

(11)

EP 1 670 825 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN 1-6

(51) Int Cl.:
C07K 16/24 (2006.01) **A61K 39/395 (2006.01)**
A61P 19/02 (2006.01) **A61P 35/00 (2006.01)**
A61P 37/00 (2006.01) **C12N 5/10 (2006.01)**

(48) Corrigendum issued on:
15.03.2017 Bulletin 2017/11

(86) International application number:
PCT/US2004/029390

(45) Date of publication and mention
of the grant of the patent:
28.12.2016 Bulletin 2016/52

(87) International publication number:
WO 2005/030124 (07.04.2005 Gazette 2005/14)

(21) Application number: **04809712.5**

(22) Date of filing: **09.09.2004**

(54) **ANTIBODIES TO M-CSF**

ANTIKÖRPER GEGEN M-CSF

ANTICORPS CONTRE LE M-CSF

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PL PT RO SE SI SK TR
Designated Extension States:
AL HR LT LV MK

- **MOBLEY, James Leslie**
Brighton, Michigan 48114 (US)
- **KELLERMANN, Sirid-Aimee**
Menlo Park, California 94025 (US)
- **FOLTZ, Ian**
Burnaby, British Columbia V5A4B9 (CA)
- **HAAK-FRENDSCHO, Mary**
Newark, California 94560 (US)

(30) Priority: **10.09.2003 US 502163 P**

(74) Representative: **Vossius & Partner**
Patentanwälte Rechtsanwälte mbB
Siebertstrasse 3
81675 München (DE)

(43) Date of publication of application:
21.06.2006 Bulletin 2006/25

(56) References cited:
WO-A-90/09400 WO-A-98/24893
WO-A1-91/10741 JP-A- 5 095 794
US-A- 5 491 065

(60) Divisional application:
16201588.7

- **I. CAMPBELL ET AL.:** "The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF.", **JOURNAL OF LEUKOCYTE BIOLOGY**, vol. 68, no. 1, July 2000 (2000-07), pages 144-150, **XP008051320**,

(73) Proprietors:

- **Warner-Lambert Company LLC**
Morris Plains NJ 07950 (US)
- **Amgen Fremont Inc.**
Thousand Oaks, CA 91320-1799 (US)

(72) Inventors:

- **BEDIAN, Vahe**
East Lyme, Connecticut 06333 (US)
- **DEVALARAJA, Madhav Narasimha**
Ann Arbor, Michigan 48103 (US)
- **LOW, Joseph Edwin**
Ann Arbor, Michigan 48103 (US)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- J. BABCOOK ET AL.: "A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE U.S.A., vol. 93, July 1996 (1996-07), pages 7843-7848, XP000608647, Washington, DC, USA
- S. WARD ET AL.: "Binding activities of a repertoire of single immunoglobulin variable domains secreted from *Escherichia coli*.", NATURE, vol. 341, 12 October 1989 (1989-10-12), pages 544-546,
- B. PEREIRA ET AL.: "Cardiolipin binding a light chain from lupus-prone mice.", BIOCHEMISTRY, vol. 37, 1998, pages 1430-1437,
- J. DAVIES & L. RIECHMANN: "Antibody VH domains as small recognition units.", BIOTECHNOLOGY, vol. 13, no. 5, May 1995 (1995-05), pages 475-479, XP002011336, New York, USA
- Y. REITER ET AL.: "An antibody single-domain phage display library of a native heavy chain variable region: Isolation of functional single-domain VH molecules with a unique interface.", JOURNAL OF MOLECULAR BIOLOGY, vol. 290, no. 3, 1999, pages 685-698, UK
- B. HALL ET AL.: "A single amino acid mutation in CDR3 of the 3-14-9 L chain abolished expression of the IDA 10-defined idiotope and antigen binding.", THE JOURNAL OF IMMUNOLOGY, vol. 149, no. 5, 1 September 1992 (1992-09-01), pages 1605-1612, XP055023100, Baltimore, USA
- K. WINKLER ET AL.: "Changing the antigen binding specificity by single point mutations of an anti-p24 (HIV-1) antibody.", THE JOURNAL OF IMMUNOLOGY, vol. 165, 2000, pages 450-4514, XP002579393, Baltimore, USA

Description

[0001] Macrophage colony stimulating factor (M-CSF) is a member of the family of proteins referred to as colony stimulating factors (CSFs). M-CSF is a secreted or a cell surface glycoprotein comprised of two subunits that are joined

5 by a disulfide bond with a total molecular mass varying from 40 to 90 kD ((Stanley E.R., et al., Mol. Reprod. Dev., 46:4-10 (1997)). Similar to other CSFs, M-CSF is produced by macrophages, monocytes, and human joint tissue cells, such as chondrocytes and synovial fibroblasts, in response to proteins such as interleukin-1 or tumor necrosis factor-alpha. M-CSF stimulates the formation of macrophage colonies from pluripotent hematopoietic progenitor stem cells (Stanley E.R., et al., Mol. Reprod. Dev., 46:4-10 (1997)).

10 [0002] M-CSF typically bind to its receptor, *c-fms*, in order to exert a biological effect. *c-fms* contains five extracellular Ig domains, one transmembrane domain, and an intracellular domain with two kinase domains. Upon M-CSF binding to *c-fms*, the receptor homo-dimerizes and initiates a cascade of signal transduction pathways including the JAK/STAT, PI3K, and ERK pathways.

15 [0003] M-CSF is an important regulator of the function, activation, and survival of monocytes/macrophages. A number of animal models have confirmed the role of M-CSF in various diseases, including rheumatoid arthritis (RA) and cancer. Macrophages comprise key effector cells in RA. The degree of synovial macrophage infiltration in RA has been shown to closely correlate with the extent of underlying joint destruction. M-CSF, endogenously produced in the rheumatoid joint by monocytes/macrophages, fibroblasts, and endothelial cells, acts on cells of the monocyte/macrophage lineage to promote their survival and differentiation into bone destroying osteoclasts, and enhance pro-inflammatory cellular 20 functions such as cytotoxicity, superoxide production, phagocytosis, chemotaxis and secondary cytokine production. For example, treatment with M-CSF in the rat streptococcus agalactiae sonicate-induced experimental arthritis model lead to enhanced pathology (Abd, A.H., et al., Lymphokine Cytokine Res. 10:43-50 (1991)). Similarly, subcutaneous injections of M-CSF in a murine model of collagen-induced arthritis (CIA), which is a model for RA, resulted in a significant 25 exacerbation of the RA disease symptoms (Campbell I.K., et al., J. Leuk. Biol. 68:144-150 (2000)). Furthermore, MRL/lpr mice that are highly susceptible to RA and other autoimmune diseases have elevated basal M-CSF serum concentrations (Yui M.A., et al., Am. J. Pathol. 139:255-261 (1991)). The requirement for endogenous M-CSF in maintaining CIA was demonstrated by a significant reduction in the severity of established disease by M-CSF neutralizing mouse monoclonal antibody (Campbell I.K., et al., J. Leuk. Biol. 68:144-150 (2000)).

30 [0004] With respect to cancer, inhibition of colony stimulating factors by antisense oligonucleotides suppresses tumor growth in embryonic and colon tumor xenografts in mice by decelerating macrophage-mediated ECM breakdown (Seyed-hossein, A., et al., Cancer Research, 62:5317-5324 (2002)).

35 [0005] M-CSF binding to *c-fms* and its subsequent activation of monocyte/macrophages is important in a number of disease states. In addition to RA and cancer, the other examples of M-CSF-related disease states include osteoporosis, destructive arthritis, atherogenesis, glomerulonephritis, Kawasaki disease, and HIV-1 infection, in which monocytes/macrophages and related cell types play a role. For instance, osteoclasts are similar to macrophages and are regulated in part by M-CSF. Growth and differentiation signals induced by M-CSF in the initial stages of osteoclast maturation are essential for their subsequent osteoclastic activity in bone.

40 [0006] Osteoclast mediated bone loss, in the form of both focal bone erosions and more diffuse juxta-articular osteoporosis, is a major unsolved problem in RA. The consequences of this bone loss include joint deformities, functional disability, increased risk of bone fractures and increased mortality. M-CSF is uniquely essential for osteoclastogenesis and experimental blockade of this cytokine in animal models of arthritis successfully abrogates joint destruction. Similar destructive pathways are known to operate in other forms of destructive arthritis such as psoriatic arthritis, and could represent venues for similar intervention.

45 [0007] Postmenopausal bone loss results from defective bone remodeling secondary to an uncoupling of bone formation from exuberant osteoclast mediated bone resorption as a consequence of estrogen deficiency. *In-vivo* neutralization of M-CSF using a blocking antibody has been shown in mice to completely prevent the rise in osteoclast numbers, the increase in bone resorption and the resulting bone loss induced by ovariectomy.

50 [0008] Several lines of evidence point to a central role for M-CSF in atherogenesis, and in proliferative intimal hyperplasia after mechanical trauma to the arterial wall. All the major cell types in atherosclerotic lesions have been shown to express M-CSF, and this is further up-regulated by exposure to oxidized lipoprotein. Blockade of M-CSF signaling with a neutralizing *c-fms* antibody reduces the accumulation of macrophage-derived foam cells in the aortic root of apolipoprotein E deficient mice maintained on a high fat diet.

55 [0009] In both experimental and human glomerulonephritis, glomerular M-CSF expression has been found to co-localize with local macrophage accumulation, activation and proliferation and correlate with the extent of glomerular injury and proteinuria. Blockade of M-CSF signaling via an antibody directed against its receptor *c-fms* significantly down-regulates local macrophage accumulation in mice during the renal inflammatory response induced by experimental unilateral ureteric obstruction.

[0010] Kawasaki disease (KD) is an acute, febrile, pediatric vasculitis of unknown cause. Its most common and serious

complications involve the coronary vasculature in the form of aneurismal dilatation. Serum M-CSF levels are significantly elevated in acute phase Kawasaki's disease, and normalize following treatment with intravenous immunoglobulin. Giant cell arthritis (GCA) is an inflammatory vasculopathy mainly occurring in the elderly in which T cells and macrophages infiltrate the walls of medium and large arteries leading to clinical consequences that include blindness and stroke secondary to arterial occlusion. The active involvement of macrophages in GCA is evidenced by the presence of elevated levels of macrophage derived inflammatory mediators within vascular lesions.

5 [0011] M-CSF has been reported to render human monocyte derived macrophages more susceptible to HIV-1 infection *in vitro*. In a recent study, M-CSF increased the frequency with which monocyte-derived macrophages became infected, the amount of HIV mRNA expressed per infected cell, and the level of proviral DNA expressed per infected culture.

10 [0012] Given the role of M-CSF in various diseases, a method for inhibiting M-CSF activity is desirable.

[0013] While anti-M-GSF antibodies have been previously described (see, e.g., WO 90/09400), there is a critical need for therapeutic anti-M-CSF antibodies.

SUMMARY OF THE INVENTION

15 [0014] The present invention relates to the embodiments as defined in the claims. Thus, it relates to the following items:

20 1. A human monoclonal antibody or an antigen-binding portion thereof that specifically binds to M-CSF, wherein the antibody comprises:

25 (a) a heavy chain amino acid sequence that is at least 90% identical to the heavy chain amino acid sequence of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30), and
 (b) a light chain amino acid sequence that is at least 90% identical to the light chain amino acid sequence of SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32); and

wherein the antibody has at least one of the properties selected from the group consisting of:

30 (i) inhibits M-CSF-dependent cell proliferation with an IC_{50} of 8×10^{-8} M or less;
 (ii) inhibits M-CSF-dependent human monocyte shape change with an IC_{50} of 9×10^{-8} M or less; and
 (iii) inhibits M-CSF receptor binding with an IC_{50} of 7×10^{-8} M or less.

35 2. The human monoclonal antibody or antigen-binding portion according to item 1, wherein:

40 (a) the heavy chain comprises an amino acid sequence that is at least 95% identical to the heavy chain amino acid sequence of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30), or
 (b) the light chain comprises an amino acid sequence that is at least 95% identical to the light chain amino acid sequence of SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

45 3. The human monoclonal antibody or antigen-binding portion according to item 1, wherein:

50 (a) the heavy chain comprises an amino acid sequence that is at least 99% identical to the heavy chain amino acid sequence of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30), or
 (b) the light chain comprises an amino acid sequence that is at least 99% identical to the light chain amino acid sequence of SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

55 4. A human monoclonal antibody or antigen-binding portion thereof that specifically binds to M-CSF, wherein the heavy chain of the antibody comprises the amino acid sequences of the CDR1, CDR2, and CDR3 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain of the antibody comprises the amino acid sequences of the CDR1, CDR2, and CDR3 found in the variable domain of a light chain comprising SEQ ID NO: 32.

5. The human monoclonal antibody or antigen-binding portion according to item 4, wherein the heavy chain comprises

the amino acid sequences of any one or more of the FR1, FR2, FR3, and FR4 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequences of any one or more of the FR1, FR2, FR3, and FR4 found in the variable domain of a light chain comprising SEQ ID NO: 32.

5 6. The human monoclonal antibody or antigen-binding portion according to item 4, wherein the heavy chain comprises the amino acid sequence from the beginning of the CDR1 through the end of the CDR3 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequence from the beginning of the CDR1 through the end of the CDR3 found in the variable domain of a light chain comprising SEQ ID NO: 32.

10 7. The human monoclonal antibody or antigen-binding portion according to item 4, wherein the heavy chain comprises the amino acid sequence of the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequence of the variable domain of a light chain comprising SEQ ID NO: 32.

15 8. A human monoclonal antibody, wherein the heavy chain amino acid sequence of the antibody is SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30) and the light chain acid sequence of the antibody is SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

20 9. The human monoclonal antibody or antigen-binding portion according to any one of items 1-7, wherein the antibody is selected from the group consisting of: an IgG, an IgM, an IgE, an IgA and an IgD.

25 10. The antigen-binding portion according to any one of items 1-7, wherein the portion is selected from the group consisting of: an Fab fragment, an F(ab')₂ fragment and an Fv fragment.

25 11. The human monoclonal antibody or antigen-binding portion according to any one of items 1-10, wherein the C-terminal lysine of the heavy chain of the antibody or portion is not present.

30 12. A pharmaceutical composition comprising the human monoclonal antibody or antigen-binding portion according to any one of items 1-11 and a pharmaceutically acceptable carrier.

35 13. Use of the human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the preparation of a pharmaceutical composition for treating a condition selected from the group consisting of arthritis, rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis and acute synovitis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, Alzheimer's disease, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis, glomerularonephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, multiple sclerosis, muscle degeneration, eczema, contact dermatitis, psoriasis, sunburn, and conjunctivitis shock in a subject in need thereof.

40 14. Use of the human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the preparation of a pharmaceutical composition for treating cancer in a subject in need thereof.

45 15. The use according to item 14, wherein the cancer is a brain cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, breast cancer, head cancer, neck cancer, liver cancer, esophageal cancer, prostate cancer, colorectal cancer, lung cancer, renal cancer, kidney cancer, ovarian cancer, uterine cancer, gynecological cancer, nasopharyngeal cancer, thyroid cancer, parathyroid cancer, adrenal gland cancer, small intestine cancer, colon cancer, stomach cancer, rectal cancer, anal cancer, skin cancer, head and neck cancer, urethral cancer, penile cancer, melanoma, a solid tumor of childhood, lymphoma, leukemia, or multiple myeloma.

50 16. Use of the human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the preparation of a pharmaceutical composition.

55 17. An isolated cell line that produces the human monoclonal antibody or antigen-binding portion according to any one of items 1-11.

18. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes both the heavy chain and light chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of items 1-11.
- 5 19. A first isolated nucleic acid molecule comprising a nucleotide sequence that encodes the heavy chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of items 1-11; and a second isolated nucleic acid comprising a nucleotide sequence that encodes the light chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of items 1-11.
- 10 20. A vector comprising the nucleic acid molecule according to item 18, wherein the vector optionally comprises an expression control sequence operably linked to said nucleic acid molecule.
21. An isolated host cell comprising the vector according to item 20.
- 15 22. An isolated host cell comprising a nucleic acid molecule encoding the heavy chain and a nucleic acid molecule encoding the light chain of the antibody or antigen-binding portion according to any one of items 1-11.
- 20 23. A method of making an anti-M-CSF antibody or antigen-binding portion thereof, comprising culturing the cell line according to item 17 or the host cell according to item 22 under suitable conditions and recovering the antibody or portion.
- 25 24. The human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the treatment of a condition selected from the group consisting of arthritis, rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis and acute synovitis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, Alzheimer's disease, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis, glomerularonephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, multiple sclerosis, muscle degeneration, eczema, contact dermatitis, psoriasis, sunburn, and conjunctivitis shock in a subject in need thereof.
- 30 25. The human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the treatment of cancer in a subject in need thereof.
- 35 26. The human monoclonal antibody or antigen-binding portion according to item 25, wherein the cancer is a brain cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, breast cancer, head cancer, neck cancer, liver cancer, esophageal cancer, prostate cancer, colorectal cancer, lung cancer, renal cancer, kidney cancer, ovarian cancer, uterine cancer, gynecological cancer, nasopharyngeal cancer, thyroid cancer, parathyroid cancer, adrenal gland cancer, small intestine cancer, colon cancer, stomach cancer, rectal cancer, anal cancer, skin cancer, head and neck cancer, urethral cancer, penile cancer, melanoma, a solid tumor of childhood, lymphoma, 40 leukemia, or multiple myeloma.
27. The human monoclonal antibody or antigen-binding portion according to any one of items 1-11 for the treatment of a patient in need thereof.
- 45 The present disclosure relates to isolated human antibodies or antigen-binding portions thereof that specifically bind human M-CSF and acts as a M-CSF antagonist and compositions comprising said antibody or portion.
- [0015] The disclosure also relates to compositions comprising the heavy and/or light chain, the variable regions thereof, or antigen-binding portions thereof of an anti-M-CSF antibody, or nucleic acid molecules encoding an antibody, antibody chain or variable region thereof the invention effective in such treatment and a pharmaceutically acceptable carrier. In certain embodiments, the compositions may further comprise another component, such as a therapeutic agent or a diagnostic agent. Diagnostic and therapeutic methods are also disclosed herein. In certain embodiments, the compositions are used in a therapeutically effective amount necessary to treat or prevent a particular disease or condition.
- [0016] Methods for treating or preventing a variety of diseases and conditions such as, but not limited to, inflammation, cancer, atherogenesis, neurological disorders and cardiac disorders with an effective amount of an anti-M-CSF antibody of the invention, or antigen binding portion thereof, nucleic acids encoding said antibody, or heavy and/or light chain, the variable regions, or antigen-binding portions thereof are also disclosed.
- [0017] The disclosure relates to isolated cell lines, such as a hybridomas, that produce anti-M-CSF antibodies or antigen-binding portions thereof.

[0018] The disclosure also relates to nucleic acid molecules encoding the heavy and/or light chains of anti-M-CSF antibodies, the variable regions thereof, or the antigen-binding portions thereof.

[0019] The disclosure relates to vectors and host cells comprising the nucleic acid molecules, as well as methods of recombinantly producing the polypeptides encoded by the nucleic acid molecules.

5 [0020] Non-human transgenic animals or plants that express the heavy and/or light chains, or antigen-binding portions thereof, of anti-M-CSF antibodies are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

10 [0021]

Figures 1A and 1B are graphs illustrating that the anti-M-CSF antibodies resulted in a dose-related decrease in total monocyte counts in male and female monkeys over time. The monocyte counts were determined by light scatter using an Abbott Diagnostics Inc. Cell Dyn system. Monocyte counts were monitored from 24 hours through 3 weeks 15 after administration of vehicle or antibody 8.10.3 at 0, 0.1, 1 or 5 mg/kg in a dose volume of 3.79 mL/kg over an approximately 5 minute period.

Figure 1A male monkeys.

Figure 1B female monkeys.

20 Figures 2A and 2B are graphs illustrating that anti-M-CSF treatment resulted in a reduction in the percentage of CD14+CD16+ monocytes, in male and female monkeys. 0-21 days after administration of vehicle or antibody 8.10.3 at 0, 0.1, 1 or 5 mg/kg in a dose volume of 3.79 mL/kg over an approximately 5 minute period. For each monkey tested, the percentage of monocytes within the CD14+CD16+ subset was determined after each blood draw, on 25 days 1, 3, 7, 14 and 21 after 8.10.3 injection.

Figure 2A male monkeys.

Figure 2B female monkeys.

30 Figures 3A and 3B are graphs illustrating that anti-M-CSF treatment resulted in a decrease in the percentage change of total monocytes at all doses of antibody 8.10.3F and antibody 9.14.4I as compared to pre-test levels of monocytes.

Figure 3A shows data collected from experiments using antibody 8.10.3F.

Figure 3B shows data collected from experiments using antibody 9.14.4I.

35 Figure 4 is a sequence alignment of the predicted amino acid sequences of light and heavy chain variable regions from twenty-six anti-M-CSF antibodies compared with the germline amino acid sequences of the corresponding variable region genes. Differences between the antibody sequences and the germline gene sequences are indicated in bold-faced type. Dashes represent no change from germline. The underlined sequences in each alignment represent, from left to right, the FR1, CDR1, FR2, CDR2, FR3, CDR3 AND FR4 sequences.

40 Figure 4A shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 252 (residues 21-127 of SEQ ID NO: 4) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

45 Figure 4B shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 88 (residues 21-127 of SEQ ID NO: 8) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

Figure 4C shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 100 (residues 21-127 of SEQ ID NO: 12) to the germline $V_{\kappa}L2, J_{\kappa}3$ sequence (SEQ ID NO: 107).

50 Figure 4D shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 3.8.3 (residues 23-130 of SEQ ID NO: 16) to the germline $V_{\kappa}L5, J_{\kappa}3$ sequence (SEQ ID NO: 109).

Figure 4E shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 2.7.3 (residues 23-130 of SEQ ID NO: 20) to the germline $V_{\kappa}L5, J_{\kappa}4$ sequence (SEQ ID NO: 117).

55 Figure 4F shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 1.120.1 (residues 21-134 of SEQ ID NO: 24) to the germline $V_{\kappa}B3, J_{\kappa}1$ sequence (SEQ ID NO: 112).

Figure 4G shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 252 (residues 20-136 of SEQ ID NO: 2) to the germline $V_{H}3-11, D_{H}7-27 J_{H}6$ sequence (SEQ ID NO: 106).

Figure 4H shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 88 (residues 20-138 of SEQ ID NO: 6) to the germline $V_{H}3-7, D_{H}6-13, J_{H}4$ sequence (SEQ ID NO: 105).

Figure 4I shows the alignment of the predicted amino acid sequence of the heavy chain variable region for

antibody 100 (residues 20-141 of SEQ ID NO: 10) to the germline V_H 3-23, D_H 1-26, J_H 4 sequence (SEQ ID NO: 104).

5 Figure 4J shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 3.8.3 (residues 20-135 of SEQ ID NO: 14) to the germline V_H 3-11, D_H 7-27, J_H 4 sequence (SEQ ID NO: 108).

10 Figure 4K shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 2.7.3 (residues 20-137 of SEQ ID NO: 18) to the germline V_H 3-33, D_H 1-26, J_H 4 sequence (SEQ ID NO: 110).

15 Figure 4L shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 1.120.1 (residues 20-139 of SEQ ID NO: 22) to the germline V_H 1-18, D_H 4-23, J_H 4 sequence (SEQ ID NO: 111).

Figure 4M shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3 (residues 21-129 of SEQ ID NO: 44) to the germline V_{κ} A27, J_{κ} 4 sequence (SEQ ID NO: 114).

20 15 Figure 4N shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3 (residues 20-141 of SEQ ID NO: 30) to the germline V_H 3-48, D_H 1-26, J_H 4b sequence (SEQ ID NO: 113).

Figure 4O shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4 (residues 23-130 of SEQ ID NO: 28) to the germline V_{κ} O12, J_{κ} 3 sequence (SEQ ID NO: 103).

25 20 Figure 4P shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4 (residues 20-135 of SEQ ID NO: 38) to the germline V_H 3-11, D_H 7-27, J_H 4b sequence (SEQ ID NO: 116).

Figure 4Q shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2 (residues 23-130 of SEQ ID NO: 48) to the germline V_{κ} O 12, J_{κ} 3 sequence (SEQ ID NO: 103).

30 25 Figure 4R shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2 (residues 20-136 of SEQ ID NO: 46) to the germline V_H 3-11, D_H 6-13, J_H 6b sequence (SEQ ID NO: 115).

Figure 4S shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4I (residues 23-130 of SEQ ID NO: 28) to the germline V_{κ} O12 J_{κ} 3 sequence (SEQ ID NO: 103).

35 30 Figure 4T shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4I (residues 20-135 of SEQ ID NO: 26) to the germline V_H 3-11, D_H 7-27, J_H 4b sequence (SEQ ID NO: 116).

Figure 4U shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3F (residues 21-129 of SEQ ID NO: 32) to the germline V_{κ} A27, J_{κ} 4 sequence (SEQ ID NO: 114).

40 35 Figure 4V shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3F (residues 20-141 of SEQ ID NO: 30) to the germline V_H 3-48, D_H 1-26, J_H 4b sequence (SEQ ID NO: 113).

Figure 4W shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2IF (residues 23-130 of SEQ ID NO: 36) to the germline V_{κ} O12, J_{κ} 3 sequence (SEQ ID NO: 103).

45 40 Figure 4X shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2IF (residues 20-136 of SEQ ID NO: 34) to the germline V_H 3-11, D_H 6-13, J_H 6b sequence (SEQ ID NO: 115).

Figure 4Y shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2C-Ser (residues 23-130 of SEQ ID NO: 52) to the germline V_{κ} O12, J_{κ} 3 sequence (SEQ ID NO: 103).

50 45 Figure 4Z shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2C-Ser (residues 20-136 of SEQ ID NO: 50) to the germline V_H 3-11, D_H 6-13, J_H 6b sequence (SEQ ID NO: 115).

Figure 4AA shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4C-Ser (residues 23-130 of SEQ ID NO: 56) to the germline V_{κ} O12, J_{κ} 3 sequence (SEQ ID NO: 103).

55 50 Figure 4BB shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4C-Ser (residues 20-135 of SEQ ID NO: 54) to the germline V_H 3-11, D_H 7-27, J_H 4b sequence (SEQ ID NO: 116).

Figure 4CC shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3C-Ser (residues 21-129 of SEQ ID NO: 60) to the germline V_{κ} A27, J_{κ} 4 sequence (SEQ ID NO: 114).

55 55 Figure 4DD shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3C-Ser (residues 20-141 of SEQ ID NO: 58) to the germline V_H 3-48, D_H 1-26, J_H 4b sequence (SEQ ID NO: 113).

Figure 4EE shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3-CG2 (residues 21-129 of SEQ ID NO: 60) to the germline $V_{\kappa}A27, J_{\kappa}4$ sequence (SEQ ID NO: 114).

5 Figure 4FF shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3-CG2 (residues 20-141 of SEQ ID NO: 62) to the germline V_H3-48, D_H1-26, J_H4b sequence (SEQ ID NO: 113).

Figure 4GG shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2-CG2 (residues 23-130 of SEQ ID NO: 52) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

10 Figure 4HH shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2-CG2 (residues 20-136 of SEQ ID NO: 66) to the germline V_H3-11, D_H6-13, J_H6b sequence (SEQ ID NO: 115).

Figure 4II shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2-CG4 (residues 23-130 of SEQ ID NO: 52) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

15 Figure 4JJ shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2-CG4 (residues 20-135 of SEQ ID NO: 70) to the germline V_H3-11, D_H6-13, J_H6b sequence (SEQ ID NO: 115).

Figure 4KK shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4-CG2 (residues 23-130 of SEQ ID NO: 56) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

20 Figure 4LL shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4-CG2 (residues 20-135 of SEQ ID NO: 74) to the germline $VH3-11, D_H7-27, J_H4b$ sequence (SEQ ID NO: 116).

Figure 4MM shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4-CG4 (residues 23-130 of SEQ ID NO: 56) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

25 Figure 4NN shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4-CG4 (residues 20-135 of SEQ ID NO: 78) to the germline V_H3-11, D_H7-27, J_H4b sequence (SEQ ID NO: 116).

Figure 4OO shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4-Ser (residues 23-130 of SEQ ID NO: 28) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

30 Figure 4PP shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4-Ser (residues 20-135 of SEQ ID NO: 82) to the germline V_H3-11, D_H7-27, J_H4b sequence (SEQ ID NO: 116).

Figure 4QQ shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.7.2-Ser (residues 23-130 of SEQ ID NO: 48) to the germline $V_{\kappa}O12, J_{\kappa}3$ sequence (SEQ ID NO: 103).

35 Figure 4RR shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.7.2-Ser (residues 20-136 of SEQ ID NO: 86) to the germline V_H3-11, D_H6-13, J_H6b sequence (SEQ ID NO: 115).

40 Figure 4SS shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3-Ser (residues 21-129 of SEQ ID NO: 44) to the germline $V_{\kappa}A27, J_{\kappa}4$ sequence (SEQ ID NO: 114).

Figure 4TT shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3-Ser (residues 20-141 of SEQ ID NO: 90) to the germline V_H3-48, D_H1-26, J_H4b sequence (SEQ ID NO: 113).

45 Figure 4UU shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3-CG4 (residues 21-129 of SEQ ID NO: 60) to the germline $V_{\kappa}A27, J_{\kappa}4$ sequence (SEQ ID NO: 114).

Figure 4VV shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3-CG4 (residues 20-141 of SEQ ID NO: 94) to the germline V_H3-48, D_H1-26, J_H4b sequence (SEQ ID NO: 113).

50 Figure 4WW shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 9.14.4G1 (residues 23-130 of SEQ ID NO: 28) to the germline $V_{\kappa}O12 J_{\kappa}3$ sequence (SEQ ID NO: 103).

Figure 4XX shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 9.14.4G1 (residues 20-135 of SEQ ID NO: 102) to the germline V_H3-11, D_H7-27, J_H4b sequence (SEQ ID NO: 116).

55 Figure 4YY shows an alignment of the predicted amino acid sequence of the light chain variable region for antibody 8.10.3FG1 (residues 21-129 of SEQ ID NO: 32) to the germline $V_{\kappa}A27, J_{\kappa}4$ sequence (SEQ ID NO: 114).

Figure 4ZZ shows an alignment of the predicted amino acid sequence of the heavy chain variable region for antibody 8.10.3FG 1 (residues 20-141 of SEQ ID NO: 98) to the germline $V_H3-48, D_H1-26 J_H4b$ sequence (SEQ

ID NO: 113).

DETAILED DESCRIPTION OF THE INVENTION

5 Definitions and General Techniques

[0022] Unless otherwise defined herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art.

[0023] The methods and techniques of the present invention are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow and Lane Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1990), which are incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

[0024] The following terms, unless otherwise indicated, shall be understood to have the following meanings:

[0025] The term "polypeptide" encompasses native or artificial proteins, protein fragments and polypeptide analogs of a protein sequence. A polypeptide may be monomeric or polymeric.

[0026] The term "isolated protein", "isolated polypeptide" or "isolated antibody" is a protein, polypeptide or antibody that by virtue of its origin or source of derivation has one to four of the following: (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well known in the art.

[0027] Examples of isolated antibodies include an anti-M-CSF antibody that has been affinity purified using M-CSF, an anti-M-CSF antibody that has been synthesized by a hybridoma or other cell line *in vitro*, and a human anti-M-CSF antibody derived from a transgenic mouse.

[0028] A protein or polypeptide is "substantially pure," "substantially homogeneous," or "substantially purified" when at least about 60 to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification.

[0029] The term "polypeptide fragment" as used herein refers to a polypeptide that has an amino-terminal and/or carboxy-terminal deletion, but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence. In some embodiments, fragments are at least 5, 6, 8 or 10 amino acids long. In other embodiments, the fragments are at least 14, at least 20, at least 50, or at least 70, 80, 90, 100, 150 or 200 amino acids long.

[0030] The term "polypeptide analog" as used herein refers to a polypeptide that comprises a segment that has substantial identity to a portion of an amino acid sequence and that has at least one of the following properties: (1) specific binding to M-CSF under suitable binding conditions, (2) ability to inhibit M-CSF.

[0031] Typically, polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the normally-occurring sequence. Analogs typically are at least 20 or 25 amino acids long, preferably at least 50, 60, 70, 80, 90, 100, 150 or 200 amino acids long or longer, and can often be as long as a full-length polypeptide.

[0032] In certain embodiments, amino acid substitutions of the antibody or antigen-binding portion thereof are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, or (4) confer or modify other physicochemical or functional properties of such analogs. Analogs can

include various muteins of a sequence other than the normally-occurring peptide sequence. For example, single or multiple amino acid substitutions (preferably conservative amino acid substitutions) may be made in the normally-occurring sequence, preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts.

[0033] A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence; e.g., a replacement amino acid should not alter the anti-parallel β -sheet that makes up the immunoglobulin binding domain that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence. In general, glycine and proline analogs would not be used in an anti-parallel β -sheet. Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984)); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et al., Nature 354:105 (1991), which are each incorporated herein by reference.

[0034] Non-peptide analogs are commonly used in the pharmaceutical industry as drugs with properties analogous to those of the template peptide. These types of non-peptide compound are termed "peptide mimetics" or "peptidomimetics." Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger, TINS p.392 (1985); and Evans et al., J. Med. Chem. 30:1229 (1987), which are incorporated herein by reference. Such compounds are often developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a desired biochemical property or pharmacological activity), such as a human antibody, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂--, and -CH₂SO--, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Giersch, Ann. Rev. Biochem. 61:387 (1992), incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

[0035] An "antibody" refers to an intact antibody or an antigen-binding portion that competes with the intact antibody for specific binding. See generally, Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1.989)) (incorporated by reference in its entirety for all purposes). Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. In some embodiments, antigen-binding portions include Fab, Fab', F(ab')₂, Fd, Fv, dAb, and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of an antibody that is sufficient to confer specific antigen binding to the polypeptide.

[0036] From N-terminus to C-terminus, both the mature light and heavy chain variable domains comprise the regions FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia & Lesk, J. Mol. Biol. 196:901-917 (1987), or Chothia et al., Nature 342:878-883 (1989).

[0037] As used herein, an antibody that is referred to by number is the same as a monoclonal antibody that is obtained from the hybridoma of the same number. For example, monoclonal antibody 3.8.3 is the same antibody as one obtained from hybridoma 3.8.3.

[0038] As used herein, a Fd fragment means an antibody fragment that consists of the V_H and C_H 1 domains; an Fv fragment consists of the V_L and V_H domains of a single arm of an antibody; and a dAb fragment (Ward et al., Nature 341:544-546 (1989)) consists of a V_H domain.

[0039] In some embodiments, the antibody is a single-chain antibody (scFv) in which a V_L and V_H domains are paired to form a monovalent molecules via a synthetic linker that enables them to be made as a single protein chain. (Bird et al., Science 242:423-426 (1988) and Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988).) In some embodiments, the antibodies are diabodies, i.e., are bivalent antibodies in which V_H and V_L domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites. (See e.g., Holliger P. et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993), and Poljak R. J. et al., Structure 2:1121-1123 (1994).) In some embodiments, one or more CDRs from an antibody of the invention may be incorporated into a molecule either covalently or noncovalently to make it an immunoadhesin that specifically binds to M-CSF. In such embodiments, the CDR(s) may be incorporated as part of a larger polypeptide chain, may be covalently linked to another polypeptide chain, or may be incorporated noncovalently.

[0040] In embodiments having one or more binding sites, the binding sites may be identical to one another or may be different.

[0041] As used herein, the term "human antibody" means any antibody in which the variable and constant domain sequences are human sequences. The term encompasses antibodies with sequences derived from human genes, but

which have been changed, e.g. to decrease possible immunogenicity, increase affinity, eliminate cysteines that might cause undesirable folding, etc. The term encompasses such antibodies produced recombinantly in non-human cells, which might impart glycosylation not typical of human cells. These antibodies may be prepared in a variety of ways, as described below.

5 [0042] The term "chimeric antibody" as used herein means an antibody that comprises regions from two or more different antibodies. In one embodiment, one or more of the CDRs are derived from a human anti-M-CSF antibody. In another embodiment, all of the CDRs are derived from a human anti-M-CSF antibody. In another embodiment, the CDRs from more than one human anti-M-CSF antibodies are combined in a chimeric antibody. For instance, a chimeric antibody may comprise a CDR1 from the light chain of a first human anti-M-CSF antibody, a CDR2 from the light chain of a second human anti-M-CSF antibody and a CDR3 from the light chain of a third human anti-M-CSF antibody, and the CDRs from the heavy chain may be derived from one or more other anti-M-CSF antibodies. Further, the framework regions may be derived from one of the anti-M-CSF antibodies from which one or more of the CDRs are taken or from one or more different human antibodies.

10 [0043] Fragments or analogs of antibodies or immunoglobulin molecules can be readily prepared by those of ordinary skill in the art following the teachings of this specification. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three-dimensional structure are known. See Bowie et al., *Science* 253:164 (1991).

15 [0044] The term "surface plasmon resonance", as used herein, refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.). For further descriptions, see Jonsson U. et al., *Ann. Biol. Clin.* 51:19-26 (1993); Jonsson U. et al., *Biotechniques* 11:620-627 (1991); Jonsson B. et al., *J. Mol. Recognit.* 8:125-131 (1995); and Johnsson B. et al., *Anal. Biochem.* 198:268-277 (1991).

20 [0045] The term "K_D" refers to the equilibrium dissociation constant of a particular antibody-antigen interaction.

25 [0046] The term "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor or otherwise interacting with a molecule. Epitopic determinants generally consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and generally have specific three dimensional structural characteristics, as well as specific charge characteristics. An epitope may be "linear" or "conformational." In a linear epitope, all of the points of interaction between the protein and the interacting molecule (such as an antibody) occur linearly along the primary amino acid sequence of the protein. In a conformational epitope, the points of interaction occur across amino acid residues on the protein that are separated from one another. An antibody is said to specifically bind an antigen when the dissociation constant is \leq 1 mM, preferably \leq 100 nM and most preferably \leq 10 nM. In certain embodiments, the K_D is 1 pM to 500 pM. In other embodiments, the K_D is between 500 pM to 1 μ M. In other embodiments, the K_D is between 1 μ M to 100 nM. In other embodiments, the K_D is between 100 mM to 10 nM. Once a desired epitope on an antigen is determined, it is possible to generate antibodies to that epitope, e.g., using the techniques described in the present invention. Alternatively, during the discovery process, the generation and characterization of antibodies may elucidate information about desirable epitopes. From this information, it is then possible to competitively screen antibodies for binding to the same epitope. An approach to achieve this is to conduct cross-competition studies to find antibodies that competitively bind with one another, e.g., the antibodies compete for binding to the antigen. A high throughout process for "binning" antibodies based upon their cross-competition is described in International Patent Application No. WO 03/48731.

