Technical Field of the Invention
[0001] The present invention relates to a process for the preparation of esters of 2-diazo-3-trimethylsilyloxy-3-butenoic
acid, which are useful intermediates for the synthesis of thienamycin, imipenem and
other carbapenem antibiotic compounds.
Background of the Invention
[0002] 2-diazo-3-trimethylsilyloxy-3-butenoic acid esters, which are prepared by silylation
of diazoacetoacetate with trimethylsilylchloride and hexamethyldisilazane, have been
disclosed.
EP 414904 B1 and
EP 409331 A2 disclose the preparation of 2-diazo-3-trisubstituted silyloxy-3-butenoate ester comprising
silylating substituted diazoacetoacetate with trisubstituted silyl halide in the presence
of a base and alkali metal halide. In addition,
U.S. Patent No. 4,683,296 discloses the preparation of 2-diazo-3-trisubstituted silyloxy-3-butenoate ester
comprising reacting substituted diazoacetoacetate with silyl triflate in an inert
solvent and in the presence of an organic base.
It has been observed that large quantity of byproducts, such as insoluble salts of
alkali metal halide are formed during the reaction, which further interfere with the
subsequent reactions. Therefore, removal of such byproducts is required.
Accordingly, there remains a need for a process for preparing such esters while avoiding
the formation of byproducts, such as insoluble alkali metal halide salts.
Summary of the Invention
[0003] The present invention encompasses a process for the preparation of compound of Formula
I,

comprising reacting diazoacetoacetate of Formula II

with iodotrimethylsilane in the presence of an organic base,
wherein R is hydrogen, C
1-C
6-alkyl, C
2-C
6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl, and
wherein iodotrimethylsilane is prepared by reacting hexamethyldisilane with iodine.
Preferably R is hydrogen, methyl, ethyl, p-nitro benzyl and p-methoxy benzyl.
[0004] The organic base can be an amine, such as trimethylamine, triethylamine, tributylamine,
triisopropylamine, diisopropylethylamine, 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU),
1,5-diazabicyclo-[4.3:0]-non-5-ene (DBN), 4-dimethylamino pyridine or mixtures thereof.
[0005] The reaction can be performed in an inert solvent, such as an alkyl ether, a chlorinated
hydrocarbon, an ester, a-hydrocarbon, a nitrile, a dipolar aprotic solvents or a mixture
thereof. The nitrile can be acetonitrile, benzonitrile or a mixture thereof. The chlorinated
hydrocarbon can be methylene chloride, ethylene dichloride, carbon tetrachloride or
a mixture thereof. The hydrocarbon can be hexane, cyclohexane, toluene, heptane, octane
or a mixture thereof. The dipolar aprotic solvent can be dimethylsulfoxide, dimethylformamide
or a mixture thereof. The cyclic ether can be dioxane, tetrahydrofuran and a mixture
thereof.
[0006] In one embodiment, the reaction of the diazoacetoacetate of Formula II

with iodotrimethylsilane is carried out at temperature of from about 10°C to about
30°C.
[0007] The iodotrimethyl silane can be prepared by refluxing a mixture of iodine and hexamethyldisilane
in an organic solvent, such as methylene chloride, ethylene dichloride, toluene, tetrahydrofuran,
dioxane, acetonitrile or a mixture thereof.
[0008] Conversion of a compound of Formula I to a substituted diazoazetidinone is also contemplated.
Thus, the present invention encompasses a process for the preparation of a substituted
diazoazetidinone of Formula III

comprising reacting a silyl enol ether of Formula I,

with an azetidinone of Formula IV,

in the presence of catalytic amount of a Lewis acid, wherein R is hydrogen, C
1-C
6-alkyl, C
2-C
6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl; R
1 is hydrogen or nitrogen protecting group; R
2 is trialkylsilyl group; and R
3 is a leaving group. The Lewis acid can be silver tetrafluoroborate, mercury trifluoroacetate,
titanium tetra chloride, silver perchlorate, zinc bromide, or a mixture thereof.
[0009] Also contemplated is converting the substituted diazoazetidinone of Formula III to
a bicyclo ketoester. Accordingly, the present invention encompasses the conversion
of a substituted diazoazetidinone of Formula III,

to a bicyclo ketoester of Formula V,

by cyclization of the substituted diazoazetidinone of Formula III, in the presence
of a catalyst. The catalyst can be rhodium acetate, palladium acetate, rhodium octanoate,
copper acetonate, copper sulfate, copper powder, and a mixture thereof.
[0010] The present invention also encompasses a process for making carbapenem antibiotic
compounds, comprising:
- a. reacting a diazoacetoacetate of Formula II

with iodotrimethylsilane in the presence of an organic base, wherein iodotrimethylsilane
is prepared by reacting hexamethyldisilane with iodine, to form a silyl enol ether
of Formula I

