(11) EP 1 669 697 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

14.06.2006 Bulletin 2006/24

(51) Int Cl.:

F25B 25/00 (2006.01)

F25B 9/00 (2006.01)

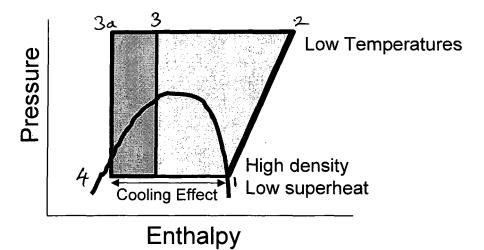
(21) Application number: 04257654.6

(22) Date of filing: 09.12.2004

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Designated Extension States:

AL BA HR LV MK YU


(71) Applicant: **Delphi Technologies, Inc. Troy, MI 48007 (US)**

- (72) Inventor: Nacer, Achaichia 1429 Luxembourg (LU)
- (74) Representative: Waller, Stephen et al Murgitroyd & Company, 165-169 Scotland Street Glasgow G5 8PL (GB)

(54) Thermoelectrically enhanced CO2 cycle

(57) Figure 1c illustrates a vapour compression cycle according to the present invention wherein a thermoelectric device is used to sub-cool the refrigerant exiting the gas cooler from point 3a to point 3, thus increasing the cooling effect of the evaporator/heat exchanger be-

tween points 4 and 1 without the detrimental increase in the temperature of the refrigerant at the suction inlet of the compressor that occurs in known systems through the use of an internal heat exchanger. The thermoelectric device may be provided at the outlet of the gas cooler or may be incorporated into the gas cooler.

c) CO₂ Cycle with thermoelectric sub-cooling

Fig.-1- Transcritical Cycles

EP 1 669 697 A1

15

20

25

30

35

40

45

50

55

[0001] The present invention relates to a refrigeration system for an air conditioner and to an improved transcritical vapour compression cycle and in particular to a refrigeration system and cycle using carbon dioxide as the refrigerant.

1

[0002] Carbon dioxide refrigerant is being considered as a replacement refrigerant for use by the automotive industry for air conditioning, as well as in other applications, mainly due to the low toxicity of such refrigerant. However, carbon dioxide based systems have many challenges resulting from the fact that such systems operates in transcritical mode leading to high pressures and high compressor out temperatures. Other challenges are the low critical temperature and the shape of the isotherms around the critical point. The performance of the gas cooler is therefore limited by the ambient air temperature.

[0003] In order to improve the performance of such carbon dioxide systems it is important to have additional cooling at the exit from the gas cooler. This is usually achieved in the prior art through an internal heat exchanger, where cold refrigerant at exit from the evaporator is used to further cool down the refrigerant leaving the gas cooler. This method, although achieving the goal of improving the cooling capacity, has the drawback that it will increase drastically the amount of superheat going into the compressor and therefore results in lower refrigerant density at the compressor suction inlet and higher compressor outlet temperature, which can shorten the life of the compressor and require the gas cooler to be made from special heat resistant materials.

[0004] The object of the present invention is to avoid the need to have high superheat and high compressor outlet temperature whilst improving the efficiency and performance of the system.

[0005] According to the present invention there is provided a refrigeration system for an air conditioner comprising a compressor for compressing a refrigerant, a gas cooler downstream of the compressor for cooling the refrigerant, an expansion valve downstream of the gas cooler for reducing the pressure of the refrigerant and a heat exchanger or evaporator downstream of the expansion valve for evaporating the refrigerant, characterised by the provision of thermoelectric means for reducing the temperature of the refrigerant at the inlet of the expansion valve.

[0006] Preferably the refrigerant is carbon dioxide.

[0007] In one embodiment the thermoelectric means may be provided at or adjacent the outlet of the gas cooler. In an alternative embodiment the thermoelectric means be incorporated within the gas cooler to cool the refrigerant at the outlet of the gas cooler.