30 [0047] As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S. Golub and D.R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991)), which is incorporated herein by reference.

35 [0048] The term "polynucleotide" as referred to herein means a polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms.

40 [0049] The term "isolated polynucleotide" as used herein means a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin or source of derivation, the "isolated polynucleotide" has one to three of the following: (1) is not associated with all or a portion of a polynucleotides with which the "isolated polynucleotide" is found in nature, (2) is operably linked to a polynucleotide to which it is not linked in nature, or (3) does not occur in nature as part of a larger sequence.

45 [0050] The term "oligonucleotide" as used herein includes naturally occurring, and modified nucleotides linked together by naturally occurring and non-naturally occurring oligonucleotide linkages. Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. Preferably oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length. Oligonucleotides are usually single stranded, e.g.

for primers and probes; although oligonucleotides may be double stranded, e.g. for use in the construction of a gene mutant. Oligonucleotides of the invention can be either sense or antisense oligonucleotides.

[0051] The term "naturally occurring nucleotides" as used herein includes deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" as used herein includes nucleotides with modified or substituted sugar groups and the like. The term "oligonucleotide linkages" referred to herein includes oligonucleotides linkages such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranylilate, phosphoroamidate, and the like. See e.g., LaPlanche et al., *Nucl. Acids Res.* 14:9081 (1986); Stec et al., *J. Am. Chem. Soc.* 106:6077 (1984); Stein et al., *Nucl. Acids Res.* 16:3209 (1988); Zon et al., *Anti-Cancer Drug Design* 6:539 (1991); Zon et al., *Oligonucleotides and Analogues: A Practical Approach*, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); U.S. Patent No. 5,151,510; Uhlmann and Peyman, *Chemical Reviews* 90:543 (1990), the disclosures of which are hereby incorporated by reference. An oligonucleotide can include a label for detection, if desired.

[0052] "Operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in *trans* or at a distance to control the gene of interest. The term "expression control sequence" as used herein means polynucleotide sequences that are necessary to effect the expression and processing of coding sequences to which they are ligated. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence; in eukaryotes, generally, such control sequences include promoters and transcription termination sequence. The term "control sequences" is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

[0053] The term "vector", as used herein, means a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. In some embodiments, the vector is a plasmid, i.e., a circular double stranded DNA loop into which additional DNA segments may be ligated. In some embodiments, the vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. In some embodiments, the vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). In other embodiments, the vectors (e.g., non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors").

[0054] The term "recombinant host cell" (or simply "host cell"), as used herein, means a cell into which a recombinant expression vector has been introduced. It should be understood that "recombinant host cell" and "host cell" mean not only the particular subject cell but also the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

[0055] The term "selectively hybridize" referred to herein means to detectably and specifically bind. Polynucleotides, oligonucleotides and fragments thereof in accordance with the invention selectively hybridize to nucleic acid strands under hybridization and wash conditions that minimize appreciable amounts of detectable binding to nonspecific nucleic acids. "High stringency" or "highly stringent" conditions can be used to achieve selective hybridization conditions as known in the art and discussed herein. One example of "high stringency" or "highly stringent" conditions is the incubation of a polynucleotide with another polynucleotide, wherein one polynucleotide may be affixed to a solid surface such as a membrane, in a hybridization buffer of 6X SSPE or SSC, 50% formamide, 5X Denhardt's reagent, 0.5% SDS, 100 µg/ml denatured, fragmented salmon sperm DNA at a hybridization temperature of 42°C for 12-16 hours, followed by twice washing at 55°C using a wash buffer of 1X SSC, 0.5% SDS. See also Sambrook et al., *supra*, pp. 9.50-9.55.

[0056] The term "percent sequence identity" in the context of nucleic acid sequences means the percent of residues when a first contiguous sequence is compared and aligned for maximum correspondence to a second contiguous sequence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 18 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about 32 nucleotides, and preferably at least about 36, 48 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA, which includes, e.g., the programs FASTA2 and FASTA3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, *Methods Enzymol.* 183:63-98 (1990); Pearson, *Methods Mol. Biol.* 132:185-219 (2000); Pearson, *Methods Enzymol.* 266:227-258 (1996); Pearson, *J. Mol. Biol.* 276:71-84 (1998); herein incorporated by ref-

erence). Unless otherwise specified, default parameters for a particular program or algorithm are used. For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.

5 [0057] A reference to a nucleotide sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence.

[0058] The term "percent sequence identity" means a ratio, expressed as a percent of the number of identical residues over the number of residues compared.

10 [0059] The term "substantial similarity" or "substantial sequence similarity," when referring to a nucleic acid or fragment thereof, means that when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 85%, preferably at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or Gap, as discussed above.

15 [0060] As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, as supplied with the programs, share at least 70%, 75% or 80% sequence identity, preferably at least 90% or 95% sequence identity, and more preferably at least 97%, 98% or 99% sequence identity. In certain embodiments, residue positions that are not identical differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain R group with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. See, e.g., Pearson, Methods Mol. Biol. 243:307-31 20 (1994). Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine, and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartic acid and glutamic acid; and 25 7) sulfur-containing side chains: cysteine and methionine. Conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine.

30 [0061] Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al., Science 256:1443-45 (1992), herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.

35 [0062] Sequence identity for polypeptides, is typically measured using sequence analysis software. Protein analysis software matches sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters, as specified with the programs, to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of 40 organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA using default or recommended parameters, see GCG Version 6.1. (University of Wisconsin WI) FASTA (e.g., FASTA2 and FASTA3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, Methods Enzymol. 183:63-98 (1990); Pearson, Methods Mol. Biol. 132:185-219 (2000)). Another preferred algorithm when comparing a sequence of the invention to 45 a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn, using default parameters, as supplied with the programs. See, e.g., Altschul et al., J. Mol. Biol. 215:403-410 (1990); Altschul et al., Nucleic Acids Res. 25:3389-402 (1997).

50 [0063] The length of polypeptide sequences compared for homology will generally be at least about 16 amino acid residues, usually at least about 20 residues, more usually at least about 24 residues, typically at least about 28 residues, and preferably more than about 35 residues. When searching a database containing sequences from a large number of different organisms, it is preferable to compare amino acid sequences.

55 [0064] As used herein, the terms "label" or "labeled" refers to incorporation of another molecule in the antibody. In one embodiment, the label is a detectable marker, e.g., incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). In another embodiment, the label or marker can be therapeutic, e.g., a drug conjugate or toxin. Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., ^3H , ^{14}C , ^{15}N , ^{35}S , ^{90}Y , ^{99}Tc , ^{111}In , ^{125}I , ^{131}I), fluorescent labels (e.g., FITC, rhod-

amine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, β -galactosidase, luciferase, alkaline phosphatase), chemiluminescent markers, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags), magnetic agents, such as gadolinium chelates, toxins such as pertussis toxin, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.

[0065] Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising," will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Human Anti-M-CSF Antibodies and Characterization Thereof

[0066] In one embodiment, the disclosure relates to humanized anti-M-CSF antibodies. In another embodiment, the invention provides human anti-M-CSF antibodies. In some embodiments, human anti-M-CSF antibodies are produced by immunizing a non-human transgenic animal, e.g., a rodent, whose genome comprises human immunoglobulin genes so that the rodent produces human antibodies.

[0067] An anti-M-CSF antibody of the invention can comprise a human kappa or a human lambda light chain or an amino acid sequence derived therefrom. In some embodiments comprising a kappa light chain, the light chain variable domain (V_L) is encoded in part by a human $V_{\kappa}012$, $V_{\kappa}L2$, $V_{\kappa}L5$, $V_{\kappa}A27$ or $V_{\kappa}B3$ gene and a $J_{\kappa}1$, $J_{\kappa}2$, $J_{\kappa}3$, or $J_{\kappa}4$ gene. In particular embodiments of the invention, the light chain variable domain is encoded by $V_{\kappa}O12/J_{\kappa}3$, $V_{\kappa}L2/J_{\kappa}3$, $V_{\kappa}L5/J_{\kappa}3$, $V_{\kappa}L5/J_{\kappa}4$, $V_{\kappa}A27/J_{\kappa}4$ or $V_{\kappa}B3/J_{\kappa}1$ gene.

[0068] In some embodiments, the V_L of the M-CSF antibody comprises one or more amino acid substitutions relative to the germline amino acid sequence. In some embodiments, the V_L of the anti-M-CSF antibody comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid substitutions relative to the germline amino acid sequence. In some embodiments, one or more of those substitutions from germline is in the CDR regions of the light chain. In some embodiments, the amino acid substitutions relative to germline are at one or more of the same positions as the substitutions relative to germline in any one or more of the V_L of antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FGI or 9.14.4GI. For example, the V_L of the anti-M-CSF antibody may contain one or more amino acid substitutions compared to germline found in the V_L of antibody 88, and other amino acid substitutions compared to germline found in the V_L of antibody 252 which utilizes the same V_K gene as antibody 88. In some embodiments, the amino acid changes are at one or more of the same positions but involve a different mutation than in the reference antibody.

[0069] In some embodiments, amino acid changes relative to germline occur at one or more of the same positions as in any of the V_L of antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FGI or 9.14.4GI, but the changes may represent conservative amino acid substitutions at such position(s) relative to the amino acid in the reference antibody. For example, if a particular position in one of these antibodies is changed relative to germline and is glutamate, one may substitute aspartate at that position. Similarly, if an amino acid substitution compared to germline is serine, one may substitute threonine for serine at that position. Conservative amino acid substitutions are discussed *supra*.

[0070] In some embodiments, the light chain of the human anti-M-CSF antibody comprises the amino acid sequence that is the same as the amino acid sequence of the V_L of antibody 252 (SEQ ID NO: 4), 88 (SEQ ID NO: 8), 100 (SEQ ID NO: 12), 3.8.3 (SEQ ID NO: 16), 2.7.3 (SEQ ID NO: 20), 1.120.1 (SEQ ID NO: 24), 9.14.4I (SEQ ID NO: 28), 8.10.3F (SEQ ID NO: 32), 9.7.2IF (SEQ ID NO: 36), 9.14.4 (SEQ ID NO: 28), 8.10.3 (SEQ ID NO: 44), 9.7.2 (SEQ ID NO: 48), 9.7.2C-Ser (SEQ ID NO: 52), 9.14.4C-Ser (SEQ ID NO: 56), 8.10.3C-Ser (SEQ ID NO: 60), 8.10.3-CG2 (SEQ ID NO: 60), 9.7.2-CG2 (SEQ ID NO: 52), 9.7.2-CG4 (SEQ ID NO: 52), 9.14.4-CG2 (SEQ ID NO: 56), 9.14.4-CG4 (SEQ ID NO: 56), 9.14.4-Ser (SEQ ID NO: 28), 9.7.2-Ser (SEQ ID NO: 48), 8.10.3-Ser (SEQ ID NO: 44), 8.10.3-CG4 (SEQ ID NO: 60) 8.10.3FGI (SEQ ID NO: 32) or 9.14.4G1 (SEQ ID NO: 28), or said amino acid sequence having up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions. In some embodiments, the light chain comprises the amino acid sequence from the beginning of the CDR1 to the end of the CDR3 of any one of the foregoing antibodies.

[0071] In some embodiments, the light chain of the anti-M-CSF antibody comprises at least the light chain CDR1, CDR2 or CDR3 of a germline or antibody sequence, as described herein. In another embodiment, the light chain may comprise a CDR1, CDR2 or CDR3 regions of an antibody independently selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-

CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or CDR regions each having less than 4 or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions. In other embodiments, the light chain of the anti-M-CSF antibody comprises the light chain CDR1, CDR2 or CDR3, each of which are independently selected from the CDR1, CDR2 and CDR3 regions of an antibody having a light chain variable region comprising the amino acid sequence of the V_L region selected from SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60, or encoded by a nucleic acid molecule encoding the V_L region selected from SEQ ID NOS: 3, 7, 11, 27, 31, 35, 43 or 47. The light chain of the anti-M-CSF antibody may comprise the CDR1, CDR2 and CDR3 regions of an antibody comprising the amino acid sequence of the V_L region selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1 or SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60.

[0072] In some embodiments, the light chain comprises the CDR1, CDR2 and CDR3 regions of antibody 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or said CDR regions each having less than 4 or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions.

[0073] With regard to the heavy chain, in some embodiments, the variable region of the heavy chain amino acid sequence is encoded in part by a human V_H 3-11, V_H 3-23, V_H 3-7, V_H 1-18, V_H 3-33, V_H 3-48 gene and a J_H 4, J_H 6, J_H 4b, or J_H 6b gene. In a particular embodiment of the disclosure, the heavy chain variable region is encoded by V_H 3-11/ D_H 7-27/ J_H 6, V_H 3-7/ D_H 6-13/ J_H 4, V_H 3-23/ D_H 1-26/ J_H 4, V_H 3-11/ D_H 7-27/ J_H 4, V_H 3-33/ D_H 1-26/ J_H 4, V_H 1-18/ D_H 4-23/ J_H 4, V_H 3-11/ D_H 7-27/ J_H 4b, V_H 3-48/ D_H 1-26/ J_H 4b, V_H 3-11/ D_H 6-13/ J_H 6b, V_H 3-11/ D_H 7-27/ J_H 4b, V_H 3-48/ D_H 1-6/ J_H 4b, or VH 3-11/ D_H 6-13/ J_H 6b gene. In some embodiments, the V_H of the anti-M-CSF antibody contains one or more amino acid substitutions, deletions or insertions (additions) relative to the germline amino acid sequence. In some embodiments, the variable domain of the heavy chain comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 mutations from the germline amino acid sequence. In some embodiments, the mutation(s) are non-conservative substitutions compared to the germline amino acid sequence. In some embodiments, the mutations are in the CDR regions of the heavy chain. In some embodiments, the amino acid changes are made at one or more of the same positions as the mutations from germline in any one or more of the V_H of antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In other embodiments, the amino acid changes are at one or more of the same positions but involve a different mutation than in the reference antibody.

[0074] In some embodiments, the heavy chain comprises an amino acid sequence of the variable domain (V_H) of antibody 252 (SEQ ID NO: 2), 88 (SEQ ID NO: 6), 100 (SEQ ID NO: 10), 3.8.3 (SEQ ID NO: 14), 2.7.3 (SEQ. ID NO: 18), 1.120.1 (SEQ. ID NO: 22), 9.14.4I (SEQ ID NO: 26), 8.10.3F (SEQ ID NO: 30), 9.7.2IF (SEQ ID NO: 34), 9.14.4 (SEQ ID NO: 38), 8.10.3 (SEQ ID NO: 30), 9.7.2 (SEQ ID NO: 46), 9.7.2C-Ser (SEQ ID NO: 50), 9.14.4C-Ser (SEQ ID NO: 54), 8.10.3C-Ser (SEQ ID NO: 58), 8.1.0.3-CG2 (SEQ ID NO: 62), 9.7.2-CG2 (SEQ ID NO: 66), 9.7.2-CG4 (SEQ ID NO: 70), 9.14.4-CG2 (SEQ ID NO: 74), 9.14.4-CG4 (SEQ ID NO: 78), 9.14.4-Ser (SEQ ID NO: 82), 9.7.2-Ser (SEQ ID NO: 86), 8.10.3-Ser (SEQ ID NO: 90) 8.10.3-CG4 (SEQ ID NO: 94), 8.10.3FG1 (SEQ ID NO: 98) or 9.14.4G1 (SEQ ID NO: 102), or said amino acid sequence having up to 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 conservative amino acid substitutions and/or a total of up to 3 non-conservative amino acid substitutions. In some embodiments, the heavy chain comprises the amino acid sequence from the beginning of the CDR1 to the end of the CDR3 of any one of the foregoing antibodies.

[0075] In some embodiments, the heavy chain comprises the heavy chain CDR1, CDR2 and CDR3 regions of antibody 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or said CDR regions each having less than 8, less than 6, less than 4, or less than 3 conservative amino acid substitutions and/or a total of three or fewer non-conservative amino acid substitutions.

[0076] In some embodiments, the heavy chain comprises a germline or antibody CDR3, as described above, of an antibody sequence as described herein, and may also comprise the CDR1 and CDR2 regions of a germline sequence, or may comprise a CDR1 and CDR2 of an antibody sequence, each of which are independently selected from an antibody comprising a heavy chain of an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In another embodiment, the heavy chain comprises a CDR3 of an antibody sequence as described herein, and may also comprise the CDR1 and CDR2 regions, each of which are independently selected from a CDR1 and CDR2 region of a heavy chain variable region comprising an amino acid sequence of the V_H region selected from SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102, or encoded by a nucleic acid sequence encoding the V_H region selected from SEQ ID NOS: 1, 5, 9, 25, 29, 33, 37, 45, 97 or 101. In another embodiment, the antibody comprises a light chain

as disclosed above and a heavy chain as disclosed above.

[0077] One type of amino acid substitution that may be made is to change one or more cysteines in the antibody, which may be chemically reactive, to another residue, such as, without limitation, alanine or serine. In one embodiment, there is a substitution of a non-canonical cysteine. The substitution can be in a framework region of a variable domain or in the constant domain of an antibody. In another embodiment, the cysteine is in a non-canonical region of the antibody.

[0078] Another type of amino acid substitution that may be made is to remove any potential proteolytic sites in the antibody, particularly those that are in a CDR or framework region of a variable domain or in the constant domain of an antibody. Substitution of cysteine residues and removal of proteolytic sites may decrease the risk of any heterogeneity in the antibody product and thus increase its homogeneity. Another type of amino acid substitution is elimination of asparagine-glycine pairs, which form potential deamidation sites, by altering one or both of the residues.

[0079] In some embodiments, the C-terminal lysine of the heavy chain of the anti-M-CSF antibody of the invention is not present (Lewis D.A., et al., *Anal. Chem.*, 66(5): 585-95 (1994)). In various embodiments of the invention, the heavy and light chains of the anti-M-CSF antibodies may optionally include a signal sequence.

[0080] In one aspect, the invention relates to inhibiting human anti-M-CSF monoclonal antibodies and the cell lines engineered to produce them. Table 1 lists the sequence identifiers (SEQ ID NOS) of the nucleic acids that encode the variable region of the heavy and light chains and the corresponding predicted amino acid sequences for the monoclonal antibodies: 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3 and 9.7.2. Additional variant antibodies 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4 8.10.3FG1 or 9.14.4G1 could be made by methods known to one skilled in the art.

Table 1

HUMAN ANTI-M-CSF ANTIBODIES				
MAb	SEQUENCE IDENTIFIER (SEQ ID NOS:)			
	Full Length			
	Heavy		Light	
	DNA	Protein	DNA	Protein
252	1	2	3	4
88	5	6	7	8
100	9	10	11	12
3.8.3		14		16
2.7.3		18		20
1.120.1		22		24
9.14.4I	25	26	27	28
9.14.4	37	38	27	28
9.14.4C-Ser		54		56
9.14.4-CG2		74		56
9.14.4-CG4		78		56
9.14.4-Ser		82	27	28
9.14.4-G1	101	102	27	28
8.10.3F	29	30	31	32
8.10.3	29	30	43	44
8.10.3C-Ser		58		60
8.10.3-CG2		62		60
8.10.3-Ser		90	43	44
8.10.3-CG4		94		60
8.10.3FG1	97	98	31	32

(continued)

HUMAN ANTI-M-CSF ANTIBODIES				
MAb	SEQUENCE IDENTIFIER (SEQ ID NOS:)			
	Full Length			
	Heavy		Light	
	DNA	Protein	DNA	Protein
9.7.2IF	33	34	35	36
9.7.2	45	46	47	48
9.7.2C-Ser		50		52
9.7.2-CG2		66		52
9.7.2-CG4		70		52
9.7.2-Ser		86	47	48

20 Class and Subclass of Anti-M-CSF Antibodies

25 [0081] The class and subclass of anti-M-CSF antibodies may be determined by any method known in the art. In general, the class and subclass of an antibody may be determined using antibodies that are specific for a particular class and subclass of antibody. Such antibodies are commercially available. The class and subclass can be determined by ELISA, or Western Blot as well as other techniques. Alternatively, the class and subclass may be determined by sequencing all or a portion of the constant domains of the heavy and/or light chains of the antibodies, comparing their amino acid sequences to the known amino acid sequences of various class and subclasses of immunoglobulins, and determining the class and subclass of the antibodies.

30 [0082] In some embodiments, the anti-IVI-CSF antibody is a monoclonal antibody. The anti-M-CSF antibody can be an IgG, an IgM, an IgE, an IgA, or an IgD molecule. In preferred embodiments, the anti-M-CSF antibody is an IgG and is an IgG1, IgG2, IgG3 or IgG4 subclass. In other preferred embodiments, the antibody is subclass IgG2 or IgG4. In another preferred embodiment, the antibody is subclass IgG1.

35 Species and Molecular Selectivity

40 [0083] In another aspect of the invention, the anti-M-CSF antibodies demonstrate both species and molecule selectivity. In some embodiments, the anti-M-CSF antibody binds to human, cynomologus monkey and mouse M-CSF. Following the teachings of the specification, one may determine the species selectivity for the anti-M-CSF antibody using methods well known in the art. For instance, one may determine the species selectivity using Western blot, FACS, ELISA, RIA, a cell proliferation assay, or a M-CSF receptor binding assay. In a preferred embodiment, one may determine the species selectivity using a cell proliferation assay or ELISA.

45 [0084] In another embodiment, the anti-M-CSF antibody has a selectivity for M-CSF that is at least 100 times greater than its selectivity for GM-/G-CSF. In some embodiments, the anti-M-CSF antibody does not exhibit any appreciable specific binding to any other protein other than M-CSF. One can determine the selectivity of the anti-M-CSF antibody for M-CSF using methods well known in the art following the teachings of the specification. For instance one can determine the selectivity using Western blot, FACS, ELISA, or RIA.

Identification of M-CSF Epitopes Recognized by Anti- M-CSF Antibodies

50 [0085] The invention provides a human anti-M-CSF monoclonal antibody that binds to M-CSF and competes with, cross-competes with and/or binds the same epitope and/or binds to M-CSF with the same K_D as (a) an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1; (b) an antibody that comprises a heavy chain variable region having an amino acid sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102; (c) an antibody that comprises a light chain variable region having an amino acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60; (d) an antibody that comprises both a heavy chain variable region as defined in (b) and a light chain variable region as defined in (c).

[0086] One can determine whether an antibody binds to the same epitope, competes for binding with, cross competes for binding with or has the same K_D an anti-M-CSF antibody by using methods known in the art. In one embodiment, one allows the anti-M-CSF antibody of the invention to bind to M-CSF under saturating conditions and then measures the ability of the test antibody to bind to M-CSF. If the test antibody is able to bind to M-CSF at the same time as the anti-M-CSF antibody, then the test antibody binds to a different epitope as the anti-M-CSF antibody. However, if the test antibody is not able to bind to M-CSF at the same time, then the test antibody binds to the same epitope, an overlapping epitope, or an epitope that is in close proximity to the epitope bound by the human anti-M-CSF antibody. This experiment can be performed using ELISA, RIA, or FACS. In a preferred embodiment, the experiment is performed using BIACORETM.

10 Binding Affinity of Anti-M-CSF Antibodies to M-CSF

[0087] In some embodiments of the invention, the anti-M-CSF antibodies bind to M-CSF with high affinity. In some embodiments, the anti-M-CSF antibody binds to M-CSF with a K_D of 1×10^{-7} M or less. In other preferred embodiments, the antibody binds to M-CSF with a K_D of 1×10^{-8} M, 1×10^{-9} M, 1×10^{-10} M, 1×10^{-11} M, 1×10^{-12} M or less. In certain embodiments, the K_D is 1 pM to 500 pM. In other embodiments, the K_D is between 500 pM to 1 μ M. In other embodiments, the K_D is between 1 μ M to 100 μ M. In other embodiments, the K_D is between 100 mM to 10 nM. In an even more preferred embodiment, the antibody binds to M-CSF with substantially the same K_D as an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In another preferred embodiment, the antibody binds to M-CSF with substantially the same K_D as an antibody that comprises a CDR2 of a light chain, and/or a CDR3 of a heavy chain from an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In still another preferred embodiment, the antibody binds to M-CSF with substantially the same K_D as an antibody that comprises a heavy chain variable region having an amino acid sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102, or that comprises a light chain variable region having an amino acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60. In another preferred embodiment, the antibody binds to M-CSF with substantially the same K_D as an antibody that comprises a CDR2, and may optionally comprise a CDR1 and/or CDR3, of a light chain variable region having an amino acid sequence of the V_L region of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60, or that comprises a CDR3, and may optionally comprise a CDR1 and/or CDR2, of a heavy chain variable region having an amino acid sequence of the V_H region of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102.

[0088] In some embodiments, the anti-M-CSF antibody has a low dissociation rate. In some embodiments, the anti-M-CSF antibody has an k_{off} of 2.0×10^{-4} s⁻¹ or lower. In other preferred embodiments, the antibody binds to M-CSF with a k_{off} of 2.0×10^{-5} or a k_{off} 2.0×10^{-6} s⁻¹ or lower. In some embodiments, the k_{off} is substantially the same as an antibody described herein, such as an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In some embodiments, the antibody binds to M-CSF with substantially the same k_{off} as an antibody that comprises (a) a CDR3, and may optionally comprise a CDR1 and/or CDR2, of a heavy chain of an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1; or (b) a CDR2, and may optionally comprise a CDR1 and/or CDR3, of a light chain from an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In some embodiments, the antibody binds to M-CSF with substantially the same k_{off} as an antibody that comprises a heavy chain variable region having an amino acid sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102; or that comprises a light chain variable region having an amino acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60; In another preferred embodiment, the antibody binds to M-CSF with substantially the same k_{off} as an antibody that comprises a CDR2, and may optionally comprise a CDR1 and/or CDR3, of a light chain variable region having an amino acid sequence of SEQ ID NO: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60; or a CDR3, and may optionally comprise a CDR1 and/or CDR2, of a heavy chain variable region having an amino acid sequence of SEQ ID NO: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102.

[0089] The binding affinity and dissociation rate of an anti-M-CSF antibody to a M-CSF can be determined by methods known in the art. The binding affinity can be measured by competitive ELISAs, RIAs, surface plasmon resonance (e.g., by using BIACORETM technology). The dissociation rate can be measured by surface plasmon resonance. Preferably, the binding affinity and dissociation rate is measured by surface plasmon resonance. More preferably, the binding affinity and dissociation rate are measured using BIACORETM technology. Example VI exemplifies a method for determining

affinity constants of anti-M-CSF monoclonal antibodies by BIACORE™ technology.

Inhibition of M-CSF Activity by Anti-M-CSF Antibody

5 *Inhibition of M-CSF binding to c-fms*

[0090] In another embodiment, the invention provides an anti-M-CSF antibody that inhibits the binding of a M-CSF to *c-fms* receptor and blocks or prevents activation of *c-fms*. In a preferred embodiment, the M-CSF is human. In another preferred embodiment, the anti-M-CSF antibody is a human antibody. The IC₅₀ can be measured by ELISA, RIA, and cell based assays such as a cell proliferation assay, a whole blood monocyte shape change assay, or a receptor binding inhibition assay. In one embodiment, the antibody or portion thereof inhibits cell proliferation with an IC₅₀ of no more than 8.0 x 10⁻⁷ M, preferably no more than 3 x 10⁻⁷ M, or more preferably no more than 8 x 10⁻⁸ M as measured by a cell proliferation assay. In another embodiment, the IC₅₀ as measured by a monocyte shape change assay is no more than 2 x 10⁻⁶ M, preferably no more than 9.0 x 10⁻⁷ M, or more preferably no more than 9 x 10⁻⁸ M. In another preferred embodiment, the IC₅₀ as measured by a receptor binding assay is no more than 2 x 10⁻⁶ M, preferably no more than 8.0 x 10⁻⁷ M, or more preferably no more than 7.0 x 10⁻⁸ M. Examples III, IV, and V exemplify various types of assays.

[0091] In another aspect anti-M-CSF antibodies of the invention inhibit monocyte/macrophage cell proliferation in response to a M-CSF by at least 20%, more preferably 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95% or 100% compared to the proliferation of cell in the absence of antibody.

20 Methods of Producing Antibodies and Antibody Producing Cell Lines

Immunization

25 [0092] In some embodiments, human antibodies are produced by immunizing a non-human animal comprising in its genome some or all of human immunoglobulin heavy chain and light chain loci with a M-CSF antigen. In a preferred embodiment, the non-human animal is a XENOMOUSE™ animal (Abgenix Inc., Fremont, CA). Another non-human animal that may be used is a transgenic mouse produced by Medarex (Medarex, Inc., Princeton, NJ).

30 [0093] XENOMOUSE™ mice are engineered mouse strains that comprise large fragments of human immunoglobulin heavy chain and light chain loci and are deficient in mouse antibody production. See, e.g., Green et al., *Nature Genetics* 7:13-21 (1994) and U.S. Patents 5,916,771, 5,939,598, 5,985,615, 5,998,209, 6,075,181, 6,091,001, 6,114,598, 6,130,364, 6,162,963 and 6,150,584. See also WO 91/10741, WO 94/02602, WO 96/34096, WO 96/33735, WO 98/16654, WO 98/24893, WO 98/50433, WO 99/45031, WO 99/53049, WO 00/09560, and WO 00/037504.

35 [0094] In another aspect, the invention provides a method for making anti-M-CSF antibodies from non-human, non-mouse animals by immunizing non-human transgenic animals that comprise human immunoglobulin loci with a M-CSF antigen. One can produce such animals using the methods described in the above-cited documents. The methods disclosed in these documents can be modified as described in U.S. Patent 5,994,619. U.S. Patent 5,994,619 describes methods for producing novel cultural inner cell mass (CICM) cells and cell lines, derived from pigs and cows, and transgenic CICM cells into which heterologous DNA has been inserted. CICM transgenic cells can be used to produce 40 cloned transgenic embryos, fetuses, and offspring. The '619 patent also describes the methods of producing the transgenic animals, that are capable of transmitting the heterologous DNA to their progeny. In preferred embodiments, the non-human animals are rats, sheep, pigs, goats, cattle or horses.

45 [0095] XENOMOUSE™ mice produce an adult-like human repertoire of fully human antibodies and generate antigen-specific human antibodies. In some embodiments, the XENOMOUSE™ mice contain approximately 80% of the human antibody V gene repertoire through introduction of megabase sized, germline configuration yeast artificial chromosome (YAC) fragments of the human heavy chain loci and kappa light chain loci. In other embodiments, XENOMOUSE™ mice further contain approximately all of the lambda light chain locus. See Mendez et al., *Nature Genetics* 15:146-156 (1997), Green and Jakobovits, *J. Exp. Med.* 188:483-495 (1998), and WO 98/24893, the disclosures of which are hereby incorporated by reference.

50 [0096] In some embodiments, the non-human animal comprising human immunoglobulin genes are animals that have a human immunoglobulin "minilocus". In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of individual genes from the Ig locus. Thus, one or more V_H genes, one or more D_H genes, one or more J_H genes, a mu constant domain, and a second constant domain (preferably a gamma constant domain) are formed into a construct for insertion into an animal. This approach is described, *inter alia*, in U.S. Patent Nos. 5,545,807, 5,545,8X06, 5,569,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,591,669, 5,612,205, 5,721,367, 5,789,215, and 5,643,763, hereby incorporated by reference.

55 [0097] In another aspect, the disclosure relates to a method for making humanized anti-M-CSF antibodies. In some embodiments, non-human animals are immunized with a M-CSF antigen as described below under conditions that permit

antibody production. Antibody-producing cells are isolated from the animals, fused with myelomas to produce hybridomas, and nucleic acids encoding the heavy and light chains of an anti-M-CSF antibody of interest are isolated. These nucleic acids are subsequently engineered using techniques known to those of skill in the art and as described further below to reduce the amount of non-human sequence, i.e., to humanize the antibody to reduce the immune response in humans

5 [0098] In some embodiments, the M-CSF antigen is isolated and/or purified M-CSF. In a preferred embodiment, the M-CSF antigen is human M-CSF. In some embodiments, the M-CSF antigen is a fragment of M-CSF. In some embodiments, the M-CSF fragment is the extracellular domain of M-CSF. In some embodiments, the M-CSF fragment comprises at least one epitope of M-CSF. In other embodiments, the M-CSF antigen is a cell that expresses or overexpresses M-CSF or an immunogenic fragment thereof on its surface. In some embodiments, the M-CSF antigen is a M-CSF fusion protein. M-CSF can be purified from natural sources using known techniques. Recombinant M-CSF is commercially available.

10 [0099] Immunization of animals can be by any method known in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, New York: Cold Spring Harbor Press, 1990. Methods for immunizing non-human animals such as mice, rats, sheep, goats, pigs, cattle and horses are well known in the art. See, e.g., Harlow and Lane, *supra*, and U.S.

15 Patent 5,994,619. In a preferred embodiment, the M-CSF antigen is administered with an adjuvant to stimulate the immune response. Exemplary adjuvants include complete or incomplete Freund's adjuvant, RIBI (muramyl dipeptides) or ISCOM (immunostimulating complexes). Such adjuvants may protect the polypeptide from rapid dispersal by sequestering it in a local deposit, or they may contain substances that stimulate the host to secrete factors that are chemotactic for macrophages and other components of the immune system. Preferably, if a polypeptide is being administered, the

20 immunization schedule will involve two or more administrations of the polypeptide, spread out over several weeks.

Example I exemplifies a method for producing anti-M-CSF monoclonal antibodies in XENOMOUSE™ mice.

Production of Antibodies and Antibody-Producing Cell Lines

25 [0100] After immunization of an animal with a M-CSF antigen, antibodies and/or antibody-producing cells can be obtained from the animal. In some embodiments, anti-M-CSF antibody-containing serum is obtained from the animal by bleeding or sacrificing the animal. The serum may be used as it is obtained from the animal, an immunoglobulin fraction may be obtained from the serum, or the anti-M-CSF antibodies may be purified from the serum.

30 [0101] In some embodiments, antibody-producing immortalized cell lines are prepared from cells isolated from the immunized animal. After immunization, the animal is sacrificed and lymph node and/or splenic B cells are immortalized. Methods of immortalizing cells include, but are not limited to, transfecting them with oncogenes, infecting them with an oncogenic virus, cultivating them under conditions that select for immortalized cells, subjecting them to carcinogenic or mutating compounds, fusing them with an immortalized cell, e.g., a myeloma cell, and inactivating a tumor suppressor gene. See, e.g., Harlow and Lane, *supra*. If fusion with myeloma cells is used, the myeloma cells preferably do not secrete immunoglobulin polypeptides (a non-secretory cell line). Immortalized cells are screened using M-CSF, a portion thereof, or a cell expressing M-CSF. In a preferred embodiment, the initial screening is performed using an enzyme-linked immunoassay (ELISA) or a radioimmunoassay. An example of ELISA screening is provided in WO 00/37504, incorporated herein by reference.

35 [0102] Anti-M-CSF antibody-producing cells, e.g., hybridomas, are selected, cloned and further screened for desirable characteristics, including robust growth, high antibody production and desirable antibody characteristics, as discussed further below. Hybridomas can be expanded *in vivo* in syngeneic animals, in animals that lack an immune system, e.g., nude mice, or in cell culture *in vitro*. Methods of selecting, cloning and expanding hybridomas are well known to those of ordinary skill in the art.

40 [0103] In a preferred embodiment, the immunized animal is a non-human animal that expresses human immunoglobulin genes and the splenic B cells are fused to a myeloma cell line from the same species as the non-human animal. In a more preferred embodiment, the immunized animal is a XENOMOUSE™ animal and the myeloma cell line is a non-secretory mouse myeloma. In an even more preferred embodiment, the myeloma cell line is P3-X63-AG8-653. See, e.g., Example I.

45 [0104] Thus, in one embodiment, the invention provides methods of producing a cell line that produces a human monoclonal antibody or a fragment thereof directed to M-CSF comprising (a) immunizing a non-human transgenic animal described herein with M-CSF, a portion of M-CSF or a cell or tissue expressing M-CSF; (b) allowing the transgenic animal to mount an immune response to M-CSF; (c) isolating B lymphocytes from a transgenic animal; (d) immortalizing the B lymphocytes; (e) creating individual monoclonal populations of the immortalized B lymphocytes; and (f) screening the immortalized B lymphocytes to identify an antibody directed to M-CSF.

50 [0105] In another aspect, the disclosure relates to hybridomas that produce an human anti-M-CSF antibody. In a preferred embodiment, the hybridomas are mouse hybridomas, as described above. In other embodiments, the hybridomas are produced in a non-human, non-mouse species such as rats, sheep, pigs, goats, cattle or horses. In another embodiment, the hybridomas are human hybridomas.

[0106] In another preferred embodiment, a transgenic animal is immunized with M-CSF, primary cells, e.g., spleen or peripheral blood cells, are isolated from an immunized transgenic animal and individual cells producing antibodies specific for the desired antigen are identified. Polyadenylated mRNA from each individual cell is isolated and reverse transcription polymerase chain reaction (RT-PCR) is performed using sense primers that anneal to variable region sequences, e.g., degenerate primers that recognize most or all of the FR1 regions of human heavy and light chain variable region genes and antisense primers that anneal to constant or joining region sequences. cDNAs of the heavy and light chain variable regions are then cloned and expressed in any suitable host cell, e.g., a myeloma cell, as chimeric antibodies with respective immunoglobulin constant regions, such as the heavy chain and κ or λ constant domains. See Babcock, J.S. et al., Proc. Natl. Acad. Sci. USA 93:7843-48, 1996, herein incorporated by reference. Anti M-CSF antibodies may then be identified and isolated as described herein.

[0107] In another embodiment, phage display techniques can be used to provide libraries containing a repertoire of antibodies with varying affinities for M-CSF. For production of such repertoires, it is unnecessary to immortalize the B cells from the immunized animal. Rather, the primary B cells can be used directly as a source of DNA. The mixture of cDNAs obtained from B cell, e.g., derived from spleens, is used to prepare an expression library, for example, a phage display library transfected into *E.coli*. The resulting cells are tested for immunoreactivity to M-CSF. Techniques for the identification of high affinity human antibodies from such libraries are described by Griffiths et al., EMBO J., 13:3245-3260 (1994); Nissim et al., ibid, pp. 692-698 and by Griffiths et al., ibid, 12:725-734. Ultimately, clones from the library are identified which produce binding affinities of a desired magnitude for the antigen and the DNA encoding the product responsible for such binding is recovered and manipulated for standard recombinant expression. Phage display libraries may also be constructed using previously manipulated nucleotide sequences and screened in a similar fashion. In general, the cDNAs encoding heavy and light chains are independently supplied or linked to form Fv analogs for production in the phage library.