- b. reacting the silyl enol ether of Formula I with an azetidinone of Formula IV

to form a substituted diazoazetidinone of Formula III

- c. cyclization of the substituted diazoazetidinone of Formula III to the bicyclo ketoester
of Formula V in the presence of a catalyst,
wherein R is hydrogen, C1-C6-alkyl, C2-C6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl; R1 is hydrogen or nitrogen protecting group; R2 is trialkylsilyl group; and R3 is a leaving group, and
- d. converting the compound of Formula V to a carbepenem antibiotic compound.
[0011] In one embodiment, the conversion of the compound of Formula V to a carbepenem antibiotic
compound comprises
- a. acylation of the keto ester functionality of the compound of Formula V with an
acylating agent;
- b. treating the acylated compound resulting from step with a mercaptan reagent of
formula HSCH2CH2NHR8 [wherein R8 is selected from hydrogen, a protecting group (selected from p-nitrobenzoxycarbonyl,
o-nitrobenzoxycarbonyl, phenylacetyl, phenoxyacetyl, or trimethylsilyl), or-CH=R9, (wherein R9 is a protecting group selected from p-nitrobenzoxycarbonyl, o-nitrobenzoxycarbonyl,
phenylacetyl, phenoxyacetyl, or trimethylsilyl)]; and
- c. deblocking the compound resulting from step b by hydrolysis or hydrogenation to
form a carbepenem antibiotic compound.
[0012] In another embodiment, the conversion of the compound of Formula V to a carbepenem
antibiotic compound comprises
- a. phosphorylating the keto ester functionality of the compound of Formula V with
a phosphorohalidate to form an enolphosphate; and
- b. reacting the enolphosphate with a thioalkylamine of formula HS(CH2)2NH2, or an acid addition salt thereof, to form a carbepenem antibiotic compound.
Detailed Description of the Invention
[0013] The present invention relates to a process for the preparation of 2-diazo-3-trimethylsilyloxy-3-butenoates
derivatives of Formula I,

comprising reacting diazoacetoacetate of Formula II,

with iodotrimethylsilane in the presence of an organic base, wherein iodotrimethylsilane
is prepared by reacting hexamethyldisilane with iodine and wherein R can be hydrogen,
alkyl, alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl,
or substituted or unsubstituted benzyl. Preferably, alkyl is C
1-C
6-alkyl and alkenyl is C
2-C
6-alkenyl. Use of iodotrimethylsilane, which is prepared from hexamethyldisilane and
iodine, does not generate any alkali metal halide salts during silylation.
[0014] Alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl,
secondary butyl or tertiary butyl. Alkenyl groups include, but are not limited to,
vinyl, allyl, isopropenyl, pentenyl or hexenyl. Substituted phenyl includes, but is
not limited to, phenyl having 1-3 substituents, which independently can be hydrogen,
bromine, chlorine, fluorine, C
1-C
4-alkyl, C
1-C
4-alkoxy, or nitro. Alkoxy groups include, but are not limited to, methoxy, ethoxy,
propoxy, isopropoxy or butoxy. Substituted benzyl includes, but is not limited to,
p-nitro,benzyl, p-methoxy benzyl, o-nitro benzyl, p-bromo benzyl or 2,4,6, trimethyl
benzyl.
[0015] Suitable organic bases that can be used in the reaction of diazoacetoacetate of Formula
II with iodotrimethylsilane are amines, such as trimethylamine, triethylamine, tributylamine,
triisopropylamine, diisopropylethylamine, DBU (1,8-diazabicyclo- [5.4.0]-undec-7-ene),
DBN (1,5-diazabicyclo-[4.3.0]-non-5-ene), 4-dimethylamino pyridine, or mixtures thereof.
[0016] Suitable solvents for the reaction of compounds of Formula II with iodotrimethylsilane
include inert organic solvents that do not change under the reaction conditions. Such
solvents include, but are not limited to, alkyl ethers, such as diethylether, diisopropylether
or dimethoxyethane; nitriles, such as acetonitrile or benzonitrile; chlorinated hydrocarbons,
such as methylene chloride, ethylene dichloride or carbon tetrachloride; esters, such
as ethylacetate or isopropylacetate; hydrocarbons, such as hexane, cyclohexane, toluene,
heptane or octane; dipolar aprotic solvents, such as dimethylsulfoxide or dimethylformamide;
cyclic ethers, such as dioxane or tetrahydrofuran or mixtures thereof.
[0017] The reaction can be performed at temperatures of from about 10 °C to about 45 °C.
In another embodiment, the reaction may be performed at temperatures of from about
15 °C to 25 °C.
[0018] Iodotrimethylsilane may be prepared by refluxing a mixture of iodine and hexamethyl
disilane in an organic solvent. Suitable organic solvents utilized in preparing iodotrimethylsilane
include, but are not limited to, methylene chloride, ethylene dichloride, toluene,
tetrahydrofuran, dioxane, acetonitrile or mixtures thereof.
[0020] The compound of Formula I can be converted to substituted diazoazetidinone of Formula
III,

(wherein R can be hydrogen, alkyl, alkenyl, substituted or unsubstituted phenyl, benzhydryl,
triphenylmethyl, or substituted or unsubstituted benzyl; and R
1 can be hydrogen or nitrogen protecting group) by known methods, such as those methods
disclosed in
U.S. Patent Nos. 5,998,612;
5,340,927;
5,071,966;
4,525,582 and
4,683,296.
[0021] In general, azetidinone of Formula IV

