Field of the invention
[0001] The invention relates to a method for drying of fuel according to the preamble of
the appended claim 1. The invention also relates to an apparatus for implementing
the aforementioned method in accordance with the preamble of the appended claim 15.
Background of the invention
[0002] In power plants, numerous different materials are used as fuels, such as bark, chips,
coal, peat, compressed sludge or municipal waste. Before the combustion process the
fuel is typically crushed, chipped or cut into particles of suitable size for combustion.
Thereafter they are stored by the power plant and possibly dried before they are fed
to the furnace of the boiler. The properties, composition and particle size of the
fuel affect its moisture content. The above-mentioned storing also has an effect therein.
For example bark, which is a commonly used fuel in the power boiler of a pulp mill,
has naturally a high moisture content. It is especially high in such pulp mills in
which wet-debarking is used. The moisture content of chips is also relatively high.
The moisture content of bark and chips is also affected by the way in which they are
stored. In stacks arranged outdoors, they are exposed to variations caused by the
change of seasons. Especially in the northern hemisphere, sun and rain in the summer
and snow and ice in the winter affect the moisture content of fuels.
[0003] Sludges are produced in various processes as their final products or waste. For example
in paper and pulp mills sludges are produced in a number of different process stages.
At present, excess liquid is removed from sludges for example by pressing, and the
processed sludge is fed to waste treatment either to be dumped or burned.
[0004] The moisture in fuels is primarily water bound either in the fuel particles or on
the surface and between the fuel particles. It is possible that other substances have
dissolved in the water from the fuel, or other liquids have been mixed therein in
connection with the treatment of fuel.
[0005] In view of the combustion process of the power plant it is very important that the
moisture content of the fuel fed to the furnace of the boiler is optimal for the combustion
process used. So-called fluidized bed combustion is especially suitable for the purpose
of burning wet fuel or fuel with varying moisture content. In fluidized bed combustion,
the fuel is introduced into hot fluidized bed material floating in the furnace by
means of fluidizing air, in which bed material the fuel first dries and then burns.
The moist fuel reduces the temperature of the bed material and thus helps in keeping
the temperature within suitable limits. However, the fuel must not be too wet so that
the efficiency of the furnace would remain sufficiently high.
[0006] Moisture is removed from fuels in a number of different ways before they are fed
for burning. Bark, sludge and municipal waste can be dried for example by mechanical
pressing. The presses to be used are, however, heavy and large in size, their acquisition
costs are high and they consume great deal of electric energy. Furthermore, when using
them, the sufficiently low moisture content required for the burning is seldom reached.
[0007] It is also known to dry fuels by means of different kinds of driers before they are
fed for burning. There are for example drum or screw type driers in use, in which
a drying medium, such as hot air is fed into the fuel to be dried. Indirect driers
based on convection are also known.
[0008] US publication 6,163,981 discloses a process of drying wood material chipped into
small particles, such as chips and bark, before they are fed to a power boiler to
be burned. In the solution according to the publication, the chips to be dried are
fed to a drier, in which a bed of chips is formed on a moving conveyor, said bed of
chips moving forward along with the movement of the conveyor. Heated drying gas is
fed from below the conveyor, perpendicularly against the movement of the conveyor.
The chips to be dried do not, however, spread evenly on the conveyor, which results
in that the drying result reached by the apparatus is uneven. Furthermore, if the
capacity of the power boiler is high, and it burns a large amount of chips, it is
necessary to build the drying apparatus large enough, which is not economical. Furthermore,
it is almost impossible to insulate the apparatus from outdoor air, wherein the gas
used in the drying can leak into the surrounding air, which is a work safety and environmental
risk.
[0009] In US publication 4,888,885 warm gas is also fed through a bed of chips moving forward
in a dryer. The bed of chips moves forward on an inclined transport towards its discharge
end. The transport enables the penetration of gas. It is a problem in this solution
that the transport is easily clogged, because moving of material based merely on gravity
is not sufficient for feeding elongated, viscose material typically used in power
plants. It is also difficult to attain high drying capacity by means of the apparatus.