[0108] The phage library is then screened for the antibodies with the highest affinities for M-CSF and the genetic material recovered from the appropriate clone. Further rounds of screening can increase affinity of the original antibody isolated.

[0109] In another aspect, the disclosure relates to hybridomas that produce an human anti-M-CSF antibody. In a preferred embodiment, the hybridomas are mouse hybridomas, as described above. In other embodiments, the hybridomas are produced in a non-human, non-mouse species such as rats, sheep, pigs, goats, cattle or horses. In another embodiment, the hybridomas are human hybridomas.

Nucleic Acids, Vectors, Host Cells, and

Recombinant Methods of Making Antibodies

Nucleic Acids

[0110] The present invention also encompasses nucleic acid molecules encoding anti-M-CSF antibodies. In some embodiments, different nucleic acid molecules encode a heavy chain and a light chain of an anti-M-CSF immunoglobulin. In other embodiments, the same nucleic acid molecule encodes a heavy chain and a light chain of an anti-M-CSF immunoglobulin. In one embodiment, the nucleic acid encodes a M-CSF antibody of the invention.

[0111] In some embodiments, the nucleic acid molecule encoding the variable domain of the light chain comprises a human V_{κ} L5, O12, L2, B3, A27 gene and a $J_{\kappa}1$, $J_{\kappa}2$, $J_{\kappa}3$, or $J_{\kappa}4$ gene.

[0112] In some embodiments, the nucleic acid molecule encoding the light chain, encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 mutations from the germline amino acid sequence. In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes a V_L amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 non-conservative amino acid substitutions and/or 1, 2, or 3 non-conservative substitutions compared to germline sequence. Substitutions may be in the CDR regions, the framework regions, or in the constant domain.

[0113] In some embodiments, the nucleic acid molecule encodes a V_L amino acid sequence comprising one or more variants compared to germline sequence that are identical to the variations found in the V_L of one of the antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1.

[0114] In some embodiments, the nucleic acid molecule encodes at least three amino acid mutations compared to the germline sequence found in the V_L of one of the antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4, 8.10.3, or 9.7.2.

[0115] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes the V_L amino acid sequence of monoclonal antibody 252 (SEQ ID NO: 4), 88 (SEQ ID NO: 8), 100 (SEQ ID NO: 12), 3.8.3 (SEQ ID NO: 16), 2.7.3 (SEQ ID NO: 20), 1.120.1 (SEQ ID NO: 24), 9.14.4I (SEQ ID NO: 28), 8.10.3F (SEQ ID NO: 32), 9.7.2IF (SEQ ID NO: 36), 9.14.4 (SEQ ID NO: 28), 8.10.3 (SEQ ID NO: 44), 9.7.2 (SEQ ID NO: 48), 9.7.2C-Ser (SEQ ID NO:

52), 9.14.4C-Ser (SEQ ID NO: 56), 8.1.0.3C-Ser (SEQ ID NO: 60), 8.10.3-CG2 (SEQ ID NO: 60), 9.7.2-CG2 (SEQ ID NO: 52), 9.7.2-CG4 (SEQ ID NO: 52), 9.14.4-CG2 (SEQ ID NO: 56), 9.14.4-CG4 (SEQ ID NO: 56), 9.14.4-Ser (SEQ ID NO: 28), 9.7.2-Ser (SEQ ID NO: 48), 8.10.3-Ser (SEQ ID NO: 44), 8.10.3-CG4 (SEQ ID NO: 60) 8.10.3FG1 (SEQ ID NO: 32) or 9.14.4G1 (SEQ ID NO: 28), or a portion thereof. In some embodiments, said portion comprises at least the CDR2 region. In some embodiments, the nucleic acid encodes the amino acid sequence of the light chain CDRs of said antibody. In some embodiments, said portion is a contiguous portion comprising CDR1-CDR3.

5 [0116] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes the light chain amino acid sequence of one of SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60. In some preferred embodiments, the nucleic acid molecule comprises the light chain nucleotide sequence of SEQ ID NOS: 3, 7, 11, 27, 10 31, 35, 43 or 47, or a portion thereof.

15 [0117] In some embodiments, the nucleic acid molecule encodes a V_L amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to a V_L amino acid sequence shown in Figure 4 or to a V_L amino acid sequences of any one of antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2- Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or an amino acid sequence of any one of SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60. Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleic acid sequence encoding the light chain amino acid sequence of SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60, or that has the light chain nucleic acid sequence of SEQ ID NOS: 3, 7, 11, 27, 31, 35, 43 or 47.

20 [0118] In another embodiment, the nucleic acid encodes a full-length light chain of an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3- CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or a light chain comprising the amino acid sequence of SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60 and a constant region of a light chain, or a light chain comprising a mutation. Further, the nucleic acid may 25 comprise the light chain nucleotide sequence of SEQ ID NOS: 3, 7, 11, 27, 31, 35, 43 or 47 and the nucleotide sequence encoding a constant region of a light chain, or a nucleic acid molecule encoding a light chain comprise a mutation.

30 [0119] In another preferred embodiment, the nucleic acid molecule encodes the variable domain of the heavy chain (V_H) that comprises a human V_H 1-18, 3-33, 3-11, 3-23, 3-48, or 3-7 gene sequence or a sequence derived therefrom. In various embodiments, the nucleic acid molecule comprises a human V_H 1-18 gene, a D_H 4-23 gene and a human J_H 4 gene; a human V_H 3-33 gene, a human D_H 1-26 gene and a human J_H 4 gene; a human V_H 3-11 gene, a human D_H 7-27 gene and a human J_H 4 gene; a human V_H 3-11 gene, a human D_H 7-27 gene and a human J_H 6 gene; a human V_H 3-23 gene, a human D_H 1-26 gene and a human J_H 4 gene; a human V_H 3-7 gene, a human D_H 6-13 gene and a human J_H 4 gene; a human V_H 3-11 gene, a human D_H 7-27 gene, and a human J_H 4b gene; a human V_H 3-48 gene, a human D_H 1-26 gene, and a human J_H 4b gene; a human V_H 3-11 gene, a human D_H 6-13 gene, and a human J_H 6b gene, or a sequence 35 derived from the human genes.

35 [0120] In some embodiments, the nucleic acid molecule encodes an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 mutations compared to the germline amino acid sequence of the human V , D or J genes. In some embodiments, said mutations are in the V_H region. In some embodiments, said mutations are in the CDR regions.

40 [0121] In some embodiments, the nucleic acid molecule encodes one or more amino acid mutations compared to the germline sequence that are identical to amino acid mutations found in the V_H of monoclonal antibody 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3-CG2, 9.7.2- CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In some embodiments, the nucleic acid encodes at least three amino acid mutations compared to the germline sequences 45 that are identical to at least three amino acid mutations found in one of the above-listed monoclonal antibodies.

50 [0122] In some embodiments, the nucleic acid molecule comprises a nucleotide sequence that encodes at least a portion of the V_H amino acid sequence of antibody 252 (SEQ ID NO: 2), 88 (SEQ ID NO: 6), 100 (SEQ ID NO: 10), 3.8.3 (SEQ ID NO: 14), 2.7.3 (SEQ ID NO: 18), 1.120.1 (SEQ ID NO: 22), 9.14.4I (SEQ ID NO: 26), 8.10.3F (SEQ ID NO: 30), 9.7.2IF (SEQ ID NO: 34), 9.14.4 (SEQ ID NO: 38), 8.10.3 (SEQ ID NO: 30), 9.7.2 (SEQ ID NO: 46), 9.7.2C-Ser (SEQ ID NO: 50), 9.14.4C-Ser (SEQ ID NO: 54), 8.10.3C-Ser (SEQ ID NO: 58), 8.10.3-CG2 (SEQ ID NO: 62), 9.7.2- CG2 (SEQ ID NO: 66), 9.7.2-CG4 (SEQ ID NO: 70), 9.14.4-CG2 (SEQ ID NO: 74), 9.14.4-CG4 (SEQ ID NO: 78), 9.14.4-Ser (SEQ ID NO: 82), 9.7.2-Ser (SEQ ID NO: 86), 8.10.3-Ser (SEQ ID NO: 90), 8.10.3-CG4 (SEQ ID NO: 94) 8.10.3FG1 (SEQ ID NO: 98) or 9.14.4G1 (SEQ ID NO: 102), or said sequence having conservative amino acid mutations and/or a total of three or fewer non-conservative amino acid substitutions. In various embodiments the sequence encodes one 55 or more CDR regions, preferably a CDR3 region, all three CDR regions, a contiguous portion including CDR1-CDR3, or the entire V_H region.

55 [0123] In some embodiments, the nucleic acid molecule comprises a heavy chain nucleotide sequence that encodes the amino acid sequence of one of SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78,

82, 86, 90, 94, 98 or 102. In some preferred embodiments, the nucleic acid molecule comprises at least a portion of the heavy chain nucleotide sequence of SEQ ID NO: 1, 5, 9, 25, 29, 33, 37, 45, 97 or 101. In some embodiments, said portion encodes the V_H region, a CDR3 region, all three CDR regions, or a contiguous region including CDR1-CDR3.

[0124] In some embodiments, the nucleic acid molecule encodes a V_H amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98% or 99% identical to the V_H amino acid sequences shown in Figure 4 or to a V_H amino acid sequence of any one of SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102. Nucleic acid molecules of the invention include nucleic acids that hybridize under highly stringent conditions, such as those described above, to a nucleotide sequence encoding the heavy chain amino acid sequence of SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102 or that has the nucleotide sequence of SEQ ID NOS: 1, 5, 9, 25, 29, 33, 37, 45, 97 or 101.

[0125] In another embodiment, the nucleic acid encodes a full-length heavy chain of an antibody selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or a heavy chain having the amino acid sequence of SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102 and a constant region of a heavy chain, or a heavy chain comprising a mutation. Further, the nucleic acid may comprise the heavy chain nucleotide sequence of SEQ ID NOS: 1, 5, 9, 25, 29, 33, 37, 45, 97 or 101 and a nucleotide sequence encoding a constant region of a light chain, or a nucleic acid molecule encoding a heavy chain comprising a mutation.

[0126] A nucleic acid molecule encoding the heavy or entire light chain of an anti-M-CSF antibody or portions thereof can be isolated from any source that produces such antibody. In various embodiments, the nucleic acid molecules are isolated from a B cell isolated from an animal immunized with M-CSF or from an immortalized cell derived from such a B cell that expresses an anti-M-CSF antibody. Methods of isolating mRNA encoding an antibody are well-known in the art. See, e.g., Sambrook *et al.* The mRNA may be used to produce cDNA for use in the polymerase chain reaction (PCR) or cDNA cloning of antibody genes. In a preferred embodiment, the nucleic acid molecule is isolated from a hybridoma that has as one of its fusion partners a human immunoglobulin-producing cell from a non-human transgenic animal. In an even more preferred embodiment, the human immunoglobulin producing cell is isolated from a XENOMOUSE™ animal. In another embodiment, the human immunoglobulin-producing cell is from a non-human, non-mouse transgenic animal, as described above. In another embodiment, the nucleic acid is isolated from a non-human, non-transgenic animal. The nucleic acid molecules isolated from a non-human, non-transgenic animal may be used, e.g., for humanized antibodies.

[0127] In some embodiments, a nucleic acid encoding a heavy chain of an anti-M-CSF antibody of the invention can comprise a nucleotide sequence encoding a V_H domain of the invention joined in-frame to a nucleotide sequence encoding a heavy chain constant domain from any source. Similarly, a nucleic acid molecule encoding a light chain of an anti-M-CSF antibody of the invention can comprise a nucleotide sequence encoding a V_L domain of the invention joined in-frame to a nucleotide sequence encoding a light chain constant domain from any source.

[0128] In a further aspect of the invention, nucleic acid molecules encoding the variable domain of the heavy (V_H) and light (V_L) chains are "converted" to full-length antibody genes. In one embodiment, nucleic acid molecules encoding the V_H or V_L domains are converted to full-length antibody genes by insertion into an expression vector already encoding heavy chain constant (C_H) or light chain (C_L) constant domains, respectively, such that the V_H segment is operatively linked to the C_H segment(s) within the vector, and the V_L segment is operatively linked to the C_L segment within the vector. In another embodiment, nucleic acid molecules encoding the V_H and/or V_L domains are converted into full-length antibody genes by linking, e.g., ligating, a nucleic acid molecule encoding a V_H and/or V_L domains to a nucleic acid molecule encoding a C_H and/or C_L domain using standard molecular biological techniques. Nucleic acid sequences of human heavy and light chain immunoglobulin constant domain genes are known in the art. See, e.g., Kabat *et al.*, Sequences of Proteins of Immunological Interest, 5th Ed., NIH Publ. No. 91-3242, 1991. Nucleic acid molecules encoding the full-length heavy and/or light chains may then be expressed from a cell into which they have been introduced and the anti-M-CSF antibody isolated.

[0129] The nucleic acid molecules may be used to recombinantly express large quantities of anti-M-CSF antibodies. The nucleic acid molecules also may be used to produce chimeric antibodies, bispecific antibodies, single chain antibodies, immunoadhesins, diabodies, mutated antibodies and antibody derivatives, as described further below. If the nucleic acid molecules are derived from a non-human, non-transgenic animal, the nucleic acid molecules may be used for antibody humanization, also as described below.

[0130] In another embodiment, a nucleic acid molecule of the invention is used as a probe or PCR primer for a specific antibody sequence. For instance, the nucleic acid can be used as a probe in diagnostic methods or as a PCR primer to amplify regions of DNA that could be used, *inter alia*, to isolate additional nucleic acid molecules encoding variable domains of anti-M-CSF antibodies. In some embodiments, the nucleic acid molecules are oligonucleotides. In some embodiments, the oligonucleotides are from highly variable regions of the heavy and light chains of the antibody of interest. In some embodiments, the oligonucleotides encode all or a part of one or more of the CDRs of antibody 252,

88, 100, 3.8.3, 2.7.3, or 1.120.1, or variants thereof described herein.

Vectors

- 5 [0131] The invention provides vectors comprising nucleic acid molecules that encode the heavy chain of an anti-M-CSF antibody of the invention or an antigen-binding portion thereof. The invention also provides vectors comprising nucleic acid molecules that encode the light chain of such antibodies or antigen-binding portion thereof. The invention further provides vectors comprising nucleic acid molecules encoding fusion proteins, modified antibodies, antibody fragments, and probes thereof.
- 10 [0132] In some embodiments, the anti-M-CSF antibodies, or antigen-binding portions of the invention are expressed by inserting DNAs encoding partial or full-length light and heavy chains, obtained as described above, into expression vectors such that the genes are operatively linked to necessary expression control sequences such as transcriptional and transnational control sequences. Expression vectors include plasmids, retroviruses, adenoviruses, adeno-associated viruses (AAV), plant viruses such as cauliflower mosaic virus, tobacco mosaic virus, cosmids, YACs, EBV derived 15 episomes, and the like. The antibody gene is ligated into a vector such that transcriptional and transnational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene. The expression vector and expression control sequences are chosen to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into separate vectors. In a preferred embodiment, both genes are inserted into the same expression vector. The antibody genes are inserted into 20 the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
- 25 [0133] A convenient vector is one that encodes a functionally complete human C_H or C_L immunoglobulin sequence, with appropriate restriction sites engineered so that any V_H or V_L sequence can easily be inserted and expressed, as described above. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C domain, and also at the splice regions that occur within the human C_H exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The recombinant expression vector also can encode a signal peptide that facilitates secretion of the antibody chain from a host cell. The antibody chain gene may be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the immunoglobulin chain. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
- 30 [0134] In addition to the antibody chain genes, the recombinant expression vectors of the invention carry regulatory sequences that control the expression of the antibody chain genes in a host cell. It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. Preferred regulatory 35 sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from retroviral LTRs, cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)), polyoma and strong mammalian promoters such as native immunoglobulin and actin promoters. For further description of viral regulatory elements, and sequences thereof, see e.g., U.S. Patent 40 No. 5,168,062, U.S. Patent No. 4,510,245 and U.S. Patent No. 4,968,615. Methods for expressing antibodies in plants, including a description of promoters and vectors, as well as transformation of plants is known in the art. See, e.g., United States Patents 6,517,529, herein incorporated by reference. Methods of expressing polypeptides in bacterial cells or 45 fungal cells, e.g., yeast cells, are also well known in the art.
- 50 [0135] In addition to the antibody chain genes and regulatory sequences, the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes. The selectable marker gene facilitates selection of host cells into which the vector has been introduced (see e.g., U.S. Patent Nos. 4,399,216, 4,634,665 and 5,179,017). For example, typically the selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced. Preferred selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr-host cells with methotrexate selection/amplification), the neomycin resistance gene (for G418 selection), and the glutamate synthetase gene.

Non-Hybridoma Host Cells and Methods of Recombinantly Producing Protein

- 55 [0136] Nucleic acid molecules encoding anti-M-CSF antibodies and vectors comprising these nucleic acid molecules can be used for transfection of a suitable mammalian, plant, bacterial or yeast host cell. Transformation can be by any known method for introducing polynucleotides into a host cell. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, calcium phosphate precipi-

tation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei. In addition, nucleic acid molecules may be introduced into mammalian cells by viral vectors. Methods of transforming cells are well known in the art. See, e.g., U.S. Patent Nos. 4,399,216, 4,912,040, 4,740,461, and 4,959,455 (which patents are hereby incorporated herein by reference). Methods of transforming plant cells are well known in the art, including, e.g., Agrobacterium-mediated transformation, biolistic transformation, direct injection, electroporation and viral transformation. Methods of transforming bacterial and yeast cells are also well known in the art.

[0137] Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC). These include, *inter alia*, Chinese hamster ovary (CHO) cells, NSO, SP2 cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), A549 cells, and a number of other cell lines. Cell lines of particular preference are selected through determining which cell lines have high expression levels. Other cell lines that may be used are insect cell lines, such as Sf9 cells. When recombinant expression vectors encoding antibody genes are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, secretion of the antibody into the culture medium in which the host cells are grown. Antibodies can be recovered from the culture medium using standard protein purification methods. Plant host cells include, e.g., Nicotiana, Arabidopsis, duckweed, corn, wheat, potato, etc. Bacterial host cells include *E. coli* and *Streptomyces* species. Yeast host cells include *Schizosaccharomyces pombe*, *Saccharomyces cerevisiae* and *Pichia pastoris*.

[0138] Further, expression of antibodies of the invention (or other moieties therefrom) from production cell lines can be enhanced using a number of known techniques. For example, the glutamine synthetase gene expression system (the GS system) is a common approach for enhancing expression under certain conditions. The GS system is discussed in whole or part in connection with European Patent Nos. 0 216 846, 0 256 055, and 0 323 997 and European Patent Application No. 89303964.4.

[0139] It is possible that antibodies expressed by different cell lines or in transgenic animals will have different glycosylation from each other. However, all antibodies encoded by the nucleic acid molecules provided herein, or comprising the amino acid sequences provided herein are part of the instant invention, regardless of the glycosylation state or pattern or modification of the antibodies.

30 *Transgenic Animals and Plants*

[0140] Anti-M-CSF antibodies of the invention also can be produced transgenically through the generation of a mammal or plant that is transgenic for the immunoglobulin heavy and light chain sequences of interest and production of the antibody in a recoverable form therefrom. In connection with the transgenic production in mammals, anti-M-CSF antibodies can be produced in, and recovered from, the milk of goats, cows, or other mammals. See, e.g., U.S. Patent Nos. 5,827,690, 5,756,687, 5,750,172, and 5,741,957. In some embodiments, non-human transgenic animals that comprise human immunoglobulin loci are immunized with M-CSF or an immunogenic portion thereof, as described above. Methods for making antibodies in plants, yeast or fungi/algae are described, e.g., in US patents 6,046,037 and US 5,959,177.

[0141] In some embodiments, non-human transgenic animals or plants are produced by introducing one or more nucleic acid molecules encoding an anti-M-CSF antibody of the invention into the animal or plant by standard transgenic techniques. See Hogan and United States Patent 6,417,429, *supra*. The transgenic cells used for making the transgenic animal can be embryonic stem cells or somatic cells. The transgenic non-human organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes. See, e.g., Hogan et al., *Manipulating the Mouse Embryo: A Laboratory Manual* 2ed., Cold Spring Harbor Press (1999); Jackson et al., *Mouse Genetics and Transgenics: A Practical Approach*, Oxford University Press (2000); and Pinkert, *Transgenic Animal Technology: A Laboratory Handbook*, Academic Press (1999). In some embodiments, the transgenic non-human animals have a targeted disruption and replacement by a targeting construct that encodes a heavy chain and/or a light chain of interest. In a preferred embodiment, the transgenic animals comprise and express nucleic acid molecules encoding heavy and light chains that specifically bind to M-CSF, preferably human M-CSF. In some embodiments, the transgenic animals comprise nucleic acid molecules encoding a modified antibody such as a single-chain antibody, a chimeric antibody or a humanized antibody. The anti-M-CSF antibodies may be made in any transgenic animal. In a preferred embodiment, the non-human animals are mice, rats, sheep, pigs, goats, cattle or horses. The non-human transgenic animal expresses said encoded polypeptides in blood, milk, urine, saliva, tears, mucus and other bodily fluids.

55 *Phage Display Libraries*

[0142] The disclosure relates to a method for producing an anti-M-CSF antibody or antigen-binding portion thereof comprising the steps of synthesizing a library of human antibodies on phage, screening the library with M-CSF or a

portion thereof, isolating phage that bind M-CSF, and obtaining the antibody from the phage. By way of example, one method for preparing the library of antibodies for use in phage display techniques comprises the steps of immunizing a non-human animal comprising human immunoglobulin loci with M-CSF or an antigenic portion thereof to create an immune response, extracting antibody producing cells from the immunized animal; isolating RNA from the extracted cells, reverse transcribing the RNA to produce cDNA, amplifying the cDNA using a primer, and inserting the cDNA into a phage display vector such that antibodies are expressed on the phage. Recombinant anti-M-CSF antibodies of the invention may be obtained in this way.

[0143] Recombinant anti-M-CSF human antibodies of the invention can be isolated by screening a recombinant combinatorial antibody library. Preferably the library is a scFv phage display library, generated using human V_L and V_H cDNAs prepared from mRNA isolated from B cells. Methodologies for preparing and screening such libraries are known in the art. There are commercially available kits for generating phage display libraries (e.g., the Pharmacia Recombinant Phage Antibody System, catalog no. 27-9400-01; and the Stratagene SurfZAP™ phage display kit, catalog no. 240612). There also are other methods and reagents that can be used in generating and screening antibody display libraries (see, e.g., U.S. Patent No. 5,223,409; PCT Publication Nos. WO 92/18619, WO 91/17271, WO 92/20791, WO 92/15679, WO 93/01288, WO 92/01047, WO 92/09690; Fuchs et al., *Bio/Technology* 9:1370-1372 (1991); Hay et al., *Hum. Antibod. Hybridomas* 3:81-85 (1992); Huse et al., *Science* 246:1275-1281 (1989); McCafferty et al., *Nature* 348:552-554 (1990); Griffiths et al., *EMBO J.* 12:725-734 (1993); Hawkins et al., *J. Mol. Biol.* 226:889-896 (1992); Clackson et al., *Nature* 352:624-628 (1991); Gram et al., *Proc. Natl. Acad. Sci. USA* 89:3576-3580 (1992); Garrad et al., *Bio/Technology* 9:1373-1377 (1991); Hoogenboom et al., *Nuc. Acid Res.* 19:4133-4137 (1991); and Barbas et al., *Proc. Natl. Acad. Sci. USA* 88:7978-7982 (1991).

[0144] In one embodiment, to isolate a human anti-M-CSF antibodies with the desired characteristics, a human anti-M-CSF antibody as described herein is first used to select human heavy and light chain sequences having similar binding activity toward M-CSF, using the epitope imprinting methods described in PCT Publication No. WO 93/06213. The antibody libraries used in this method are preferably scFv libraries prepared and screened as described in PCT Publication No. WO 92/01047, McCafferty et al., *Nature* 348:552-554 (1990); and Griffiths et al., *EMBO J.* 12:725-734 (1993). The scFv antibody libraries preferably are screened using human M-CSF as the antigen.

[0145] Once initial human V_L and V_H domains are selected, "mix and match" experiments are performed, in which different pairs of the initially selected V_L and V_H segments are screened for M-CSF binding to select preferred V_L/V_H pair combinations. Additionally, to further improve the quality of the antibody, the V_L and V_H segments of the preferred V_L/V_H pair(s) can be randomly mutated, preferably within the CDR3 region of V_H and/or V_L , in a process analogous to the *in vivo* somatic mutation process responsible for affinity maturation of antibodies during a natural immune response. This *in vitro* affinity maturation, can be accomplished by amplifying V_H and V_L domains using PCR primers complimentary to the V_H CDR3 or V_L CDR3, respectively, which primers have been "spiked" with a random mixture of the four nucleotide bases at certain positions such that the resultant PCR products encode V_H and V_L segments into which random mutations have been introduced into the V_H and/or V_L CDR3 regions. These randomly mutated V_H and V_L segments can be re-screened for binding to M-CSF.

[0146] Following screening and isolation of an anti-M-CSF antibody of the invention from a recombinant immunoglobulin display library, nucleic acids encoding the selected antibody can be recovered from the display package (e.g., from the phage genome) and subcloned into other expression vectors by standard recombinant DNA techniques. If desired, the nucleic acid can further be manipulated to create other antibody forms of the invention, as described below. To express a recombinant human antibody isolated by screening of a combinatorial library, the DNA encoding the antibody is cloned into a recombinant expression vector and introduced into a mammalian host cells, as described above.

Class switching

[0147] Another aspect of the disclosure relates to a method for converting the class or subclass of an anti-M-CSF antibody to another class or subclass. In some embodiments, a nucleic acid molecule encoding a V_L or V_H that does not include any nucleic acid sequences encoding C_L or C_H is isolated using methods well-known in the art. The nucleic acid molecule then is operatively linked to a nucleic acid sequence encoding a C_L or C_H from a desired immunoglobulin class or subclass. This can be achieved using a vector or nucleic acid molecule that comprises a C_L or C_H chain, as described above. For example, an anti-M-CSF antibody that was originally IgM can be class switched to an IgG. Further, the class switching may be used to convert one IgG subclass to another, e.g., from IgG1 to IgG2. Another method for producing an antibody of the invention comprising a desired isotype comprises the steps of isolating a nucleic acid encoding a heavy chain of an anti-M-CSF antibody and a nucleic acid encoding a light chain of an anti-M-CSF antibody, isolating the sequence encoding the V_H region, ligating the V_H sequence to a sequence encoding a heavy chain constant domain of the desired isotype, expressing the light chain gene and the heavy chain construct in a cell, and collecting the anti-M-CSF antibody with the desired isotype.

[0148] In some embodiments, anti-M-CSF antibodies of the invention have the serine at position 228 (according to

the EU-numbering convention) of the heavy chain changed to a proline. Accordingly, the CPSC sub-sequence in the F_C region of IgG4 becomes CPPC, which is the sub-sequence in IgG1. (Aalberse, R.C. and Schuurman, J., *Immunology*, 105:9-19 (2002)). For example, the serine at residue 243 SEQ ID NO: 46 (which corresponds to residue 228 in the EU-numbering convention) would become proline. Similarly, the serine at residue 242 of SEQ ID NO: 38 (which corresponds to residue 228 in the EU-numbering convention) would become proline. In some embodiments, the framework region of the IgG4 antibody can be back-mutated to the germline framework sequence. Some embodiments comprise both the back-mutates framework region and the serine to proline change in the F_C region. See, e.g., SEQ ID NO: 54 (antibody 9.14.4C-Ser) and SEQ ID NO: 58 (antibody 8.10.3C-Ser) in Table 1.

10 *Deimmunized Antibodies*

[0149] Another way of producing antibodies with reduced immunogenicity is the deimmunization of antibodies. In another aspect of the invention, the antibody may be deimmunized using the techniques described in, e.g., PCT Publication Nos. WO98/52976 and WO00/34317 (which incorporated herein by reference in their entirety).

15 *Mutated Antibodies*

[0150] In another embodiment, the nucleic acid molecules, vectors and host cells may be used to make mutated anti-M-CSF antibodies. The antibodies may be mutated in the variable domains of the heavy and/or light chains, e.g., to alter a binding property of the antibody. For example, a mutation may be made in one or more of the CDR regions to increase or decrease the K_D of the antibody for M-CSF, to increase or decrease k_{off} , or to alter the binding specificity of the antibody. Techniques in site-directed mutagenesis are well-known in the art. See, e.g., Sambrook *et al.* and Ausubel *et al.*, *supra*. In a preferred embodiment, mutations are made at an amino acid residue that is known to be changed compared to germline in a variable domain of an anti-M-CSF antibody. In another embodiment, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in a CDR region or framework region of a variable domain, or in a constant domain of a monoclonal antibody 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1. In another embodiment, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in a CDR region or framework region of a variable domain of a heavy chain amino acid sequence selected from SEQ ID NOS: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98 or 102, or whose heavy chain nucleotide sequence is presented in SEQ ID NOS: 1, 5, 9, 25, 29, 33, 37, 45, 97 or 101. In another embodiment, one or more mutations are made at an amino acid residue that is known to be changed compared to the germline in a CDR region or framework region of a variable domain of a light chain amino acid sequence selected from SEQ ID NOS: 4, 8, 12, 16, 20, 24, 28, 32, 36, 44, 48, 52, 56 or 60, or whose light chain nucleotide sequence is presented in SEQ ID NOS: 3, 7, 11, 27, 31, 35, 43 or 47.

[0151] In one embodiment, the framework region is mutated so that the resulting framework region(s) have the amino acid sequence of the corresponding germline gene. A mutation may be made in a framework region or constant domain to increase the half-life of the anti-M-CSF antibody. See, e.g., PCT Publication No. WO 00/09560, herein incorporated by reference. A mutation in a framework region or constant domain also can be made to alter the immunogenicity of the antibody, to provide a site for covalent or non-covalent binding to another molecule, or to alter such properties as complement fixation, FcR binding and antibody-dependent cell-mediated cytotoxicity (ADCC). According to the invention, a single antibody may have mutations in any one or more of the CDRs or framework regions of the variable domain or in the constant domain.

[0152] In some embodiments, there are from 1 to 8 including any number in between, amino acid mutations in either the V_H or V_L domains of the mutated anti-M-CSF antibody compared to the anti-M-GSF antibody prior to mutation. In any of the above, the mutations may occur in one or more CDR regions. Further, any of the mutations can be conservative amino acid substitutions. In some embodiments, there are no more than 5, 4, 3, 2, or 1 amino acid changes in the constant domains.

50 *Modified Antibodies*

[0153] In another embodiment, a fusion antibody or immunoadhesin may be made that comprises all or a portion of an anti-M-CSF antibody of the invention linked to another polypeptide. In a preferred embodiment, only the variable domains of the anti-M-CSF antibody are linked to the polypeptide. In another preferred embodiment, the V_H domain of an anti-M-CSF antibody is linked to a first polypeptide, while the V_L domain of an anti-M-CSF antibody is linked to a second polypeptide that associates with the first polypeptide in a manner such that the V_H and V_L domains can interact with one another to form an antibody binding site. In another preferred embodiment, the V_H domain is separated from

the V_L domain by a linker such that the V_H and V_L domains can interact with one another (see below under Single Chain Antibodies). The V_H -linker- V_L antibody is then linked to the polypeptide of interest. The fusion antibody is useful for directing a polypeptide to a M-CSF-expressing cell or tissue. The polypeptide may be a therapeutic agent, such as a toxin, growth factor or other regulatory protein, or may be a diagnostic agent, such as an enzyme that may be easily visualized, such as horseradish peroxidase. In addition, fusion antibodies can be created in which two (or more) single-chain antibodies are linked to one another. This is useful if one wants to create a divalent or polyvalent antibody on a single polypeptide chain, or if one wants to create a bispecific antibody.

[0154] To create a single chain antibody, (scFv) the V_H - and V_L -encoding DNA fragments are operatively linked to another fragment encoding a flexible linker, e.g., encoding the amino acid sequence (Gly₄-Ser)₃, such that the V_H and V_L sequences can be expressed as a contiguous single-chain protein, with the V_L and V_H domains joined by the flexible linker. See, e.g., Bird et al., *Science* 242:423-426 (1988); Huston et al., *Proc. Natl. Acad. Sci. USA* 85:5879-5883 (1988); McCafferty et al., *Nature* 348:552-554 (1990). The single chain antibody may be monovalent, if only a single V_H and V_L are used, bivalent, if two V_H and V_L are used, or polyvalent, if more than two V_H and V_L are used. Bispecific or polyvalent antibodies may be generated that bind specifically to M-CSF and to another molecule.

[0155] In other embodiments, other modified antibodies may be prepared using anti-M-CSF antibody-encoding nucleic acid molecules. For instance, "Kappa bodies" (III et al., *Protein Eng.* 10: 949-57 (1997)), "Minibodies" (Martin et al., *EMBO J.* 13: 5303-9 (1994)), "Diabodies" (Holliger et al., *Proc. Natl. Acad. Sci. USA* 90: 6444-6448 (1993)), or "Janusins" (Traunecker et al., *EMBO J.* 10:3655-3659 (1991) and Traunecker et al., *Int. J. Cancer (Suppl.)* 7:51-52 (1992)) may be prepared using standard molecular biological techniques following the teachings of the specification.

[0156] Bispecific antibodies or antigen-binding fragments can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, *Clin. Exp. Immunol.* 79: 315-321 (1990), Kostelnik et al., *J. Immunol.* 148:1547-1553 (1992). In addition, bispecific antibodies may be formed as "diabodies" or "Janusins." In some embodiments, the bispecific antibody binds to two different epitopes of M-CSF. In some embodiments, the bispecific antibody has a first heavy chain and a first light chain from monoclonal antibody 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, or 9.7.2 and an additional antibody heavy chain and light chain. In some embodiments, the additional light chain and heavy chain also are from one of the above-identified monoclonal antibodies, but are different from the first heavy and light chains.

[0157] In some embodiments, the modified antibodies described above are prepared using one or more of the variable domains or CDR regions from a human anti-M-CSF monoclonal antibody provided herein, from an amino acid sequence of said monoclonal antibody, or from a heavy chain or light chain encoded by a nucleic acid sequence encoding said monoclonal antibody.

Derivatized and Labeled Antibodies

[0158] An anti-M-CSF antibody or antigen-binding portion of the invention can be derivatized or linked to another molecule (e.g., another peptide or protein). In general, the antibodies or portion thereof is derivatized such that the M-CSF binding is not affected adversely by the derivatization or labeling. Accordingly, the antibodies and antibody portions of the invention are intended to include both intact and modified forms of the human anti-M-CSF antibodies described herein. For example, an antibody or antibody portion of the invention can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detection agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).

[0159] One type of derivatized antibody is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies). Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g., disuccinimidyl suberate). Such linkers are available from Pierce Chemical Company, Rockford, Ill.

[0160] Another type of derivatized antibody is a labeled antibody. Useful detection agents with which an antibody or antigen-binding portion of the invention may be derivatized include fluorescent compounds, including fluorescein, fluorescein isothiocyanate, rhodamine, 5-dimethylamine-1-naphthalenesulfonyl chloride, phycoerythrin, lanthanide phosphors and the like. An antibody can also be labeled with enzymes that are useful for detection, such as horseradish peroxidase, β -galactosidase, luciferase, alkaline phosphatase, glucose oxidase and the like. When an antibody is labeled with a detectable enzyme, it is detected by adding additional reagents that the enzyme uses to produce a reaction product that can be discerned. For example, when the agent horseradish peroxidase is present, the addition of hydrogen peroxide and diaminobenzidine leads to a colored reaction product, which is detectable. An antibody can also be labeled with biotin, and detected through indirect measurement of avidin or streptavidin binding. An antibody can also be labeled with a predetermined polypeptide epitope recognized by a secondary reporter (e.g., leucine zipper pair sequences,

binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.

[0161] An anti-M-CSF antibody can also be labeled with a radiolabeled amino acid. The radiolabeled anti-M-CSF antibody can be used for both diagnostic and therapeutic purposes. For instance, the radiolabeled anti-M-CSF antibody can be used to detect M-CSF-expressing tumors by x-ray or other diagnostic techniques. Further, the radiolabeled anti-M-CSF antibody can be used therapeutically as a toxin for cancerous cells or tumors. Examples of labels for polypeptides include, but are not limited to, the following radioisotopes or radionuclides - ^3H , ^{14}C , ^{15}N , ^{35}S , ^{90}Y , ^{99}Tc , ^{111}In , ^{125}I , and ^{131}I .

[0162] An anti-M-CSF antibody can also be derivatized with a chemical group such as polyethylene glycol (PEG), a methyl or ethyl group, or a carbohydrate group. These groups are useful to improve the biological characteristics of the antibody, e.g., to increase serum half-life or to increase tissue binding.

Pharmaceutical Compositions and Kits

[0163] The invention also relates to compositions comprising a human anti-M-CSF antagonist antibody for the treatment of subjects in need of treatment for rheumatoid arthritis, osteoporosis, or atherosclerosis. In some embodiments, the subject of treatment is a human. In other embodiments, the subject is a veterinary subject. Hyperproliferative disorders where monocytes play a role that may be treated by an antagonist anti-M-CSF antibody of the invention can involve any tissue or organ and include but are not limited to brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, liver, renal, ovarian, prostate, colorectal, esophageal, gynecological, nasopharynx, or thyroid cancers, melanomas, lymphomas, leukemias or multiple myelomas. In particular, human antagonist anti-M-CSF antibodies of the invention are useful to treat or prevent carcinomas of the breast, prostate, colon and lung.

[0164] This invention also encompasses compositions for the treatment of a condition selected from the group consisting of arthritis, psoriatic arthritis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis and acute synovitis, rheumatoid arthritis, rheumatoid spondylitis, ankylosing spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, Alzheimer's disease, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis, glomerular nephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, multiple sclerosis, muscle degeneration, eczema, contact dermatitis, psoriasis, sunburn, or conjunctivitis shock in a mammal, including a human, comprising an amount of a human anti-M-CSF monoclonal antibody of the invention effective in such treatment and a pharmaceutically acceptable carrier.