is reacted with silyl enol ether of Formula I in the presence of catalytic amount
of a Lewis acid in an inert organic solvent, wherein R
1 can be hydrogen or nitrogen protecting group, R
2 can be trialkyl silyl group and R
3 can be a leaving group. The Lewis acid can be, for example, silver tetrafluoroborate,
mercury trifluoroacetate, titanium tetrachloride, silver perchlorate or zinc bromide.
The reaction can be worked up with excess of methanol, and methane sulfonic acid or
hydrochloric acid to yield the compound of Formula III.
[0022] The compounds of Formula III can also be prepared by reacting a silyl enol ether
of Formula I and an azetidinone of Formula IV in the presence of a highly reactive
silylating agent, such as trimethylsilyltriflate.
[0023] The compound of Formula III can in turn be converted to a bicyclo ketoester of Formula
V

by methods known in the art, such as, for example, in
U.S. Patent No. 4,739,048, which is incorporated herein by reference.
[0024] In general, bicyclo ketoesters of Formula V is prepared by the cyclization of diazoazetidinone
of Formula III. The reaction can be performed in the presence of a catalyst, such
as rhodium acetate, palladium acetate, rhodium octanoate, copper acetonate, copper
sulfate or copper powder. The reaction can be performed in a solvent, such as toluene
or tetrahydrofuran at a temperature of 50 °C to 110 °C.
[0025] The compound of Formula V can be converted to thienamycin, imipenem, penepenem and
other carbapenem antibiotic compounds by methods known in art, such as, for example,
in
U.S. Patent Nos. 4,739,048;
4,894,450;
4,292,436 and PCT Applications
[0026] For example,
U.S. Patent Nos. 4,739,048, and
4,292,436 disclose acylating the keto ester functionality of the compound of Formula V with
an acylating agent such as R°X such as p-toluenesulfonic acid anhydride, p-nitrophenylsulfonic
acid anhydride, 2,4,6-triisopropylphenylsulfonic acid anhydride, methanesulfonic acid
anhydride, toluenesulfonyl chloride, p-bromophenylsulfonyl chloride, or the like wherein
X is the corresponding leaving group such as toluene sulfonyloxy, p-nitrophenylsulfonyloxy,
methanesulfonyloxy, p-bromophenylsulfonyloxy and other leaving groups which are established
by conventional procedures and are well known in the art, thereby forming a compound
which is treated in a solvent with a mercaptan reagent of formula HS(CH
2)
2-NHR
8, wherein R
8 can be hydrogen, a protecting group (selected from p-nitrobenzoxycarbonyl, o-nitrobenzoxycarbonyl,
phenylacetyl, phenoxyacetyl, or trimethylsilyl), or -CH=R
9, (wherein R
9 is a protecting group selected from p-nitrobenzoxycarbonyl, o-nitrobenzoxycarbonyl,
phenylacetyl, phenoxyacetyl, or trimethylsilyl), and deblocking the resulting compound
by hydrolysis or hydrogenolysis to form a carbepenem antibiotic compound.
[0027] For example,
U.S. Patent No. 4,894,450 discloses phosphorylation of a compound of Formula V with phosphorohalidates in a
substantially inert organic solvent containing a suitable tertiary amine or a hindered
base to form an enolphosphate, which is thereafter reacted with a thioalkylamine of
formula HS(CH
2)
2-NH
2 to form a carbepenem antibiotic compound.
[0028] In the following section embodiments are described by way of examples to illustrate
the process of invention. However, these are not intended in any way to limit the
scope of the present invention. Several variants of these examples would be evident
to persons ordinarily skilled in the art.
Example
Preparation of Iodotrimethylsilane (Me3SiI)
[0029] Iodine (63.7 g) was suspended in methylene chloride (200 mL) and stirred for 10 to
15 minutes. Hexamethyl disilane (39.0 g) was then added in 35 to 40 minutes at room
temperature and the reaction mixture was allowed to stir for 30 minutes. The mixture
was heated to reflux and refluxing was continued for 2.0 hours. The reaction mixture
containing iodotrimethylsilane was cooled to 20 to 25°C before use.
Example 1: Preparation of p-nitrobenzyl-2-diazo-3-trimethylsilyloxy-3-butenoate
[0030] p-Nitrobenzyl-2-diazoacetoacetate (120 g) was suspended in a mixture of methylene
chloride (50 mL) and toluene (100 mL) and was cooled to 18 to 20 °C. Triethylamine
(54.3 g) was added and stirred for 5 minutes. Iodotrimethylsilane reagent was added
in 30 to 35 minutes at 20 to 30°C. Stirring was continued for 2.5 to 3.0 hours at
20 to 25°C. The reaction mixture was then diluted with toluene (700 mL) and the mixture
of methylene chloride and toluene was evaporated (~500 mL) under vacuum (650 mmHg
to 700 mmHg) (86.6-93.2 mPA) to give a slurry containing p-nitrobenzyl-2-diaxo-3-trimethylsilyloxy-3-butenoate.
The slurry was filtered through cloth and the filtered material was washed with toluene.
Example 2: Preparation of (3S,4R)-3-[(1R)-hydroxyethyl]-4-[3-(4-nitrobenzyloxy)carbonyl-2-oxo-3-diazopropyl]azetidin-2-one
[0031] (3R,4R)-3-[(1R)-tert-butyldimethylsilyloxyethyl]-4-acetoxyazetidin-2-one (100 g)
and anhydrous zinc chloride (16 g) was added to the filtrate obtained from Example
1 at 25 °C and the reaction mixture was stirred for 15 hours at 20 to 30 °C. After
15 hours, methanol (250 mL) and methane sulfonic acid (14.2 g) were added to the above
reaction mixture. The precipitation, of solid began after about 60 minutes. The reaction
mixture was allowed to stir for an additional 12 to 15 hours until unreacted p-nitrobenzyl-2-diazo-3-trimethylsilyloxy-3-butenoate
was not present at more than 2.0% by HPLC analysis. The slurry was cooled to 0 °C
to 5 °C and stirred for 60 minutes. The product was filtered and washed with toluene.
The material was dried to obtain a free flowing solid. The solid was suspended in
methanol (300 ml) and cooled to 3 °C to 5°C and the suspension was stirred for 30
minutes, filtered and washed with methanol (100 mL). The product was air dried at
45 to 50°C till moisture content was less than 1.0% weight by weight.
Yield: 108 g
Example 3: Preparation of (5R,6S)p-Nitrobenzyl-6-[(1R)hydroxyethyl]-1-azabicyclo[3.2.0]
heptane-3,7-dione-2-carboxylate
[0032] (3S,4R)-3-[(1R)-hydroxyethyl]-4-[3-(4-nitrobenzyloxy)carbonyl-2-oxo-3-diazopropyl]
azetidin-2-one (250 g) and rhodium octanoate dimmer (1.0 g) were added to dichloromethane
(2.5 L) and heated to reflux for 4 to 5 hours. The reaction was monitored by HPLC
until unreacted azetidinone was not more than 2.0%. To the clear dichloromethane solution,
cyclohexane was added to precipitate the product at 20 °C to 30 °C. The product was
filtered, washed with cyclohexane and dried.
Yield: 188g
[0033] While the present invention has been described in terms of its specific embodiments,
certain modifications and equivalents will be apparent to those skilled in the art
and are intended to be included within the scope of the present invention.
1. A process for the preparation of compound of Formula I,