[0008] According to a further aspect of the present invention there is provided a transcritical vapour compression cycle for carbon dioxide refrigerant comprising the steps of compressing a superheated refrigerant to in-

crease the temperature, pressure and enthalpy of the refrigerant into the supercritical region, cooling the refrigerant in a gas cooler at a substantially constant pressure, expanding the refrigerant through an expansion valve to a temperature and pressure below the critical values, evaporating the refrigerant in an evaporator/heat exchanger whereby the refrigerant absorbs heat from a cooled space, characterised by the further step using thermoelectric means to further cool the refrigerant exiting the gas cooler thereby reducing the temperature of the refrigerant at the inlet of the expansion valve.

[0009] Two embodiments of the present invention will now be described by way of example only, and with reference to the accompanying drawings in which:

Figure 1a is a pressure-enthalpy diagram of a typical transcritical vapour compression cycle using carbon dioxide as a refrigerant without the use of an internal heat exchanger;

Figure 1b is a pressure-enthalpy diagram of a typical transcritical vapour compression cycle using carbon dioxide as a refrigerant, the cycle including an internal heat exchanger, to improve system performance;

Figure 1c is a pressure-enthalpy diagram of a vapour compression cycle according to the present invention;

Figure 2a is a schematic view of a gas cooler and thermoelectric sub-cooler according to a first embodiment of the present invention;

Figure 2b is a schematic view of a gas cooler and thermoelectric sub-cooler according to a second embodiment of the present invention.

[0010] Figure 1a illustrates a typical transcritical vapour compression cycle for carbon dioxide. Carbon dioxide vapour enters a compressor at point 1. The compressor compresses the vapour whereby its pressure, temperature and enthalpy are increased, using power from a vehicle engine in the case of a vehicle air conditioning system, until it leaves the compressor at point 2 located in the supercritical region. Next the carbon dioxide refrigerant enters a gas cooler, usually water or air cooled, whose function is to transfer heat from the fluid to a coolant (for example air or water) to cool the refrigerant at a constant pressure. The cooled refrigerant leaves the gas cooler at point 3. The refrigerant then undergoes a substantially constant enthalpy expansion process through an expansion valve to reach point 4 in the mixed liquid-vapour region. Finally the refrigerant is vapourised in an evaporator/heat exchanger whereby it absorbs heat from a space to be cooled, for example the vehicle cabin in a vehicle air conditioning system until it enters the compressor again at point 1 and repeats the cycle. The cooling effect of the cycle is represented by

20

25

35

40

45

50

the line between points 4 and 1.

[0011] As can be seen from Figure 1a, the cooling effect could be increased by further reducing the temperature/enthalpy of the refrigerant in the gas cooler to move point 3 further to the left.

[0012] Figure 1b illustrates a typical vapour compression cycle for carbon dioxide refrigerant using internal heat exchange to further cool the supercritical refrigerant at the outlet of the gas cooler using refrigerant from the outlet of the evaporator/heat exchanger. The internal heat exchanger cools the refrigerant between points 3a and 3, this heat being transferred to the refrigerant between points 4a and 1 downstream of the compressor.

[0013] The heat removed from the refrigerant at the outlet of the gas cooler by the internal heat exchanger provides an increased cooling effect but since such heat is transferred to the refrigerant at the outlet of the evaporator/heat exchanger, this increases the temperature of the refrigerant and reduces its density at the suction inlet of the compressor, further increasing the temperature of the refrigerant at the outlet of the compressor at point 2. This has an impact on the compressor durability, lubrication characteristics and gas cooler material selection. Analysis of the cycle performance characteristics will show an operating condition point at which the system, operates at optimum cycle efficiency. Away from this point the system efficiency deteriorates.

[0014] Figure 1c illustrates a vapour compression cycle according to the present invention wherein a thermoelectric device is used to sub-cool the refrigerant exiting the gas cooler from point 3a to point 3, thus increasing the cooling effect of the evaporator/heat exchanger between points 4 and 1 without the detrimental increase in the temperature of the refrigerant at the suction inlet of the compressor that occurs in known systems through the use of an internal heat exchanger.

[0015] Thermoelectric cooling devices utilise semiconductor materials to remove heat through the use of electrical energy by the Peltier effect, the theory that there is a heating or cooling effect when electric current passes through two conductors. A voltage applied to the free ends of two dissimilar materials creates a temperature difference. With this temperature difference, Peltier cooling will cause heat to move from one end to the other. A typical thermoelectric cooler will consist of an array of pand n- type semiconductor elements that act as the two dissimilar conductors. As an electric current passes through one or more pairs of elements, there is a decrease in temperature at the junction ("cold side") resulting in the absorption of heat from the environment. The heat is carried through the cooler by electron transport and released on the opposite ("hot") side as the electrons move from a high to low energy state.