[0165] Treatment may involve administration of one or more antagonist anti-M-CSF monoclonal antibodies of the invention, or antigen-binding fragments thereof, alone or with a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. Some examples of pharmaceutically acceptable carriers are water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Additional examples of pharmaceutically acceptable substances are wetting agents or minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the antibody.

[0166] Anti-M-CSF antibodies of the invention and compositions comprising them, can be administered in combination with one or more other therapeutic, diagnostic or prophylactic agents. Additional therapeutic agents include other anti-neoplastic, anti-tumor, anti-angiogenic or chemotherapeutic agents. Such additional agents may be included in the same composition or administered separately. In some embodiments, one or more inhibitory anti-M-CSF antibodies of the invention can be used as a vaccine or as adjuvants to a vaccine.

[0167] The compositions of this invention may be in a variety of forms, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions, such as compositions similar to those used for passive immunization of humans. The preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular). In a preferred embodiment, the antibody is administered by intravenous infusion or injection. In another preferred embodiment, the antibody is administered by intramuscular or subcutaneous injection. In another embodiment, the disclosure relates to a method of treating a subject in need thereof with an antibody or an antigen-binding portion thereof that specifically binds to M-CSF comprising the steps of: (a) administering an effective amount of an isolated nucleic acid molecule encoding the heavy chain or the antigen-binding portion thereof, an isolated nucleic acid molecule encoding the light chain or the antigen-binding portion thereof, or both the nucleic acid molecules encoding the light chain and the heavy chain or antigen-binding portions thereof; and (b) expressing the nucleic acid molecule.

[0168] Therapeutic compositions typically must be sterile and stable under the conditions of manufacture and storage. The composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high drug concentration. Sterile injectable solutions can be prepared by incorporating the anti-M-CSF antibody in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.

[0169] The antibodies of the present invention can be administered by a variety of methods known in the art, although for many therapeutic applications, the preferred route/mode of administration is subcutaneous, intramuscular, or intravenous infusion. As will be appreciated by the skilled artisan, the route and/or mode of administration will vary depending upon the desired results.

[0170] In certain embodiments, the antibody compositions active compound may be prepared with a carrier that will protect the antibody against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., *Sustained and Controlled Release Drug Delivery Systems* (J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978).

[0171] In certain embodiments, an anti-M-CSF antibody of the invention can be orally administered, for example, with an inert diluent or an assimilable edible carrier. The compound (and other ingredients, if desired) can also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet. For oral therapeutic administration, the anti-M-CSF antibodies can be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. To administer a compound of the invention by other than parenteral administration, it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.

[0172] Additional active compounds also can be incorporated into the compositions. In certain embodiments, an anti-M-CSF antibody of the invention is co-formulated with and/or co-administered with one or more additional therapeutic agents. These agents include antibodies that bind other targets, antineoplastic agents, antitumor agents, chemotherapeutic agents, peptide analogues that inhibit M-CSF, soluble *c-fms* that can bind M-CSF, one or more chemical agents that inhibit M-CSF, anti-inflammatory agents, anti-coagulants, agents that lower blood pressure (i.e., angiotensin-converting enzyme (ACE) inhibitors). Such combination therapies may require lower dosages of the anti-M-CSF antibody as well as the co-administered agents, thus avoiding possible toxicities or complications associated with the various monotherapies.

[0173] Inhibitory anti-M-CSF antibodies of the invention and compositions comprising them also may be administered in combination with other therapeutic regimens, in particular in combination with radiation treatment for cancer. The compounds of the present invention may also be used in combination with anticancer agents such as endostatin and angiostatin or cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, farnesyl transferase inhibitors, VEGF inhibitors, and antimetabolites such as methotrexate.

[0174] The compounds of the invention may also be used in combination with antiviral agents such as Viracept, AZT, aciclovir and famciclovir, and antiseptic compounds such as Valant.

[0175] The compositions of the invention may include a "therapeutically effective amount" or a "prophylactically effective amount" of an antibody or antigen-binding portion of the invention. A "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of the antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects. A "prophylactically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.

[0176] Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). For example, a single bolus can be administered, several divided doses can be administered over time or the dose can be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uni-

formity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the anti-M-CSF antibody or portion and the particular therapeutic or prophylactic effect to be achieved, and (b) the limitations inherent in the art of compounding such an antibody for the treatment of sensitivity in individuals.

[0177] An exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody or antibody portion of the invention is 0.025 to 50 mg/kg, more preferably 0.1 to 50 mg/kg, more preferably 0.1-25, 0.1 to 10 or 0.1 to 3 mg/kg. It is to be noted that dosage values may vary with the type and severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.

[0178] Another aspect of the present disclosure relates to kits comprising an anti-M-CSF antibody or antigen-binding portion of the invention or a composition comprising such an antibody or portion. A kit may include, in addition to the antibody or composition, diagnostic or therapeutic agents. A kit also can include instructions for use in a diagnostic or therapeutic method. In a preferred embodiment, the kit includes the antibody or a composition comprising it and a diagnostic agent that can be used in a method described below. In another preferred embodiment, the kit includes the antibody or a composition comprising it and one or more therapeutic agents that can be used in a method described below. One embodiment of the disclosure is a kit comprising a container, instructions on the administration of an anti-M-CSF antibody to a human suffering from an inflammatory disease, or instructions for measuring the number of CD14+CD16+ monocytes in a biological sample and an anti-M-CSF antibody.

[0179] This invention also relates to compositions for inhibiting abnormal cell growth in a mammal comprising an amount of an antibody of the invention in combination with an amount of a chemotherapeutic agent, wherein the amounts of the compound, salt, solvate, or prodrug, and of the chemotherapeutic agent are together effective in inhibiting abnormal cell growth. Many chemotherapeutic agents are known in the art. In some embodiments, the chemotherapeutic agent is selected from the group consisting of mitotic inhibitors, alkylating agents, antimetabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, e.g. anti-androgens, and anti-angiogenesis agents.

[0180] Anti-angiogenic agents, such as MMP-2 (matrix-metalloproteinase 2) inhibitors, MMP-9 (matrix-metalloproteinase 9) inhibitors, and COX-II (cyclooxygenase II) inhibitors, can be used in conjunction with an anti-M-CSF antibody of the invention. Examples of useful COX-II inhibitors include CELEBREX™ (celecoxib), valdecoxib, and rofecoxib. Examples of useful matrix metalloproteinase inhibitors are described in WO 96/33172 (published October 24, 1996), WO 96/27583 (published March 7, 1996), European Patent Application No. 97304971.1 (filed July 8, 1997), European Patent Application No. 99308617.2 (filed October 29, 1999), WO 98/07697 (published February 26, 1998), WO 98/03516 (published January 29, 1998), WO 98/34918 (published August 13, 1998), WO 98/34915 (published August 13, 1998), WO 98/33768 (published August 6, 1998), WO 98/30566 (published July 16, 1998), European Patent Publication 606,046 (published July 13, 1994), European Patent Publication 931,788 (published July 28, 1999), WO 90/05719 (published May 31, 1990), WO 99/52910 (published October 21, 1999), WO 99/52889 (published October 21, 1999), WO 99/29667 (published June 17, 1999), PCT International Application No. PCT/IB98/01113 (filed July 21, 1998), European Patent Application No. 99302232.1 (filed March 25, 1999), Great Britain patent application number 9912961.1 (filed June 3, 1999), U.S. Provisional Application No. 60/148,464 (filed August 12, 1999), U.S. Patent 5,863,949 (issued January 26, 1999), U.S. Patent 5,861,510 (issued January 19, 1999), and European Patent Publication 780,386 (published June 25, 1997), all of which are incorporated herein in their entireties by reference. Preferred MMP inhibitors are those that do not demonstrate arthralgia. More preferred, are those that selectively inhibit MMP-2 and/or MMP-9 relative to the other matrix-metalloproteinases (i.e. MMP-1, MMP-3, MMP-4, MMP-5, MMP-6, MMP-7, MMP-8, MMP-10, MMP-11, MMP-12, and MMP-13). Some specific examples of MMP inhibitors useful in the present invention are AG-3340, RO 32-3555, RS 13-0830, and the compounds recited in the following list: 3-[[4-(4-fluoro-phenoxy)-benzenesulfonyl]-1-hydroxycarbamoyl-cyclopentyl]-amino]-propionic acid; 3-exo-3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-8-oxa-bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; (2R, 3R) 1-[4-(2-chloro-4-fluoro-benzoyloxy)-benzenesulfonyl]-3-hydroxy-3-methyl-piperidine-2-carboxylic acid hydroxyamide; 4-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-tetrahydro-pyran-4-carboxylic acid hydroxyamide; 3-[[4-(4-fluoro-phenoxy)-benzenesulfonyl]-1-hydroxycarbamoyl-cyclobutyl]-amino]-propionic acid; 4-[4-(4-chloro-phenoxy)-benzenesulfonylamino]-tetrahydro-pyran-4-carboxylic acid hydroxyamide; (R) 3-[4-(4-chloro-phenoxy)-benzenesulfonylamino]-tetrahydro-pyran-3-carboxylic acid hydroxyamide; (2R, 3R) 1-[4-(4-fluoro-2-methyl-benzoyloxy)-benzenesulfonyl]-3-hydroxy-3-methyl-piperidine-2-carboxylic acid hydroxyamide; 3-[[4-(4-fluoro-phenoxy)-benzenesulfonyl]-1-hydroxycarbamoyl-1-methyl-ethyl]-amino]-propionic acid; 3-[[4-(4-fluoro-phenoxy)-benzenesulfonyl]-4-hydroxycarbamoyl-tetrahydro-pyran-4-yl]-amino]-propionic acid; 3-exo-3-[4-(4-chloro-phenoxy)-benzenesulfonylamino]-8-oxa-bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; 3-endo-

3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-8-oxa-bicyclo[3.2.1]octane-3-carboxylic acid hydroxyamide; and (R) 3-[4-(4-fluoro-phenoxy)-benzenesulfonylamino]-tetrahydro-furan-3-carboxylic acid hydroxyamide; and pharmaceutically acceptable salts and solvates of said compounds.

[0181] A compound comprising a human anti-M-CSF monoclonal antibody of the invention can also be used with signal transduction inhibitors, such as agents that can inhibit EGF-R (epidermal growth factor receptor) responses, such as EGF-R antibodies, EGF antibodies, and molecules that are EGF-R inhibitors; VEGF (vascular endothelial growth factor) inhibitors, such as VEGF receptors and molecules that can inhibit VEGF; and erbB2 receptor inhibitors, such as organic molecules or antibodies that bind to the erbB2 receptor, for example, HERCEPTIN™ (Genentech, Inc.). EGF-R inhibitors are described in, for example in WO 95/19970 (published July 27, 1995), WO 98/14451 (published April 9, 1998), WO 98/02434 (published January 22, 1998), and United States Patent 5,747,498 (issued May 5, 1998), and such substances can be used in the present invention as described herein. EGFR-inhibiting agents include, but are not limited to, the monoclonal antibodies C225 and anti-EGFR 22Mab (ImClone Systems Incorporated), ABX-EGF (Abgenix/Cell Genesys), EMD-7200 (Merck KgaA), EMD-5590 (Merck KgaA), MDX-447/H-477 (Medarex Inc. and Merck KgaA), and the compounds ZD-1834, ZD-1838 and ZD-1839 (AstraZeneca), PKI-166 (Novartis), PKI-166/CGP-75166 (Novartis), PTK 787 (Novartis), CP 701 (Cephalon), leflunomide (Pharmacia/Sugen), CI-1033 (Warner Lambert Parke Davis), CI-1033/PD 183,805 (Warner Lambert Parke Davis), CL-387,785 (Wyeth-Ayerst), BBR-1611 (Boehringer Mannheim GmbH/Roche), Naamidine A (Bristol Myers Squibb), RC-3940-II (Pharmacia), BIBX-1382 (Boehringer Ingelheim), OLX-103 (Merck & Co.), VRCTC-310 (Ventech Research), EGF fusion toxin (Seragen Inc.), DAB-389 (Seragen/Lilgand), ZM-252808 (Imperial Cancer Research Fund), RG-50864 (INSERM), LFM-A12 (Parker Hughes Cancer Center), WHI-P97 (Parker Hughes Cancer Center), GW-282974 (Glaxo), KT-8391 (Kyowa Hakko) and EGF-R Vaccine (York Medical/Centro de Immunologia Molecular (CIM)). These and other EGF-R-inhibiting agents can be used in the present invention.

[0182] VEGF inhibitors, for example SU-5416 and SU-6668 (Sugen Inc.), AVASTIN™ (Genentech), SH-268 (Schering), and NX-1838 (NeXstar) can also be combined with the compound of the present invention. VEGF inhibitors are described in, for example in WO 99/24440 (published May 20, 1999), PCT International Application PCT/IB99/00797 (filed May 3, 1999), in WO 95/21613 (published August 17, 1995), WO 99/61422 (published December 2, 1999), United States Patent 5,834,504 (issued November 10, 1998), WO 98/50356 (published November 12, 1998), United States Patent 5,883,113 (issued March 16, 1999), United States Patent 5,886,020 (issued March 23, 1999), United States Patent 5,792,783 (issued August 11, 1998), WO 99/10349 (published March 4, 1999), WO 97/32856 (published September 12, 1997), WO 97/22596 (published June 26, 1997), WO 98/54093 (published December 3, 1998), WO 98/02438 (published January 22, 1998), WO 99/16755 (published April 8, 1999), and WO 98/02437 (published January 22, 1998), all of which are incorporated herein in their entireties by reference. Other examples of some specific VEGF inhibitors useful in the present invention are IM862 (Cytran Inc.); anti-VEGF monoclonal antibody of Genentech, Inc.; and angiozyme, a synthetic ribozyme from Ribozyme and Chiron. These and other VEGF inhibitors can be used in the present invention as described herein. ErbB2 receptor inhibitors, such as GW-282974 (Glaxo Wellcome plc), and the monoclonal antibodies AR-209 (Aronex Pharmaceuticals Inc.) and 2B-1 (Chiron), can furthermore be combined with the compound of the invention, for example those indicated in WO 98/02434 (published January 22, 1998), WO 99/35146 (published July 15, 1999), WO 99/35132 (published July 15, 1999), WO 98/02437 (published January 22, 1998), WO 97/13760 (published April 17, 1997), WO 95/19970 (published July 27, 1995), United States Patent 5,587,458 (issued December 24, 1996), and United States Patent 5,877,305 (issued March 2, 1999), which are all hereby incorporated herein in their entireties by reference. ErbB2 receptor inhibitors useful in the present invention are also described in United States Patent 6,465,449 (issued October 15, 2002), and in United States Patent 6,284,764 (issued September 4, 2001), both of which are incorporated in their entireties herein by reference. The erbB2 receptor inhibitor compounds and substance described in the aforementioned PCT applications, U.S. patents, and U.S. provisional applications, as well as other compounds and substances that inhibit the erbB2 receptor, can be used with the compound of the present invention in accordance with the present invention.

[0183] Anti-survival agents include anti-IGF-IR antibodies and anti-integrin agents, such as anti-integrin antibodies.

[0184] Anti-inflammatory agents can be used in conjunction with an anti-M-CSF antibody of the invention. For the treatment of rheumatoid arthritis, the human anti-M-CSF antibodies of the invention may be combined with agents such as TNF-V inhibitors such as TNF drugs (such as REMICADE™, CDP-870 and HUMIRA™) and TNF receptor immunoglobulin molecules (such as ENBREL™), IL-1 inhibitors, receptor antagonists or soluble IL-1ra (e.g. Kineret or ICE inhibitors), COX-2 inhibitors (such as celecoxib, rofecoxib, valdecoxib and etoricoxib), metalloprotease inhibitors (preferably MMP-13 selective inhibitors), p2X7 inhibitors, γ 2 δ ligands (such as NEUROTINT™ AND PREGABALIN™), low dose methotrexate, leflunomide, hydroxychloroquine, d-penicillamine, auranofin or parenteral or oral gold. The compounds of the invention can also be used in combination with existing therapeutic agents for the treatment of osteoarthritis. Suitable agents to be used in combination include standard non-steroidal anti-inflammatory agents (hereinafter NSAID's) such as piroxicam, diclofenac, propionic acids such as naproxen, flurbiprofen, fenoprofen, ketoprofen and ibuprofen, fenamates such as mefenamic acid, indomethacin, sulindac, apazone, pyrazolones such as phenylbutazone, salicylates such as aspirin, COX-2 inhibitors such as celecoxib, valdecoxib, rofecoxib and etoricoxib, analgesics and intraarticular

therapies such as corticosteroids and hyaluronic acids such as hyalgan and synvisc.

[0185] Anti-coagulant agents can be used in conjunction with an anti-M-CSF antibody of the invention. Examples of anti-coagulant agents include, but are not limited to, warfarin (COUMADIN™), heparin, and enoxaparin (LOVENOX™).

[0186] The human anti-M-CSF antibodies of the present invention may also be used in combination with cardiovascular agents such as calcium channel blockers, lipid lowering agents such as statins, fibrates, beta-blockers, Ace inhibitors, Angiotensin-2 receptor antagonists and platelet aggregation inhibitors. The compounds of the present invention may also be used in combination with CNS agents such as antidepressants (such as sertraline), anti-Parkinsonian drugs (such as deprenyl, L-dopa, REQUIP™, MIRAPEX™, MAOB inhibitors such as selegiline and rasagiline, comP inhibitors such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, Nicotine agonists, Dopamine agonists and inhibitors of neuronal nitric oxide synthase), and anti-Alzheimer's drugs such as donepezil, tacrine, $\forall 2\delta$ LIGANDS (such NEUROTIN™ and PREGABALIN™) inhibitors, COX-2 inhibitors, propentofylline or metryfonate.

[0187] The human anti-M-CSF antibodies of the present invention may also be used in combination with osteoporosis agents such as roloxitene, droloxitene, lasofoxifene or fosomax and immunosuppressant agents such as FK-506 and rapamycin.

Diagnostic Methods of Use

[0188] In another aspect, the disclosure relates to diagnostic methods. The anti-M-CSF antibodies can be used to detect M-CSF in a biological sample *in vitro* or *in vivo*. In one embodiment, the disclosure relates to a method for diagnosing the presence or location of a M-CSF-expressing tumor in a subject in need thereof, comprising the steps of injecting the antibody into the subject, determining the expression of M-CSF in the subject by localizing where the antibody has bound, comparing the expression in the subject with that of a normal reference subject or standard, and diagnosing the presence or location of the tumor.

[0189] The anti-M-CSF antibodies can be used in a conventional immunoassay, including, without limitation, an ELISA, an RIA, FACS, tissue immunohistochemistry, Western blot or immunoprecipitation. The anti-M-CSF antibodies of the invention can be used to detect M-CSF from humans. In another embodiment, the anti-M-CSF antibodies can be used to detect M-CSF from primates such as cynomologus monkey, rhesus monkeys, chimpanzees or apes. The disclosure relates to a method for detecting M-CSF in a biological sample comprising contacting a biological sample with an anti-M-CSF antibody of the invention and detecting the bound antibody. In one embodiment, the anti-M-CSF antibody is directly labeled with a detectable label. In another embodiment, the anti-M-CSF antibody (the first antibody) is unlabeled and a second antibody or other molecule that can bind the anti-M-CSF antibody is labeled. As is well known to one of skill in the art, a second antibody is chosen that is able to specifically bind the particular species and class of the first antibody. For example, if the anti-M-CSF antibody is a human IgG, then the secondary antibody could be an anti-human-IgG. Other molecules that can bind to antibodies include, without limitation, Protein A and Protein G, both of which are available commercially, e.g., from Pierce Chemical Co.

[0190] Suitable labels for the antibody or secondary antibody have been disclosed *supra*, and include various enzymes, prosthetic groups, fluorescent materials, luminescent materials and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

[0191] In other embodiments, M-CSF can be assayed in a biological sample by a competition immunoassay utilizing M-CSF standards labeled with a detectable substance and an unlabeled anti-M-CSF antibody. In this assay, the biological sample, the labeled M-CSF standards and the anti-M-CSF antibody are combined and the amount of labeled M-CSF standard bound to the unlabeled antibody is determined. The amount of M-CSF in the biological sample is inversely proportional to the amount of labeled M-CSF standard bound to the anti-M-CSF antibody.

[0192] One can use the immunoassays disclosed above for a number of purposes. For example, the anti-M-CSF antibodies can be used to detect M-CSF in cells or on the surface of cells in cell culture, or secreted into the tissue culture medium. The anti-M-CSF antibodies can be used to determine the amount of M-CSF on the surface of cells or secreted into the tissue culture medium that have been treated with various compounds. This method can be used to identify compounds that are useful to inhibit or activate M-CSF expression or secretion. According to this method, one sample of cells is treated with a test compound for a period of time while another sample is left untreated. If the total level of M-CSF is to be measured, the cells are lysed and the total M-CSF level is measured using one of the immunoassays described above. The total level of M-CSF in the treated versus the untreated cells is compared to determine the effect of the test compound.

[0193] An immunoassay for measuring total M-CSF levels is an ELISA or Western blot. If the cell surface level of M-CSF is to be measured, the cells are not lysed, and the M-CSF cell surface levels can be measured using one of the

immunoassays described above. An immunoassay for determining cell surface levels of M-CSF can include the steps of labeling the cell surface proteins with a detectable label, such as biotin or ^{125}I , immunoprecipitating the M-CSF with an anti-M-CSF antibody and then detecting the labeled M-CSF. Another immunoassay for determining the localization of M-CSF, e.g., cell surface levels, can be immunohistochemistry. Methods such as ELISA, RIA, Western blot, immunohistochemistry, cell surface labeling of integral membrane proteins and immunoprecipitation are well known in the art. See, e.g., Harlow and Lane, *supra*. In addition, the immunoassays can be scaled up for high throughput screening in order to test a large number of compounds for inhibition or activation of M-CSF.

[0194] Another example of an immunoassay for measuring secreted M-CSF levels can be an antigen capture assay, ELISA, immunohistochemistry assay, Western blot and the like using antibodies of the invention. If secreted M-CSF is to be measured, cell culture media or body fluid, such as blood serum, urine, or synovial fluid, can be assayed for secreted M-CSF and/or cells can be lysed to release produced, but not yet secreted M-CSF. An immunoassay for determining secreted levels of M-CSF includes the steps of labeling the secreted proteins with a detectable label, such as biotin or ^{125}I , immunoprecipitating the M-CSF with an anti-M-CSF antibody and then detecting the labeled M-CSF. Another immunoassay for determining secreted levels of M-CSF can include the steps of (a) pre-binding anti-M-CSF antibodies to the surface of a microtiter plate; (b) adding tissue culture cell media or body fluid containing the secreted M-CSF to the wells of the microtiter plate to bind to the anti-M-CSF antibodies; (c) adding an antibody that will detect the anti-M-CSF antibody, e.g., anti-M-CSF labeled with digoxigenin that binds to an epitope of M-CSF different from the anti-M-CSF antibody of step (a); (d) adding an antibody to digoxigenin conjugated to peroxidase; and (e) adding a peroxidase substrate that will yield a colored reaction product that can be quantitated to determine the level of secreted M-CSF in tissue culture cell media or a body fluid sample. Methods such as ELISA, RIA, Western blot, immunohistochemistry, and antigen capture assay are well known in the art. See, e.g., Harlow and Lane, *supra*. In addition, the immunoassays can be scaled up for high throughput screening in order to test a large number of compounds for inhibition or activation of M-CSF.

[0195] The anti-M-CSF antibodies of the invention can also be used to determine the levels of cell surface M-CSF in a tissue or in cells derived from the tissue. In some embodiments, the tissue is from a diseased tissue. In some embodiments, the tissue can be a tumor or a biopsy thereof. In some embodiments of the method, a tissue or a biopsy thereof can be excised from a patient. The tissue or biopsy can then be used in an immunoassay to determine, e.g., total M-CSF levels, cell surface levels of M-CSF, or localization of M-CSF by the methods discussed above.

[0196] The method can comprise the steps of administering a detectably labeled anti-M-CSF antibody or a composition comprising them to a patient in need of such a diagnostic test and subjecting the patient to imaging analysis to determine the location of the M-CSF-expressing tissues. Imaging analysis is well known in the medical art, and includes, without limitation, x-ray analysis, magnetic resonance imaging (MRI) or computed tomography (CT). The antibody can be labeled with any agent suitable for *in vivo* imaging, for example a contrast agent, such as barium, which can be used for x-ray analysis, or a magnetic contrast agent, such as a gadolinium chelate, which can be used for MRI or CT. Other labeling agents include, without limitation, radioisotopes, such as ^{99}Tc . In another embodiment, the anti-M-CSF antibody will be unlabeled and will be imaged by administering a second antibody or other molecule that is detectable and that can bind the anti-M-CSF antibody. In an embodiment, a biopsy is obtained from the patient to determine whether the tissue of interest expresses M-CSF.

[0197] The anti-M-CSF antibodies of the invention can also be used to determine the secreted levels of M-CSF in a body fluid such as blood serum, urine, or synovial fluid derived from a tissue. In some embodiments, the body fluid is from a diseased tissue. In some embodiments, the body fluid is from a tumor or a biopsy thereof. In some embodiments of the method, body fluid is removed from a patient. The body fluid is then used in an immunoassay to determine secreted M-CSF levels by the methods discussed above. One embodiment of the disclosure is a method of assaying for the activity of a M-CSF antagonist comprising: administering a M-CSF antagonist to a primate or human subject and measuring the number of CD 14+CD 16+ monocytes in a biological sample.

Therapeutic Methods of Use

[0198] In another embodiment, the disclosure relates to a method for inhibiting M-CSF activity by administering an anti-M-CSF antibody to a patient in need thereof. Any of the types of antibodies described herein may be used therapeutically. In a preferred embodiment, the anti-M-CSF antibody is a human, chimeric or humanized antibody. In another preferred embodiment, the M-CSF is human and the patient is a human patient. Alternatively, the patient may be a mammal that expresses a M-CSF that the anti-M-CSF antibody cross-reacts with. The antibody may be administered to a non-human mammal expressing a M-CSF with which the antibody cross-reacts (i.e. a primate) for veterinary purposes or as an animal model of human disease. Such animal models may be useful for evaluating the therapeutic efficacy of antibodies of this invention.

[0199] As used herein, the term "a disorder in which M-CSF activity is detrimental" is intended to include diseases and other disorders in which the presence of high levels of M-CSF in a subject suffering from the disorder has been

shown to be or is suspected of being either responsible for the pathophysiology of the disorder or a factor that contributes to a worsening of the disorder. Such disorders may be evidenced, for example, by an increase in the levels of M-CSF secreted and/or on the cell surface or increased tyrosine autophosphorylation of *c-fms* in the affected cells or tissues of a subject suffering from the disorder. The increase in M-CSF levels may be detected, for example, using an anti-M-CSF antibody as described above.

[0200] In one embodiment, an anti-M-CSF antibody may be administered to a patient who has a *c-fms*-expressing tumor or a tumor that secretes M-CSF and/or that expresses M-CSF on its cell surface. Preferably, the tumor expresses a level of *c-fms* or M-CSF that is higher than a normal tissue. The tumor may be a solid tumor or may be a non-solid tumor, such as a lymphoma. In a more preferred embodiment, an anti-M-CSF antibody may be administered to a patient who has a *c-fms*-expressing tumor, a M-CSF-expressing tumor, or a tumor that secretes M-CSF that is cancerous. Further, the tumor may be cancerous. In an even more preferred embodiment, the tumor is a cancer of lung, breast, prostate or colon. In another preferred embodiment, the anti-M-CSF antibody administered to a patient results in M-CSF no longer bound to the *c-fms* receptor. In a highly preferred embodiment, the method causes the tumor not to increase in weight or volume or to decrease in weight or volume. In another embodiment, the method causes *c-fms* on tumor cells to not be bound by M-CSF. In another embodiment, the method causes M-CSF on tumor cells to not be bound to *c-fms*. In another embodiment, the method causes secreted M-CSF of the tumor cells to not be bound to *c-fms*. In a preferred embodiment, the antibody is selected from 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, 9.7.2, 9.7.2C-Ser, 9.14.4C-Ser, 8.10.3C-Ser, 8.10.3-CG2, 9.7.2-CG2, 9.7.2-CG4, 9.14.4-CG2, 9.14.4-CG4, 9.14.4-Ser, 9.7.2-Ser, 8.10.3-Ser, 8.10.3-CG4, 8.10.3FG1 or 9.14.4G1, or comprises a heavy chain, light chain or antigen binding region thereof.

[0201] In another preferred embodiment, an anti-M-CSF antibody may be administered to a patient who expresses inappropriately high levels of M-CSF. It is known in the art that high-level expression of M-CSF can lead to a variety of common cancers. In one embodiment, said method relates to the treatment of cancer such as brain, squamous cell, bladder, gastric, pancreatic, breast, head, neck, esophageal, prostate, colorectal, lung, renal, kidney, ovarian, gynecological or thyroid cancer. Patients that can be treated with a compounds of the invention according to the methods of this invention include, for example, patients that have been diagnosed as having lung cancer, bone cancer, pancreatic cancer, skin cancer, cancer of the head and neck, cutaneous or intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, cancer of the anal region, stomach cancer, colon cancer, breast cancer, gynecologic tumors (e.g., uterine sarcomas, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina or carcinoma of the vulva), Hodgkin's disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system (e.g., cancer of the thyroid, parathyroid or adrenal glands), sarcomas of soft tissues, cancer of the urethra, cancer of the penis, prostate cancer, chronic or acute leukemia, solid tumors (e.g., sarcomas, carcinomas or lymphomas that are cancers of body tissues other than blood, bone marrow or the lymphatic system), solid tumors of childhood, lymphocytic lymphomas, cancer of the bladder, cancer of the kidney or ureter (e.g., renal cell carcinoma, carcinoma of the renal pelvis), or neoplasms of the central nervous system (e.g., primary CNS lymphoma, spinal axis tumors, brain stem gliomas or pituitary adenomas). In a more preferred embodiment, the anti-M-CSF antibody is administered to a patient with breast cancer, prostate cancer, lung cancer or colon cancer. In an even more preferred embodiment, the method causes the cancer to stop proliferating abnormally, or not to increase in weight or volume or to decrease in weight or volume.

[0202] The antibody may be administered once, but more preferably is administered multiple times. For example, the antibody may be administered from three times daily to once every six months or longer. The administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months. The antibody may also be administered continuously via a minipump. The antibody may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route. The antibody may be administered at the site of the tumor or inflamed body part, into the tumor or inflamed body part, or at a site distant from the site of the tumor or inflamed body part. The antibody may be administered once, at least twice or for at least the period of time until the condition is treated, palliated or cured. The antibody generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume or until the inflamed body part is healed. The antibody will generally be administered as part of a pharmaceutical composition as described *supra*. The dosage of antibody will generally be in the range of 0.1-100 mg/kg, more preferably 0.5-50 mg/kg, more preferably 1-20 mg/kg, and even more preferably 1-10 mg/kg. The serum concentration of the antibody may be measured by any method known in the art.

[0203] In another aspect, the anti-M-CSF antibody may be co-administered with other therapeutic agents, such as anti-inflammatory agents, anti-coagulant agents, agents that will lower or reduce blood pressure, anti-neoplastic drugs or molecules, to a patient who has a hyperproliferative disorder, such as cancer or a tumor. In one aspect, the invention relates to a method for the treatment of the hyperproliferative disorder in a mammal comprising administering to said mammal a therapeutically effective amount of a compound of the invention in combination with an anti-tumor agent

selected from the group consisting of, but not limited to, mitotic inhibitors, alkylating agents, anti-metabolites, intercalating agents, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, kinase inhibitors, matrix metalloprotease inhibitors, genetic therapeutics and anti-androgens. In a more preferred embodiment, the antibody may be administered with an antineoplastic agent, such as adriamycin or taxol. In another preferred embodiment, the antibody or combination therapy is administered along with radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy. In yet another preferred embodiment, the antibody will be administered with another antibody. For example, the anti-M-CSF antibody may be administered with an antibody or other agent that is known to inhibit tumor or cancer cell proliferation, e.g., an antibody or agent that inhibits erbB2 receptor, EGF-R, CD20 or VEGF.

[0204] Co-administration of the antibody with an additional therapeutic agent (combination therapy) encompasses administering a pharmaceutical composition comprising the anti-M-CSF antibody and the additional therapeutic agent and administering two or more separate pharmaceutical compositions, one comprising the anti-M-CSF antibody and the other(s) comprising the additional therapeutic agent(s). Further, although co-administration or combination therapy generally means that the antibody and additional therapeutic agents are administered at the same time as one another, it also encompasses instances in which the antibody and additional therapeutic agents are administered at different times. For instance, the antibody may be administered once every three days, while the additional therapeutic agent is administered once daily. Alternatively, the antibody may be administered prior to or subsequent to treatment of the disorder with the additional therapeutic agent. Similarly, administration of the anti-M-CSF antibody may be administered prior to or subsequent to other therapy, such as radiotherapy, chemotherapy, photodynamic therapy, surgery or other immunotherapy.

[0205] The antibody and one or more additional therapeutic agents (the combination therapy) may be administered once, twice or at least the period of time until the condition is treated, palliated or cured. Preferably, the combination therapy is administered multiple times. The combination therapy may be administered from three times daily to once every six months. The administering may be on a schedule such as three times daily, twice daily, once daily, once every two days, once every three days, once weekly, once every two weeks, once every month, once every two months, once every three months and once every six months, or may be administered continuously via a minipump. The combination therapy may be administered via an oral, mucosal, buccal, intranasal, inhalable, intravenous, subcutaneous, intramuscular, parenteral, intratumor or topical route. The combination therapy may be administered at a site distant from the site of the tumor. The combination therapy generally will be administered for as long as the tumor is present provided that the antibody causes the tumor or cancer to stop growing or to decrease in weight or volume.

[0206] In a still further embodiment, the anti-M-CSF antibody is labeled with a radiolabel, an immunotoxin or a toxin, or is a fusion protein comprising a toxic peptide. The anti-M-CSF antibody or anti-M-CSF antibody fusion protein directs the radiolabel, immunotoxin, toxin or toxic peptide to the M-CSF-expressing cell. In a preferred embodiment, the radiolabel, immunotoxin, toxin or toxic peptide is internalized after the anti-M-CSF antibody binds to the M-CSF on the surface of the target cell.

[0207] In another aspect, the anti-M-CSF antibody may be used to treat noncancerous states in which high levels of M-CSF and/or M-CSF have been associated with the noncancerous state or disease. In one embodiment, the method comprises the step of administering an anti-M-CSF antibody to a patient who has a noncancerous pathological state caused or exacerbated by high levels of M-CSF and/or M-CSF levels or activity. In a more preferred embodiment, the anti-M-CSF antibody slows the progress of the noncancerous pathological state. In a more preferred embodiment, the anti-M-CSF antibody stops or reverses, at least in part, the noncancerous pathological state.

Gene Therapy

[0208] The nucleic acid molecules of the instant invention can be administered to a patient in need thereof via gene therapy. The therapy may be either *in vivo* or *ex vivo*. In a preferred embodiment, nucleic acid molecules encoding both a heavy chain and a light chain are administered to a patient. In a more preferred embodiment, the nucleic acid molecules are administered such that they are stably integrated into chromosomes of B cells because these cells are specialized for producing antibodies. In a preferred embodiment, precursor B cells are transfected or infected *ex vivo* and re-transplanted into a patient in need thereof. In another embodiment, precursor B cells or other cells are infected *in vivo* using a virus known to infect the cell type of interest. Typical vectors used for gene therapy include liposomes, plasmids and viral vectors. Exemplary viral vectors are retroviruses, adenoviruses and adeno-associated viruses. After infection either *in vivo* or *ex vivo*, levels of antibody expression can be monitored by taking a sample from the treated patient and using any immunoassay known in the art or discussed herein.

[0209] In a preferred embodiment, the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof of an anti-M-CSF antibody and expressing the nucleic acid molecule. In another embodiment, the gene therapy method comprises the steps of administering an isolated nucleic acid molecule encoding the light chain or an antigen-binding portion thereof of an anti-M-CSF antibody

and expressing the nucleic acid molecule. In a more preferred method, the gene therapy method comprises the steps of administering of an isolated nucleic acid molecule encoding the heavy chain or an antigen-binding portion thereof and an isolated nucleic acid molecule encoding the light chain or the antigen-binding portion thereof of an anti-M-CSF antibody of the invention and expressing the nucleic acid molecules. The gene therapy method may also comprise the step of administering another anti-cancer agent, such as taxol or adriamycin.

[0210] In order that this invention may be better understood, the following examples are set forth. These examples are for purposes of illustration only and are not to be construed as limiting the scope of the invention in any manner.