comprising reacting diazoacetoacetate of Formula II with iodotrimethylsilane in the
presence of an organic base,

wherein R is hydrogen, C
1-C
6-alkyl, C
2-C
6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl, and
wherein iodotrimethylsilane is prepared by reacting hexamethyldisilane with iodine.
2. The process according to claim 1, wherein R is hydrogen, methyl ethyl, p-nitro benzyl
and p-methoxy benzyl.
3. The process according to claim 1, wherein the organic base is an amine.
4. The process according to claim 3, wherein the amine is selected from the group consisting
of trimethylamine, triethylamine, tributylamine, trisopropylamine, diisopropylethylamine,
1,8-diazabicyclo-[5.4.0]-undec-7-ene(DBU), 1,5-diazabicyclo-[4.3.0]-non-5-ene (DBN),
4-dimethylamino pyridine and a mixture thereof.
5. The process according to claim 1, wherein the reaction is performed in an inert solvent.
6. The process according to claim 5 wherein the inert solvent is selected from the group
consisting of an alkyl ether, a chlorinated hydrocarbon, an ester, a hydrocarbon,
a nitrile, a dipolar aprotic solvents and a mixture thereof.
7. The process according to claim 6, wherein the nitrile is selected from the group consisting
of acetonitrile, benzonitrile and a mixture thereof.
8. The process according to claim 6, wherein chlorinated hydrocarbon is selected from
the group consisting of methylene chloride, ethylene dichloride, carbon tetrachloride
and a mixture thereof
9. The process according to claim 6, wherein hydrocarbon is selected from the group consisting
of hexane, cyclohexane, toluene, heptane, octane and a mixture thereof.
10. The process according to claim 6, wherein dipolar aprotic solvent is selected from
the group consisting of dimethylsulfoxide, dimethylformamide and a mixture thereof.
11. The process according to claim 6 wherein cyclic ether is selected from the group consisting
of dioxane, tetrahydrofuran and a mixture thereof.
12. The process according to claim 1, wherein the reaction of diazoacetoacetate of Formula
II

with iodotrimethylsilane is carried out at temperature of from about 10 °C to about
30°C.
13. The process according to claim 1, wherein iodotrimethyl silane is prepared by refluxing
a mixture of iodine and hexamethyldisilane in an organic solvent.
14. The process according to claim 13, wherein organic solvent is selected from the group
consisting of methylene chloride, ethylene dichloride, toluene, tetrahydrofuran, dioxane,
acetonitrile and a mixture thereof.
15. A process for the preparation of a substituted diazoazetidinone of Formula III

comprising reacting a silyl enol ether of Formula I prepared by the process of claim
1

with an azetidinone of Formula IV,

in the presence of catalytic amount of a Lewis acid,
wherein R is hydrogen, C
1-C
6-alkyl, C
2-C
6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl; R
1 is hydrogen or nitrogen protecting group; R
2 is trialkylsilyl group; and R
3 is a leaving group.
16. The process according to claim 15, wherein the Lewis acid is selected from the group
consisting of silver tetrafluoroborate, mercury trifluoroacetate, titanium tetra chloride,
silver perchlorate, zinc bromide, and a mixture thereof.
17. The process according to claim 15, further comprising converting the substituted diazoazetidinone
of Formula III,

to a bicyclo ketoester of Formula V,

by cyclization of the substituted diazoazetidinone of Formula III, in the presence
of a catalyst.
18. The process according to claim 17, wherein the catalyst is selected from the group
consisting of rhodium acetate, palladium acetate, rhodium octanoate, copper acetonate,
copper sulfate, copper powder, and a mixture thereof.
19. A process for the preparation of a bicyclic ketoester of Formula V

