassen;
- im Fall einer niedrigen Verkehrsbedingung, Realisieren einer Basis-Verbindungsfähigkeit
für die optischen Zweig-Paket-Signale einschließlich der Paket und optischen Routing-Teile
der Einrichtung zwischen der ersten und der Ziel-Paket und optischen Routing-Einrichtung;
- im Fall einer hohen Verkehrsbedingung, Realisieren einer direkten Verbindungsfähigkeit
für die optischen Zweig-Paket-Signale zwischen der ersten und der Ziel-Paket und optischen
Routing-Einrichtung.
17. Verfahren nach Anspruch 16, wobei der Schritt eines Realisierens einer Basis-Verbindungsfähigkeit
ein Senden der optischen Zweig-Paket-Signale zusammen mit den Steuersignalen von der
ersten zur Ziel-Paket und optischen Routing-Einrichtung aufweist.
1. Equipement de routage optique et de paquet (2 ; 200), comprenant :
- un moyen d'entrée optique (10a1, 10a2 ; 10a) approprié pour la réception de signaux
multiplexés optiques d'entrée ;
- un moyen de sortie optique (10b1, 10b2 ; 10b) approprié pour la fourniture de signaux
multiplexés optiques de sortie ;
- un port optique hors paquet (21) approprié pour échanger des signaux optiques hors
paquet de branche ;
- un port optique de paquet (22) approprié pour échanger des signaux optiques de paquet
de branche ;
- un étage de transmission et de multiplexage optiques (10) couplé entre ledit moyen
d'entrée optique (10a1, 10a2 ; 10a) et ledit moyen de sortie optique (10bl, 10b2 ;
10b) ;
- un étage de transmission de paquet (15, 20) raccordé entre ledit port de paquet
optique (22) et ledit étage de transmission et de multiplexage optiques (10) ;
- un convertisseur optique/électrique hors paquet (14) raccordé audit port optique
hors paquet (21) et approprié pour la conversion desdits signaux hors paquet de branche
en, et à partir de, signaux électriques hors paquet ;
- une unité de commutation électrique (13), raccordée audit convertisseur optique/électrique
hors paquet (14) et audit étage de transmission de paquet (15, 20) pour échanger avec
ceux-ci lesdits signaux électriques de paquet et hors paquet ; et
- un convertisseur d'interface (12) couplé entre ladite unité de commutation électrique
(13) et ledit étage de transmission et de multiplexage optiques (10) pour la conversion
desdits signaux électriques hors paquet en, et partir des, signaux optiques fournis
à, et à partir, dudit étage de transmission et de multiplexage optiques (10),
caractérisé en ce que:
- l'équipement (2; 200) comprend un convertisseur optique/électrique de paquet (16)
directement raccordé audit port de paquet optique (22) et audit étage de transmission
de paquet (15, 20) et est agencé entre eux ; ledit convertisseur optique/électrique
de paquet (16) étant approprié pour la conversion desdits signaux optiques de paquet
de branche en, et à partir des, signaux de paquet électriques échangés avec ledit
étage de transmission de paquet (15, 20) ;
- ledit convertisseur d'interface (12) convertit lesdits signaux de paquet électriques
en, et à partir des, signaux optiques fournis à, et à partir, dudit étage de transmission
et de multiplexage optiques (10) ;
- ledit étage de transmission et de multiplexage optiques est adapté pour échanger
optiquement les signaux de branche optique entre lesdits moyens d'entrée/sortie optiques
et lesdits moyens d'interface, en extrayant optiquement lesdits signaux de branche
optique desdits signaux multiplexés optiques d'entrée, et en ajoutant optiquement
lesdits signaux de branche optique auxdits signaux multiplexés optiques de sortie.
2. Equipement selon la revendication 1, dans lequel ladite unité de commutation électrique
(13) comprend une première pluralité d'entrées/sorties (18a) raccordées audit convertisseur
optique/électrique hors paquet (14), une deuxième pluralité d'entrées/sorties (18b)
raccordées audit étage de transmission de paquet (15, 20) et une troisième pluralité
d'entrées/sorties (19) raccordées audit convertisseur d'interface (12), ladite unité
de commutation électrique (13) étant configurée pour raccorder un nombre variable
d'entrées/sorties (18a, 18b) de ladite première et ladite deuxième pluralité à ladite
troisième pluralité d'entrées/sorties (19).