EXAMPLE I

Generation of Cell Lines Producing Anti-M-CSF Antibody

[0211] Antibodies of the invention were prepared, selected, and assayed as follows:

15 Immunization and hybridoma generation

[0212] Eight to ten week old XENOMOUSE™ mice were immunized intraperitoneally or in their hind footpads with human M-CSF (10 µg/dose/mouse). This dose was repeated five to seven times over a three to eight week period. Four days before fusion, the mice were given a final injection of human M-CSF in PBS. The spleen and lymph node lymphocytes from immunized mice were fused with the non-secretory myeloma P3-X63-Ag8.653 cell line, and the fused cells were subjected to HAT selection as previously described (Galfre and Milstein, Methods Enzymol. 73:3-46, 1981). A panel of hybridomas all secreting M-CSF specific human IgG2 and IgG4 antibodies was recovered. Antibodies also were generated using XENOMAX™ technology as described in Babcock, J.S. et al., Proc. Natl. Acad. Sci. USA 93:7843-48, 1996. Nine cell lines engineered to produce antibodies of the invention were selected for further study and designated 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4, 8.10.3 and 9.7.2. The hybridomas were deposited under terms in accordance with the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110-2209 on August 8, 2003. The hybridomas have been assigned the following accession numbers:

30	Hybridoma 3.8.3 (LN 15891)	PTA-5390
	Hybridoma 2.7.3 (LN 15892)	PTA-5391
	Hybridoma 1.120.1 (LN 15893)	PTA-5392
	Hybridoma 9.7.2 (LN 15894)	PTA-5393
	Hybridoma 9.14.4 (LN 15895)	PTA-5394
35	Hybridoma 8.10.3 (LN 15896)	PTA-5395
	Hybridoma 88-gamma (UC 25489)	PTA-5396
	Hybridoma 88-kappa (UC 25490)	PTA-5397
	Hybridoma 100-gamma (UC 25491)	PTA-5398
40	Hybridoma 100-kappa (UC 25492)	PTA-5399
	Hybridoma 252-gamma (UC 25493)	PTA-5400
	Hybridoma 252-kappa (UC 25494)	PTA-5401

EXAMPLE II

Gene Utilization Analysis

[0213] DNA encoding the heavy and light chains of monoclonal antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4, 8.10.3 and 9.7.2 was cloned from the respective hybridoma cell lines and the DNA sequences were determined by methods known to one skilled in the art. Additionally, DNA from the hybridoma cell lines 9.14.4, 8.10.3 and 9.7.2 was mutated at specific framework regions in the variable domain and/or isotype-switched to obtain, for example, 9.14.4I, 8.10.3F, and 9.7.2IF, respectively. From nucleic acid sequence and predicted amino acid sequence of the antibodies, the identity of the gene usage for each antibody chain was determined ("VBASE"). Table 2 sets forth the gene utilization of selected antibodies in accordance with the invention:

Table 2

Heavy and Light Chain Gene Utilization							
Clone	Heavy Chain				Kappa Light Chain		
	SEQ ID NO:	V _H	D _H	J _H	SEQ ID NO:	V _K	J _K
252	1, 2	3-11	7-27	6	3, 4	O12	3
88	5, 6	3-7	6-13	4	7, 8	O12	3
100	9, 10	3-23	1-26	4	11, 12	L2	3
3.8.3	14	3-11	7-27	4	16	L5	3
2.7.3	18	3-33	1-26	4	20	L5	4
1.120.1	22	1-18	4-23	4	24	B3	1
9.14.4I	25, 26	3-11	7-27	4b	27, 28	O12	3
8.10.3F	29, 30	3-48	1-26	4b	31, 32	A27	4
9.7.2IF	33, 34	3-11	6-13	6b	35, 36	O12	3
9.14.4	37, 38	3-11	7-27	4b	27, 28	O12	3
8.10.3	29, 30	3-48	1-26	4b	43, 44	A27	4
9.7.2	45, 46	3-11	6-13	6b	47, 48	O12	3
8.10.3FG1	97, 98	3-48	1-26	4b	31, 32	A27	4
9.14.4G1	101, 102	3-11	7-27	4b	27, 28	O12	3
9.14.4C-Ser	54	3-11	7-27	4b	56	O12	3
9.14.4-CG2	74	3-11	7-27	4b	56	O12	3
9.14.4-CG4	78	3-11	7-27	4b	56	O12	3
8.10.3C-Ser	58	3-48	1-26	4b	60	A27	4
8.10.3-CG2	62	3-48	1-26	4b	60	A27	4
8.10.3-CG4	94	3-48	1-26	4b	60	A27	4
8.10.3-Ser	90	3-48	1-26	4b	43, 44	A27	4
9.7.2C-Ser	50	3-11	6-13	6b	52	O12	3
9.7.2-CG2	66	3-11	6-13	6b	52	O12	3
9.7.2-CG4	70	3-11	6-13	6b	52	O12	3
9.7.2-Ser	86	3-11	6-13	6b	47, 48	O12	3
9.14.4-Ser	82	3-11	7-27	4b	27, 28	O12	3

[0214] Mutagenesis of specific residues of the heavy and light chains was carried out by designing primers and using the QuickChange Site Directed Mutagenesis Kit from Stratagene, according to the manufacturer's instructions. Mutations were confirmed by automated sequencing, and mutagenized inserts were subcloned into expression vectors. The expression vectors were transfected into HEK293 cells to produce enough of the antibodies for characterization.

EXAMPLE III

M-CSF Mouse Monocytic Cell Proliferation Assay

[0215] *In vitro* assays were conducted to measure M-CSF-dependent mouse monocytic cell proliferation in the presence of anti-M-CSF antibodies to determine the degree of inhibition by anti-M-CSF antibodies.

[0216] Mouse monocytic cells, M-NFS-60 cells, from American Type Culture Collection (ATCC) (Manassas, VA), were obtained and maintained in RPMI-1640 medium containing 2 mM L-glutamine (ATCC), 10% heat inactivated fetal bovine

5 serum (FBS) (Invitrogen, Carlsbad, CA), 0.05 mM 2-mercaptoethanol (Sigma, St. Louis MO) (assay medium), with 15 ng/ml human M-CSF. M-NSF-60 cells were split to 5×10^4 for next day use or to 2.5×10^4 for use in 2 days. Prior to use in the assay, the cells were washed three times with RPMI-1640, counted and the volume adjusted with assay medium to yield 2×10^5 cells/ml. All conditions were conducted in triplicate in 96-well treated tissue culture plates (Corning, Corning, NY). To each well 50 μ l of the washed cells, either 100 pM or 1000 pM M-CSF in a volume of 25 μ l and test or control antibody at various concentrations in a volume of 25 μ l in acetate buffer (140 mM sodium chloride, 20 mM sodium acetate, and 0.2 mg/ml polysorbate 80, pH 5.5) to a final volume of 100 μ l was added. Antibodies of the invention were tested alone and with human M-CSF. The plates were incubated for 24 hours (hrs) at 37°C with 5% CO₂.

10 [0217] After 24 hrs, 10 μ l/well of 0.5 μ Ci ³H-thymidine (Amersham Biosciences, Piscataway, NJ) was added and pulsed with the cells for 3 hrs. To detect the amount of incorporated thymidine, the cells were harvested onto pre-wet unifilter GF/C filterplates (Packard, Meriden, CT) and washed 10 times with water. The plates were allowed to dry overnight. Bottom seals were added to the filterplates. Next, 45 μ l Microscint 20 (Packard, Meriden, CT) per well was added. After a top seal was added, the plates were counted in a Trilux microbeta counter (Wallac, Norton, OH).

15 [0218] These experiments demonstrate that anti-M-CSF antibodies of the invention inhibit mouse monocytic cell proliferation in response to M-CSF. Further, by using various concentrations of antibodies, the IC₅₀ for inhibition of mouse nonocytic cell proliferation was determined for antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.4I, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, and 9.7.2 (Cell Proliferation Assay, Table 3a and Table 3b).

Table 3a

Antibody	252	88	100	3.8.3	2.7.3	1.120.1
M-CSF Mouse Monocytic Cell Proliferation Assay [IC ₅₀ , M]	1.86 x 10 ⁻¹⁰	2.31 x 10 ⁻¹⁰	7.44 x 10 ⁻¹⁰	7.3 x 10 ⁻¹¹	1.96 x 10 ⁻¹⁰	1.99 x 10 ⁻¹⁰
Human Whole Blood Monocyte Activation Assay [IC ₅₀ , M]	8.67 x 10 ⁻¹⁰	5.80 x 10 ⁻¹⁰	1.53 x 10 ⁻¹⁰	8.6 x 10 ⁻¹¹	7.15 x 10 ⁻¹⁰	8.85 x 10 ⁻¹⁰
Receptor Binding Inhibition Assay [IC ₅₀ , M]	7.47 x 10 ⁻¹⁰	4.45 x 10 ⁻¹⁰	1.252 x 10 ⁻⁹	7.0 x 10 ⁻¹¹	3.08 x 10 ⁻¹⁰	1.57 x 10 ⁻¹⁰

Table 3b

Antibody	9.14.4I	8.10.3F	9.7.2IF	9.14.4	8.10.3	9.7.2
M-CSF Mouse Monocytic Cell Proliferation Assay [IC ₅₀ , M]	2.02 x 10 ⁻¹⁰	4.13 x 10 ⁻¹⁰	7.37 x 10 ⁻¹⁰	2.02 x 10 ⁻¹⁰	4.13 x 10 ⁻¹⁰	7.37 x 10 ⁻¹⁰
Human Whole Blood Monocyte Activation Assay [IC ₅₀ , M]	2.49 x 10 ⁻¹⁰	4.46 x 10 ⁻¹⁰	1.125 x 10 ⁻⁹	6.48 x 10 ⁻¹⁰	2.8 x 10 ⁻¹⁰	1.98 x 10 ⁻¹⁰
Receptor Binding Inhibition Assay [IC ₅₀ , M]	2.97 x 10 ⁻¹⁰	9.8 x 10 ⁻¹¹	5.29 x 10 ⁻¹⁰	4.1 x 10 ⁻¹¹	1.5 x 10 ⁻⁹	6 x 10 ⁻¹²

EXAMPLE IV

Human Whole Blood Monocyte Activation Assay

45 [0219] *In vitro* assays were conducted to measure M-CSF dependent monocyte shape changes in the presence of anti-M-CSF antibodies to determine if the anti-M-CSF antibodies were capable of inhibiting whole blood monocyte activation and their degree of inhibition of monocyte shape changes.

50 [0220] In individual wells of a 96-well tissue culture plate, 6 μ l of 1.7 nM anti-M-CSF and 94 μ l of whole human blood for a final concentration of 102 pM anti-M-CSF antibody were mixed. The plates were incubated at 37°C in a CO₂ tissue culture incubator. Next, the plates were removed from the incubator. To each well, 100 μ l of a fixative solution (0.5% formalin in phosphate buffered saline without MgCl₂ or CaCl₂) was added and the plates were incubated for 10 minutes at room temperature. For each sample, 180 μ l from each well and 1 ml of Red Cell Lysis Buffer were mixed. The tubes were vortexed for 2 seconds. Next, the samples were incubated at 37°C for 5 minutes in a shaking water bath to lyse the red blood cells, but to leave monocytes intact. Immediately following this incubation, the samples were read on a fluorescence-activated cell scanning (FACS) machine (BD Beckman FACS) and data was analyzed using FACS Station Software Version 3.4.

[0221] These experiments demonstrate that anti-M-CSF antibodies of the invention inhibit monocyte shape changes compared to control samples. Using the monocyte shape change assay, the IC₅₀ was determined for antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.41, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, and 9.7.2 (Human Whole Blood Monocyte Activation, Table 3a and Table 3b).

5

EXAMPLE V

c-fms Receptor Binding Inhibition Assay

[0222] *In vitro* assays were conducted to measure M-CSF binding to *c-fms* receptor in the presence of anti-M-CSF antibodies to determine if the anti-M-CSF antibodies were capable of inhibiting M-CSF binding to *c-fms* receptor and their degree of inhibition.

[0223] NIH-3T3 cells transfected with human *c-fms* or M-NSF-60 cells maintained in Dulbecco's phosphate buffered saline without magnesium or calcium were washed. NIH-3T3 cells were removed from tissue culture plates with 5 mM ethylene-diamine-tetra-acetate (EDTA), pH 7.4. The NIH-3T3 cells were returned to the tissue culture incubator for 1-2 minutes and the flask(s) were tapped to loosen the cells. The NIH-3T3 cells and the M-NSF-60 cells were transferred to 50 ml tubes and washed twice with reaction buffer (1x RPMI without sodium bicarbonate containing 50 mM N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), pH 7.4). Next, the NIH-3T3 cells were resuspended in reaction buffer for a final concentration of 1.5 x 10⁵ cell/ml. The M-NSF-60 cells were resuspended in a reaction buffer for a final concentration of 2.5 x 10⁶ cells/ml.

[0224] For the assay, 9 µl of a sterile 0.4 M sucrose solution, 100 µl of ¹²⁵I-M-CSF (Amersham, IMQ7228v) at a final concentration of 200 pM in RPMI-1640 containing 50 mM HEPES (pH 7.4), 0.2% bovine serum albumin, and 100 µl of unlabeled M-CSF at a final concentration of 200 nM were mixed in a binding tube. Next, 50 µl/tube of increasing concentrations of a test antibody was added. In order to determine non-specific binding of the antibodies, we included samples to which we also added 200 nM M-CSF. To control tubes, we did not add antibody. Next, 15,000 NIH-3T3 cells or 250,000 M-NSF-60 cells were added per tube. All tubes were incubated at room temperature for 3 hrs and subjected to centrifugation at 10,000 rpm for 2 min. The tips of the tubes containing the cell pellets were cut off and the amount of M-CSF bound to the cells was determined using a Packard Cobra II Gamma counter. The specific binding was determined by subtracting non-specific binding from total binding. All assays were performed in duplicate. The binding data was analyzed using the computer program, Graph Pad Prism 2.01.

[0225] These experiments demonstrate that anti-M-CSF antibodies of the invention inhibit the binding of M-CSF to *c-fms* receptor compared to control samples. Further, by using various concentrations of antibodies, the IC₅₀ for inhibition of receptor binding was determined for antibodies 252, 88, 100, 3.8.3, 2.7.3, 1.120.1, 9.14.41, 8.10.3F, 9.7.2IF, 9.14.4, 8.10.3, and 9.7.2 (Receptor Binding Inhibition Assay, Table 3a and Table 3b).

35

EXAMPLE VI

Determination of Affinity Constants (K_D) of Anti-M-CSF

[0226] Affinity measures of purified antibodies were performed by surface plasmon resonance using the BIACORE™ 3000 instrument, following the manufacturer's protocols.

[0227] For antibodies 3.8.3, 2.7.3 and 1.120.1, the experiments were performed in a BIACORE™ 3000 instrument at 25°C in Dulbecco's phosphate buffered saline containing 0.0005% Tween-20. Protein concentrations were obtained from sedimentation velocity experiments or by measuring the wavelength of the sample at 280 nm using theoretical extinction coefficients derived from amino acid sequences. For experiments measuring the binding of antibody to immobilized antigens, M-CSF was immobilized on a B1 chip by standard direct amine coupling procedures. Antibody samples were prepared at 0.69 µM for 3.8.3, 2.7.3 and 1.120.1. These samples were diluted 3-fold serially to 8.5 nM or 2.8 nM for roughly a 100-fold range in concentrations. For each concentration, the samples were injected in duplicate at 5 µl/min flow for 4 min. The dissociation was monitored for 2000 seconds. The data were fit globally to a simple 1:1 binding model using BIACORE™ Biaevaluation software. In all cases, this method was used to obtain k_{off} and it was found that this data set compared well to data obtained from global fit of association and dissociation data.

[0228] For antibodies 252, 88 and 100, the experiments were performed in a BIACORE™ 3000 instrument at 25°C in HBS-EP Buffer (0.01M HEPES, pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% Surfactant P20). For experiments measuring the binding of antibody to immobilized antigens, a M-CSF was immobilized on a CM5 Research Grade Sensor chip by standard direct amine coupling procedures. Antibody samples were prepared at 12.5 nM for antibodies 252 and 100 and at 25.0 nM for antibody 88. These samples were two-fold serially diluted to 0.78 nM for roughly a 15-30 fold range

in concentrations. For each concentration, the samples were injected in duplicate in random order at 30 μ l/min flow for 3 min. The dissociation was monitored for 300 sec. The data were fit globally to a simple 1:1 binding model using BIACORE™ Biaevaluation software. In all cases, this method was used to obtain k_{off} and it was found that this data set compared well to data obtained from global fit of association and dissociation data.

5 [0229] Table 4 shows results for antibodies 252, 88, 100, 3.8.3, 2.7.3 and 1.120.1.

Table 4

	252	88	100	3.8.3	2.7.3	1.120.1
K_D (M)	1.33×10^{-11}	1.33×10^{-9}	2.0×10^{-11}	4.0×10^{-10}	4.7×10^{-9}	5.4×10^{-9}
k_{off} (1/s)	1.03×10^{-6}	7.3×10^{-5}	1.7×10^{-5}			

EXAMPLE VII

Production of 8.10.3 antibodies from 8.10.3 hybridoma cells

15 [0230] Antibody 8.10.3 was produced in 3L sparged spinners. The 3L sparged spinner flask is a glass vessel where cultures are mixed with an impeller controlled by a magnetic platform. The spinner is connected to gas lines to provide 5% CO_2 and air. 8.10.3 hybridoma cells were initially thawed into T-25 cell culture flasks. The cells were progressively expanded until there was a sufficient number of cells to seed the sparged spinners.

20 [0231] Two 3L sparged spinner flasks were seeded with 8.10.3 hybridoma cells in Hybridoma Serum-Free Medium with the additions noted on Table 5, for the two sparged flasks. The concentrations for Ultra low IgG serum (Gibco cat# 16250-078), L-glutamine (JRH Biosciences cat# 59202-500M), Non-Essential Amino Acids (Gibco cat# 11140-050), 25 Peptone (Difco cat# 211693), glucose (In-house stock prepared from JT Baker cat# 1920-07), and Anti-foam C (Sigma cat.# A-8011) are given at their final concentrations in the media. The balance of the volume in each reactor is Hybridoma Serum-Free Medium.

Table 5. Conditions for Growing Hybridoma 8.10.3 in two 3L sparged spinners.

Conditions	Spinner 1	Spinner 2
Seeding density (1×10^6 cells/ml)	0.16 ml	0.16 ml
Hybridoma Serum-Free Medium (Gibco cat# 12045-076)	Balance	Balance
Ultra low IgG serum (Gibco cat# 16250-078)	5%	5%
L-glutamine (JRH Biosciences cat# 59202-500M)	8 mmol/L	8mmol/L
Non-Essential Amino Acids (Gibco cat# 11140-050)	1%	1%
Peptone (Difco cat# 211693)	1g/L,	1g/L
2M glucose (In-house stock prepared from JT Baker cat# 1920-07)	8g/L	8g/L
Anti-foam C (Sigma cat.# A-8011)	1ml/L	1ml/L

45 [0232] The cultures were grown for 15 days and were harvested when the viability was below 20%. Viability was determined by trypan blue exclusion method with an automated cell counter (Cedex, Innovatis). Harvesting was accomplished by centrifugation and subsequent filtration. Clarified supernatant was obtained after centrifugation for 15 minutes at 7000 rpm and subsequent filtration with a sterile 0.22 μ m 4" Opticap Millipore filter (cat# KVSCO4HB3) into a 10L sterile TC-Tech bag (cat # P/N 12420 Bag Style CC-10-112420). The filtrate was then purified in the following example.

EXAMPLE VIII

Purification of an Anti-M-CSF Antibody

55 [0233] A Protein A column (Amersham Pharmacia) was prepped by washing with 3 column volumes of 8M Urea, followed by an equilibration wash with 20 mM Tris (pH 8). The final filtrate from Example VII was spiked with 2% v/v of 1M Tris pH 8.3 and 0.02% NaN_3 before being loaded onto the Protein A column via gravity-drip mode. After load was complete, the resin was washed with 5 column volumes of 20 mM Tris (pH 8), followed by 5 column volumes of the

elution buffer (0.1 M Glycine pH 3.0). Any precipitation was noted, and then a 10% v/v spike of 1M Tris pH 8.3 was added to the eluted antibody. The eluted protein was then dialyzed into 100 fold the volume amount of eluted material of dialysis buffer (140 mM NaCl/20mM Sodium Acetate pH 5.5). Following dialysis, the antibody was sterile filtered with a 0.22 μ m filter and stored until further use.

5

EXAMPLE IX

Monkey Treatment and Monocyte Counts

10 [0234] One male and one female cynomolgus monkey per dosage group were intravenously administered vehicle or antibody 8.10.3 (produced as describe in Examples VII and VIII) at 0, 0.1, 1, or 5 mg/kg in a dose volume of 3.79 mL/kg over an approximately 5 minute period. Blood samples for clinical laboratory analysis were collected at 24 and 72 hours postdose and weekly for 3 weeks. The monocyte counts were determined by light scatter using an Abbott Diagnostics Inc. Cell Dyn system (Abbott Park, Illinois).

15 [0235] A dose-related decrease (~25% to 85%) in total monocytes at all doses (Figures 1A and 1B) was observed. Monocyte counts at the 0.1 and 1 mg/kg appeared to rebound to near control levels by week 2, while monocyte counts at 5 mg/kg were still decreased at 3 weeks.

CD14+CD16+ monocyte subset analysis

20 [0236] Primate whole blood was drawn into Vacutainer tubes containing sodium heparin. 0.2 ml of each blood sample was added to a 15 ml conical polypropylene centrifuge tube containing 10 ml of red blood cell lysis buffer (Sigma), and incubated in a 37°C water bath for 15 minutes. The tubes were then centrifuged in a Sorvall RT7 centrifuge for 5 minutes at 1,200 rpm. The supernatant was aspirated, the pellet resuspended in 10 ml of 4°C FACS buffer (Hanks' Balanced 25 Salt Solution/2%FBS/0.02% sodium azide), and the tube centrifuged again for 5 minutes at 1,200 rpm. The supernatant was aspirated and the pellet resuspended in an antibody cocktail consisting of 80 μ l 4°C FACS buffer, 10 μ l FITC-conjugated anti-human CD14 monoclonal antibody (BD Biosciences, San Diego, CA), 0.5 μ l Cy5-PE-conjugated anti-human CD16 monoclonal antibody (BD Biosciences, San Diego, CA), and 10 μ l PE-conjugated anti-human CD89 monoclonal antibody (BD Biosciences, San Diego, CA). The cell suspension was incubated on ice for 20 minutes, after 30 which 10 ml of 4°C FACS buffer was added and the cells centrifuged as before. The supernatant was aspirated, and the cell pellet resuspended in 400 μ l FACS buffer and the cells analyzed on a FACSCaliber flow cytometer (BD Biosciences, San Jose, CA). Data for 30,000 cells were collected from each sample.

35 [0237] The monocyte population was identified by a combination of forward angle light scatter and orthogonal light scatter. Cells within the monocyte gate were further analyzed for expression of CD14 and CD16. Two distinct population of monocytes were observed, one, expressing high levels of CD14 with little or no CD16 expression (CD14++CD16-) and the other expressing lower levels of CD 14, but high levels of CD16 (CD14+CD16+), similar to the two monocyte subsets previously described in human peripheral blood (Ziegler-Heitbrock H.W., Immunology Today 17:424-428 (1996)). For each primate tested, the percentage of monocytes within the CD14+CD16+ subset was determined after each blood draw, on days 1, 3, 7, 14, and 21 after 8.10.3 injection.

40 [0238] In general, 8.10.3 treatment resulted in a reduction in the percentage of CD14+CD16+ monocytes (see Figures 2A and 2B). Monkeys not receiving 8.10.3 Antibody demonstrated relatively stable CD14+CD16+ monocyte levels. CD14+CD16+ monocytes have been termed "proinflammatory" because they produce higher levels of TNF- α and other inflammatory cytokines (Frankenberger, M.T., et al., Blood 87:373-377 (1996)). It has also been reported that the differentiation of monocytes from the conventional CD14++CD16- phenotype to the proinflammatory phenotype is dependent on M-CSF (Saleh M.N., et al., Blood 85: 2910-2917 (1995)).

EXAMPLE X

Monkey Treatment and Monocyte Counts

50 [0239] Three male cynomolgus monkeys per dosage group were intravenously administered vehicle (20 mM Sodium acetate, pH 5.5, 140 mM NaCl), purified antibody 8.10.3F, or purified antibody 9.14.4I at 0, 1, or 5 mg/kg in a dose volume of 3.79 mL/kg over an approximately 5 minute period. The monkeys were 4 to 9 years of age and weighed 6 to 10 kg. Blood samples for clinical laboratory analysis were collected at 2, 4, 8, 15, 23, and 29 days. Monocyte counts were determined by light scatter using an Abbott Diagnostics Inc. Cell Dyn system (Abbott Park, Illinois).

55 [0240] A decrease in the percentage change in total monocytes at all doses of antibody 8.10.3F and antibody 9.14.4I as compared to pre-test levels of monocytes (Figures 3A and 3B) was observed (see e.g., day 4, 8, 15, and 23 in Figures 3A and 3B).

SEQUENCES

[0241] Key:

- 5 Signal peptide: underlined lower case
 CDRs 1,2,3: underlined UPPERCASE
 Variable domain: UPPERCASE
 Constant domain: lower case
 Mutations from germline in bold
10 SEQ ID NO: 1
 252 Heavy Chain [Gamma chain] nucleotide sequence

atggagttggcgtgtggatttccctgtgtcattataaaaagggtgtccagtgtCAGGTGCAGCTGGTG
GAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCC
TGTGCAGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGATCC
GCCAGGCTCCAGGGAAAGGGGCTGGAGTGGATTCATACATTAGTGGTA
GTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCATTACCCAT
CTCCAGGGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCT
GAGAGCCGAGGACACGGCCGTATCACTGTGCGAGAGGCCCTGGGTGG
GATGGACGTCTGGGCCAAGGGACCACGGTCACCGTCTCCTCAGCTtcca
ccaaggcccattccgttccccctggccctgtctagaagcacctccgagagcacagcggccctggctgcctg
gtcaaggactacttccccgaaccgggtacgggtcgtggactcaggcgtctgaccagcggcgtgcacacccccc
agctgtccctacagtcctcaggactctactccctcagcagcgtggtgaccgtgcctccagcaacttcggcacccagac
ctacacctgcaacgttagatcacaagcccagcaacaccaagggtggacaagacagttgagcgc当地tgcag
gcccaccgtgcccagcaccacccgtggcaggaccgtcagttcccttccccc当地aaaccccaaggacaccctcatg
tctcccccggaccctgaggtcactgtcgtgggtggacgtgagccacgaagaccccgaggtccagttcaactggta
gtggacggcgtggaggtgcataatgcaagacaagccacccggaggaggcagttcaacagcacgttccgtgtggta
ggttcctcaccgtgtcaccaggactggcgtgaacggcaggactacaagtgc当地agggttcaaccctgccccatccc
gccccccatcgagaaaaccatctccaaaaccaaggcagccccgagaaccacagggttacaccctgccccatccc
gggaggagatgaccaagaaccaggcgtcggcgttcaaggcttcatccccagcgc当地acatgcccgtgg
gtgggagagcaatggcagccggagaacaactacaagacccacacccatgtggactccgacggcgttcccttcc
tctacagcaagctcaccgtggacaagagcaggcgtggcagcgggaaacgttcatgtcgtccgtatgcatgaggct
ctgcacaaccactacacgc当地aggcgttccctgtccgggtaaaa

SEQ ID NO: 2
40 252 Heavy Chain [Gamma chain] protein sequence

melglcwiflvaiikgvqcQVQLVESGGGLVKPGGLRLSCAASGFTSDYYMSWIR
QAPGKGLEWISYISGSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAE
DTAVYHCARALGGMDVWGQGTTVTVSSA~~st~~kgpsvfplapcsrstsestaalgc~~lv~~kdyfp
epvtvswnsgaltsgvhtfpavqlqssgyls~~ss~~vvtpvssnfgtqtytcnvvdhkpnsntkvdktverkccveccpc
appvagpsvflfppkpkd~~tl~~misrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrvvsv
ltvvhqdwln~~g~~keykckvsnkglpapiek~~t~~sktgqp~~re~~pvylppseemtknqvs~~l~~clvkgfyp~~s~~diave
wesngqpenykt~~tp~~ml~~d~~sdgsfflyskltvdksrwqggnvfcs~~sv~~mhealhnhytqks~~l~~slsp~~gk~~

SEQ ID NO: 3
252 Light Chain [Kappa chain] nucleotide sequence

5 atgagggtccctgctcagtcctgggctcctgtactctggctccgaggtgccagatgtGACATCCAGAT
 GACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACC
 ATCACTTGCCGGCAAGTCAGAGCATTAGCGGCTTTAAATTGGTATC
 AGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTACATCCA
 10 GTTCGCAAAGTGGGCTCCATTCAAGGTTAGTGGCAGTGGATCTGGGA
 CAGATTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTGCAAC
 TTATTACTGTCAACAGAGTACAGTGTCCCATTCACTTCGGCCCTGGG
 ACCAAAGTGGATATCAAACGAactgtggctcaccatgtcttcattcccccacatctgtgatgagc
 agttgaaatctgaaactctgtgtgtgcctgtgaataacttctatcccagagaggccaaagtacagtggaaagg
 ggataacgcccctccaatcggttaactcccaggagagtgtcacagagcaggacagcaaggacacgcacccatcaggccc
 15 acagcaccctgacgctgagcaaagcagactacgagaaacacaaaagtctacgcctgcgaagtcacccatcaggccc
 tgagctgcccgtcacaagagctcaacaggggagagtgt

SEQ ID NO: 4
 252 Light Chain [Kappa chain] protein sequence

20 mrvpaqllglwlrgarcDIQMTQSPSSLSASVGDRVTITCRASQSIISGFLNWYQQK
 PGKAPKLLIYATSSLQSGVPFRFSGSQTDFTLTISLQPEDFATYYCQQS
YSVPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvcnnfybreakvqwkvvdnalqsgns
 qesvteqdsdkdstyslsstltskadyekhkvyaacevthqglsspvtksfnrgec

25 SEQ ID NO: 5
 88 Heavy Chain [Gamma chain] nucleotide sequence

30 atggaatttgggctgtgtgggtttccttgtctatttagaagggtgtccagtgtGAGGTGCAGCTGGTG
 GAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGTCCCTGAGACTCTCC
 TGTGCAGCCTCTGGATTCACCTTAGTGTAGCTATTGGATGAGCTGGTCC
 GCCAGGCTCCAGGGAAAGGGCTGGAGTGGTGGCCAACATAAAGCAA
GATGGAAGTGAAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCA
 35 ATCTCCAGAGACAACGCCAACAAACTCACTGTATCTGCAAATGAACAGC
 CTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCTCCGGGTATAGCA
GCAGCTGGTAGGGCCTACTGGGCCAGGGAACCCGTGTCACCGTCTCC
 TCAGCTtccaccaaggcccacccgtctccctggcgccctgtctagaagcaccccgagagcacgcggc
 40 cctgggctgctgtcaaggactacttcccaaccgggtacgggtgtcgactcaggccgtctgaccagcggc
 tgcacaccctccacgtgtcctacagtccctcaggactctactccctcagcagcgtggacccgtgcccctccagcaacttc
 ggcacccagacccatccgtcaacgttagatcacaagcccaacaccaagggtggacaagacagttgagcgc
 45 gtaatgtgtcgagtgccaccgtgcccacccgtgcccacccgtgtggcaggaccgtcagtcctcttcccccaaaacccaagg
 acacccctcatgtatctcccgacccctgagggtcacgtcggtggacgtgagccacagaagaccccgagggtcca
 gttcaactggtaacgtggacccgtggagggtgcataatgccaagacaagccacgggaggagcagttcaacagc
 50 ttccgtgtggtaacgtggacccgtggagggtgcataatgccaagacaagccacgggaggagcagttcaacagc
 aaaggccctccacgtggaggatgaccaagaaccagggtcagccgtacccgtggcaggaccgtcagtcctcttccccca
 ctgccccatccggaggagatgaccaagaaccagggtcagccgtacccgtggcaggaccgtcagtcctcttccccca
 acatccgtggaggatggaggagatgaccaatggcagccggagaacaactacaagaccacacccatgtggactcc
 acggctcccttcctctacagcaagctcaccgtggacaagagcagggtggcagcagggaaacgtcttcatgtcc
 tgaatgtggaggctgtgcacaaccactacacgcagaagagcctccctgtctccggtaaa

55 SEQ ID NO: 6
 88 Heavy Chain [Gamma chain] protein sequence

5 mefglcwvflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWV
 RQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSL
 RAEDTAVYYCAPGIAAAGRAYWGQGTLVTVSSAstkgpsvflapcsrsestaalgc1
 vkdyfpepvtswnsgaltsgyhtfpavqlssgylsllssvtpvssnfgtqtytcnvdkpnsntkvdktverkccv
 ecppcpappvagpsvflfppkpkdtlmisrtpevtcvvvvdvshedpevqfnwyvdgvevhnaktkpreeqfns
 tfrvvsvltvvhqdwlngkeykckvsnkglpapiektisktgqprepqvylppssreemtknqvslltclvkgfyp
 sdiavewesngqpennyktppmldsdgsfflyskltvdksrwqqgnvfscsvmhealhnhytqksllspgk

10

SEQ ID NO: 7

88 Light Chain [Kappa chain] nucleotide sequence

15 atgagggtccctgctcagtcctggggctcctgctactctggctccgaggtgccagatgtGACATCCAGAT
 GACCCAGTCTCCATCCTCCCTGCTGCATCTGTTGGAGACAGAGTCACC
 ATCACTTGCCCGCAAGTCAGGACATTAGCAGTTATTAAATTGGTATC
 AGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCA
 20 GTTTGCAAAGTGGGGTCCATTAAGGTTCAGTGGCAGTGGATCTGGGA
 CAGATTCACTCTACCATCAGCAGTCTGCAACCTGAAGATTTGCAAC
 TTACTACTGTCAACAGAGTTACAGTACCCCATTCACTTCGGCCCTGGG
 25 ACCAAAGTGGATATCAAACGAactgtggctgcaccatgtctcatctccgccatctgtgatgagc
 agttgaaatctggaaactgctactgcgttgtgcctgctgaataactctatcccaggagaggccaaagtacactgtggaaggt
 ggataacgcccctccaatcggtaactcccaggagagtgcacagagcaggacagaggacacgcacctacaggcc
 agcagcaccctgacgctgagcaaagacagactacgagaaaacacaaagtctacgcctgcgagttcacccatcaggggcc
 tgagctgccccgtcacaaagagactcaacaggggagggtgt

20

25

SEQ ID NO: 8

88 Light Chain [Kappa chain] protein sequence

30 mrvpaqllgllllwlgarcDIQMTQSPSSLSASVGDRVTITCRPSQDISSYLNWYQQK
 PGKAPKLLIYAASSLQSGVPLRFSGSGTDFLTTISSLQPEDFATYYCQQS
 35 YSTPFTFGPGTKVDIKRtvapsvfifppsdeqlksgtasvvclnnfypreakvqwkvdnalqsgns
 qesvteqdsksdstyslsstltskadyekhkvyacevthqglsspvtksfnrgec

30

35

SEQ ID NO: 9

40 100 Heavy Chain [Gamma chain] nucleotide sequence

45

50

55

SEQ ID NO: 10
100 Heavy Chain [Gamma chain] protein sequence

mefglrwiflvailkgvqcEVQLLESGGGLVQPFGSLRLSCAASGFTFSSYAMSWVR
QAPGKGLEWVSAISGRGGRTYFADSVKGRFTISRDNSKNTLYLQMNSLRA
EDTA VYFCAVEGYSGRYGFHDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaal
gclvkdyfpepvtvswnsgaltsgvhftpavqlssgylsllssvtpssnfgtqtytcnvdhkpstkvdktverkc
cvecppcpappvagpsvflfppkpkdtlmisrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfn
nstfrvvsvltvvhqdwlngkeykckvsnkglpapiektisktgqprepqvylppsreemtknqvsllcgvkgf
ypsdiavewesngqpennyktppmlsdgsfflyskltvdksrwqgnvfcsvmhealhnhytqksllspgk

SEQ ID NO: 11
100 Light Chain [Kappa chain] nucleotide sequence

SEQ ID NO: 12

100 Light Chain [Kappa chain] protein sequence

5 meapaqlflflwlwpdttgEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQ
KPGQAPRLLIYGASTRASGIPDRISGSGSGTEFTLISSLQSEDFAVYYCQQS
NNWPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvcdnalqsgn
squesvteqdskskdstysslstlkskadyekhkvya
cevthqglsspvtksfnrgec

10

SEQ ID NO: 14

3.8.3 Heavy Chain [Gamma chain] protein sequence

15 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
RQAPGKGLEWFSYISSSGSTIYYADSVKGRFTISRDNAKNSLQLQMNSLRA
EDTAVYYCARGLTDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgclvkd
fpe
pvtvswnsgaltsgvhtfpavlqssglyls
ssvvtpssnfgtqtytcnvvdhksntkvdktverkccvecppcpa
ppvagapsvflfppkpkd
tlmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrvvsvlt
vvhqdwlngkeykckvsnkglpapi
ektisktkgqprepqvtlppsreemtknqvs
ltclvkgfypsdiavew
esngqpennyktppmlsdgsfflyskltvdksrwqqgnvfscsvmhealhnhytqksls
lspgk

20

SEQ ID NO: 16

25

3.8.3 Light Chain [Kappa chain] protein sequence

30 mdmrpaqlflflwlwpgsrcDIQMTQSPSSVSASVGDRV
TISCRASQDISGWLA
WY
QQKPGKAPKLLISATSSLHSGVPSRFSGSGTDF
TLTISSLQPEDFATYYC
QQTNSFPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvcdnalq
sngsquesvteqdskskdstysslstlkskadyekhkvya
cevthqglsspvtksfnrgec

30

SEQ ID NO: 18

35

2.7.3 Heavy Chain [Gamma chain] protein sequence

40 mefglswvflvallrgcqcQVQLVESGGVVQPGRLSCAASGFTFSSYGMHWV
RQAPGKGLEWVAFIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSL
RAEDTAVYYCARGLTYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgcl
vkdyfpepvtvswnsgaltsgvhtfpavlqssglyls
ssvvtpssnfgtqtytcnvvdhksntkvdkrveskygp
pcpscparfllggpsvflfppkpkd
tlmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfn
tyrvvsvltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvtlppsreemtknqvs
ltclvkgfypsdiavew
esngqpennyktppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqksls
lspgk

40

SEQ ID NO: 20

2.7.3 Light Chain [Kappa chain] protein sequence

50

45 mdmrpaqlflflwlwpfgsrcDIQMTQSPSSVSASVGDRV
TITCRASQDISSWLA
WY
QRKPGKAPKLQIYAASSLES
GVPSRFNGSGSGTDF
TLTISSLQPEDFATYYC
QQTNSFPLTFGGGT
KVEIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvcdnal
qsgnsquesvteqdskskdstysslstlkskadyekhkvya
cevthqglsspvtksfnrgec

55

SEQ ID NO: 22

1.120.1 Heavy Chain [Gamma chain] protein sequence

5 mewtwslflvaaatgahsQVQLVQSGAEVKPGASVKVSCKASGYTFTSYGISWV
 RQAPGQGLEWMGWISAYNGNTNYAQKLQDRVTMTTDSTTTAYMELRS
 LRSDDTAVYYCARRYGANFFDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaal
 lgclvkdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtpssnfgtqtytcnvvdhkpnsntkvdktverk
 ccvecppcpappvagpsvflfppkpkdtmlmisrtpevcvvvdvshedpevqfnwyvdghevhnaktkpree
 qfnstfrvvsvltvvhqdwlngkeykckvsnkglpapiektisktgqprepqvytlppssreemtknqvsltclvk
 gfypsdiavewesngqpennyktppmldsgsfflyskltvdksrwqqnfvscvmhealhnhytqkslsls
 10 pgk

SEQ ID NO: 24

1.120.1 Light Chain [Kappa chain] protein sequence

15 mvlqtqvfisllwisgaygDIVMTQSPDSLAVSLGERATINCKSSQSILFFSNNKNYL
 AWYRQKPGQPPNLLIYWASTRESGVPDRFSGSGSGTDFLTISSLQAEDVA
 20 VYYCQQYYSSPWTFGQGTKVEIKRtvaapsvfifppsdeqlksgtasvvclnnfybreakvq
 wkvdnalqsgnsqesvteqdsksdstysslstlkskadyekhkvyacevthqglsspvtksfnrgec