[0016] In an automotive air conditioning system the electrical power for the thermoelectric device can be provided by the vehicle's electrical system, such as alternator and battery, or fuel cell system.

[0017] A first embodiment of the invention is shown in

Figure 2a, wherein a thermoelectric device is incorporated into the gas cooler to sub-cool the refrigerant at the exit thereof. The heat exchanger details are shown for information only and other geometrical and design concepts are envisaged.

[0018] A second embodiment of the invention is shown in Figure 2b, wherein the refrigerant passes through a separate thermoelectric sub-cooler downstream of the gas cooler.

[0019] A control device can be provided controlling the operation of the thermoelectric device to provide the level of cooling required to achieve a desired cooling effect or system performance, thus providing a simple and effective control arrangement for the air conditioning system.

[0020] Current transcritical carbon dioxide refrigerant cycles make use on an internal heat exchanger to improve system efficiency and cooling capacity, resulting in drawbacks in terms of excessive compressor outlet temperature and lower refrigerant density at the compressor inlet.

[0021] The present invention, through the use of thermoelectric means in order to cool down the refrigerant leaving the gas cooler, leads to lower compressor outlet temperature, lower refrigerant specific volume at suction point leading to much higher refrigerant mass flow rate and better volumetric efficiency. Furthermore, the use of thermoelectric cooling of the refrigerant enables the degree of refrigerant sub-cooling to be controlled to a desired amount depending on system parameters, ambient conditions, and refrigeration requirements. The present invention also provides improved compressor durability due to the lower temperature of the refrigerant and improved oil quality therein due to the more favourable operating conditions, and also eliminates the impact of high pressure and temperature on the choice of gas cooler material and strength. The present invention also offers the possibility to optimise the use of the thermoelectric element depending on system or performance needs, fan operation, and ambient condition.

Claims

- 1. A refrigeration system for an air conditioner comprising a compressor for compressing a refrigerant, a gas cooler downstream of the compressor for cooling the refrigerant, an expansion valve downstream of the gas cooler for reducing the pressure of the refrigerant and a heat exchanger or evaporator downstream of the expansion valve for evaporating the refrigerant, characterised by the provision of thermoelectric means for reducing the temperature of the refrigerant at the inlet of the expansion valve.
- 55 **2.** A refrigeration system as claimed in claim 1, wherein the refrigerant is carbon dioxide.
 - 3. A refrigeration system as claimed in any preceding

claim, wherein the thermoelectric means is provided at or adjacent the outlet of the gas cooler.

- 4. A refrigeration system as claimed in claim 1 or claim 2, wherein the thermoelectric means is incorporated within the gas cooler to cool the refrigerant at the outlet of the gas cooler.
- 5. A refrigeration system as claimed in any preceding claim, wherein control means are provided for controlling the degree of cooling provided by the thermoelectric means to optimise the cooling effect depending on system or performance needs, gas cooler performance, and ambient conditions.
- 6. A transcritical vapour compression cycle for carbon dioxide refrigerant comprising the steps of compressing a superheated refrigerant to increase the temperature, pressure and enthalpy of the refrigerant into the supercritical region, cooling the refrigerant in a gas cooler at a substantially constant pressure, expanding the refrigerant through an expansion valve to a temperature and pressure below the critical values, evaporating the refrigerant in an evaporator/heat exchanger whereby the refrigerant absorbs heat from a cooled space, characterised by the further step using thermoelectric means to further cool the refrigerant exiting the gas cooler thereby reducing the temperature of the refrigerant at the inlet of the expansion valve.