comprising the steps of
a. reacting a diazoacetoacetate of Formula II

with iodotrimethylsilane in the presence of an organic base, wherein iodotrimethylsilane
is prepared by reacting hexamethyldisilane with iodine, to form a silyl enol ether
of Formula I by the process of claim 1,

b. reacting the silyl enol ether of Formula I with an azetidinone of Formula IV

to form a substituted diazoazetidinone of Formula III, and

c. cyclization of the substituted diazoazetidinone of Formula III to the bicyclo ketoester
of Formula V in the presence of a catalyst,
wherein R is hydrogen, C
1-C
6-alkyl, C
2-C
6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl; R
1 is hydrogen or nitrogen protecting group; R
2 is trialkylsilyl group; and R
3 is a leaving group.
20. A process for making carbapenem antibiotic compounds, comprising:
a. reacting a diazoacetoacetate of Formula II

with iodotrimethylsilane in the presence of an organic base, wherein iodotrimethylsilane
is prepared by reacting hexamethyldisilane with iodine, to form a silyl enol ether
of Formula I by the process of claim 1.

b. reacting the silyl enol ether of Formula I with an azetidinone of Formula IV

to form a substituted diazoazetidinone of Formula III

c. cyclization of the substituted diazoazetidinone of Formula III to the bicyclo ketoester
of Formula V in the presence of a catalyst,
wherein R is hydrogen, C1-C6-alkyl, C2-C6-alkenyl, substituted or unsubstituted phenyl, benzhydryl, triphenylmethyl, or substituted
or unsubstituted benzyl; R1 is hydrogen or nitrogen protecting group; R2 is trialkylsilyl group; and R3 is a leaving group, and
d. converting the compound of Formula V to a carbepenem antibiotic compound.
21. The process of claim 20, wherein conversion of the compound of Formula V to a carbepenem
antibiotic compound comprises
a. acylation of the keto ester functionality of the compound of Formula V with an
acylating agent;
b. treating the acylated compound resulting from step with a mercaptan reagent of
formula HSCH2CH2NHR8 [wherein R8 is selected from hydrogen, a protecting group (selected from p-nitrobenzoxycarbonyl,
o-nitrobenzoxycarbonyl, phenylacetyl, phenoxyacetyl, or trimethylsilyl), or -CH=R9, (wherein R9 its a protecting group selected from p-nitrobenzoxycarbonyl, o-nitrobenzoxycarbonyl,
phenylacetyl, phenoxyacetyl, or trimethylsilyl)]; and
c. deblocking the compound resulting from step b by hydrolysis or hydrogenation to
form a carbepenem antibiotic compound.
22. The process of claim 21, wherein conversion of the compound of Formula V to a carbepenem
antibiotic compound comprises
a. phosphorylating the keto ester functionality of the compound of Formula V with
a phosphorohalidate to form an enolphosphate; and
b. reacting the enolphosphate with a thioalkylamine of formula HS(CH2)2NH2, or an acid addition salt thereof, to form a carbepenem antibiotic compound.
1. Verfahren zur Herstellung einer Verbindung der Formel I,

umfassend die Umsetzung des Diazoacetoacetats der Formel II mit Iodtrimethylsilan
in Gegenwart einer organischen Base,

worin R Wasserstoff, C
1-C
6-Alkyl, C
2-C
6-Alkenyl, substituiertes oder unsubstituiertes Phenyl, Benzhydryl, Triphenylmethyl
oder substituiertes oder unsubstituiertes Benzyl ist, und worin das Iodtrimethylsilan
durch Umsetzung von Hexamethyldisilan mit Iod hergestellt wird.
2. Verfahren nach Anspruch 1, worin R Wasserstoff, Methyl, Ethyl, p-Nitrobenzyl und p-Methoxybenzyl
ist.
3. Verfahren nach Anspruch 1, worin die organische Base ein Amin ist.
4. Verfahren nach Anspruch 3, worin das Amin aus der aus Trimethylamin, Triethylamin,
Tributylamin, Triisopropylamin, Diisopropylethylamin, 1,8-Diazabicyclo[5.4.0]-undec-7-en
(DBU), 1,5-Diazabicyclo[4.3.0]non-5-en (DBN), 4-Dimethylaminopyridin und einem Gemisch
aus diesen bestehenden Gruppe ausgewählt ist.
5. Verfahren nach Anspruch 1, worin die Reaktion in einem inerten Lösungsmittel ausgeführt
wird.
6. Verfahren nach Anspruch 5, worin das inerte Lösungsmittel aus der aus einem Alkylether,
einem Chlorkohlenwasserstoff, einem Ester, einem Kohlenwasserstoff, einem Nitril,
einem dipolaren aprotischen Lösungsmittel und einem Gemisch aus diesen bestehenden
Gruppe ausgewählt ist.
7. Verfahren nach Anspruch 6, worin das Nitril aus der aus Acetonitril, Benzonitril und
einem Gemisch aus diesen bestehenden Gruppe ausgewählt ist.
8. Verfahren nach Anspruch 6, worin der Chlorkohlenwasserstoff aus der aus Methylenchlorid,
Ethylendichlorid, Tetrachlorkohlenstoff und einem Gemisch aus diesen bestehenden Gruppe
ausgewählt ist.
9. Verfahren nach Anspruch 6, worin der Kohlenwasserstoff aus der aus Hexan, Cyclohexan,
Toluol, Heptan, Octan und einem Gemisch aus diesen bestehenden Gruppe ausgewählt ist.
10. Verfahren nach Anspruch 6, worin das dipolare aprotische Lösungsmittel aus der aus
Dimethylsulfoxid, Dimethylformamid und einem Gemisch aus diesen bestehenden Gruppe
ausgewählt ist.
11. Verfahren nach Anspruch 6, worin der cyclische Ether aus der aus Dioxan, Tetrahydrofuran
und einem Gemisch aus diesen bestehenden Gruppe ausgewählt ist.
12. Verfahren nach Anspruch 1, worin die Umsetzung des Diazoacetoacetats der Formel II