SEQ ID NO: 25

9.14.41 Heavy Chain [Gamma Chain] nucleotide sequence

25 atggagttgggctgagctgggtttccctgttgctattataaaaggtgtCCAGTGTAGGTGCAGCTG
 GTGGAGTCTGGGGGAGGGCTGGTCAAGCCTGGAGGGTCCCTGAGACTC
 30 TCCTGTGCAGCCTCTGGATTCACCTCAGTGACTACTATATGAGCTGGA
 TCCGCCAGGCTCCAGGGAAAGGGACTGGAGTGGGTTCATACATTAGTA
GTAGTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATTCA
 CCATCTCCAGGGACAACGCCAAGAACTCACTGTATCTGCAAATGAACA
 35 GCCTGAGAGCCGAGGACACGCCGTGTATTACTGTGCGAGAGGCCTAA
CTGGGGACTACTGGGGCCAGGGAACCCCTGGTCACCGTCTCAGCTtcc
 accaaggcccattccgttccccctggccgtcttagaaggcacccctgggctgcct
 ggtcaaggactacttcccccaacgggtgacgggtcgctggactcaggcgctctgaccaggccgtgcacaccccttc
 40 cagctgtccatagtcctcaggactctactccctcagcagcgtgtgaccgtccctccagcaacttcggcacccaga
 cctacacctcaacgttagatcacaagcccagcaacaccaagggtggacaagacagttgagcgcataatgtgtcgag
 tgcccaccgtgcccagcaccacccgtggcaggaccgtcagtctcccttcccccaaaacccaaggacaccctcatg
 atctcccgaccctgagggtcacgtcggtggacgtgacccacgaagaccccgagggtccagttcaactgttgc
 45 cgtggacggcggtggagggtgcataatccaagacaaaggccacggggaggcagttcaacagcacgtccgtgtggc
 acgtccctaccgttgtgcaccaggactggctgaacggcaaggagtacaagtgc
 agcgtccctaccgttgtgcaccaggactggctgaacggcaaggagtacaagtgc
 ctctacagcaagctaccgtggacaagagcagggtggcaggcagggtacaccctgccccatcc
 cgggaggagatgaccaagaaccagggtcagccctgacccctggtaaaaggcttctaccccgacatcgccgtgg
 50 agtgggagagcaatggcagccggagaacaactacaagaccacacccatgtggactccgacggcttcttc
 ctctacagcaagctaccgtggacaagagcagggtggcaggcagggtacaccctgccccatcc
 tctgcacaaccactacacgcagaagagcaccctccctgtctccggtaaa

SEQ ID NO: 26

9.14.41 Heavy Chain [Gamma Chain] protein sequence

5 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTESDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARGLTG DYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgclvkdypfe
 pvtvswnsgaltsgvhtfpavlqssglyslssvvtpssnfgtqtycnvdhksntkvdktverkccvecppcpa
 ppvagpsvflfppkpkdtlmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrvvsvlt
 vvhqdwlngkeykckvsnkglpapiektskkgqprepqvytlppssreemtknqvsltclvkgfypsdiavew
 esngqpennyktpplsdgsfflyskltvdksrwqqgnvfscsvmhealhnhytqkslslspgk

10

SEQ ID NO: 27

9.14.4, 9.14.4I, 9.14.4-Ser and 9.14.4-G1 Light Chain [Kappa Chain] nucleotide sequence

15

15 atggacatgagggtccccgctcagctctgggctctgctactctggctccgagggtgccagatgTGACATCC
 AGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTCGGAGACAGAGT
 CACCATCACTTGCCGGCCAAGTCAGATCATTAGCAGTTATTAAATTGG
 TATCAGCAGAAACCAGGGAAAGGCCCTAACGCTCCTGATCCATGCTGCA
TCCAGTTGCAAAGTGGGTCCATCAAGGTTAGTGGCAGTGGATCTG
 GGACAGATTCACTCTACCACATCAGTAGTCTGCAACCTGAAGATTTC
 AACTTACTACTGTCAACAGAGTTACAGTACCCATTCACTTCGGCCCT
 GGGACCAAAGTGGATATCAAACGAactgtggctgcaccatctgtcttcatctccgcacatctga
 tgagcagttaatctggactgcctctgtgtgcctgctgaataacttctatcccagagaggccaaagtacagtgg
 aggtggataacgcctccaatcggtaactcccaggagagtgcacagagcaggacagaaggacacgcacatca
 gcctcagcagcaccctgacgctgagcaaaggactacgagaaacacaaagtctacgcctgcaagtaccatca
 ggcctgagctcgccgtcacaagagacttcaacagagggagagtgt

20

25

SEQ ID NO: 28

30

9.14.4, 9.14.4I, 9.14.4-Ser and 9.14.4-G1 Light Chain [Kappa Chain] protein sequence

35

mdmrvpaqllgllllwlrarcDIQMTQSPSSLSASVGDRVTITCRPSQISSLLNWYQ
 QKPGKAPKLLIHAASSLQSGVPSRFSGSGTDFLTISLQPEDFATYYCQ
QSYSTPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqs
 gnsqesvteqdkdstyssltlskadyekhkvyaevthqglssptksfnrgec

45

50

55

atggaggatggggctgagctgggttccctgtgtcattataaaagggtgtCCAGTGTCAAGGTGCAGCTG
GTGGAGTCTGGGGAGGCTGGTCAAGCCTGGAGGGTCCCTGAGACTC
TCCTGTGCAGCCTCTGGATTACCTTCAGTGACTACTATATGAGCTGG
TCCGCCAGGCTCCAGGGAAAGGGACTGGAGTGGGTTCATACATTAGTA
GTAGTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATTCA
CCATCTCCAGGGACAACGCCAGAACACTCACTGTATCTGCAAATGAACA
GCCTGAGAGCCGAGGACACGGCCGTATTACTGTGCGAGAGGCCCTAA
CTGGGGACTACTGGGGCCAGGGAACCCCTGGTCACCGTCTCCTCAGCTTcc
accaaggcccacccatccgtttcccccgtggccctgtctagaagcacccctggagagcacagccggccctggctgcct
ggtaaggactacttccccgaaccggtgacgggtcgtaactcaggcgctctgaccagcggcgtgcacaccctcc
cagctgtcctacagtccctcaggactactccctcagcagcgtggaccgtgcctccagcagcgttggcacgaaga
cctacacccgtcaacgttagatcacaagcccagcaacaccaccaagggtggacaagagaggttgcgttcaaatatggccccca
tgccccatcatgcccagcacctgagttccctgggggaccatcagtccctgttccccccaaaacccaaaggacactctca
tgcgtccctggccggaccctgtggagggtcagtcgtggaccgtgagccaggaagaccccgagggtccagttcaacttgg
tacgtggatggcgtggagggtcataatgcaagacaaagcccgcccggaggagcagttcaacagcacgttccatgttgg
tcagcgtccctaccgtccctgcaccaggactggcgtgaacggcaaggagttacaagtgcacccatccaaacaaaggccctc
ccgtccctccatcgagaaaaccatccaaagccaaaggccagccccgagagccacagggtgtacaccctgccccat
cccaggaggagatgaccaagaaccaggcgtccctgcaccctgtgtcaaggcttctacccctcagcgcacatcgccgt
ggagtggggagagcaatggcagccggagaacaactacaagacccacgcctccgtgtggactccgacggctccctc
ttccctctacagcaggcataaccgtggacaagagcaggcaggagggaaatgttctcatgtccctgtatgcatgag
gctctgcacaaccactacacacagaagagcctccctgtctccggtaaa

SEQ ID NO: 38
9.14.4 Heavy Chain [Gamma Chain] protein sequence

mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
EDTAYYCARGLTGDYWGQGTLTVSSAstkgpsvfplapcsrstsestaalgclvkdypfep
pvtvswnsgaltsgvhfpavqlqssglysllssvvtpsslgktktcndhkpnsntkvdkrveskygppcpcpa
peflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqfnstyrvsvl
tvlhqdwlngkeykckvsnkglpssiekrtiskakgqprepqvylppsqeemtnqvsllclvkgfypsdiave
wesngqpennykttppvlldsgsfflysrldksrwlqegnfvfscsvmhealhnhytqksllspgk

SEQ ID NO: 54
9.14.4C-Ser Heavy Chain [Gamma chain] protein sequence

mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
EDTA VYYCARGLTGDYWGQGTLTVSSA stkgpsvfplapcsrstsestaalgclvkdjfpe
pvtvswnsgaltsgvhfpavlqssglylsvvvtpsslgktktcnvdhkpnsntkvdkrveskygppcpcpa
peflggpsvflfppkpkdtmlisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqfnstyrvsvl
tvlhqdwlngkeykckvsnkglpssiekrtiskakgqprepqvylppsqeemtnqvsllclvkgfypsdiave
wesngqpennykttppvlldsgsfflysrldksrwlqegnvfscsvmhealhnhytqksllspgk

SEQ ID NO: 56
9.14.4C-Ser, 9.14.4-CG2 and 9.14.4-CG4 Light Chain [Kappa chain] protein sequence

5 mdmrvpaqllglllwlgarcDIQMTQSPSSLASAVGDRVITICRPSQISSLNWYQ
 QKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFLTISLQPEDFATYYCQ
QSYSTPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqs
gnsqesvteqdskdstysslstltskadyekhkvyaacevthqglsspvtksfnrgec

SEQ ID NO: 74

9.14.4-CG2 Heavy Chain [Gamma chain] protein sequence

10 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTSDYYMSWI
 RQAPGKGLEWVSYISSLGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARGLTGDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgclvkdypfpe
 pvtvswnsgaltsgvhtfpavlqssglylssvvtpssnfgtqtytcnvdkpsntkvdkverkccvecpcpa
 ppvagpsvflfppkpkdilmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrvvsvlt
 vvhdwlngkeykckvsnkglpapiektskakgqprepqvylppssreemtnqvsltclvkgfypsdiavew
 esngqpennykttppmlsdgsfflyskltvdksrwqqgnvfscvmhealhnhytqkslslspgk

SEQ ID NO: 78

9.14.4-CG4 Heavy Chain [Gamma chain] protein sequence

15 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTSDYYMSWI
 RQAPGKGLEWVSYISSLGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARGLTGDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgclvkdypfpe
 pvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtktytcnvdkpsntkvdkrveskygppcpcpa
 peflfgpsvflfppkpkdilmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstyrvvsvlt
 tvlhdwlngkeykckvsnkglpssiektskakgqprepqvylppssreemtnqvsltclvkgfypsdiavew
 wesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscvmhealhnhytqkslslspgk

SEQ ID NO: 82

9.14.4-Ser Heavy Chain [Gamma chain] protein sequence

20 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTSDYYMSWI
 RQAPGKGLEWVSYISSLGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARGLTGDYWGQGTLVTVSSAstkgpsvfplapcsrstsestaalgclvkdypfpe
 pvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtktytcnvdkpsntkvdkrveskygppcpcpa
 peflfgpsvflfppkpkdilmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstyrvvsvlt
 tvlhdwlngkeykckvsnkglpssiektskakgqprepqvylppssreemtnqvsltclvkgfypsdiavew
 wesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscvmhealhnhytqkslslspgk

SEQ ID NO. 101

9.14.4G1 Heavy chain (gamma chain) nucleotide sequence

55

5 atggagttgggctgagctgggtttccctgttgcattataaaagggtgtccagtgCAGGTGCAGCTGGTG
 GAGTCTGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCC
 TGTGCAGCCTCTGGATTCACCTCAGTACTACTATATGAGCTGGATCC
 GCCAGGCTCCAGGGAAAGGGACTGGAGTGGGTTCATACATTAGTAGTA
 GTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCATTACCAT
 10 CTCCAGGGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCT
 GAGAGCCGAGGACACGCCGTGTATTACTGTGCGAGAGGCCTAACTGG
 GGACTACTGGGCCAGGGAACCCCTGGTCACCGTCTCCTCAGCTtccaccaag
 ggcccatcggtctcccccggcacccctccaagagcacctctggggcacagcggccctggctgcctggtaa
 ggactactccccgaaccggtgacgggtcgttggactcaggccctgaccageggcgtgcacaccctccggctg
 15 tcctacagtccctcaggactctactccctcagcagcgtggaccgtgcctccagcagctggcaccacactacat
 ctgcaacgtgaatcacaagcccagcaacaccaagggtggacaagaaagttagccaaatctgtgacaaaactcaca
 catgcccaccgtgcccagcacctgaactctggggaccgtcagttcccttcccccaaaacccaaggacacc
 20 ctcatgatctcccgacccctgaggtcacatcgctggaccgtgagccacgaagaccctgaggtaagttcaa
 ctggtagtggacggcgtggaggtgcataatgccaagacaaagccggggaggaggcgtacaacacgtacc
 tgggtcagcgtccaccgtcaccaggactggctgaatggcaaggagtacaagtgcacccatccatgc
 25 ccctcccagccccatcgagaaaaccatctccaaagccaaaggcagcccccggagaaccacagggttacaccctgg
 cccatcccggtatgagctgaccaagaaccagggtcagcctgaccctggctcaaaaggcttatcccgacatcg
 ccgtggagtggagagcaatggcagccggagaacaactacaagaccacgcctccgtgctggactccgacgg
 ccttccctctacagcaagctaccgtggacaagagcagggtggcagcaggggaacgtctctcatgc
 ataggctctgcacaaccactacacgcagaagaggctccctctccggtaatag

SEQ ID NO 102

9.14.4G1 Heavy chain (gamma chain) protein sequence

30 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARGLTGDYWGQGTLVTVSSAstkgpsvfplapsskstsggtaalgcldvkyfp
 epvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtqtyicnvnhkpsntkvdkkvepkscdkthtcpp
 35 cpapelggpsvflfppkpkdtmlmisrtpevtcvvvdvshedpevkfnwyvdgvevhnaktkpreeqynstyrv
 vsvltvlhqdwlngkeykckvsnkalpapiekiskakgqpqrepqvytlppsrdeltkvnqsvltclvkgfypsdia
 vewesngqpennyktppvldsdgsfflyskltvdksrwqqgnvfscsvmhealhnhytqkslslspgk

40 SEQ ID NO: 29

8.10.3 and 8.10.3F Heavy Chain [Gamma chain] nucleotide sequence

45

50

55

SEQ ID NO: 30

8.10.3 and 8.10.3F Heavy Chain [Gamma chain] protein sequence

melglcwvflvailegqvcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTWV
RQAPGKGLEWVSYISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD
EDTAVYYCARDPLLAGATFFDYWGQGTLVTVSSAstkgpsvfplapcrsrtsestaalg
clvkdjfpepvtswnsgaltsgvhtfpavljqssglylsssvvtpssnfgtqtytcnvdkpnsntkvdktverkcc
vecppcpappvagpsvlfppkpkdtlmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfn
stfrvvsvltvhqdwlngkeyckvsnkglpapiektisktgqprepqvylppssreemtknqsvltclvkgfy
psdiavevesngqpennykttppmildsdgssfllyskltvdksrwwqgnvfscsvmhealhnhytqksllspgk

SEQ ID NO: 31

8.10.3FG1 and 8.10.3F Light Chain [Kappa chain] nucleotide sequence

atggaaaccccccagcgcagcttctccctcctgtactctggctccagataccaccggGAATTGTGTT
ACGCAGTCTCCAGGCACCCCTGTCTTGTCTCCAGGGGAAAGAGGCCACCC
TCTCCTGCAGGGCCAGTCAGAGTGTAGCAGCAGTTACTTAGCCTGGTA
CCAGCAGAAACCTGGCCAGGCTCCAGGCTCCTCATCTATGGTGCATCC
AGCAGGGCCACTGGCATCCCAGACAGGTTAGTGGCAGTGGGTCTGGG
ACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTCAG
TGTATTACTGTCAGCAGTATGGTAGCTCACCTCTCACTTCGGCGGAGG
GACCAAGGTGGAGATCAAACGAactgtggctgcaccatctgtctcatctccgcacatctgtatga
gcagttgaaatctggactgcctctgtgtgcctgtcataacttctatccagagaggccaaagtacagtggaaag
gtggataacgcctccaaatcggttaactccaggagagtgtcacagagcaggacagaaggcacctacagcc
tcagcagcaccctgacgctgagcaaagcagactacgagaaacacaaaactacgcccgtcagaactcaccatcaggg
cctgagctgcggcgtcacaagagctcaacaggagggagactgt

SEQ ID NO: 32

8.10.3FG1 and 8.10.3F Light Chain [Kappa chain] protein sequence

5 metpaqlflflwlwpdttgEFVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQ
KPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFLTISRLEPEDFAVYYCQQ
YGSSPLTFGGGTKEIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqsg
nsqesvteqdsdkdstysslstltskadyekhkvya
cevthqglssptksfnrgec

10

SEQ ID NO: 43

8.10.3 and 8.10.3-Ser Light Chain [Kappa chain] nucleotide sequence

15 atggaaaccccagcgcagctcttccctgcactctggctccagataccaccggaGAATTGTGTTG
ACGCAGTCTCCAGGCACCCTGTCTTGTCTCCAGGGAAAGAGGCCACCC
TCTCCTGCAGGCCAGTCAGAGTGTAGCAGCAGTTACTTAGCCTGGTA
CCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCC
AGCAGGGCCACTGGCATCCCAGACAGGTTAGTGGCAGTGGGTCTGGG
ACAGACTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTGTAG
TGTATTACTGTCAGCAGTATGGTAGCTCACCTCTCACTTCGGCGGAGG
GACCAAGGTGGAGATCAAACGAactgtggctgcaccatgtctcatctccgcacatgtat
gcagttgaaacttggaaactgcctctgttgtgtgcctgtgaataacttcatccagagaggccaaagtacagtggaaag
gtggataacgcctccaatcggttaactcccaggagagtgcacagagcaggacagcaaggacagcacctacaggc
tcagcagcaccctgacgctgagcaaagcagactacgagaaacacaaagtctacgcctgcgaagtcacccattcaggc
cctgagctccccgtacaaagagctcaacaggaggtgt

20

SEQ ID NO: 44

30

8.10.3 and 8.10.3-Ser Light Chain [Kappa chain] protein sequence

35 metpaqlflflwlwpdttgEFVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQ
KPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFLTISRLEPEDFVVYYCQQ
YGSSPLTFGGGTKEIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqsg
nsqesvteqdsdkdstysslstltskadyekhkvya
cevthqglssptksfnrgec

25

SEQ ID NO: 58

40

8.10.3C-Ser Heavy Chain [Gamma chain] protein sequence

45 melgcwvflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTWV
RQAPGKGLEWVSYISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD
EDTAVYYCARDPLLAGATFFDYWGQGTLTVVSSAstkgpsvfplapcrstsestaalg
clvkdyfpeptvswnsgaltsgvhtfpavlqssglylssvtpvssslgtktvncvdhkpstkvdkrveskyg
ppcpcpapelfggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqf
nstyrvvsvltvlhqdwlngkeykckvsnkglpssiektiskakgqppepqvtlppsqeemtnqvsitclvkgf
ypsdia
vesngqpennyk
tppvldsdgsfflysrldksrwqegnvfscsvmhealhnhytqkslslspgk

50

SEQ ID NO: 60

8.10.3-CG2, 8.10.3-CG4 and 8.10.3C-Ser Light Chain [kappa chain] protein sequence

55

5 metpaqlflflwlpdttgEIVLTQSPGTLSSLSPGERATLSCRASQSVSSSYLAWYQQ
 KPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFLTISRLEPEDFAVYYCQQ
YGSSPLTFGGGTKVEIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvcdnalqsg
 nsqesvteqdskdstysslstltskadyekhkvyaacevthqglsspvtksfnrgec

10 SEQ ID NO: 62

8.10.3-CG2 Heavy Chain [Gamma chain] protein sequence

15 melglcwvflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTWV
 RQAPGKGLEWVSYISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD
EDTAVYYCARDPLLAGATFFDYWGQGTLVTVSSAstkgpsvflapcsrcstsestaalg
 clvkdyfpepvtvswnsgaltsgvhtfpavlqssglylssvvtpssnfgtqtytcnvdhkpstkvdktverkcc
 vecppcpappvagpsvflfppkpkdtmlmisrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfn
 stfrvvsvltvhqdwlngkeykckvsnkglpapiektisktgqpqrepqvtlppsreemtnqvsitclvkgf
 psdiavewesngqpennykttppmlsdgsfflyskltvdksrwqgqnvfscsvmhealhnhytqkslslspgk

20 SEQ ID NO: 90

8.10.3-Ser Heavy Chain [Gamma chain] protein sequence

25 melglcwvflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTWV
 RQAPGKGLEWVSYISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD
EDTAVYYCARDPLLAGATFFDYWGQGTLVTVSSAstkgpsvflapcsrcstsestaalg
 clvkdyfpepvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtkttytcnvdhkpstkvdkrveskyg
 ppcppcpapeflggpsvflfppkpkdtmlmisrtpevtcvvvdvssqedpevqfnwyvdgvevhnaktkpreeqf
 nstyrvvsvltvlhqdwlngkeykckvsnkglpssiektiskakgqpqrepqvtlppsqeemtnqvsitclvkgf
 ypsdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslspgk

30 SEQ ID NO: 94

8.10.3-CG4 Heavy Chain [Gamma chain] protein sequence

35 melglcwvflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTWV
 RQAPGKGLEWVSYISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD
EDTAVYYCARDPLLAGATFFDYWGQGTLVTVSSAstkgpsvflapcsrcstsestaalg
 clvkdyfpepvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtkttytcnvdhkpstkvdkrveskyg
 ppcppcpapeflggpsvflfppkpkdtmlmisrtpevtcvvvdvssqedpevqfnwyvdgvevhnaktkpreeqf
 nstyrvvsvltvlhqdwlngkeykckvsnkglpssiektiskakgqpqrepqvtlppsqeemtnqvsitclvkgf
 ypsdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslspgk

40 SEQ ID NO: 97

8.10.3FG1 Heavy Chain nucleotide sequence

50

55

atggaggatggggctgagctgggtttcccttgcgttattataaaagggtccagtgtGAGGTGCAGCTGGTG
GAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGTCCCTGAGACTCTCT
TGTGCAGCCTCTGGATTCACCTTCAGTAGTTTAGTATGACCTGGGTCC
GCCAGGCTCAGGAAAGGGCTGGAGTGGGTTCATACATTAGTAGTA
GAAGTAGTACCATATCCTACGCAGACTCTGTGAAGGGCCGATTCACCA
TCTCCAGAGACAATGCCAAGAACTCACTGTATCTGCAAATGAACAGCC
TGAGAGACGAGGACACGGCTGTGTATTACTGTGCGAGAGATCCTCTTCT
AGCAGGGAGCTACCTCTTGACTACTGGGGCCAGGGAACCCTGGTCAC
CGTCTCCTCAGCCtccaccaaggcccacggcttccccctggcaccctccaaagagcacctctggg
ggcacagcggccctggctgcgtcaaggactacttccccgaaccggtagcgggtcgtgaaactcaggcggcc
tgaccagcggcgtgcacacccctccggctgtccatcagtcctcaggactactccctcagcagcgtggtagccgtgc
cctccagcagctgggcacccagacactacatctgcaacgtgaatcacaagccagcaacaccaagggtggacaagaa
agttagccaaatcttgtgacaaaactcacacatgcccacccgtgcccagcacctgaactctggggggaccgtcagt
cttccttccccccaaaacccaaggacaccctcatgatctccggaccctgaggtcacatgcgtgtggtagccgt
agccacgaagaccctgaggtcaagttcaactggtagcggcgtggaggtgcataatgcaagacaaagccgc
gggaggaggcagtacaacacagcacgtaccgtgtggtagcgtccaccgtcgtcaccaggactggtagatggcaa
ggagtacaagtgcaggtctccaacaaagccctccagccccatcgagaaaaccatctccaaagccaaaggcag
ccccgagaaccacagggtgtacccctgccccatccggatgagctgaccaagaaccaggcgtcgcctgaccc
tggtaaaaggcttatcccgacatgcggtaggtggagagcaatggcagccggagaacaactacaagac
cacgcctcccgtagcgtgactccgacggcttccctacagcaagctcaccgtggacaagagcaggtagc
ggggaaacgttctcatgcgttagcatgaggctctgcacaaccactacacgcagaagagcgcctccctgtcccg
ggtaataag

SEQ ID NO: 98
8.10.3FG1 Heavy chain (gamma chain) protein sequence

melgcwwflvailegvqcEVQLVESGGGLVQPGGSLRLSCAASGFTSSFSMTW
RQAPGKGLEWVS~~YISSRSSTISYADSVKGRFTISRDNAKNSLYLQMNSLRD~~
EDTA~~VYYCAR~~DPLL~~AGATFFDYWGQGTL~~TVSSA~~st~~kgpsvfplapsskstsgtaal
gclvkdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtpsslgqtyicnvnhkpsntkvdkkvepk
scdkthccpcapellggpsvflfppkpkd~~tl~~misrtpevtcvvvdvshedpevkfnwyvdgvevhnaktkpr
eeqynstyrvsvltvlhqdwlngkeyckcvsnkalpapiektiskagqprepqvytlppsrde~~lt~~knqvs~~lt~~clv
kgfypsdiavewesngqpennyk~~tp~~pvldsgsfflyskltvdksrwqqgnvfscvmhealhnhytqksls
pgk

SEQ ID NO: 33
9.7.2IF Heavy Chain [Gamma chain] nucleotide sequence

5 atggagttgggctgagctgggtttccitgttctattataaaagggtgtccagtg AGGTGCAGCTGGTG
 GAGTCTGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCC
 TGTGCAGCCTCTGGATTCACCTCAGTGACTACTACATGAG GTGGATCC
 GCCAGGCTCCAGGGAAAGGGGCTGGAGTGGGTTCATACATTAGTAGTA
GTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATT ACCAT
 10 CTCCAGGGACAACGCCAAGAATTCACTGTATCTGCAAATGAACAGCCT
 GAGAGCCGAGGACACGCCGTGTATTACTGTGCGAGGCGTATAGGAGG
TATGGACGTCTGGGCAAGGGACCACGGTCACCGTCTCCTCAGCT Tcca
 ccaaggcccatccgtttccccctggccctgcttagaaggcacccggccctggctgcctg
 gtcaaggactactccccgaaccggtgacgggtcgactcaggcgctgaccaggccgtgcacacccccc
 15 agctgtcctacagtccctcaggactctactccctcagcagcgtggaccgtccctccagcaactcggcaccc
 ctacacccgtcaacgttagatcacaaggccagcaacaccaagggtggacaagacagttgagcgc
 20 gcaatgtgtcgagt gcccaccgtgcccagcaccacccgtggcaggaccgtcagtcctcttcccccaaa
 acccaaggacaccctcatga tctcccgaccctgagggtcagtcgtgggtggacgtgaggccacgaag
 25 gacccggccatccgtgggtggacgtcacttccctcttcccccaaaacc
 acccaaggacaccctcatga tctcccgaccctgagggtcagtcgtgggtggacgtcacttccctcttccccca
 gggaggagatgaccaagaaccaggcgtcgcctgcctggtaaaggcttcatcccc
 ggcgcacatcgccgtgga
 gtggagagcaatggcagccggagaacaactacaagaccacccatcggactcc
 tctacagcaagctaccgtggacaagagcagggtggcaggcaggaaacgttcatgc
 ctccgtgatgcatgaggct
 ctgcacaaccactacacgcagaagaggctccctgtccggtaaa

SEQ ID NO: 34

9.7.2IF Heavy Chain [Gamma Chain] protein sequence

30 mefglswvflvaiikgvqc QVQL VESGGGLVKPGGLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCARRIGGMDVWGQGTTVTVSSAstkgpsvfplapsr stsestaalgc
 35 lkvdyf pepvtvswnsgaltsgvhtfpavlqssglylssvvtpssnfgtqytcnv
 dhkpsntkvdktverkccvecppc pappvagpsvflfppkpkd
 tlmisrtpevtvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrv
 vs vltvvhqdwlngkeykckvsnkglpapiektisktgqp
 prepqvtlppsreemtknqvsltclvkgfypsdiav
 ewesngqpennyk
 tppmldsdgsfflyskltvdksrwqqnfvscsvmhealhnhytqksls
 lspgk

SEQ ID NO: 35

9.7.2IF Light Chain [Kappa chain] nucleotide sequence

40 atggacatgagggtccccgctcagctctggggctctgtactctggctccgagggtgccagatgt GACATCC
 AGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGT
 45 CACCATCACTTGCCCGGCAAGTCAGAGCATTAGCGGCTTTAATTGG
 TATCAGCAGAGACCAGGGAAAGGCCCTAAGCTCCTGATCTATGCTACA
TCCAGTTACAAAGTGGGTC CATCAAGGTTCAAGTGGCAGTGGATCTG
 50 GGACAGATTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTGC
 AACTTACTACTGTCAACAGAGTACAGTACCCCATTCA TCTTCGGCCCT
 GGGACCAAAGTGGATATCAAACGAactgtggctgcacca ctgttcatctcc
 55 ccgtatcga tgaggacttggactgcctctgtgtgcctgctgaataactt
 ctatccc
 agagaggccaaagtacgtgga
 aggtggataacgc
 ccctcaatcggt
 taactccc
 agaggaggtgt
 acagagc
 gagactac
 cggac
 gagaca
 gggac
 gagc
 acctaca
 ggcctg
 gagct
 gccc
 gtca
 caca
 agag
 gct
 tcc
 ctgt
 ccc
 ggtaaa

SEQ ID NO: 36

9.7.2IF Light Chain [Kappa chain] protein sequence

mdmrvpaqllglrrgarcDIQMTQSPSSLSASVGDRVTITCRASQSISGFLIWYQ
QRPKGAKPLIYATSSLQSGVPSRFSGGSGTDFLTISSLQPEDFATYYCQ
QSYSTPFTFGPGTKVDIKRtvapsvfifppsdeqlksgtasvvclnnfypreakyqwkvdnalqs
gnsquesvteqdsksdstdstlsstlksadyekhkvyaevthqglsspvtksfnrgec

10

SFQ ID NO: 45

9.7.2 Heavy Chain [Gamma chain] nucleotide sequence

atggagttggcgtgagctgggtttccttgcgtattataaagggtgtccagtgtcAGGTGCAGCTGGTG
GAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCC
TGTGCAGCCTCTGGATTCACCTTCAGTGACTACTACATGAGCTGGATCC
GCCAGGCTCCAGGAAGGGGCTGGAGTGGGTTCATACATTAGTAGTA
GTGGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATTACCCAT
CTCCAGGGACAACGCCAAGAATTCACTGTATCTGCAAATGAACAGCCT
GAGAGCCGAGGACACGGCCGTGATTACTGTGCGAGGCGTATAGGAGG
TATGGACGTCTGGGCCAAGGGACCACGGTACCGTCTCCTCAGCTtcca
ccaaggggccatccgttccccctggccctgtctagaagcacctccgagagcacagcggccctggctggctgctg
gtcaaggactacttccccgaaccgggtacgggtcgtgaaactcaggcgctctgaccagcggcgtgcacacccttccc
agctgtcctacagtcctcaggactctactccctcagcagcgtgtgaccgtgcctccagcagctggcacaag
ctacacctgcaacgttagatcacaagcccagcaacaccaagggtggacaagagagagttgagtccaaatatggccccat
gcccacatgcccagcacctgagttctggggggaccatcagtctctgttccccccaaaacccaaggacactctcat
gatctcccgacccctgaggtcacgtcgtgtggacgtgagccaggaagaccccgaggtccagttcaacttgt
acgtggatggcgtggaggtgcataatgccaagacaaagccgcggaggagcagttcaacagcacgtaccgtgtgg
cagcgtccaccgtcgtcaccaggactggcgtgaacggcaaggagtacaagtgcaggtcaccacaaaggccct
ccgtcctccatcgagaaaaccatctccaaagccaaagggcagcccgagagccacagggtgtacaccctgccccat
cccaggaggagatgaccaagaaccaggtcagcgtcgtcaaggcttctacccctcagcgcacatcgccgt
ggagtgggagagcaatggcagccggagaacaactacaagaccacgcctccgtctggactccgacggctccctt
ttcctctacagcaggctacccgtggacaagagcaggcagggtggcaggagggaaatgttctcatgctccgtatgc
gtcgtcacaaccactacacacagaagagcctccctgtctccggtaaa

40

SEQ ID NO: 46

9.7.2 Heavy Chain [Gamma Chain] protein sequence

mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
EDTAVYYCARRIGGMDVWGQQGTTVTVSSAstkgpsvfplapcsrstsestaalgclvkdjf
pepvtvswnsgaltsgvhtfpavlqssglyslssvvtpssslgtktvtnvdhkpnskvdkrveskygppcpsc
papeflggpsvflfppkpkdtmlisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqfnstyrvv
svltvlhqdwlngkeyckvsnkglpssiektskakgqprepqvylppsqeemtknqvsltclvkgfypsdia
vewesnggpennykttppvltdsgsfflysrldksrwlqegnvfscvmhealhnhytqksllspgk

50

SEQ ID NO: 47

9.7.2 and 9.7.2-Ser Light Chain [Kappa chain] nucleotide sequence

5 atggacatgagggtcccccgtcagctctgggctctgactctggctccgaggtgccagatgtGACATCC
 AGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGT
 CACCATCACTTGC~~GG~~CAAGTCAGAGCATTAGCGGCTTTAATTGG
 TATCAGCAGAGACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTACA
 10 TCCAGTTACAAAGTGGGTCCCATTAAAGGTTAGTGGCAGTGAATCTG
 GGACAGATTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTGC
 AACTTACTACTGTCAACAGAGTTACAGTACCCATTCACTTCGGCCCT
 15 GGGACCAAAGTGGATATCAAACGAactgtggctgcaccaatctgtctcatctccgcacatctga
 tgagcagttgaaatctggaactgcctctgtgtgcctgctgaataacttctatcccagagaggccaaagtacagtgg
 aggtggataacgc~~cc~~ctccaatcggttaactcccaggagagtgtcacagagcaggacagaaggacacgcac
 gcctcagcagcaccctgacgctgagcaaagcagactacgagaaacacaaggactacgcctgcaagtacccatca
 gggcctgagctcgccgtacaaagagcttcaacagagggagagtgt

SEQ ID NO: 48

9.7.2 and 9.7.2-Ser Light Chain [Kappa chain] protein sequence

20 mdmrvpaqllglllwlrgarcDIQMTQSPSSLSASVGDRVITCRASQSISGFLIWYQ
 QRPGKAPKLLIYATSSLQSGVPLRFSGSESGTDFLTTISSLQPEDFATYYCQ
 25 QSYSTPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqs
 gnsqesvteqdsksdstyslsstltskadyekhkvyaevthqglssptksfnrgec

SEQ ID NO: 50

9.7.2C-Ser Heavy Chain [Gamma chain] protein sequence

30 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCAIRIGGMDVWQGQTTVTVSSAstkgpsvflapcrsrstsestaalgclvkdyp
 35 epvtvswnsgaltsgvhtfpavlqssglyls~~ssvv~~tvps~~ss~~lgktktv~~cnvdh~~kp~~ntkv~~krveskygppcpc
 apeflggpsvflfppkpkdtlmisrtpevcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqfnstyrvvs
 vltvlhqdwlngkeykckvsnkglpssiek~~t~~iskakgqp~~rep~~qvyl~~l~~pps~~q~~uemtknqvs~~l~~clvkgfypsdiav
 ewesngqpennyk~~tp~~pvldsdgsfflysr~~l~~tvdk~~s~~rwqegnvfscsvmhealhnhytqksls~~l~~spgk

SEQ ID NO: 52

9.7.2C-Ser, 9.7.2-CG2 and 9.7.2-CG4 Light Chain [Kappa chain] protein sequence

40 mdmrvpaqllglllwlrgarcDIQMTQSPSSLSASVGDRVITCRASQSISGFLIWYQ
 QKPGKAPKLLIYATSSLQSGVPSRFSGSGSGTDFLTTISSLQPEDFATYYCQ
 45 QSYSTPFTFGPGTKVDIKRtaapsvfifppsdeqlksgtasvvclnnfybreakvqwkvdnalqs
 gnsqesvteqdsksdstyslsstltskadyekhkvyaevthqglssptksfnrgec

SEQ ID NO: 66

9.7.2-CG2 Heavy Chain [Gamma chain] protein sequence

5 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCAIRIGGMDVWQGTTVSSAstkgpsvfplapcrstsestaalgcldvkyfp
 epvtvswnsgaltsgvhtfpavlqssglylssvvtpssnfqtctcnvdhkpnsntkvdktverkccveccpc
 appvagpsvflfppkpkdtmlmisrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstfrvvsv
 ltvvhqdwlngkeykckvsnkglpapipektisktkgqprepqvytlppssreemtknqvsltclvkgfypsdiave
 wesngqpennykttppmldsdgsfflyskltvdksrwqqgnvfscsvmhealhnhytqkslslspgk

10

SEQ ID NO: 70

9.7.2-CG4 Heavy Chain [Gamma chain] protein sequence

15

15 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCAIRIGGMDVWQGTTVSSAstkgpsvfplapcrstsestaalgcldvkyfp
 epvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtktctcnvdhkpnsntkvdkrveskygppcpc
 apeflggpsvflfppkpkdtmlmisrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstyrvv
 vltvlhqdwlngkeykckvsnkglpssiektskakgqprepqvytlppssreemtknqvsltclvkgfypsdiav
 ewesngqpennykttppvldsdgsfflysrldksrwqegnvfscsvmhealhnhytqkslslspgk

20

25

SEQ ID NO: 86

9.7.2-Ser Heavy Chain [Gamma chain] protein sequence

30

30 mefglswvflvaiikgvqcQVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWI
 RQAPGKGLEWVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRA
 EDTAVYYCAIRIGGMDVWQGTTVSSAstkgpsvfplapcrstsestaalgcldvkyfp
 pepvtvswnsgaltsgvhtfpavlqssglylssvvtpssslgtktctcnvdhkpnsntkvdkrveskygppcpc
 papeflggpsvflfppkpkdtmlmisrtpevtcvvvdvshedpevqfnwyvdgvevhnaktkpreeqfnstyrvv
 svltvlhqdwlngkeykckvsnkglpssiektskakgqprepqvytlppssreemtknqvsltclvkgfypsdiav
 ewesngqpennykttppvldsdgsfflysrldksrwqegnvfscsvmhealhnhytqkslslspgk