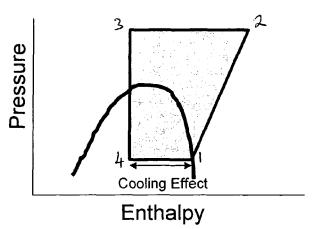
10

15

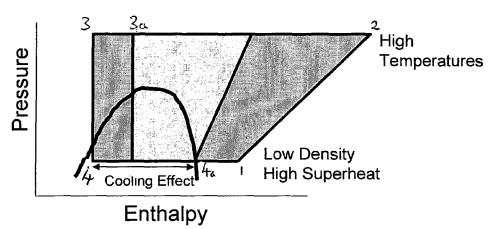
20

25

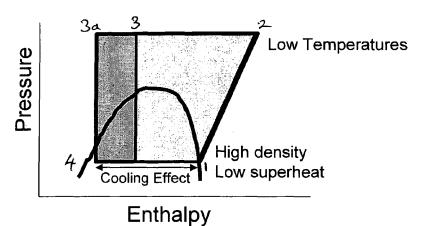
30


35

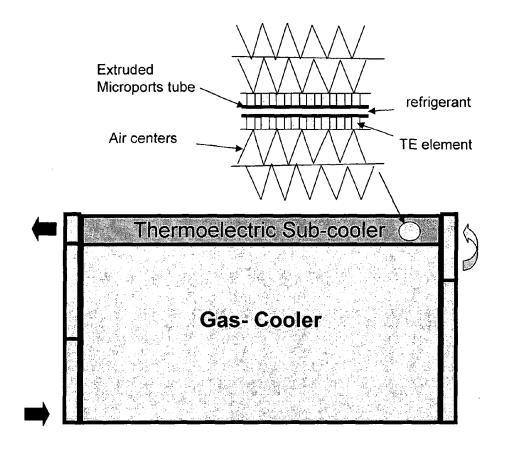
40


45

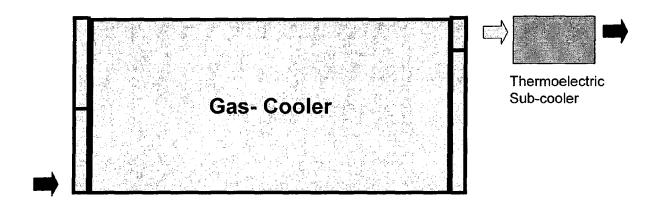
50


55

a) CO₂ Cycle without internal heat exchanger



b) CO₂ Cycle with internal heat exchanger



c) CO₂ Cycle with thermoelectric sub-cooling

Fig.-1- Transcritical Cycles

a) Sub-cooler integrated into the gas-cooler

b) Remote sub-cooler. Water or air cooled

Fig.-2- Thermoelectric Sub-cooling concepts

EUROPEAN SEARCH REPORT

Application Number EP 04 25 7654

		ERED TO BE RELEVANT	Delawari.	OLARDIEIOATION OF THE
Category	Citation of document with it of relevant passa	ndication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
Х	PATENT ABSTRACTS OF vol. 1998, no. 06, 30 April 1998 (1998 -& JP 10 035270 A (10 February 1998 (1	1,3-5	F25B25/00 F25B9/00	
Υ	* the whole documer	it *	2,6	
Υ	DE 100 60 114 A1 (\VERRIERE) 13 June 2 * the whole documer		2,6	
X	PATENT ABSTRACTS OF vol. 2000, no. 14, 5 March 2001 (2001- -& JP 2000 329414 A 30 November 2000 (2 * the whole documer	.03-05) ((FUJITSU GENERAL LTD), 2000-11-30)	1-5	
Х	US 6 351 950 B1 (DU 5 March 2002 (2002-* the whole documer	03-05)	1,3,5	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
X	PATENT ABSTRACTS OF vol. 1998, no. 06, 30 April 1998 (1998 -& JP 10 038409 A (13 February 1998 (1 * the whole documer	8-04-30) MANDO MACH CO LTD), 998-02-13)	1,3-5	F25B
Х	US 5 361 587 A (HOP 8 November 1994 (19 * the whole documer	94-11-08)	1,3-5	
Х	US 3 266 258 A (ROS AL) 16 August 1966 * the whole documer	ENFELD LEV MARKOVICH ET (1966-08-16) t *	1	
		-/		
	The present search report has	peen drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	The Hague	27 April 2005	De	Graaf, J.D.
CATEGORY OF CITED DOCUMENTS T: theory or principl E: earlier patent do after the filling dat Y: particularly relevant if taken alone y: particularly relevant if combined with another document of the same category L: document oited i		ument, but publi e n the application or other reasons	shed on, or	