mit Iodtrimethylsilan bei einer Temperatur von etwa 10 bis etwa 30 °C durchgeführt
wird.
13. Verfahren nach Anspruch 1, worin Iodtrimethylsilan durch Kochen eines Gemischs von
Iod und Hexamethylsilan in einem organischen Lösungsmittel am Rückfluß hergestellt
wird.
14. Verfahren nach Anspruch 13, worin das organische Lösungsmittel aus der aus Methylenchlorid,
Ethylendichlorid, Toluol, Tetrahydrofuran, Dioxan, Acetonitril und einem Gemisch aus
diesen bestehenden Gruppe ausgewählt ist.
15. Verfahren zur Herstellung eines substituierten Diazoazetidinons der Formel III,

umfassend die Umsetzung eines Silyl-Enol-Ethers der Formel I, hergestellt mittels
des Verfahren nach Anspruch 1,

mit einem Azetidinon der Formel IV

in Gegenwart einer katalytischen Menge einer Lewissäure, wobei R Wasserstoff, C
1-C
6-Alkyl, C
2-C
6-Alkenyl, substituiertes oder unsubstituiertes Phenyl, Benzhydryl, Triphenylmethyl
oder substituiertes oder unsubstituiertes Benzyl, R
1 Wasserstoff oder eine Schutzgruppe für Stickstoff, R
2 eine Trialkylsilylgruppe und R
3 eine Abgangsgruppe ist.
16. Verfahren nach Anspruch 15, worin die Leweissäure aus der aus Silbertetrafluorborat,
Quecksilbertrifluoracetat, Titantetrachlorid, Silberperchlorat, Zinkbromid und einem
Gemisch aus diesen bestehenden Gruppe ausgewählt ist
17. Verfahren nach Anspruch 15, ferner die Umwandlung des substituierten Diazoazetidinons
der Formel III

in einen Bicycloketoester der Formel V

durch Cyclisierung des substituierten Diazoazetidinons der Formel III in Gegenwart
eines Katalysators umfassend.
18. Verfahren nach Anspruch 17, worin der Katalysator aus der aus Rhodiumacetat, Palladiumacetat,
Rhodiumoctanoat, Kupferacetonat, Kupfersulfat, Kupferpulver und einem Gemisch aus
diesen bestehenden Gruppe ausgewählt ist.
19. Verfahren zur Herstellung eines bicyclischen Ketoester der Formel V,

umfassend die Schritte
a) Umsetzung eines Diazoacetoacetats der Formel II

mit Iodtrimethylsilan in Gegenwart einer organischen Base, wobei das Iodtrimethylsilan
durch Umsetzung von Hexamethyldisilan mit Iod hergestellt wird, unter Bildung eines
Silyl-Enol-Ethers der Formel I mittels des Verfahrens nach Anspruch 1,

b) Umsetzung des Silyl-Enol-Ethers der Formel I mit einem Azetidinon der Formel IV

unter Bildung eines substituierten Dizoazetidinons der Formel III und

c) Cyclisierung des substituierten Diazoazetidinons der Formel III zum Bicycloketoester
der Formel V in Gegenwart eines Katalysators,
wobei R Wasserstoff, C
1-C
6-Alkyl, C
2-C
6-Alkenyl, substituiertes oder unsubstituiertes Phenyl, Benzhydryl, Triphenylmethyl
oder substituiertes oder unsubstituiertes Benzyl, R
1 Wasserstoff oder eine Schutzgruppe für Stickstoff, R
2 eine Trialkylsilylgruppe und R
3 eine Abgangsgruppe ist.
20. Verfahren zur Herstellung von antibiotischen Carbapenem-Verbindungen, umfassend
a) Umsetzung eines Diazoacetoacetats der Formel II

mit Iodtrimethylsilan in Gegenwart einer organischen Base, wobei das Iodtrimethylsilan
durch Umsetzung von Hexamethyldisilan mit Iod hergestellt wird, unter Bildung eines
Silyl-Enol-Ethers der Formel I mittels des Verfahrens nach Anspruch 1,

b) Umsetzung des Silyl-Enol-Ethers der Formel I mit einem Azetidinon der Formel IV