[0010] As was mentioned above, the high moisture content of the fuel reduces the efficiency
of the power plant. Furthermore, in a fluidized bed boiler the control system of the
boiler tends to compensate the reduction in the temperature of the fluidized bed resulting
from the supply of moist fuel by reducing the amount of flue-gas containing circulating
gas and increasing the amount of air in the fluidizing air. The increase in the amount
of combustion air produces a larger combustion flame in the fluidized bed, which would
require building the furnace larger in size, which is an expensive investment. Correspondingly,
if the fuel to be burned in the boiler is dryer, there is a risk that the temperature
of the fluidized bed increases so high that it starts to sinter. The controlling of
the process is easier if the moisture content of the fuel to be fed is as stable as
possible. Thus, the moisture content of the fuel is significant in view of the combustion
process and efficiency of the boiler.
Brief description of the invention
[0011] Consequently, it is an aim of the present invention to provide a method for drying
of fuel, which avoids the above-mentioned problems, and by means of which it is possible
to efficiently dry the fuel to be fed to the power boiler, and the moisture content
of the fuel to be dried can be stabilized. Furthermore, it is an aim of the invention
to provide an apparatus implementing the aforementioned method.
[0012] To attain this purpose, the method according to the invention is primarily characterized
in what will be presented in the characterizing part of the independent claim 1.
[0013] The apparatus according to the invention, in turn, is primarily characterized in
what will be presented in the characterizing part of the independent claim 15.
[0014] The other, dependent claims will present some preferred embodiments of the invention.
[0015] The invention is based on the idea that the fuel supplied to the furnace of a power
boiler is dried in a continuous process in such a manner that the temperature of the
fuel is first increased rapidly in a heating phase, whereafter it is introduced to
the drying phase. The heating phase and the drying phase are arranged successively
in such a manner that the fuel compressed in the heating phase is discharged to the
drying phase, and it is passed therethrough as a bed having a substantially uniform
thickness. In the heating phase the fuel flows through a vertical heating section,
in which hot, gaseous medium is fed to the fuel flow to increase the temperature of
the fuel sufficiently high for the drying phase.
[0016] In the heating phase, the hot, gaseous medium is fed crosswisely in relation to the
fuel flow travelling downward, to the middle of the flow and to its edges. The fuel
heats up rapidly in the heating phase, because the amount of heating medium is large
and its flow rate is high, and all material travels through the heating medium flow.
In the heating phase the fuel is heated up to the drying temperature or at least close
to it. The hot, gaseous medium fed to the fuel flow in the cross direction does not
hinder the flow of fuel material.
[0017] After the heating phase the fuel flow is fed as a dense bed through the drying phase
comprising a horizontal or an oblique drying section. In the drying phase a hot, gaseous
medium is fed through the fuel bed to maintain the drying temperature. Most of the
steam necessary for the drying is fed to the heating section. The amount of steam
necessary in the drying section is small, because the steam is only used for maintaining
the drying temperature attained in the heating section. Correspondingly, the delay
time of fuel in the drying section is considerably longer than in the heating section.
By means of a long delay time it is possible to ensure steady drying of fuel throughout
the entire fuel bed. The gaseous steam released in the drying section is removed from
the gas space above the fuel bed. By means of removing steam the desired pressure
is maintained in the drying section. The produced condensate is removed from the bottom
of the drying section. The final moisture of the fuel can be controlled by controlling
the amount of fuel, i.e. the thickness of the fuel bed on the conveyor as well as
the delay time and temperature of the fuel in the drying section.
[0018] According to an embodiment of the invention, the moisture content of the fuel can
be controlled and thus fuel with a stable, i.e. the same or almost the same moisture
content can be attained as a result of the drying process. If necessary, it is possible
to spray water or other liquid into the fuel moving in the drying apparatus to control
the moisture content.
[0019] It is an advantage of the invention that the particle-like fuel supplied to the power
boiler can be dried rapidly and in a simple manner. The feeding of heating medium
to the middle and edges of the fuel in the heating section results in that the fuel
heats up rapidly to the drying temperature. Thus, the variations in temperature between
the fuel particles caused by the storage of fuel can be stabilized, for example frozen
lumps of fuel can be defrosted. The transverse steam flow used in the heating section
does not cause disturbances in the fuel flow in the heating section, wherein the entire
amount of fuel heats up to the desired drying temperature. The drying temperature
maintained in the drying section ensures efficient drying of the entire fuel flow.