3. Equipement selon la revendication 1 ou 2, dans lequel ledit moyen d'entrée optique
comprend une première et une seconde entrées (10a1, 10a2) et ledit moyen de sortie
optique comprend une première et une seconde sorties (10b1, 10b2); ledit étage de
transmission et de multiplexage optiques (10) comprenant un premier ensemble de multiplexeurs
d'addition/baisse optiques raccordés en cascade (27) et un second ensemble de multiplexeurs
d'addition/baisse optiques raccordés en cascade (27).
4. Equipement selon la revendication 3, dans lequel ledit premier ensemble de multiplexeurs
d'addition/baisse optiques (27) est couplé entre ladite première entrée (10a1) et
ladite première sortie (10b1) et ledit second ensemble de multiplexeurs d'addition/baisse
optiques (27) est couplé entre ladite seconde entrée (10a2) et ladite seconde sortie
(10b2).
5. Equipement selon l'une quelconque des revendications 3 et 4, dans lequel lesdits multiplexeurs
d'addition/baisse optiques (27) sont de type réglable.
6. Equipement selon l'une quelconque des revendications 3 à 5, dans lequel ledit convertisseur
d'interface (12) comprend une pluralité d'émetteurs-récepteurs (28), chaque émetteur-récepteur
(28) étant raccordé à l'un respectif desdits multiplexeurs d'addition/baisse optiques
(27).
7. Equipement selon la revendication 6, dans lequel chacun desdits émetteurs-récepteurs
(28) comprend un laser émetteur de type réglable, un récepteur gris et une unité électronique.
8. Equipement selon l'une quelconque des revendications 1 à 7, dans lequel ledit étage
de transmission de paquet (15, 20) comprend un module de transmission de paquet (15),
couplé entre ladite unité de commutation électrique (13) et ledit convertisseur optique/électrique
de paquet (16), et un plan de commande optique et de paquet (20), approprié pour générer
des signaux de commande pour lesdits moyens d'entrée et sortie optique, ledit étage
de transmission et de multiplexage optiques (10), ledit convertisseur d'interface
(12), ladite unité de commutation électrique (13) et lesdits convertisseurs optiques/électriques
de paquets et hors paquet (14, 16) .
9. Equipement selon la revendication 8, dans lequel lesdits moyens d'entrée et de sortie
optique comprennent des unités de terminaison de canal (31) appropriées pour extraire
et/ou ajouter des signaux de commande ayant une longueur d'onde différente par rapport
auxdits signaux multiplexés d'entrée et de sortie.
10. Equipement selon la revendication 9, dans lequel lesdites unités de terminaison de
canal (31) sont raccordées avec ledit module de transmission de paquet (15) pour échanger
lesdits signaux de commande avec celui-ci.
11. Equipement selon l'une quelconque des revendications 8 à 10, dans lequel ledit plan
de commande optique et de paquet (20) est approprié pour générer des signaux de commande
pour ledit étage de transmission et de multiplexage optiques (10) et dans lequel ledit
étage de transmission et de multiplexage optiques (10) est configuré pour diriger
le premier sélectionné desdits signaux multiplexés d'entrée vers ledit moyen de sortie
optique (10b1, 10b2 ; 10b), pour extraire le second sélectionné desdits signaux multiplexés
d'entrée vers ledit convertisseur d'interface (12) et pour ajouter lesdits signaux
optiques auxdits signaux multiplexés de sortie.
12. Equipement selon la revendication 1 ou 2, dans lequel ledit moyen d'entrée optique
comprend une pluralité d'entrées (10a) et ledit moyen de sortie optique comprend une
pluralité de sorties (10b) et dans lequel ledit étage de transmission et de multiplexage
optiques (10) comprend une unité de commutation optique (202) raccordée audit convertisseur
d'interface (12) et une unité de multiplexage/démultiplexage (201) raccordée entre
ladite unité de commutation optique (202) et lesdites entrées et sorties.