unter Bildung eines substituierten Diazoazetidinons der Formel III,

c) Cyclisierung des substituierten Diazoazetidinons der Formel III zum bicyclischen
Ketoester der Formel V in Gegenwart eines Katalysators,
wobei R Wasserstoff, C1-C6-Alkyl, C2-C6-Alkenyl, substituiertes oder unsubstituiertes Phenyl, Benzhydryl, Triphenylmethyl
oder substituiertes oder unsubstituiertes Benzyl, R1 Wasserstoff oder eine Schutzgruppe für Stickstoff, R2 eine Trialkylsilylgruppe und R3 eine Abgangsgruppe ist,
d) Umwandlung der Verbindung der Formel V in eine antibiotische Carbapenem-Verbindung.
21. Verfahren nach Anspruch 20, worin die Umwandlung der Verbindung der Formel V in eine
antibiotische Carbapenem-Verbindung umfaßt
a) Acylierung der Ketoester-Funktionalität der Verbindung nach Formel V mit einem
Acylierungsmittel,
b) Behandlung der aus dem Schritt a) erhaltenen acylierten Verbindung mit einem Mercaptan-Reagenz
der Formel HSCH2CH3NHR8, [worin R8 ausgewählt ist aus Wasserstoff, einer Schutzgruppe (ausgewählt aus p-Nitrobenzoxycarbonyl,
O-Nitrobenzoxycarbonyl, Phenylacetyl, Phenoxyacetyl oder Trimethylsilyl), oder -CH=R9 (worin R9 eine aus p-Nitrobenzoxycarbonyl, o-Nitrobenzoxycarbonyl, Phenylacetyl, Phenoxyacetyl
oder Trimethylsilyl ausgewählte Schutzgruppe ist)] und
c) Entblocken der im Schritt b) erhaltenen Verbindung durch Hydrolyse oder Hydrierung
unter Bildung einer antibiotischen Carbapenem-Verbindung.
22. Verfahren nach Anspruch 21, wobei die Umwandlung der Verbindung der Formel V zur antibiotischen
Carbapenem-Verbindung
a) die Phosphorylierung der Ketoester-Funktionalität der Verbindung der Formel V mit
einem Phosphorhalidat unter Bildung eines Enolphosphats und
b) die Umsetzung des Enolphosphats mit einem Thioalkylamin der Formel HS(CH2)2NH2 oder einem Säureadditionssalz davon unter Bildung einer antibiotischen Carbapenem-Verbindung
umfasst.
1. Procédé pour la préparation d'un composé de formule I :

comprenant la réaction de diazoacétoacétate de formule II avec de l'iodotriméthylsilane
en présence d'une base organique,

dans laquelle R représente un atome d'hydrogène, un alkyle en C
1-C
6, un alcényle en C
2-C
6, un phényle substitué ou non substitué, un benzhydryle, un triphénylméthyle ou un
benzyle substitué ou non substitué, et
dans lequel l'iodotriméthylsilane est préparé en faisant réagir de l'hexaméthyldisilane
avec de l'iode.
2. Procédé selon la revendication 1, dans lequel R représente un atome d'hydrogène, un
méthyle, un éthyle, un p-nitrobenzyle et un p-méthoxybenzyle.
3. Procédé selon la revendication 1, dans lequel la base organique est une amine.
4. Procédé selon la revendication 3, dans lequel l'amine est choisie dans le groupe constitué
de la triméthylamine, de la triéthylamine, de la tributylamine, de la triisopropylamine,
de la diisopropyléthylamine, du 1,8-diazabicyclo-[5,4.0]-undéc-7-ène (DBU), du 1,5-diazabicyclo-[4.3.0]-non-5-ène
(DBN), de la 4-diméthylamino-pyridine et d'un de leurs mélanges.
5. Procédé selon la revendication 1, dans lequel la réaction est effectuée dans un solvant
inerte.
6. Procédé selon la revendication 5, dans lequel le solvant inerte est choisi dans le
groupe constitué d'un alkyléther, d'un hydrocarbure chloré, d'un ester, d'un hydrocarbure,
d'un nitrile, d'un solvant aprotique dipolaire et d'un de leurs mélanges.
7. Procédé selon la revendication 6, dans lequel le nitrile est choisi dans le groupe
constitué de l'acétonitrile, du benzonitrile et d'un de leurs mélanges.
8. Procédé selon la revendication 6, dans lequel l'hydrocarbure chloré est choisi dans
le groupe constitué du chlorure de méthylène, du dichlorure d'éthylène, du tétrachlorure
de carbone et d'un de leurs mélanges.
9. Procédé selon la revendication 6, dans lequel l'hydrocarbure est choisi dans le groupe
constitué de l'hexane, du cyclohexane, du toluène, de l'heptane, de l'octane et d'un
de leurs mélanges.
10. Procédé selon la revendication 6, dans lequel le solvant aprotique dipolaire est choisi
dans le groupe constitué du sulfoxyde de diméthyle, du diméthylformamide et d'un de
leurs mélanges.
11. Procédé selon la revendication 6, dans lequel l'éther cyclique est choisi dans le
groupe constitué du dioxanne, du tétrahydrofuranne et d'un de leurs mélanges.
12. Procédé selon la revendication 1, dans lequel la réaction de diazoacétoacétate de
formule II :

avec de l'iodotriméthylsilane est effectuée à une température d'environ 10 °C à environ
30 °C.
13. Procédé selon la revendication 1, dans lequel l'iodotriméthylsilane est préparé en
soumettant au reflux un mélange d'iode et d'hexaméthyldisilane dans un solvant organique.
14. Procédé selon la revendication 13, dans lequel le solvant organique est choisi dans
le groupe constitué du chlorure de méthylène, du dichlorure d'éthylène, du toluène,
du tétrahydrofuranne, du dioxanne, de l'acétonitrile et d'un de leurs mélanges.
15. Procédé pour la préparation d'une diazoazétidinone substituée de formule III :