The drying of fuel can also be intensified by sucking steam containing moisture released
from the fuel from the drying apparatus. The possibility of controlling the moisture
of fuel as suggested by an embodiment of the invention ensures that fuel having precisely
the right moisture level is attained in the power boiler in use. The invention can
be utilized especially in connection with power boilers in pulp and paper mills, because
they usually use as a fuel bark waste and chips produced in pulp and paper making.
Furthermore, the sludges produced in pulp and paper mills can be dried by means of
the invention and fed to be burned in a power boiler.
Brief description of the drawings
[0020] In the following, the invention will be described in more detail with reference to
the appended drawings, in which
- Fig. 1
- shows a drying apparatus according to the invention in a side-view and in a cross-section,
- Fig. 2
- shows a side-view of a second drying apparatus according to the invention, and
- Fig. 3
- shows section A-A marked in Fig. 1.
Detailed description of the invention
[0021] In this context the term fuel refers to any burning substance, which has a sufficient
thermal value after the drying, so that it can be utilized as a fuel for the power
plant. Such fuels include for example chips, bark, coal, peat, sludges from process
industry or municipal waste.
[0022] Fig. 1 shows a fuel drying apparatus 1 according to the invention. The apparatus
comprises a vertical heating section 2 having the shape of a downward expanding cone.
Feeding means (not shown in the figure), such as a bin or a screw are connected to
the upper part of the heating section and they feed the fuel to be dried to the heating
section 2 from its upper part in accordance with the arrow marked in the figure. The
fuel fed to the heating section 2 moves by means of gravity vertically downward as
shown by arrow A. The fuel is fed to the drying apparatus constantly in such a manner
that the fuel fills substantially the volume of the heating section from the fuel
surface 10 formed in the heating section 2. The heating section comprises a feeding
pipe 4 for feeding hot, gaseous medium, such as steam into the middle of the heating
section 2. At the lower end of the feeding pipe 4 there is a steam distribution member
5 extending around the feeding pipe, which can be a perforation extending around the
feeding pipe, or some suitable means attached to the feeding pipe, such as, for example,
a screen, which distributes the steam from the steam feeding pipe 4 evenly to the
fuel horizontally in an angle of 360 degrees. In the embodiment of Fig. 1, a screen
5 is arranged in the feeding pipe. In the shell of the heating section, on the same
height with the screen 5, there is a steam distribution member 6, such as a screen,
extending around the entire shell for feeding steam horizontally to the fuel within
the perimeter of the entire heating section. A distribution chamber 8 placed on the
perimeter of the heating section, substantially on the same height with the screen
6, divides the steam evenly to the screen 6 surrounding the entire perimeter of the
heating section. To the distribution chamber, one or several ducts 7 are connected,
said duct/ducts feeding steam to the distribution channel 8. The heating section also
contains at least one duct 9 for removing the exhaust steam from the gas space 11
above the fuel surface 10.
[0023] The moisture and initial temperature of the fuel to be heated affect the energy demand
of the heating. The physical and geometrical properties of the fuel to be heated as
well as possible treatment preceding the drying, for example removing of moisture
by means of pressing, affect the warming up rate of the fuel. The temperature of the
steam to be used also affects the heating result. Rapid heating of fuel in the heating
section requires that a sufficient amount of steam is fed as a steady flow to the
fuel. In the drying phase the amount of steam required for maintaining the temperature
of the fuel is small. The delay time of fuel in the heating section is short, considerably
shorter than the delay time of fuel in the drying section.
[0024] The heated fuel is discharged from the lower part of the heating section to the drying
section 3. The heating section 2 and the drying section 3 are arranged successively
on top of each other in such a manner that the heating section is positioned in an
angle of 90 degrees with respect to the drying section 3. The heating section is arranged
in connection with the drying section, to one of its ends in such a manner that the
heated fuel discharged from the heating section 2 travels substantially through the
horizontal drying section 3, fed by a conveyor 12 on the bottom of said drying section.
In the heating section 2 and below the same the fuel flow becomes dense and the fuel
is fed through the drying section 3 as a dense fuel bed FB.