13. Réseau optique de type à multiplexage de longueur d'onde, comprenant une pluralité
d'équipements de routage optique et de paquet (2 ; 200) selon une ou plusieurs des
revendications 1 à 12 et une pluralité de connexions optiques (3) s'étendant entre
les paires d'équipements de routage optique et de paquet (2 ; 200).
14. Procédé destiné au routage des signaux optiques et de paquet, comprenant les étapes
consistant à :
recevoir les signaux optiques multiplexés d'entrée ;
recevoir les signaux optiques hors paquet de branche ;
transmettre le premier sélectionné desdits signaux optiques multiplexés d'entrée,
extraire le second sélectionné desdits signaux optiques multiplexés d'entrée et ajouter
lesdits signaux optiques de paquet et hors paquet de branche auxdits signaux optiques
multiplexés de sortie ;
convertir lesdits signaux optiques hors paquet de branche reçus en signaux électriques
hors paquet ;
commuter les signaux électriques hors paquet et de paquet selon les ressources disponibles
;
convertir les signaux électriques hors paquet commutés en signaux optiques ;
caractérisé en ce que ladite étape d'ajout desdits signaux optiques hors paquet et de paquet de branche
auxdits signaux optiques multiplexés de sortie comprend :
recevoir des signaux optiques de paquet de branche ;
convertir lesdits signaux optiques de paquet de branche reçus en signaux électriques
de paquet ;
convertir les signaux électriques de paquet commutés en signaux optiques ;
ajouter ledit signal optique auxdits signaux multiplexés de sortie ; et
en ce que ladite transmission, ladite extraction et ledit ajout sont réalisés de façon optique.
15. Procédé selon la revendication 14, comprenant également les étapes consistant à convertir
ledit second sélectionné desdits signaux multiplexés d'entrée en signaux électriques
extraits ; commuter lesdits signaux électriques extraits pour obtenir un premier et
un second signal électriques ; convertir lesdits premiers signaux électriques en signaux
optiques hors paquet de branche ; envoyer lesdits signaux optiques hors paquet de
branche à une destination hors paquet ; convertir lesdits seconds signaux électriques
en signaux optiques de paquet de branche ; et router lesdits signaux optiques de paquet
de branche vers une destination de paquet.
16. Procédé selon la revendication 14 ou 15, comprenant les étapes consistant à :
- générer des signaux de commande dans un premier équipement de routage optique et
de paquet ;
- transmettre lesdits signaux de commande sur une première ligne de connexion optique
;
- recevoir lesdits signaux de commande sur un second équipement de routage optique
et de paquet ;
- contrôler la destination desdits signaux de commande sur un second équipement de
routage optique et de paquet et, si ledit second équipement de routage optique et
de paquet n'est pas un équipement de destination,
- router lesdits signaux de commande sur une seconde ligne de connexion optique vers
un autre équipement de routage optique et de paquet ; et
- répéter l'étape précédente sur l'autre équipement de routage optique et de paquet
jusqu'à ce qu'un équipement de destination de routage optique et de paquet pour les
signaux de commande soit atteint, de façon à établir un trajet pour lesdits signaux
de commande comprenant les parties de routage et le paquet optique d'équipement entre
ledit premier équipement et ledit équipement de destination de routage optique et
de paquet ;
- contrôler une condition de trafic pour détecter une condition de trafic réduit ou
élevé pour lesdits signaux de paquet de branche ;
- en cas de condition de trafic réduit, mettre en oeuvre une connectivité de base
pour lesdits signaux optiques de paquet de branche comprenant les parties de routage
optique et de paquet d'équipement entre ledit premier équipement et ledit équipement
de destination de routage optique et de paquet ;
- en cas de condition de trafic élevé, mettre en oeuvre une connectivité directe pour
lesdits signaux optiques de paquet de branche entre ledit premier équipement et ledit
équipement de destination de routage optique et de paquet.
17. Procédé selon la revendication 16, dans lequel ladite étape consistant à mettre en
oeuvre une connectivité de base comprend l'étape consistant à transmettre lesdits
signaux optiques de paquet de branche avec lesdits signaux de commande en provenance
dudit premier équipement vers ledit équipement de destination de routage optique et
de paquet.