35

SEQUENCE LISTING

[0242]

40

<110> ABGENIX, INC.
 WARNER-LAMBERT COMPANY LLC
 BEDIAN, VAHE
 DEVALARAJA, MADHAV NARASIMHA
 45 FOLTZ, IAN
 HAAK-FRENDSCHO, MARY
 KELLERMANN, SIRID-AIMEE
 LOW, JOSEPH EDWIN
 MOBLEY, JAMES LESLIE

50

<120> ANTIBODIES TO M-CSF

<130> ABX-PF4 PCT

55

<140>
<141>

<150> 60/502,163

<151> 2003-09-10

<160> 117

5 <170> PatentIn Ver. 3.2

<210> 1

<211> 1383

<212> DNA

10 <213> Homo sapiens

<400> 1

15 atggagttgg ggctgtgctg gattttcattt gttgcttataaaaagggtgt ccagtgtcag 60
 gtgcagctgg tggagtctgg gggaggcttgcgtcaaggcctg gagggtccct gagactctcc 120
 tgtgcaccccttggattcacctttcgtac tactacatga gctggatccg ccaggctcca 180
 gggaaaggggc tggagtggat ttccatcattt agtggtagtg gtagtaccat atactacgca 240
 gactctgtga agggcccattt caccatctcc agggacaacg ccaagaactc actgtatctg 300
 caaatgaaca gcctgagagc cgaggacacg gccgtgtatc actgtgcgag agccctgggt 360
 20 gggatggacg tctggggcca agggaccacg gtcaccgtct cctcagcttc caccaggc 420
 ccatccgtct tccccctggc gccctgctct agaagcacct ccgagagcac agcggccctg 480
 ggctgcctgg tcaaggacta cttcccccggaa ccgggtgacgg tgctgtggaa ctcaggcgct 540
 ctgaccagcg gctgtcacac cttcccagct gtcctacagt ctcaggact ctactccctc 600
 25 agcagcgtgg tgaccgtgcc ctccagcaac ttccggcaccc agacctacac ctgcaacgt 660
 gatcacaagc ccagcaacac caaggtggac aagacagttt agcgcaaatg ttgtgtcgag 720
 tgcccacccgt gcccagcacc acctgtggca ggaccgtcag tcttcctt ccccccaaaa 780
 cccaaggaca ccctcatgat ctccggacc cctgaggtca cgtgcgtgt ggtgacgtg 840
 agccacgaag accccggat ccagttcaac tggtacgtgg acggcgtgaa ggtgcataat 900
 30 gccaagacaa agccacggga ggagcagttc aacagcacgt tccgtgtgt cagcgtccctc 960
 accgttgtgc accaggactg gctgaacggc aaggagtaca agtgcacagg ctccaaacaaa 1020
 ggcctcccg ccccatcga gaaaaccatc tccaaaacca aaggccagcc ccgagaacca 1080
 caggtgtaca ccctgcccccc atccccggag gagatgacca agaaccaggat cagcgtgacc 1140
 tgcctggta aaggcttcta ccccaagcgac atccgggtgg agtgggagag caatggcag 1200
 35 ccggagaaca actacaagac cacacccctt atgctggact ccgacggctc cttttccctc 1260
 tacagcaagc tcaccgtggca caagagcagg tggcagcagg ggaacgttcc ctcatgttcc 1320
 gtatgtcatg aggctctgca caaccactac acgcagaaga gcctctccct gtctccgggt 1380
 aaa 1383

<210> 2

40 <211> 461

<212> PRT

<213> Homo sapiens

<400> 2

45

50

55

EP 1 670 825 B9

Met Glu Leu Gly Leu Cys Trp Ile Phe Leu Val Ala Ile Ile Lys Gly
1 5 10 15

5 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

10 Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

Glu Trp Ile Ser Tyr Ile Ser Gly Ser Gly Ser Thr Ile Tyr Tyr Ala
15 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
20 100 105 110

Tyr His Cys Ala Arg Ala Leu Gly Gly Met Asp Val Trp Gly Gln Gly
25 115 120 125

Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
130 135 140

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
30 145 150 155 160

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
165 170 175

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
35 180 185 190

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
195 200 205

Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
40 210 215 220

Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
225 230 235 240

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
45 245 250 255

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
50 260 265 270

EP 1 670 825 B9

Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Gln		
			275			280				285							
5	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	
			290			295			300								
10	Pro	Arg	Glu	Glu	Gln	Phe	Asn	Ser	Thr	Phe	Arg	Val	Val	Ser	Val	Leu	
			305			310			315							320	
15	Thr	Val	Val	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	
						325			330			335					
20	Val	Ser	Asn	Lys	Gly	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	
						340			345			350					
25	Thr	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	
						355			360			365					
30	Arg	Glu	Glu	Met	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	
						370			375			380					
35	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	
						385			390			395				400	
40	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Met	Leu	Asp	Ser	Asp	Gly	
						405			410			415					
45	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	
						420			425			430					
50	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	
						435			440			445					
55	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys				
						450			455			460					
60	<210> 3																
	<211> 702																
65	<212> DNA																
	<213> Homo sapiens																
70	<400> 3																
75	atgagggtcc	ctgctcagct	cctggggctc	ctgctactct	ggctccgagg	tgccagatgt	60										
	gacatccaga	tgacccagtc	tccatcctcc	ctgtctgcat	ctgttaggaga	cagagtccacc	120										
80	atcacttgcc	gggcaagtca	gagcattagc	ggctttttaa	attggatatca	gcagaaaacca	180										
	ggaaaagccc	ctaagctcct	gatctatgct	acatccagtt	tgcaaagtgg	ggtcccattc	240										
85	aggttcagtg	gcagtggatc	tgggacagat	ttcactctca	ccatcagcag	tctgcaacct	300										
	gaagattttg	caacttatta	ctgtcaacag	agttacagtg	tcccattcac	tttcggccct	360										
90	gggaccaaag	tggatatcaa	acgaactgtg	gctgcaccat	ctgtcttcat	cttcccgcca	420										
	tctgtatgagc	agttgaaaatc	tggaacttgct	agcggtgtgt	gcctgctgaa	taacttctat	480										
95	cccagagagg	ccaaagtaca	gtggaagggtg	gataacgccc	tccaatcggg	taactcccg	540										
	gagagtgtca	cagagcagga	cagcaaggac	agcacctaca	gcctcagcag	caccctgacg	600										
100	ctgagcaaag	cagactacga	gaaacacaaa	gtctacgcct	gcgaagtcac	ccatcaggcgc	660										
	ctgagctcgc	ccgtcacaaa	gagcttcaac	agggagagt	gt		702										
105	<210> 4																
	<211> 234																
110	<212> PRT																

<213> Homo sapiens

<400> 4

5	Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Arg
	1 5 10 15
10	Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
	20 25 30
15	Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser
	35 40 45
20	Ile Ser Gly Phe Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
	50 55 60
25	Lys Leu Leu Ile Tyr Ala Thr Ser Ser Leu Gln Ser Gly Val Pro Phe
	65 70 75 80
30	Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
	85 90 95
35	Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr
	100 105 110
40	Ser Val Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
	115 120 125
45	Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
	130 135 140
50	Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
	145 150 155 160
55	Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
	165 170 175
60	Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
	180 185 190
65	Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
	195 200 205
70	His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
	210 215 220
75	Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
	225 230
80	<210> 5
	<211> 1389
	<212> DNA
	<213> Homo sapiens
85	<400> 5

5 atggaatttg ggctgtgctg ggttttcattt gttgctattt tagaagggtgt ccagtgtgag 60
 gtgcagctgg tggagtctgg gggaggctt gtcgcgcctg gggggccct gagactctcc 120
 tgtgcagcct ctggattcac ctttagtagc tattggatga gctgggtccg ccaggctcca 180
 gggaaaggccc tggagtgggt ggccaaacata aagcaagatg gaagtggagaa atactatgtg 240
 gactctgtga agggccgatt caccatctcc agagacaacg ccaagaactc actgtatctg 300
 caaatgaaca gcctgagagc cgaggacacg gctgtgtatt actgtgctcc gggtatagca 360
 gcagctggta gggccctactg gggccaggga accctggta cccgtctcc agcttccacc 420
 aaggggccat ccgtcttccc cctggcgcggc tgctctagaa gcacctccga gggcacacg 480
 gccctgggct gcctggtaa ggactacttc cccgaaccgg tgacgggtgc gtggaaactca 540
 ggcgctctga ccagcggcgt gcacacccctc ccagctgtcc tacagtccctc aggactctac 600
 tccctcagca gcgtgggtgac cgtgcctcc agcaacttcg gcacccagac ctacacctgc 660
 aacgttagatc acaagcccag caacaccaag gtggacaaga cagttgagcg caaatgttgt 720
 gtcgagtgcc caccgtgccc agcaccacct gtggcaggac cgtcagttt cctttcccc 780
 ccaaaaacca aggacaccct catgatctcc cggacccctg aggtcacgtg cgtgggtgt 840
 15 gacgtgagcc acgaagagacc cggaggccag ttcaactgtt acgtggacgg cgtggaggtg 900
 cataatgcca agacaaagcc acggggaggag cagttcaaca gcacgttccg tgtggtcagc 960
 gtcctcaccg ttgtgcacca ggactggctg aacggcaagg agtacaagtg caaggtctcc 1020
 aacaaaggcc tcccagcccc catcgagaaa accatctcca aaaccaaagg gcagccccga 1080
 gaaccacagg tgtacaccct gccccatcc cgggaggaga tgaccaagaa ccaggtcagc 1140
 20 ctgacccgtcc tggtaaagg cttctacccc agcgacatcg ccgtggagtg ggagagcaat 1200
 gggcagccgg agaacaacta caagaccaca cctcccatgc tggactccga cggctccctc 1260
 ttcctctaca gcaagctcac cgtggacaag agcagggtggc agcaggggaa cgtcttctca 1320
 tgctccgtga tgcatgaggc tctgcacaac cactacacgc agaagagcct ctccctgtct 1380
 ccgggtaaa 1389

25 <210> 6
 <211> 463
 <212> PRT
 <213> Homo sapiens

30 <400> 6

Met Glu Phe Gly Leu Cys Trp Val Phe Leu Val Ala Ile Leu Glu Gly
 35 1 5 10 15

Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
 40 . 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 45 35 40 45

Ser Ser Tyr Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

Glu Trp Val Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val
 55 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 50 85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 55 100 105 110

Tyr Tyr Cys Ala Pro Gly Ile Ala Ala Ala Gly Arg Ala Tyr Trp Gly
 115 120 125

5 Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 130 135 140

Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala
 145 150 155 160

10 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 165 170 175

Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 180 185 190

15 Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 195 200 205

Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His
 210 215 220

Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys
 225 230 235 240

25 Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val
 245 250 255

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
 260 265 270

30 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
 275 280 285

Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
 290 295 300

35 Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser
 305 310 315 320

40 Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
 325 330 335

Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile
 340 345 350

45 Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 355 360 365

Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
 370 375 380

50 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
 385 390 395 400

Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser
 405 410 415

EP 1 670 825 B9

Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
420 425 430

5 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
435 440 445

His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

10 <210> 7
<211> 702
<212> DNA
<213> Homo sapiens

15 <400> 7

20 atgagggtcc ctgctcagct cctggggctc ctgctactct ggctccgagg tgccagatgt 60
gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgttggaga cagagtacc 120
atcacttgcc ggccaagtca ggacatttgc agttatttaa attggatatca gcagaaacca 180
gggaaagccc ctaagctcct gatctatgct gcatccagg ttgaaagtgg ggtcccatta 240
aggttcagtg gcagtggatc tggacagat ttcactctca ccatcagcag tctgcaacct 300
gaagattttg caacttacta ctgtcaacag agttacagta ccccattcac tttcgccct 360
gggaccaaag tggatataa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 420
tctgatgagc agttgaaatc tggaaactgct agcgttgtgt gcctgctgaa taacttctat 480
25 cccagagagg ccaaagtaca gtggaaagggtg gataacgccc tccaatcggg taactcccg 540
gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600
ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtac ccattcaggc 660
ctgagctcgc ccgtcacaaa gagcttcaac agggagagt gt 702

30 <210> 8
<211> 234
<212> PRT
<213> Homo sapiens

35 <400> 8

Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp Leu Arg
1 5 10 15

40 Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
20 25 30

45 Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Pro Ser Gln Asp
35 40 45

Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
50 55 60

55 Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Leu
65 70 75 80

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95

55 Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr
100 105 110

Ser Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
 115 120 125
 5 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
 130 135 140
 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
 145 150 155 160
 10 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
 165 170 175
 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
 180 185 190
 15 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
 195 200 205
 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
 20 210 215 220
 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230
 25 <210> 9
 <211> 1398
 <212> DNA
 <213> Homo sapiens
 30 <400> 9
 atggagtttg ggctccgctg gatTTTcTT gtggctattt taaaaggTgt ccagtgtgag 60
 gtgcagctgt tggagtctgg gggaggcttg gtacagcctg gggggTccct gagactctcc 120
 35 tgcgcgcct ctggattcac cttagcagc tatgccatga gctgggtccg ccagggctca 180
 gggaaaggggc tggaaatgggt ctcagctatt agtggcgtg gtggtaggac atacttcgca 240
 gactccgtga agggcccgtt caccatctcc agagacaatt ccaagaacac gctgtatctg 300
 caaatgaaca gcctgagagc cgaggacacg gccgtatatt tctgtcggt agaaggctat 360
 40 agtgggcgtc acggattttt tgactactgg ggcgcaggaa ccctagtcac cgtctcctca 420
 gcctccacca agggcccattc ggtcttcccc ctggcgccct gctctagaag caccccgag 480
 agcacagcgg ccctgggtg cctggtcaag gactacttcc cccaaacccgt gacgggtcg 540
 tggaacttcag ggcgtctgac cagcggcgtg cacacccccc cagctgtcct acagtccctca 600
 45 ggactctact ccctcagcag cgtgggtgacc gtgccttcca gcaacttcgg caccaggacc 660
 tacacccgtca acgttagatca caagcccagc aacaccaagg tggacaagac agttgagcgc 720
 aaatgttgc tgcgtgccc accgtgccc gcaccaccc tggcaggacc gtcagtctc 780
 ctcttccccca caaaacccaa ggacacccctc atgatctccc ggacccctga ggtcacgtgc 840
 50 gtgggtgtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtggacggc 900
 gtggaggtgc ataatgcca gacaaagcca cgggaggaggc agttcaacacg caccccggt 960
 gtggtcagcg tcctcaccgt tgcgtgccc gactggctga acggcaaggaa gtacaagtgc 1020
 aagggtctcca acaaaggccct cccagcccccc atcgagaaaa ccatctccaa aacccaaagg 1080
 cagccccggc aaccacagggt gtacacccctg ccccccattcc gggaggagat gaccaagaac 1140
 cagggtcagcc tgacccctg ggtcaaaaggc ttctacccca ggcacatcgc cgtggagtgg 1200
 gagagcaatg ggcagccgga gaacaactac aagaccacac ctcccatgct ggactccgac 1260
 55 ggctcccttct tcctctacag caagctcacc gtggacaaga gcagggtggca gcaggggaac 1320
 gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacgcga gaagagcctc 1380
 tccctgtctc cgggtaaa 1398

<210> 10

<211> 466
 <212> PRT
 <213> Homo sapiens

5 <400> 10

	Met	Glu	Phe	Gly	Leu	Arg	Trp	Ile	Phe	Leu	Val	Ala	Ile	Leu	Lys	Gly
	1				5					10					15	
10	Val	Gln	Cys	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln
					20				25					30		
15	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
					35				40					45		
20	Ser	Ser	Tyr	Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
					50				55					60		
25	Glu	Trp	Val	Ser	Ala	Ile	Ser	Gly	Arg	Gly	Gly	Arg	Thr	Tyr	Phe	Ala
					65			70			75			80		
30	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn
					85				90					95		
35	Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
					100				105					110		
40	Tyr	Phe	Cys	Ala	Val	Glu	Gly	Tyr	Ser	Gly	Arg	Tyr	Gly	Phe	Phe	Asp
					115				120					125		
45	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys
					130			135					140			
50	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu
					145			150			155			160		
55	Ser	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro
					165				170					175		
60	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr
					180				185					190		
65	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val
					195			200					205			
70	Val	Thr	Val	Pro	Ser	Ser	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	Cys	Asn
					210			215					220			
75	Val	Asp	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Thr	Val	Glu	Arg
					225			230			235			240		
80	Lys	Cys	Cys	Val	Glu	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Pro	Val	Ala	Gly
					245				250					255		
85	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile

55

EP 1 670 825 B9

	260	265	270
	Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu		
5	275	280	285
	Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His		
	290	295	300
10	Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg		
	305	310	315
	Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys		
	325	330	335
15	Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu		
	340	345	350
	Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr		
	355	360	365
20	Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu		
	370	375	380
	Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp		
25	385	390	395
	Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met		
	405	410	415
30	Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp		
	420	425	430
	Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His		
	435	440	445
35	Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro		
	450	455	460
	Gly Lys		
40	465		
	<210> 11		
	<211> 702		
	<212> DNA		
	<213> Homo sapiens		
45	<400> 11		
	atggaagccc cagtcagct tctttcctc ctgctactct ggctccaga taccactgga 60		
50	gaaatagtga tgacgcagtc tccagccacc ctgtctgtgt ctccagggga aagagccacc 120		
	ctctcctgca gggccagtca gagtgtagc agcaacttag cctggtagca gcagaaacct 180		
	ggccaggctc ccaggctct catctatggt gcatccacca gggccagtgg tatcccagac 240		
	aggatcagtgc cagtggttc tggAACAGAG ttcaactctca tcattcagcag cctgcagtct 300		
	gaagatTTG cagtTTATTA ctgtcagcag tctaataact ggcattcac tttcggccct 360		
55	gggaccaaAG tggatatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca 420		
	tctgtatgagc agttgaaATC tggAACTGCT agcgttgtgt gcctgctgaa taacttctat 480		
	cccagagagg ccaaagtaca gtggaaagggtg gataacgccc tccaatcggtt taactcccg 540		

gagagtgtca cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg 600
 ctgagcaaag cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcagggc 660
 ctgagctcgc ccgtcacaaa gagcttcaac agggagagt gt 702

5
 <210> 12
 <211> 234
 <212> PRT
 <213> Homo sapiens
 10
 <400> 12

Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Trp Leu Pro
 1 5 10 15
 Asp Thr Thr Gly Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser
 20 25 30
 Val Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
 20 35 40 45
 Val Ser Ser Asn Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
 25 50 55 60
 Arg Leu Leu Ile Tyr Gly Ala Ser Thr Arg Ala Ser Gly Ile Pro Asp
 65 70 75 80
 Arg Ile Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Ile Ile Ser
 30 85 90 95
 Ser Leu Gln Ser Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Asn
 100 105 110
 Asn Trp Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
 35 115 120 125
 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
 130 135 140
 40 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
 145 150 155 160
 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
 165 170 175
 45 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
 180 185 190
 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
 50 195 200 205
 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
 210 215 220
 55 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230
 <210> 13

<400> 13
000

5 <210> 14
<211> 460
<212> PRT
<213> Homo sapiens

10 <400> 14

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
1 5 10 15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys
15 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
20 50 55 60

Glu Trp Phe Ser Tyr Ile Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
25 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95

Ser Leu Ser Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
30 100 105 110

Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr
115 120 125

Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
35 130 135 140

Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly
145 150 155 160

Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
40 165 170 175

Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
45 180 185 190

Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
195 200 205

Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser
50 210 215 220

Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu Cys
225 230 235 240

EP 1 670 825 B9

5	Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe	245	250	255	
10	Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val	260	265	270	
15	Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe	275	280	285	
20	Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro	290	295	300	
25	Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr	305	310	315	320
30	Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val	325	330	335	
35	Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr	340	345	350	
40	Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg	355	360	365	
45	Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly	370	375	380	
50	Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro	385	390	395	400
55	Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser	405	410	415	
60	Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln	420	425	430	
65	Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His	435	440	445	
70	Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys	450	455	460	
75	<210> 15				
80	<400> 15				
85	000				
90	<210> 16				
95	<211> 236				
100	<212> PRT				
105	<213> Homo sapiens				
110	<400> 16				
115	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp				

	1	5	10	15
	Phe Pro Gly Ser Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser			
5	20	25		30
	Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser			
	35	40		45
10	Gln Asp Ile Ser Gly Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys			
	50	55	60	
	Ala Pro Lys Leu Leu Ile Ser Ala Thr Ser Ser Leu His Ser Gly Val			
	65	70	75	80
15	Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr			
	85	90		95
	Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln			
20	100	105		110
	Thr Asn Ser Phe Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile			
	115	120	125	
25	Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp			
	130	135	140	
	Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn			
	145	150	155	160
30	Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu			
	165	170		175
	Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp			
	180	185		190
35	Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr			
	195	200	205	
	Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser			
40	210	215	220	
	Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys			
	225	230	235	
45	<210> 17			
	<400> 17			
	000			
50	<210> 18			
	<211> 463			
	<212> PRT			
	<213> Homo sapiens			
55	<400> 18			

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15

5 Cys Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30

10 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

15 Glu Trp Val Ala Phe Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala
 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95

20 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Gly Tyr Arg Val Tyr Phe Asp Tyr Trp Gly Gln
 115 120 125

25 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 130 135 140

30 Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala
 145 150 155 160

Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 165 170 175

35 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 180 185 190

Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 195 200 205

40 Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys
 210 215 220

Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro
 225 230 235 240

45 Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val
 245 250 255

50 Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
 260 265 270

Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu
 275 280 285

55 Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys

EP 1 670 825 B9

	290	295	300		
5	Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser	305	310	315	320
	Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys	325	330	335	
10	Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile	340	345	350	
	Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro	355	360	365	
15	Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu	370	375	380	
	Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn	385	390	395	400
20	Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser	405	410	415	
	Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg	420	425	430	
25	Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu	435	440	445	
	His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys	450	455	460	
	<210> 19				
35	<400> 19				
	000				
	<210> 20				
	<211> 236				
40	<212> PRT				
	<213> Homo sapiens				
	<400> 20				
45	Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp	1	5	10	15
	Phe Pro Gly Ser Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser	20	25	30	
50	Val Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser	35	40	45	
	Gln Asp Ile Ser Ser Trp Leu Ala Trp Tyr Gln Arg Lys Pro Gly Lys	50	55	60	

EP 1 670 825 B9

Ala Pro Lys Leu Gln Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val
 65 70 75 80

5 Pro Ser Arg Phe Asn Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser
 85 90 95

10 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
 100 105 110

15 Thr Asn Ser Phe Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile
 115 120 125

20 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 130 135 140

25 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 145 150 155 160

30 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 165 170 175

35 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
 180 185 190

40 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
 195 200 205

45 Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 210 215 220

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235

50 <210> 21
 <400> 21
 000

55 <210> 22
 <211> 464
 <212> PRT
 <213> Homo sapiens

<400> 22
 Met Glu Trp Thr Trp Ser Phe Leu Phe Leu Val Ala Ala Ala Thr Gly
 1 5 10 15

Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
 20 25 30

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
 35 40 45

Thr Ser Tyr Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu

EP 1 670 825 B9

	50	55	60	
	Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala			
5	65	70	75	80
	Gln Lys Leu Gln Asp Arg Val Thr Met Thr Thr Asp Thr Ser Thr Thr			
	85	90		95
10	Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val			
	100	105		110
	Tyr Tyr Cys Ala Arg Arg Ala Tyr Gly Ala Asn Phe Phe Asp Tyr Trp			
15	115	120		125
	Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro			
	130	135		140
20	Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr			
	145	150	155	160
	Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr			
	165	170		175
25	Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro			
	180	185		190
	Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr			
	195	200		205
30	Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp			
	210	215	220	
	His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys			
35	225	230	235	240
	Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser			
	245	250		255
40	Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg			
	260	265		270
	Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro			
	275	280		285
45	Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala			
	290	295	300	
	Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val			
	305	310	315	320
50	Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr			
	325	330		335
	Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr			
55	340	345		350

EP 1 670 825 B9

Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
355 360 365

5 Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys
370 375 380

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
385 390 395 400

10 Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp
405 410 415

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
15 420 425 430

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
435 440 445

20 Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

<210> 23

25 <400> 23
000

<210> 24
<211> 240
<212> PRT
30 <213> Homo sapiens

<400> 24

35 Met Val Leu Gln Thr Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser
1 5 10 15

Gly Ala Tyr Gly Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala
20 25 30

40 Val Ser Leu Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser
35 40 45

Ile Leu Phe Phe Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Arg Gln
45 50 55 60

Lys Pro Gly Gln Pro Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg
65 70 75 80

Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp
50 85 90 95

Phe Thr Leu Thr Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr
100 105 110

EP 1 670 825 B9

Tyr Cys Gln Gln Tyr Tyr Ser Ser Pro Trp Thr Phe Gly Gln Gly Thr
 115 120 125
 5 Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe
 130 135 140
 Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys
 145 150 155 160
 10 Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
 165 170 175
 Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln
 15 180 185 190
 Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser
 195 200 205
 20 Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His
 210 215 220
 Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 25 <210> 25
 <211> 1380
 <212> DNA
 <213> Homo sapiens
 30 <400> 25
 atggagtttg ggctgagctg ggttttcattt gttgcttattt taaaagggtt ccagtgtcag 60
 35 gtgcagctgg tggagtctgg gggaggctt gtcagcctt gagggtccct gagactctcc 120
 tgtcagccctt ctggatttacat cttcagtgac tactatatgtt gctggatccg ccaggctcca 180
 gggaaaggac tggagtgggtt ttccatcattt agtagtagttt gtagtaccat atactacgca 240
 gactctgtttt aaggccgattt caccatctcc agggacaacg ccaagaactc actgtatctt 300
 caaatgaaca gcctgagagc cgaggacacg gccgtgtattt actgtgcgag aggcttaact 360
 ggggactactt ggggcccaggaa aaccctggtc accgttccctt cagttccac caaggggccca 420
 40 tccgtttccctt ccctggcgcc ctgctctttt agcaccctcc agagcacacg ggccttggcc 480
 tgcctgttca aggactactt ccccgaacccg gtgacgggtt cgttggactc aggcgttctt 540
 accagcggcg tgcacacctt cccagctgtc ctacagttccctt caggactcttta ctccctcagc 600
 agcgttggta ccgttccctt cagcaacttcc ggcacccaga ctttacacccg caacgttagat 660
 cacaagccca gcaacacccaa ggtggacaag acagtttggc gcaaatgttt tgtcgagttc 720
 45 ccaccgttccctt cagcaccacc ttgtggcagga ccgttccctt ttcccttccctt cccaaaaccc 780
 aaggacaccc ttcatgatcttcc cccggaccctt gaggttccatgtt gctgtgggtt ggacgttggc 840
 cacgaagacc cccgggttccca gttcaacttgg tacgtggacg gctgtggagggtt gcataatggcc 900
 aagacaaaaggc cacggggagga gcagttcaac agcacgttccctt gtgtggtccatgtt cgttcccttcc 960
 gttgtgcacc aggactggctt gaacggcaag gaggataactt gcaagggttccctt caacaaaaggc 1020
 50 ctcccttccctt ccatcgagaa aaccatctcc aaaacccaaagg ggcacccccc agaaccacacg 1080
 gtgtacaccc ttggccatccctt ccggggaggatgacccaaga accaggttccctt ccttgcaccc 1140
 ctggtcaag gcttcttccctt cagcgttccctt gccgtggagggtt gggagagccaa tggggcagccg 1200
 gagaacaactt acaagaccac accttccatgtt ctggacttccctt acggcttccctt ctttcccttcc 1260
 55 agcaagctca ccgtggacaa gagcagggtgg cagcaggggaa acgttcccttccctt atgcttccgtt 1320
 atgcatgagg ctctgcacccaa ccactacacg cagaagagcc tcttcccttccctt ctttcccttcc 1380

<210> 26

<211> 460
 <212> PRT
 <213> Homo sapiens

5 <400> 26

	Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Ile	Ile	Lys	Gly
	1				5						10					15
10	Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Lys
					20				25						30	
15	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
					35				40					45		
20	Ser	Asp	Tyr	Tyr	Met	Ser	Trp	Ile	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
					50				55					60		
25	Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Gly	Ser	Thr	Ile	Tyr	Tyr	Ala	
					65			70			75			80		
30	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
					85					90				95		
35	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
					100				105				110			
40	Tyr	Tyr	Cys	Ala	Arg	Gly	Leu	Thr	Gly	Asp	Tyr	Trp	Gly	Gln	Gly	Thr
					115				120				125			
45	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
					130				135				140			
50	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu	Gly
					145				150			155		160		
55	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn
					165				170					175		
60	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln
					180				185				190			
65	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser
					195				200				205			
70	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	Cys	Asn	Val	Asp	His	Lys	Pro	Ser
					210				215				220			
75	Asn	Thr	Lys	Val	Asp	Lys	Thr	Val	Glu	Arg	Lys	Cys	Cys	Val	Glu	Cys
					225				230				235		240	
80	Pro	Pro	Cys	Pro	Ala	Pro	Pro	Val	Ala	Gly	Pro	Ser	Val	Phe	Leu	Phe

EP 1 670 825 B9

	245	250	255
5	Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 260	265	270
	Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe 275	280	285
10	Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 290	295	300
	Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr 305	310	315
15	Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 325	330	335
	Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr 340	345	350
20	Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 355	360	365
	Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 370	375	380
25	Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 385	390	395
	400		
30	Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser 405	410	415
	Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 420	425	430
35	Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 435	440	445
	Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 450	455	460
	<210> 27		
	<211> 708		
	<212> DNA		
45	<213> Homo sapiens		
	<400> 27		
50	atggacatga gggccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 60 agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcacatctgt cggagacaga 120 gtcaccatca cttgccggcc aagtcaagtc attagcagtt tattaaatgt gtatcagcag 180 aaaccaggga aagccctaa gctcctgatc catgctgcat ccagtttgca aagtggggtc 240 ccatcaaggt tcagtggcag tggatctggg acagatttca ctctcaccat cagtagtctg 300 caacctgaag attttgcAAC ttactactgt caacagagtt acagtacccc attcacttcc 360 ggccctggga ccaaagtggta tatcaaacgta actgtggctg caccatctgt cttcatcttc 420 ccggccatctg atgagcagtt gaaatctggta actgcctctg ttgtgtgcct gctgaataac 480		
55			

ttctatccca gagaggccaa agtacagtgg aagggtggata acgcccctcca atcgggtaac 540
 tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
 ctgacgctga gcaaagcaga ctacgagaaa cacaaggatct acgcctgcga agtcacccat 660
 cagggcctga gctcgcccgat cacaagagc ttcaacaggg gagagtgt 708

5

<210> 28

<211> 236

<212> PRT

10 <213> Homo sapiens

<400> 28

15	Met	Asp	Met	Arg	Val	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Leu	Trp
	1				5					10						15
	Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser															
					20				25							30
20	Leu	Ser	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Pro	Ser
					35				40							45
25	Gln	Ile	Ile	Ser	Ser	Leu	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys
					50				55				60			
30	Ala	Pro	Lys	Leu	Leu	Ile	His	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val
					65				70			75			80	
35	Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
					85				90						95	
40	Ile	Ser	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln
					100				105						110	
45	Ser	Tyr	Ser	Thr	Pro	Phe	Thr	Phe	Gly	Pro	Gly	Thr	Lys	Val	Asp	Ile
					115				120				125			
50	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
					130				135			140				
55	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
					145				150			155			160	
60	Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
					165				170						175	
65	Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp
					180				185						190	
70	Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr
					195				200				205			
75	Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser
					210				215				220			
80	Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys				
					225				230				235			

<210> 29

<211> 1398
<212> DNA
<213> *Homo sapiens*

5 <400> 29

atggaggttgg ggctgtgctg gttttcctt gttgctattt tagaagggtgt ccagtgtgag 60
gtgcagctgg tggagtctgg gggaggcttg gtacagccctg gggggccct gagactctcc 120
tgtgcagcct ctggattcac cttcagtagt ttttagtatga cctgggtccg ccaggctcca 180
ggaaaaggggc tggagtgggg ttcatacatt agtagtagaa gtagtaccat atcctacgca 240
gactctgtga agggccgatt caccatctcc agagacaatg ccaagaactc actgtatctg 300
caaataaca gcctgagaga cgaggacacg gctgtgtatt actgtgcgag agatcctt 360
ctagcgggag ctaccttctt tgactactgg ggccaggaa ccctgtcac cgtctccctca 420
gcctccacca agggcccatc ggtctccccc ctggcgcct gctccaggag caccccgag 480
agcacagcgg ccctgggctg cctggtaaag gactacttcc ccgaaccggg gacgggtcg 540
tggaaactcag gcgtctgac cagcggcgtg cacaccttcc cagctgtcct acagtccctca 600
ggactctact ccctcagcag cgtggtgacc gtgcctcca gcaacttcgg cacccagacc 660
tacacctgca acgttagatca caagcccagc aacaccaagg tggacaagac agttgagcgc 720
aaatgttgg tcgagtgccc accgtgccc gcaccacctg tggcaggacc gtcaagtcttc 780
ctcttccccca caaaaacccaa ggacaccctc atgatctccc ggaccctga ggtcacgtgc 840
gtggtggtgg acgtgagcca cgaagacccc gaggtccagt tcaactggta cgtggacggc 900
gtggagggtgc ataatgccaa gacaaagcca cgggaggagc agttcaacag cacgttccgt 960
gtggtcagcg tcctcaccgt tgcaccag gactggctga acggcaagga gtacaagtgc 1020
aagggtctcca acaaaggcct cccagccccc atcgagaaaa ccatctccaa aaccaaagg 1080
cagccccgag aaccacaggt gtacaccctg ccccccattccc gggaggagat gaccaagaac 1140
caggtcagcc tgacctgcct ggtcaaaaggc ttctaccctt gcgcacatcgc cgtggagtg 1200
gagagcaatg ggcagccgga gaacaactac aagaccacac cttccatgct ggactccgac 1260
ggctccttct tcctctacag caagctcacc gtggacaaga gcaggtggca gcaggggaac 1320
gtcttctcat gtcgggtat gcatgaggct ctgcacaacc actacacgca gaagagccctc 1380
tccctgtctc cggtaaa 1398

<210> 30
<211> 466
<212> PRT
<213> *Homo sapiens*

<400> 30

40	Met Glu Leu Gly Leu Cys Trp Val Phe Leu Val Ala Ile Leu Glu Gly
	1 5 10 15
45	Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln
	20 25 30
50	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
	35 40 45
55	Ser Ser Phe Ser Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
	50 55 60
60	Glu Trp Val Ser Tyr Ile Ser Ser Arg Ser Ser Thr Ile Ser Tyr Ala
	65 70 75 80
65	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
	85 90 95

EP 1 670 825 B9

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val
 100 105 110
 5 Tyr Tyr Cys Ala Arg Asp Pro Leu Leu Ala Gly Ala Thr Phe Phe Asp
 115 120 125
 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
 130 135 140
 10 Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu
 145 150 155 160
 Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
 165 170 175
 15 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
 180 185 190
 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
 20 195 200 205
 Val Thr Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn
 210 215 220
 25 Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg
 225 230 235 240
 Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly
 245 250 255
 30 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
 260 265 270
 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
 275 280 285
 35 Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
 290 295 300
 40 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg
 305 310 315 320
 Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys
 325 330 335
 45 Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu
 340 345 350
 Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
 355 360 365
 50 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu
 370 375 380
 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
 55 385 390 395 400

EP 1 670 825 B9

Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met
 405 410 415

5 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
 420 425 430

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
 435 440 445

10 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
 450 455 460

Gly Lys
 465

15 <210> 31
 <211> 705
 <212> DNA
 <213> Homo sapiens

20 <400> 31

25 atggaaaaccc cagcgcgact tctcttcctc ctgctactct ggctccaga taccaccgga 60
 gaatttgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccaggggga aagagccacc 120
 ctctcctgca gggccagtc gagtgttagc agcagttact tagcctggta ccagcagaaa 180
 cctggccagg ctcccaggct cctcatctat ggtgcatacca gcaggggccac tggcatccca 240
 gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatcag cagactggag 300
 cctgaagatt ttgcagtgtt ttactgtca gcatatggta gtcacacctt cacttcggc 360
 30 ggagggacca aggtggagat caaacgaact gtggctgcac catctgtt catcttcccg 420
 ccatctgtatg agcagttgaa atctggaaact gcctctgttg tgcctgtgtt gaataacttc 480
 tatcccagag aggccaaagt acagtggaaag gtggataacg ccctccaatc gggtaactcc 540
 cagagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg 600
 acgctgagca aagcagacta cgagaaaacac aaagtctacg cctgcgaagt caccatcag 660
 ggctctgagct cgccccgtcac aaagagcttc aacaggggag agtgt 705

35 <210> 32
 <211> 235
 <212> PRT
 <213> Homo sapiens

40 <400> 32

45 Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro
 1 5 10 15

Asp Thr Thr Gly Glu Phe Val Leu Thr Gln Ser Pro Gly Thr Leu Ser
 20 25 30

50 Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
 35 40 45

Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala
 50 55 60

55 Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro
 65 70 75 80

EP 1 670 825 B9

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
 85 90 95
 5 Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr
 100 105 110
 Gly Ser Ser Pro Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
 115 120 125
 10 Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
 130 135 140
 15 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
 145 150 155 160
 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
 165 170 175
 20 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
 180 185 190
 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
 195 200 205
 25 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
 210 215 220
 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235
 30 <210> 33
 <211> 1383
 <212> DNA
 <213> Homo sapiens
 35 <400> 33
 40 atggagtttgggctgagctgggtttcccttggcttattaaagggtgtccagtgtagcag 60
 gtgcagctggggaggcttggctcaaggctgggggtccctgagactctcc 120
 tgtcagcccttggattcaccttcagtgactactacatgatctggatccgcctaggctcca 180
 gggaaaggggcgtggatgttccatcattatgtatgtgttgcgttccatatactacgca 240
 gactctgtgaaaggccgattcaccatctccaggacaacccaaaggaaatttactgtatctg 300
 caaatgaacagcctgagagccgaggacacggccgtgttattactgtgcgaggcgtatagga 360
 ggtatggacgtctggggccaaaggaccacgttcaccgtctcctcagcttcaccaaggggc 420
 ccatccgtcttccccctggccctgtcttccatcattatgtatgtgttgcgttccatatactacgca 480
 ggctgcctggtcaaggactatcccccggaaatggatccgcgttgcgttccatatactacgca 540
 ctgaccagcgatgtgcacacatcccccagctgttccatcattatgtatgtgttgcgttccatatactacgca 600
 agcagcgtggatgtgcgttccagcaacatcccccggaaatggatccgcgttgcgttccatatactacgca 660
 gatcacaacgcaccaacaaagggtggacatggatccgcgttgcgttccatatactacgca 720
 tgcccaccgtgtccacccacccatgtggcaatggatccgcgttgcgttccatatactacgca 780
 cccaaaggacaatggatccgcgttgcgttccatatactacgca 840
 agccacgaagatggatccgcgttgcgttccatatactacgca 900
 gccaagacaaatggatccgcgttgcgttccatatactacgca 960
 accgttgcgttgcgttgcgttgcgttgcgttccatatactacgca 1020
 ggcctcccaatggatccgcgttgcgttccatatactacgca 1080
 caggtgtacaatggatccgcgttgcgttccatatactacgca 1140