[0025] The drying section 3 is an elongated vessel, whose length is greater than its cross-section,
and whose ends are closed. On the bottom of the drying section a conveyor 12 is arranged,
said conveyor carrying the fuel from the heating section 2 end of the drying section
to the other end of the drying section 3, which comprises members 13 for removing
dried fuel from the drying apparatus 1 to a feed screw 14 that feeds the fuel either
to an intermediate storage or to the furnace of the power boiler. At the initial end
of the drying section 3, i.e. at the heating section end, there is an adjustment plate
16 attached gas-tightly to the roof 15 the drying section. The adjustment plate 16
is a plate-like element extending across the width of the drying section 3 that protrudes
a distance inside the drying section 3 and determines the height and shape of the
upper edge of the fuel bed FB formed in the drying section 3. By adjusting the height
and shape of the adjustment plate 16 it is possible to adjust the height and shape
of the upper edge of the fuel bed FB. The adjustment plate 16 seals the gas space
17 of the drying section 3 remaining between the upper edge of the fuel bed of and
the upper surface of the drying section, i.e. the roof 15 in such a manner that the
pressure therein may be higher than the pressure in the heating section 2. The upper
part of the drying section comprises a duct 18 for removing exhaust steam.
[0026] Hot, gaseous medium, such as steam is fed through the fuel bed via openings 19 arranged
on the conveyor, said fuel bed travelling by means of the conveyor 12 in the drying
section 13. Steam is brought via one or several ducts 20 attached to the bottom of
the drying section 3. The purpose of feeding steam is to maintain a temperature favourable
for the drying of fuel, which together with the delay time adjusted by the speed of
the conveyor 12 brings about the drying of the fuel. The condensate formed in the
drying section is removed via a duct 21 attached to the bottom of the drying section.
The condensate is fed to the waste water system of the plant.
[0027] The conveyor 12 arranged on the bottom of the drying section 3 can be any type of
a conveyor suitable for feeding fine-grained material, for example a scraper conveyor,
a belt conveyor or a slat conveyor. The essential aspect is that the conveyor is formed
in such a manner that it is possible to feed hot, gaseous medium through the fuel
bed located on top of the conveyor and moving by means of the same. Thus, the conveyor
is provided with a set of openings for the passage of the medium. One possible conveyor
is shown in Fig. 3 which will be described later.
[0028] The hot, gaseous medium used in the heating and drying phase can be for example hot
air, steam, dry steam or flue gases from the power boiler. It is also possible to
use the primary or secondary steam from a steam-generating process, such as a turbine
located in the vicinity of the drying device. The exhaust steam produced in the heating
phase and in the drying phase can be recovered and compressed and used again in heating
or it can be led, for example, elsewhere in the power boiler process. The exhaust
steam can also be fed to the flue gas processing system of the power boiler or it
can be condensed and removed. The exhaust steam produced in the drying device can
also be circulated again to the drying of fuel. Thus, the exhaust steam removed both
from the heating section 2 and the drying section 3 is fed back to the heating section
2 and to the drying section 3, which is illustrated by means of broken lines in Fig.
1. If desired, the exhaust steam produced in the heating section 2 and in the drying
section 3 can be heated in a heat exchanger 24 illustrated by means of broken lines
in Fig. 1, before it is fed back to the heating section and to the drying section.
[0029] According to an embodiment of the invention, the drying of fuel fed to the drying
device can also be intensified by sucking exhaust steam containing moisture released
from the fuel from the drying apparatus. In the heating section exhaust steam is sucked
either through the feeding pipe 4 or through the distribution chamber 8 arranged in
the shell. The sucking can be implemented by any suitable means, such as a blower
or a pump 26, which is connected to the feeding pipe 4 and to the distribution chamber
8. The essential aspect is that exhaust steam is only sucked from one of them at a
time, either through the feeding pipe 4 or the distribution chamber 8 connected to
the heating section, because at the same time the other, either the feeding pipe 4
or the distribution chamber 8 that is not connected to the pump 26 feeds hot, gaseous
medium to the heating section. In the drying section 3 the suction of exhaust steam
takes place via an exhaust steam removal duct 18.