EUROPEAN SEARCH REPORT

Application Number EP 04 25 7654

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant passa	dication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
A	PATENT ABSTRACTS OF vol. 2003, no. 12, 5 December 2003 (20 -& JP 2004 144399 A IND CO LTD), 20 May * the whole documen	03-12-05) (MATSUSHITA ELECTRIC 2004 (2004-05-20)	1,2,6	
A	HIRATA T ET AL: "IMPROVEMENT OF MOBILE AIR CONDITIONING SYSTEM FROM POINT OF GLOBAL WARMING PROBLEMS" IIR - GUSTAV LORENTZEN CONFERENCE ON NATURAL WORKING FLUIDS. PROCEEDINGS, 2 June 1998 (1998-06-02), pages 314-323, XP001169058 * the whole document *			
A	US 4 825 667 A (BEN 2 May 1989 (1989-05			
A	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 25, 12 April 2001 (2001-04-12) -& JP 2001 227840 A (DAIKIN IND LTD), 24 August 2001 (2001-08-24) * abstract *			TECHNICAL FIELDS SEARCHED (Int.Cl.7)
A	STOCKHOLM MM J ET A THERMOELECTRICITE D AUTOMOBILE PERSPECT TECHNICO-ECONOMIQUE INGENIEURS DE L'AUT BOULOGNE, FR, no. 6 1 March 1994 (1994- XP000435028 ISSN: 0020-1200			
A	US 4 819 451 A (HIN 11 April 1989 (1989	GST ET AL) -04-11)		
		-/		
	The present search report has b		<u> </u>	
	Place of search The Hague	Date of completion of the search 27 April 2005	Ne	Graaf, J.D.
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone coularly relevant if combined with another ment of the same category nological background written disclosure rediate document	T : theory or princip E : earlier patent do after the filling da D : document cited L : document cited f	le underlying the i cument, but publi te in the application or other reasons	invention shed on, or

EUROPEAN SEARCH REPORT

Application Number EP 04 25 7654

Category	Citation of document with indic of relevant passages		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)		
A	US 5 063 747 A (JONES 12 November 1991 (199	ET AL) 1-11-12)				
A	US 4 697 425 A (JONES 6 October 1987 (1987-	ET AL) 10-06)				
A	US 3 148 511 A (GABLE 15 September 1964 (19	GERALD K) 64-09-15)				
				TECHNICAL FIELDS SEARCHED (Int.Cl.7)		
	The present search report has bee	n drawn up for all claims				
	Place of search	Date of completion of the search		Examiner		
	The Hague	27 April 2005	De	Graaf, J.D.		
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background		T : theory or principle u E : earlier patent docun after the filing date D : document cited in th L : document cited for c	T : theory or principle underlying the inv E : earlier patent document, but publishe			
O : non-written disclosure P : intermediate document		& : member of the same	& : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 04 25 7654

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-04-2005

	atent document d in search report		Publication date		Patent family member(s)		Publication date
JP	10035270	Α	10-02-1998	NONE			
DE	10060114	A1	13-06-2001	FR JP	2802291 2001191786		15-06-2001 17-07-2001
JP	2000329414	Α	30-11-2000	NONE			
US	6351950	B1	05-03-2002	AU EP WO	9010598 1012514 9913277	A1	29-03-1999 28-06-2000 18-03-1999
JP	10038409	Α	13-02-1998	KR	189334	B1	01-06-1999
US	5361587	Α	08-11-1994	NONE			
US	3266258	Α	16-08-1966	DE FR	1254652 1390899		23-11-1965 26-02-1965
JP	2004144399	Α	20-05-2004	NONE			
US	4825667	Α	02-05-1989	NONE			
JΡ	2001227840	Α	24-08-2001	NONE			
US	4819451	Α	11-04-1989	DE GB	3642683 2199399		16-06-1988 06-07-1988
US	5063747	Α	12-11-1991	NONE			
US	4697425	Α	06-10-1987	NONE			
US	3148511	Α	15-09-1964	NONE			

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82