comprenant la réaction d'un silylénoléther de formule I préparée par le procédé selon
la revendication 1 :

avec une azétidinone de formule IV :

en présence d'une quantité catalytique d'un acide de Lewis,
dans lesquelles formules R représente un atome d'hydrogène, un alkyle en C
1-C
6, un alcényle en C
2-C
6, un phényle substitué ou non substitué, un benzhydryle, un triphénylméthyle ou un
benzyle substitué ou non substitué ; R
1 représente l'hydrogène ou un groupement protecteur de l'azote; R
2 est un groupement trialkylsilyle; et R
3 est un groupement partant.
16. Procédé selon la revendication 15, dans lequel l'acide de Lewis est choisi dans le
groupe constitué du tétrafluoroborate d'argent, du trifluoroacétate de mercure, du
tétrachlorure de titane, du perchlorate d'argent, du bromure de zinc et d'un de leurs
mélanges.
17. Procédé selon la revendication 15, comprenant en outre la conversion de la diazoazétidinone
substituée de formule III :

en un cétoester bicyclique de formule V :

par cyclisation de la diazoazétidinone substituée de formule III, en présence d'un
catalyseur.
18. Procédé selon la revendication 17, dans lequel le catalyseur est choisi dans le groupe
constitué de l'acétate de rhodium, de l'acétate de palladium, de l'octanoate de rhodium,
de l'acétonate de cuivre, du sulfate de cuivre, de la poudre de cuivre et d'un de
leurs mélanges.
19. Procédé pour la préparation d'un cétoester bicyclique de formule V :

comprenant les étapes consistant à :
a. faire réagir un diazoacétoacétate de formule II :

avec de l'iodotriméthylsilane en présence d'une base organique, l'iodotriméthylsilane
étant préparé en faisant réagir de l'hexaméthyldisilane avec de l'iode pour former
un silylénoléther de formule I par le procédé selon la revendication 1 :

b. faire réagir le silylénoléther de formule I avec de l'azétidinone de formule IV
:

pour former une diazoazétidinone substituée de formule III, et

c. cycliser la diazoazétidinone substituée de formule III en cétoester bicyclique
de formule V en présence d'un catalyseur,
dans lesquelles R représente un atome d'hydrogène, un alkyle en C
1-C
6, un alcényle en C
2-C
6, un phényle substitué ou non substitué, un benzhydryle, un triphénylméthyle ou un
benzyle substitué ou non substitué ; R
1 représente de l'hydrogène ou un groupement protecteur de l'azote ; R
2 est un groupement trialkylsilyle ; et R
3 est un groupement partant.
20. Procédé pour préparer des composés antibiotiques de carbapénème, comprenant :
a. la réaction d'un diazoacétoacétate de formule II :

avec de l'iodotriméthylsilane en présence d'une base organique, dans laquelle l'iodotriméthylsilane
est préparé en faisant réagir de l'hexaméthyldisilane avec de l'iode, pour former
un silylénoléther de formule I par le procédé selon la revendication 1 :

b. la réaction du silylénoléther de formule I avec une azétidinone de formule IV :

pour former une diazoazétidinone substituée de formule III :

c. la cyclisation de la diazoazétidinone substituée de formule III en bicyclocétoester
de formule V en présence d'un catalyseur,
dans lesquelles R représente un atome d'hydrogène, un alkyle en C1-C6, un alcényle en C2-C6, un phényle substitué ou non substitué, un benzhydryle, un triphénylméthyle ou un
benzyle substitué ou non substitué ; R1 représente de l'hydrogène ou un groupe protecteur de l'azote ; R2 est un groupement trialkylsilyle ; et R3 est un groupement partant, et
d. la conversion du composé de formule V en composé antibiotique de carbapénème.
21. Procédé selon la revendication 20, dans lequel la conversion du composé de formule
V en composé antibiotique de carbapénème comprend :
a. l'acylation de la fonctionnalité cétoester du composé de formule V avec un agent
d'acylation ;
b. le traitement du composé acylé provenant de l'étape a avec un réactif de mercaptan
de formule HSCH2CH2NHR8 [dans laquelle R8 est choisi parmi un atome d'hydrogène, un groupement de protection (choisi parmi
le p-nitrobenzoxycarbonyle, l'o-nitro-benzoxycarbonyle, le phénylacétyle, le phénoxy-acétyle
ou le triméthylsilyle), ou -CH=R9, (dans laquelle R9 est un groupement de protection choisi parmi le p-nitrobenzoxycarbonyl, l'o-nitro-benzoxycarboxyle,
le phénylacétyle, le phénoxy-acétyle ou le triméthylsilyle)] ; et
c. le déblocage du composé provenant de l'étape b par hydrolyse ou par hydrogénation
afin de former un composé antibiotique de carbapénème.
22. Procédé selon la revendication 21, dans lequel la conversion du composé de formule
V en composé antibiotique de carbapénème comprend :
a. la phosphorylation de la fonctionnalité cétoester du composé de formule V avec
un phosphoro-halogénurate afin de former un énolphosphate ; et
b. la réaction de l'énolphosphate avec une thioalkylamine de formule HS(CH2)2NH2 ou un de ses sels d'addition acide afin de former un composé antibiotique de carbapénème.