[0030] According to yet another embodiment of the invention it is possible to control the
drying of fuel by changing the delay time of fuel and the amount and temperature of
the drying gas used in the drying apparatus. If necessary, the final moisture of the
fuel discharged from the drying apparatus 1 can also be adjusted by moistening it.
Thus, cooling water is sprayed from a cooling water line 23 on the fuel bed travelling
in the drying section 3 via nozzles 25 arranged in the top part of the drying section.
[0031] Fig. 2 shows a second drying apparatus 1 according to the invention in which the
drying section 3 is divided into two parts in such a manner that the final end of
the drying section 3b is arranged so that it inclines downward. The front end 3a of
the drying section is horizontal and the conveyor 12 only extends on the length of
the front end. The fuel bed travels through the final end 3b of the drying section,
being pushed by the conveyor 12 located at the front end 3a. The inclination of the
final end 3b of the drying section downward in the flow direction of fuel reduces
the force required for feeding the fuel.
[0032] Fig. 3 illustrates a cross-section A - A of the apparatus of Fig 1. Fig. 3 shows
a way of feeding the material through the drying section by means of a conveyor according
to Finnish patents 83181 (corresponding to US 5134929) and 109103 (corresponding to
EP 1140445).
[0033] The feeding apparatus 12 is composed of narrow and long adjacent lamellae 26, which
are positioned on supporting rolls 22. The lamellae 26 extend in the direction of
the longitudinal shaft of the drying section within its entire length. The lamellae
are equipped with a drive that moves the lamellae a predetermined distance back and
forth in the longitudinal direction. The movement of the lamellae in the travel direction
of the fuel is considerably slower than their return movement. By means of this arrangement
a larger number of lamellae move in the travel direction of the material than in the
return direction. The net result thus attained is the propagation of fuel in the drying
section. When the lamellae are arranged on the bottom of the drying section in the
form of a circular arc in accordance with Fig. 3, the fuel to be dried tends to pack
towards the central area of the drying section. This reduces friction on the side
walls and helps the material to be treated to travel forward as an even bed.
[0034] The steam is fed from the duct 20 and it travels to the fuel to be dried from gaps
between the lamellae as shown by arrows drawn in dotted lines. When the heating medium
condenses in the heating section and in the drying section, condensate is produced.
The condensate runs to the bottom part of the fuel space and is discharged via the
duct 21 as shown by the solid arrows.
[0035] The invention is not intended to be limited to the embodiments presented as examples
above, but the invention is intended to be applied widely within the scope of the
inventive idea as defined in the appended claims. The apparatus according to the invention
can thus also be positioned in the immediate vicinity of an outdoor storage of fuel,
i.e. bark or chips stored outdoors, for example in a stack, Thus, the dried bark or
chips can be fed directly to the furnace of a power boiler, and the drying apparatus
can be placed in such a location where it does not cause lack of space in the immediate
vicinity of the power boiler. The drying apparatus is also suitable for drying of
peat, and it can be placed for example in a peat site, wherein the dried peat can
be fed directly to the power boiler to be burned, and a separate drying apparatus
is not necessary in the power plant.
1. A method for drying of fuel, in which method a moving fuel bed (FB) is formed of fuel
on a conveyor (12), to which fuel bed (FB) a hot, gaseous medium is fed perpendicularly
to the travel direction of the fuel bed (FB), characterized in that the fuel is heated before forming the fuel bed (FB), while the fuel flows substantially
downward, by means of a hot, gaseous medium flow perpendicular to the fuel flow.
2. The method according to claim 1, characterized in that the fuel is heated with a hot, gaseous medium flow that is fed to the fuel flow from
the middle and/or edges of the same.
3. The method according to claim 1 or 2, characterized in that the fuel is heated to the drying temperature of fuel, or at least close to it.
4. The method according to claim 1, characterized in that the fuel bed (FB) is formed of a heated fuel flow that flows substantially downward
and is discharged downward.
5. The method according to claim 1, characterized in the fuel bed (FB) travels substantially horizontally.
6. The method according to claim 1, characterized in that the hot, gaseous medium is fed to the fuel bed (FB) from below the fuel bed (FB),
via an opening system (19) arranged in the conveyor (12).
7. The method according to claim 1, characterized in that the fuel is heated in a heating section (2) and dried in a drying section (3) comprising
the conveyor (12).
8. The method according to claim 7, characterized in that the exhaust steam produced in the heating and drying of fuel is removed from the
heating section (2) and from the drying section (3).
9. The method according to claim 8, characterized in that the exhaust steam is removed from the heating section (2) by sucking it from the
middle or edges of the fuel flow.
10. The method according to claim 7 or 8, characterized in that the exhaust steam is fed back to the heating section (2) and to the drying section
(3).
11. The method according to claim 10, characterized in that the exhaust steam is heated before it is fed to the heating section (2) and to the
drying section (3).
12. The method according to claim 1, characterized in that the moisture content of the fuel is adjusted by changing at least one of the following:
delay time of the fuel on the conveyor, temperature of the hot gaseous medium or the
amount of fuel on the conveyor.
13. The method according to claim 1, characterized in that the moisture content of the dried fuel is adjusted by feeding cooling water or another
liquid to the fuel bed (FB).
14. The method according to any of the claims 1 to 13, characterized in that the hot, gaseous medium of one of the following: hot air, steam, dry steam, exhaust
steam produced in the heating section (2) and/or in the drying section (3) or flue
gases of a power boiler.
15. An apparatus for drying of fuel, said apparatus comprising a drying section (3) equipped
with a conveyor (12) on top of which a fuel bed (FB) moving along with the movement
of the conveyor (12) is arranged to be formed of fuel, and means (20) for feeding
a hot gaseous medium to the fuel bed (FB) perpendicularly to the travel direction
of the fuel bed (FB), characterized in that the apparatus comprises a heating section (2) arranged before the drying section
(3), in which heating section (2) fuel is arranged to flow substantially downward,
and which comprises means (4, 5, 6, 8) for heating fuel, of which means (4, 5, 6,
8) at least one (4, 5) is arranged to feed the hot gaseous medium perpendicularly
to the fuel flow.
16. The apparatus according to claim 15, characterized in that the means (4, 5, 6, 8) for heating the fuel flow are arranged in the middle and/or
edges of the fuel flow.
17. The apparatus according to claim 15, characterized in that the heating section (2) and the drying section (3) are connected to each other and
that the heating section (2) is arranged in an angle of 90 degrees with respect to
the drying section (3).
18. The apparatus according to claim 15, characterized in that in the heating section (2) the fuel forms a dense, downward discharging layer, which
is arranged to discharge on the conveyor (12) and which forms a fuel bed (FB).
19. The apparatus according to claim 15, characterized in that the conveyor (12) is provided with an opening system (19) via which the hot, gaseous
medium is arranged to be fed to the fuel bed (FB).
20. The apparatus according to claim 15, characterized in the conveyor (12) is arranged in a substantially horizontally.
21. The apparatus according to claim 15, characterized in that the heating section (2) and the drying section (3) comprise means (9, 18) for removing
exhaust steam produced in the heating and drying processes.
22. The apparatus according to claim 21, characterized in that the apparatus comprises means (26) for sucking exhaust steam from the heating section
(2) via means (4, 5, 6, 8) arranged in the middle or at the edges of the fuel flow.
23. The apparatus according to claim 21, characterized in that the exhaust steam is arranged to be fed back to the heating section (2) and to the
drying section (3).
24. The apparatus according to claim 23, characterized in that the apparatus comprises means (24) for heating exhaust steam.
25. The apparatus according to claim 15, characterized in that the moisture content of the fuel is arranged to be adjusted by changing at least
one of the following: delay time of the fuel on the conveyor, temperature of the hot
gaseous medium or the amount of fuel on the conveyor.
26. The apparatus according to claim 15, characterized in that the apparatus comprises means (23, 25) for feeding cooling water or another liquid
to the fuel bed (FB) and that the moisture content of the fuel is arranged to be adjusted
by adjusting the feeding of cooling water or another liquid.
27. The apparatus according to any of the claims 15 to 26, characterized in that the hot, gaseous medium of one of the following: hot air, steam, dry steam, exhaust
steam produced in the heating section (2) and/or in the drying section (3) or flue
gases of a power boiler.