EP 1 670 825 B9

tgcctggta aaggcttcta ccccgacgcac atcggccgtgg agtggggagag caatgggcag 1200
ccggagaaca actacaagac cacacccccc atgctggact ccgacggctc cttcttctc 1260
tacagcaagc tcaccgtgga caagagcagg tggcagcagg ggaacgtctt ctcatgtcc 1320
gtgatgcatg aggctctgca caaccactac acgcagaaga gcctctccct gtctccgggt 1380
aaa 1383

<210> 34

<211> 461

<212> PRT

<213> Homo sapiens

<400> 34

15 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
 20 25 30
 20 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 25 Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 30 Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
 65 70 75 80
 35 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95
 40 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 45 Tyr Tyr Cys Ala Arg Arg Ile Gly Gly Met Asp Val Trp Gly Gln Gly
 115 120 125
 50 Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 130 135 140
 55 Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 145 150 155 160
 60 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 165 170 175
 65 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 180 185 190
 70 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 195 200 205
 75 Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 210 215 220
 80 Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
 225 230 235 240

EP 1 670 825 B9

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
 245 250 255
 5 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
 260 265 270
 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
 275 280 285
 10 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
 290 295 300
 Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
 305 310 315 320
 15 Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 325 330 335
 Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
 20 340 345 350
 Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
 355 360 365
 25 Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
 370 375 380
 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
 385 390 395 400
 30 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly
 405 410 415
 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
 35 420 425 430
 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
 435 440 445
 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 40 450 455 460
 <210> 35
 <211> 708
 <212> DNA
 45 <213> Homo sapiens
 <400> 35
 50 atggacatga gggccccgc tcagtcctg gggctcctgc tactctggct ccgagggtgcc 60
 agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcacatctgt aggagacaga 120
 gtaccatca cttggggc aagtcagagc attagcggct ttttaatttg gtatcagcag 180
 agaccaggaa aagccctaa gctcctgatc tatgctacat ccagttaca aagtggggc 240
 ccatcaagggt tcagtggcag tggatctggg acagattca ctctcaccat cagcagtcg 300
 caacctgaag attttgcac ttactactgt caacagagtt acagtacccc attcacttc 360
 55 ggcctggaa ccaaagtggaa tatcaaacga actgtggctg caccatctgt cttcatcttc 420

EP 1 670 825 B9

ccgcccattctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 480
ttcttatccca gagaggccaa agtacagtgg aaggtggata acgcctcca atcgggtAAC 540
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
ctgacgctga gcaaagcaga ctacgagaaa cacaaggatct acgcctgcga agtcacccat 660
cagggcctga gctcgcccggt cacaaggagc ttcaacaggg gagagtgt 708

<210> 36

<211> 236

<212> PRT

<213> Homo sapiens

<400> 36

15 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Trp
 1 5 10 15

 20 Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
 20 25 30

 25 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
 35 40 45

 30 Gln Ser Ile Ser Gly Phe Leu Ile Trp Tyr Gln Gln Arg Pro Gly Lys
 50 55 60

 35 Ala Pro Lys Leu Leu Ile Tyr Ala Thr Ser Ser Leu Gln Ser Gly Val
 65 70 75 80

 40 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 85 90 95

 45 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
 100 105 110

 50 Ser Tyr Ser Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile
 115 120 125

 55 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
 130 135 140

 60 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
 145 150 155 160

 65 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu
 165 170 175

 70 Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp
 180 185 190

 75 Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
 195 200 205

 80 Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser
 210 215 220

 85 Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235

<210> 37
 <211> 1383
 <212> DNA
 <213> Homo sapiens

5

<400> 37

atggagtttg ggctgagctg ggtttcctt gttgttatta taaaagggtgt ccagtgtcag 60
 gtgcagctgg tggagtctgg gggaggctt gtcagcctg gagggtcctt gagactctcc 120
 tgtcagccct ctggattcac cttcagtgtac tactatatga gctggatccg ccaggctcca 180
 gggaggac tggagtgggt ttcatacatt agtagtagtg gtagtaccat atactacgca 240
 gactctgtga agggccgatt caccatctcc agggacaacg ccaagaactc actgtatctg 300
 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcag aggcttaact 360
 ggggactact ggggcccagg aaccctggtc accgttcctt cagcttccac caagggccca 420
 tccgtcttcc ccctggcgcc ctgctctaga agcacccctt agagcacagc ggccttggc 480
 tgcctggtca aggactactt ccccgaaaccg gtgacgggtt cgtggaaactc aggcgctctg 540
 accagcggcg tgcacacctt cccagctgtc ctacagtctt caggactcta ctccctcagc 600
 agcgtggtga ccgtgcctt cagcagctt ggcacacaaga cctacacctt caacgttagat 660
 cacaagccca gcaacaccaa ggtggacaag agagttgagt ccaaataatgg tccccatgc 720
 ccatcatgcc cagcacctga gttcctgggg ggaccatcag tcttcctgtt ccccccaaaa 780
 cccaaggaca ctctcatgtat ctcccgacc cctgagggtca cgtgcgtgtt ggtggacgtg 840
 agccaggaag accccgaggt ccagttcaac tggtaacgtgg atggcgtggaa ggtgcataat 900
 gccaagacaa agccgcgggaa ggagcagttt aacagcacgt accgtgtgtt cagcgtcctc 960
 accgtcctgc accaggactg gctgaacggc aaggagtaca agtgcaggtt ctccaaacaaa 1020
 ggcctccgt cctccatcga gaaaaccatc tccaaagcca aagggcagcc ccgagagcca 1080
 caggtgtaca ccctgcccccc atcccgaggag gagatgacca agaaccaggtt cagcgtcctc 1140
 tgcctggtca aaggcttcta ccccagcgtt atgcgcgtgg agtgggagag caatgggcag 1200
 ccggagaaca actacaagac cacgcctccc gtgctggact ccgacggctc cttcttcctc 1260
 tacagcaggc taaccgtggaa caagagcagg tggcaggagg ggaatgtctt ctcatgctcc 1320
 gtgatgcattt aggctctgtca caaccactac acacagaaga gccttcctt gtctccgggt 1380
 aaa

1383

<210> 38
 <211> 461
 <212> PRT
 <213> Homo sapiens

35

<400> 38

40

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
 1 5 10 15

45

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
 20 25 30

50

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

55

Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

55

Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
 65 70 75 80

55

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr
 5 115 120 125
 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
 130 135 140
 10 Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly
 145 150 155 160
 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
 15 165 170 175
 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
 180 185 190
 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
 20 195 200 205
 Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser
 210 215 220
 25 Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys
 225 230 235 240
 Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu
 245 250 255
 30 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
 260 265 270
 Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
 35 275 280 285
 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
 290 295 300
 40 Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu
 305 310 315 320
 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 325 330 335
 45 Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys
 340 345 350
 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
 50 355 360 365
 Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
 370 375 380
 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln

EP 1 670 825 B9

	385	390	395	400
5	Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly 405		410	415
	Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln 420	425	430	
10	Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn 435	440	445	
	His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 450	455	460	
15	<210> 39			
	<400> 39			
	000			
20	<210> 40			
	<400> 40			
	000			
25	<210> 41			
	<400> 41			
	000			
30	<210> 42			
	<400> 42			
	000			
35	<210> 43			
	<211> 705			
	<212> DNA			
	<213> Homo sapiens			
40	<400> 43			
	atggaaaccc cagcgagct tctttcctc ctgtactct ggctcccaga taccaccgga 60			
	gaattttgtgt tgacgcagtc tccaggcacc ctgtctttgt ctccaggggga aagagccacc 120			
45	ctctcctgca gggccagtca gaggtttagc agcagttact tagcctggta ccagcagaaa 180			
	cctggccagg ctcccaggct cctcatctat ggtgcattcca gcaggggccac tggcatccca 240			
	gacaggttca gtggcagtgg gtctgggaca gacttcactc tcaccatca gagactggag 300			
	cctgaagatt ttgttagtgta ttactgtca cagtatggta gctcacctct cacttcggc 360			
	ggagggacca aggtggagat caaacgaact gtggctgcac catctgtctt catcttcccg 420			
50	ccatctgatg agcagttgaa atctggaaact gcctctgttg tgtgcctgtt gaataacttc 480			
	tatcccagag aggccaaagt acagtggaaag gtggataacg ccctccaatc gggtaactcc 540			
	caggagagtg tcacagagca ggacagcaag gacagcacct acagcctca gagoaccctg 600			
	acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt caccatca 660			
55	ggcctgagct cgcccggtcac aaagagcttc aacaggggag agtgt			705

<210> 44
 <211> 235
 <212> PRT
 <213> Homo sapiens

5

<400> 44

10

Met	Glu	Thr	Pro	Ala	Gln	Leu	Leu	Phe	Leu	Leu	Leu	Leu	Trp	Leu	Pro
1															15

15

Asp	Thr	Thr	Gly	Glu	Phe	Val	Leu	Thr	Gln	Ser	Pro	Gly	Thr	Leu	Ser
															30

Leu	Ser	Pro	Gly	Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser
															45

35

Val	Ser	Ser	Ser	Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala
															60

20

Pro	Arg	Leu	Leu	Ile	Tyr	Gly	Ala	Ser	Ser	Arg	Ala	Thr	Gly	Ile	Pro
															80

Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile
															95

25

Ser	Arg	Leu	Glu	Pro	Glu	Asp	Phe	Val	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr
															110

30

Gly	Ser	Ser	Pro	Leu	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Val	Glu	Ile	Lys
															125

Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp	Glu
															140

35

Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe
															160

Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu	Gln
															175

40

Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp	Ser
															190

45

Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr	Glu
															205

50

Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser	Ser
															220

Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys					
															235

55

<210> 45
 <211> 1386
 <212> DNA
 <213> Homo sapiens

<400> 45

5 atggagtttggctgagactggttttcctt gttgcttataaaaagggtgt ccagtgtcag 60
 gtgcagctgg tggagtcgg gggaggctt gtcacgcctg gagggtccct gagactctcc 120
 tgtgcagcct ctggattcac cttcagtgc tactacatga gctggatccg ccaggctcca 180
 gggaaaggggc tggagtggtt ttcatacatt agtagtagtg gtagtaccat atactacgca 240
 gactctgtga agggccgatt caccatctcc agggacaacg ccaagaattc actgtatctg 300
 caaatgaaca gcctgagagc cgaggacacg gccgtgtatt actgtgcgag gcgtatagga 360
 ggtatggacg tctggggcca agggaccacg gtcaccgtct ctcagcttc caccaggc 420
 ccatccgtct tccccctggc gccctgtct agaagcacct ccgagagcac agcggccctg 480
 ggctgcctgg tcaaggacta cttcccgaa ccgggtgacgg tgcgtggaa ctcaggcgct 540
 ctgaccagcg gcgtgcacac cttcccagct gtcctacagt ctcaggact ctactccctc 600
 agcagcgtgg tgaccgtgcc ctccagcagc ttgggacgaa agacctacac ctgcaacgta 660
 gatcacaaggc ccagcaacac caaggtggac aagagagttt agtccaaata tggccccca 720
 tgcccatcat gcccagcacc tgagttcctg gggggaccat cagtcttcct gttccccca 780
 aaacccaagg acactctcat gatctcccg acccctgagg tcacgtgcgt ggtgggtggac 840
 15 gtgagccagg aagaccggaa ggtccagttt aactggtacg tggatggcgt ggagggtcat 900
 aatgccaaga caaagcccgcg ggaggagcag ttcaacagca cgtaccgtgt ggtcagcgct 960
 ctcaccgtcc tgcaccagga ctggctgaac ggcaaggagt acaagtgc当地 ggtctccaac 1020
 aaaggcctcc cgtcctccat cgagaaaacc atctccaaag ccaaaggc当地 gccccgagag 1080
 ccacagggtgt acaccgtgcc cccatccc当地 gaggagatga ccaagaacca ggtcagcctg 1140
 acctgcctgg tcaaaggctt ctaccggc当地 gacatcggc当地 tggagtgggaa gagcaatggg 1200
 cagccggaga acaactacaa gaccacgctt cccgtgc当地 actccgacgg ctccttctc 1260
 ctctacagca ggctaaccgt ggacaagagc aggtggcagg agggaaatgt cttctcatgc 1320
 tccgtgatgc atgaggctct gcacaaccac tacacacaga agagcctctc cctgtctccg 1380
 ggtaaa 1386

25

<210> 46
 <211> 462
 <212> PRT
 <213> Homo sapiens

30

<400> 46

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
 1 5 10 15
 35 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
 20 25 30
 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 40 35 40 45
 Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 45 Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95
 50 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

55

EP 1 670 825 B9

Tyr Tyr Cys Ala Arg Arg Ile Gly Gly Met Asp Val Trp Gly Gln Gly
 115 120 125

5 Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 130 135 140

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 145 150 155 160

10 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 165 170 175

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 180 185 190

15 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 195 200 205

Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 210 215 220

Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
 225 230 235 240

25 Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
 245 250 255

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 260 265 270

30 Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val
 275 280 285

Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 35 290 295 300

Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val
 305 310 315 320

40 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 325 330 335

Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
 340 345 350

45 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 355 360 365

Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 50 370 375 380

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 385 390 395 400

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 55 405 410 415

EP 1 670 825 B9

Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
420 425 430

5 Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
435 440 445

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

10 <210> 47
<211> 708
<212> DNA
<213> Homo sapiens

15 <400> 47

20 atggacatga gggccccgc tcagctcctg gggctcctgc tactctggct ccgaggtgcc 60
agatgtgaca tccagatgac ccagtctcca tcctccctgt ctgcacatctgt aggagacaga 120
gtcaccatca cttgggggc aagtcaagac attagcggct ttttaatttg gtatcagcag 180
agaccaggaa aagccctaa gtcctgatc tatgctacat ccagtttaca aagtggggtc 240
ccattaagggt tcagtggcag tgaatctggg acagatttca ctctcaccat cagcagtctg 300
caacctgaag attttgcac ac ttactactgt caacagagtt acagttccccc attcacttc 360
ggccctggga ccaaagtggaa tatcaaaacga actgtggctg caccatctgt ctatcttc 420
cccccatttg atgagcagtt gaaatctggaa actgcctctg ttgtgtgcct gctgaataac 480
ttctatccca gagaggccaa agtacagtgg aaggtggata acgcccctcca atcgggtaac 540
tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 600
ctgacgctga gcaaagcaga ctacgagaaa cacaaggctt acggcctgcga agtcacccat 660
cagggcctga gtcgccccgt cacaagagc ttcaacaggg gagagtgt 708

30 <210> 48
<211> 236
<212> PRT
<213> Homo sapiens

35 <400> 48

Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15

40 Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

45 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35 40 45

Gln Ser Ile Ser Gly Phe Leu Ile Trp Tyr Gln Gln Arg Pro Gly Lys
50 55 60

55 Ala Pro Lys Leu Leu Ile Tyr Ala Thr Ser Ser Leu Gln Ser Gly Val
65 70 75 80

Pro Leu Arg Phe Ser Gly Ser Glu Ser Gly Thr Asp Phe Thr Leu Thr
85 90 95

55 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln

EP 1 670 825 B9

	100	105	110
5	Ser Tyr Ser Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile		
	115	120	125
	Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp		
	130	135	140
10	Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn		
	145	150	155
	160		
15	Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu		
	165	170	175
	Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp		
	180	185	190
20	Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr		
	195	200	205
	Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser		
	210	215	220
25	Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys		
	225	230	235
	<210> 49		
30	<400> 49		
	000		
	<210> 50		
	<211> 462		
35	<212> PRT		
	<213> Homo sapiens		
	<400> 50		
40	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly		
	1	5	10
	15		
	Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys		
	20	25	30
45	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe		
	35	40	45
	Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu		
50	50	55	60
	65		
	Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala		
	70	75	80
55	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn		
	85	90	95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 5 Tyr Tyr Cys Ala Ile Arg Ile Gly Gly Met Asp Val Trp Gly Gln Gly
 115 120 125
 Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 130 135 140
 10 Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 145 150 155 160
 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 165 170 175
 15 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 180 185 190
 20 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 195 200 205
 Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 210 215 220
 25 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
 225 230 235 240
 Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
 245 250 255
 30 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 260 265 270
 Glu Val Thr Cys Val Val Asp Val Ser Gln Glu Asp Pro Glu Val
 35 275 280 285
 Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 290 295 300
 40 Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val
 305 310 315 320
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 325 330 335
 45 Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
 340 345 350
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 50 355 360 365
 Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 370 375 380
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 55 385 390 395 400

EP 1 670 825 B9

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
405 410 415

5 Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
420 425 430

Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
435 440 445

10 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

<210> 51

15 <400> 51
000

<210> 52
<211> 236
20 <212> PRT
<213> Homo sapiens

<400> 52

25 Met Asp Met Arg Val Pro Ala Gln Leu Leu Gly Leu Leu Leu Leu Trp
1 5 10 15

30 Leu Arg Gly Ala Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35 40 45

35 Gln Ser Ile Ser Gly Phe Leu Ile Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60

Ala Pro Lys Leu Leu Ile Tyr Ala Thr Ser Ser Leu Gln Ser Gly Val
65 70 75 80

40 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
85 90 95

Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln
100 105 110

45 Ser Tyr Ser Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys Val Asp Ile
115 120 125

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp
50 130 135 140

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn
145 150 155 160

55 Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu

EP 1 670 825 B9

5	Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp 180 185 190	165 170 175
10	Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr 195 200 205	
15	Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser 210 215 220	
20	Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 235	
25	<210> 53	
30	<400> 53 000	
35	<210> 54 <211> 461 <212> PRT <213> Homo sapiens	
40	<400> 54	
45	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly 1 5 10 15	
50	Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys 20 25 30	
55	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe 35 40 45	
60	Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60	
65	Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala 65 70 75 80	
70	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn 85 90 95	
75	Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110	
80	Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr 115 120 125	
85	Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro 130 135 140	
90	Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly	

EP 1 670 825 B9

145	150	155	160
Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn			
	165	170	175
5			
Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln			
	180	185	190
10			
Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser			
	195	200	205
15			
Ser Leu Gly Thr Lys Thr Tyr Cys Asn Val Asp His Lys Pro Ser			
	210	215	220
20			
Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys			
	225	230	235
25			
Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu			
	245	250	255
30			
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu			
	260	265	270
35			
Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln			
	275	280	285
40			
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys			
	290	295	300
45			
Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu			
	305	310	315
50			
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys			
	325	330	335
55			
Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys			
	340	345	350
60			
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser			
	355	360	365
65			
Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys			
	370	375	380
70			
Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln			
	385	390	395
75			
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly			
	405	410	415
80			
Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln			
	420	425	430
85			
Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn			
	435	440	445
90			
His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys			
	450	455	460

<210> 55

<400> 55
000

5

<210> 56
<211> 236
<212> PRT
<213> Homo sapiens

10

<400> 56

15

Met	Asp	Met	Arg	Val	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Leu	Trp	
1														15	
Leu	Arg	Gly	Ala	Arg	Cys	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser
														20	30
Leu	Ser	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Pro	Ser
														35	45
Gln	Ile	Ile	Ser	Ser	Leu	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys
														50	60
Ala	Pro	Lys	Leu	Leu	Ile	Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val
														65	80
Pro	Ser	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
														85	95
Ile	Ser	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln
														100	110
Ser	Tyr	Ser	Thr	Pro	Phe	Thr	Phe	Gly	Pro	Gly	Thr	Lys	Val	Asp	Ile
														115	125
Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Ser	Asp
														130	140
Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn
														145	160
Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	Asn	Ala	Leu
														165	175
Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	Ser	Lys	Asp
														180	190
Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys	Ala	Asp	Tyr
														195	205
Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln	Gly	Leu	Ser
														210	220
Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys				
														225	235

<210> 57

<400> 57
000

5 <210> 58
<211> 467
<212> PRT
<213> Homo sapiens

10 <400> 58

Met Glu Leu Gly Leu Cys Trp Val Phe Leu Val Ala Ile Leu Glu Gly
1 5 10 15

Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
15 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Ser Phe Ser Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
20 50 55 60

Glu Trp Val Ser Tyr Ile Ser Ser Arg Ser Ser Thr Ile Ser Tyr Ala
25 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95

Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val
30 100 105 110

Tyr Tyr Cys Ala Arg Asp Pro Leu Leu Ala Gly Ala Thr Phe Phe Asp
115 120 125

Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
35 130 135 140

Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu
145 150 155 160

Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
40 165 170 175

Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
45 180 185 190

Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
195 200 205

50

55

EP 1 670 825 B9

Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn
 210 215 220
 5 Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser
 225 230 235 240
 Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly
 245 250 255
 10 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 260 265 270
 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln
 275 280 285
 15 Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val
 290 295 300
 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr
 305 310 315 320
 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
 325 330 335
 25 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile
 340 345 350
 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
 355 360 365
 30 Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser
 370 375 380
 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
 385 390 395 400
 35 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
 405 410 415
 Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val
 420 425 430
 40 Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met
 435 440 445
 His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
 450 455 460
 45 Pro Gly Lys
 465
 50 <210> 59
 <400> 59
 000
 55 <210> 60
 <211> 235
 <212> PRT

EP 1 670 825 B9

<213> Homo sapiens

<400> 60

5 Met Glu Thr Pro Ala Gln Leu Leu Phe Leu Leu Leu Trp Leu Pro
 1 5 10 15
 10 Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser
 20 25 30
 15 Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
 35 40 45
 20 Val Ser Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala
 50 55 60
 25 Pro Arg Leu Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro
 65 70 75 80
 30 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
 85 90 95
 35 Ser Arg Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr
 100 105 110
 40 Gly Ser Ser Pro Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys
 115 120 125
 45 Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
 130 135 140
 50 Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
 145 150 155 160
 55 Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
 165 170 175
 60 Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
 180 185 190
 65 Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
 195 200 205
 70 Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
 210 215 220
 75 Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235
 80 <210> 61
 <400> 61
 000
 85 <210> 62
 <211> 466
 <212> PRT
 <213> Homo sapiens

<400> 62

5	Met	Glu	Leu	Gly	Leu	Cys	Trp	Val	Phe	Leu	Val	Ala	Ile	Leu	Glu	Gly
	1				5					10					15	
	Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln
					20				25						30	
10	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
					35				40					45		
	Ser	Ser	Phe	Ser	Met	Thr	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
					50				55					60		
15	Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Arg	Ser	Ser	Thr	Ile	Ser	Tyr	Ala
					65				70			75			80	
20	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
					85				90					95		
	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Asp	Glu	Asp	Thr	Ala	Val
					100				105					110		
25	Tyr	Tyr	Cys	Ala	Arg	Asp	Pro	Leu	Leu	Ala	Gly	Ala	Thr	Phe	Phe	Asp
					115				120					125		
	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys
					130				135					140		
30	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu
					145				150			155			160	
	Ser	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro
					165				170					175		
35	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr
					180				185					190		
40	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val
					195				200					205		
	Val	Thr	Val	Pro	Ser	Ser	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	Cys	Asn
					210				215					220		
45	Val	Asp	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Thr	Val	Glu	Arg
					225				230			235			240	
	Lys	Cys	Cys	Val	Glu	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Pro	Val	Ala	Gly
					245				250					255		
50																

EP 1 670 825 B9

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
260 265 270

5 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
275 280 285

Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
290 295 300

10 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg
305 310 315 320

Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys
325 330 335

15 Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu
340 345 350

Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
20 355 360 365

Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu
370 375 380

25 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
385 390 395 400

Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met
405 410) 415

30 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
420 425 430

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
35 435 440 445

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
450 455 460

40 Gly Lys
465

<210> 63

<400> 63
45 000

<210> 64

<400> 64
50 000

<210> 65

<400> 65
55 000

<210> 66
<211> 461

EP 1 670 825 B9

<212> PRT

<213> Homo sapiens

<400> 66

5

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
1 5 10 15

10 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
20 25 30

15 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

20 Glu Trp Val Ser Tyr Ile Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95

25 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110

30 Tyr Tyr Cys Ala Ile Arg Ile Gly Gly Met Asp Val Trp Gly Gln Gly
115 120 125

Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
130 135 140

35 Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
145 150 155 160

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
165 170 175

40 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
180 185 190

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
195 200 205

45 Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro
210 215 220

Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys Cys Val Glu
225 230 235 240

50

55

Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu
 245 250 255
 5 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
 260 265 270
 Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln
 275 280 285
 10 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
 290 295 300
 Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu
 305 310 315 320
 15 Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
 325 330 335
 Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
 20 340 345 350
 Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
 355 360 365
 25 Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
 370 375 380
 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
 385 390 395 400
 30 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly
 405 410 415
 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
 35 420 425 430
 Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
 435 440 445
 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 40 450 455 460
 <210> 67
 <400> 67
 45 000
 <210> 68
 <400> 68
 50 000
 <210> 69
 <400> 69
 55 000
 <210> 70
 <211> 461

<212> PRT

<213> Homo sapiens

<400> 70

5

	Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Ile	Ile	Lys	Gly	
	1				5					10					15		
10		Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Lys
						20				25					30		
15		Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
						35				40					45		
20		Ser	Asp	Tyr	Tyr	Met	Ser	Trp	Ile	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
						50				55					60		
25		Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Ser	Gly	Ser	Thr	Ile	Tyr	Tyr	Ala
						65				70				75		80	
30		Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
						85				90					95		
35		Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
						100				105					110		
40		Tyr	Tyr	Cys	Ala	Arg	Ile	Gly	Gly	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr
						115				120					125		
45		Thr	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
						130				135					140		
50		Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu	Gly
						145				150				155		160	
55		Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn
						165				170					175		
60		Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln
						180				185					190		
65		Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser
						195				200					205		
70		Ser	Leu	Gly	Thr	Lys	Thr	Tyr	Thr	Cys	Asn	Val	Asp	His	Lys	Pro	Ser
						210				215					220		
75		Asn	Thr	Lys	Val	Asp	Lys	Arg	Val	Glu	Ser	Lys	Tyr	Gly	Pro	Pro	Cys
						225				230				235		240	
80		Pro	Ser	Cys	Pro	Ala	Pro	Glu	Phe	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu
						245				250					255		

55

EP 1 670 825 B9

Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
260 265 270

5 Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
275 280 285

Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
290 295 300

10 Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu
305 310 315 320

15 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
325 330 335

Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys
340 345 350

20 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
355 360 365

Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
370 375 380

25 Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
385 390 395 400

Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
405 410 415

30 Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln
420 425 430

Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
435 440 445

35 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

40 <210> 71
<400> 71
000

45 <210> 72
<400> 72
000

50 <210> 73
<400> 73
000

55 <210> 74
<211> 460
<212> PRT
<213> Homo sapiens

<400> 74

5	Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Ile	Ile	Lys	Gly
	1				5					10					15	
	Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Lys
					20				25					30		
10	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
					35				40					45		
	Ser	Asp	Tyr	Tyr	Met	Ser	Trp	Ile	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
					50				55					60		
15	Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Ser	Gly	Ser	Thr	Ile	Tyr	Tyr	Ala
					65				70			75		80		
	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
					85					90				95		
20	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val
					100				105				110			
	Tyr	Tyr	Cys	Ala	Arg	Gly	Leu	Thr	Gly	Asp	Tyr	Trp	Gly	Gln	Gly	Thr
					115				120				125			
25	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro
					130				135				140			
30	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu	Ser	Thr	Ala	Ala	Leu	Gly
					145				150			155		160		
	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn
					165					170				175		
35	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln
					180				185				190			
	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser
					195					200			205			
40	Asn	Phe	Gly	Thr	Gln	Thr	Tyr	Thr	Cys	Asn	Val	Asp	His	Lys	Pro	Ser
					210				215			220				
	Asn	Thr	Lys	Val	Asp	Lys	Thr	Val	Glu	Arg	Lys	Cys	Cys	Val	Glu	Cys
45					225				230			235		240		
	Pro	Pro	Cys	Pro	Ala	Pro	Pro	Val	Ala	Gly	Pro	Ser	Val	Phe	Leu	Phe
					245					250				255		

50

55

EP 1 670 825 B9

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
260 265 270

5 Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe
275 280 285

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
290 295 300

10 Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr
305 310 315 320

Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
325 330 335

15 Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr
340 345 350

20 Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
355 360 365

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
370 375 380

25 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
385 390 395 400

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser
405 410 415

30 Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
420 425 430

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
435 440 445

35 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

40 <210> 75

<400> 75

000

45 <210> 76

<400> 76

000

50 <210> 77

<400> 77

000

55 <210> 78

<211> 461

<212> PRT

<213> Homo sapiens

<400> 78

5	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly	1	5	10	15
	Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys	20	25	30	
10	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe	35	40	45	
	Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu	50	55	60	
15	Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala	65	70	75	80
	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn	85	90	95	
20	Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val	100	105	110	
	Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr	115	120	125	
25	Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro	130	135	140	
	Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly	145	150	155	160
30	Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn	165	170	175	
	Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln	180	185	190	
35	Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser	195	200	205	
	Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser	210	215	220	
40	Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys	225	230	235	240
	Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu	245	250	255	
45	Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu				
50					

EP 1 670 825 B9

	260	265	270
	Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln		
5	275	280	285
	Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys		
	290	295	300
10	Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu		
	305	310	315
	Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys		
	325	330	335
15	Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys		
	340	345	350
	Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser		
	355	360	365
20	Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys		
	370	375	380
	Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln		
25	385	390	395
	Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly		
	405	410	415
30	Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln		
	420	425	430
	Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn		
	435	440	445
35	His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys		
	450	455	460
	<210> 79		
40	<400> 79		
	000		
	<210> 80		
45	<400> 80		
	000		
	<210> 81		
50	<400> 81		
	000		
	<210> 82		
55	<211> 461		
	<212> PRT		
	<213> Homo sapiens		
	<400> 82		

EP 1 670 825 B9

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
1 5 10 15

5 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
20 25 30

10 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

15 Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

20 Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
65 70 75 80

25 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95

30 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110

35 Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr
115 120 125

40 Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro
130 135 140

45 Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly
145 150 155 160

50 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn
165 170 175

55 Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln
180 185 190

60 Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
195 200 205

65 Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser
210 215 220

70 Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys
225 230 235 240

75 Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu
245 250 255

80 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
260 265 270

EP 1 670 825 B9

Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln
275 280 285

5 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
290 295 300

Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu
305 310 315 320

10 Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys
325 330 335

Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys
340 345 350

15 Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
355 360 365

Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
20 370 375 380

Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
385 390 395 400

25 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
405 410 415

Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln
420 425 430

30 Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn
435 440 445

His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

35 <210> 83

<400> 83

000

40 <210> 84

<400> 84

000

45 <210> 85

<400> 85

000

50 <210> 86

<211> 462

<212> PRT

<213> Homo sapiens

55 <400> 86

EP 1 670 825 B9

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly
 1 5 10 15

5 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys
 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

10 Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

15 Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95

20 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Arg Ile Gly Gly Met Asp Val Trp Gly Gln Gly
 115 120 125

25 Thr Thr Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 130 135 140

Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu
 145 150 155 160

30 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 165 170 175

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 180 185 190

35 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 195 200 205

40 Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro
 210 215 220

Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro
 225 230 235 240

45 Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe
 245 250 255

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 260 265 270

50 Glu Val Thr Cys Val Val Asp Val Ser Gln Glu Asp Pro Glu Val

EP 1 670 825 B9

	275	280	285	
	Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr			
5	290	295	300	
	Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val			
	305	310	315	320
10	Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys			
	325	330	335	
	Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser			
15	340	345	350	
	Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro			
	355	360	365	
20	Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val			
	370	375	380	
	Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly			
	385	390	395	400
25	Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp			
	405	410	415	
	Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp			
	420	425	430	
30	Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His			
	435	440	445	
	Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys			
35	450	455	460	
	<210> 87			
	<400> 87			
	000			
40	<210> 88			
	<400> 88			
	000			
45	<210> 89			
	<400> 89			
	000			
50	<210> 90			
	<211> 467			
	<212> PRT			
	<213> Homo sapiens			
55	<400> 90			

Met Glu Leu Gly Leu Cys Trp Val Phe Leu Val Ala Ile Leu Glu Gly
 1 5 10 15

5 Val Gln Cys Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln
 20 25 30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

10 Ser Ser Phe Ser Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

15 Glu Trp Val Ser Tyr Ile Ser Ser Arg Ser Ser Thr Ile Ser Tyr Ala
 65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
 85 90 95

20 Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Asp Pro Leu Leu Ala Gly Ala Thr Phe Phe Asp
 115 120 125

25 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
 130 135 140

Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu
 145 150 155 160

30 Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
 165 170 175

Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
 180 185 190

35 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
 195 200 205

40 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn
 210 215 220

Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser
 225 230 235 240

45 Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly
 245 250 255

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 260 265 270

50

EP 1 670 825 B9

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln
275 280 285

5 Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr
305 310 315 320

10 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile
340 345 350

15 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365

Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser
20 370 375 380

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400

25 Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val
420 425 430

30 Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met
435 440 445

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
35 450 455 460

35 Pro Gly Lys
465

40 <210> 91

40 <400> 91

000

45 <210> 92

45 <400> 92

000

50 <210> 93

50 <400> 93

000

55 <210> 94

<211> 467

<212> PRT

<213> Homo sapiens

<400> 94

5	Met	Glu	Leu	Gly	Leu	Cys	Trp	Val	Phe	Leu	Val	Ala	Ile	Leu	Glu	Gly
	1				5					10					15	
	Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln
					20				25						30	
10	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe
					35				40					45		
15	Ser	Ser	Phe	Ser	Met	Thr	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu
					50				55					60		
	Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Arg	Ser	Ser	Thr	Ile	Ser	Tyr	Ala
		65				70				75					80	
20	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn
					85				90					95		
25	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Asp	Glu	Asp	Thr	Ala	Val
					100				105					110		
	Tyr	Tyr	Cys	Ala	Arg	Asp	Pro	Leu	Leu	Ala	Gly	Ala	Thr	Phe	Phe	Asp
		115				120				125						
30	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys
		130				135				140						
	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Cys	Ser	Arg	Ser	Thr	Ser	Glu
		145				150				155					160	
35	Ser	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro
					165				170					175		
	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr
					180				185					190		
40	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val
					195				200					205		
	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Lys	Thr	Tyr	Thr	Cys	Asn
		210				215				220						
45	Val	Asp	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Arg	Val	Glu	Ser
		225				230				235					240	
	Lys	Tyr	Gly	Pro	Pro	Cys	Pro	Ser	Cys	Pro	Ala	Pro	Glu	Phe	Leu	Gly
						245				250					255	
50	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met

EP 1 670 825 B9

	260	265	270
5	Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln 275	280	285
	Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val 290	295	300
10	His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr 305	310	315
	Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 325	330	335
15	Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile 340	345	350
	Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 355	360	365
20	Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val Ser 370	375	380
25	Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 385	390	395
	Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 405	410	415
30	Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr Val 420	425	430
	Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met 435	440	445
35	His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 450	455	460
	Pro Gly Lys 465		
40	<210> 95		
	<400> 95		
45	000		
	<210> 96		
	<400> 96		
50	000		
	<210> 97		
	<211> 1413		
	<212> DNA		
55	<213> Homo sapiens		
	<400> 97		

5 atggagttgg ggctgagctg ggtttcattt gttgcttata taaaagggtgt ccagtgtgag 60
 gtgcagctgg tggagtctgg gggaggctt gtacagcctg gggggccct gagactctcc 120
 tgtgcagcct ctggattcac cttcagtagt ttttagatga cctgggtccg ccaggctcca 180
 gaaaaaggggc tggagtggtt ttcatacatt agtagtagaa gtagtaccat atcctacgca 240
 gactctgtga agggccgatt caccatctcc agagacaatg ccaagaactc actgtatctg 300
 caaatgaaca gcctgagaga cgaggacacg gctgtgtatt actgtgcgag agatcctt 360
 cttagcggag ctaccttctt tgactactgg ggccaggaa ccctggtcac cgtctcctca 420
 gcctccacca agggcccattt ggtcttcccc ctggcaccct cctccaagag cacctctggg 480
 ggcacacgcgg ccctgggctg cctggtcaag gactactcc cccaaccgggt gacggtgtcg 540
 tggaacttcag gcgccttgac cagcggcgtg cacaccctcc cggctgtctt acagtcctca 600
 ggactctact ccctcagcag cgtggtgacc gtgccttcca gcagcttggg caccagacc 660
 tacatctgca acgtgaatca caagcccacg aacaccaagg tggacaagaa agttgagccc 720
 aaatcttgcg aaaaaactca cacatgcccacg caccgttcaact cctgggggaa 780
 ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggaccctt 840
 gaggtcacat gcgtgggtgtt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 900
 tacgtggacg gcgtgggaggt gcataatgcc aagacaaagg cgccgggagga gcagtacaac 960
 agcacgtacc gtgtggtcag cgtcctcacc gtccctgcacc aggactggct gaatggcaag 1020
 gagtacaagt gcaaggcttc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1080
 aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgccccatc ccgggatgag 1140
 ctgaccaaga accaggtcag cctgacctgc ctggtcaag gcttctatcc cagcgacatc 1200
 gccgtggagt gggagagcaa tggcagccg gagaacaact acaagaccac gcctccctg 1260
 ctggactccg acggctcctt ctccctctac agcaagctca ccgtggacaa gagcaggtgg 1320
 cagcagggga acgtcttctc atgctccgtg atgcattgagg ctctgcacaa ccactacacg 1380
 cagaagagcc tctccctgtc tccggtaaa tag 1413

25 <210> 98
 <211> 470
 <212> PRT
 <213> Homo sapiens

30 <400> 98

	Met	Glu	Leu	Gly	Leu	Cys	Trp	Val	Phe	Leu	Val	Ala	Ile	Leu	Glu	Gly		
35	1														15			
	Val	Gln	Cys	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln		
															20	25	30	
40	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe		
															35	40	45	
	Ser	Ser	Phe	Ser	Met	Thr	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu		
															50	55	60	
45	Glu	Trp	Val	Ser	Tyr	Ile	Ser	Ser	Arg	Ser	Ser	Thr	Ile	Ser	Tyr	Ala		
															65	70	75	80
	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ala	Lys	Asn		
															85	90	95	
50	Ser	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Asp	Glu	Asp	Thr	Ala	Val		
															100	105	110	

EP 1 670 825 B9

115	120	125	
130	135	140	
145	150	155	160
165	170	175	
180	185	190	
195	200	205	
210	215	220	
225	230	235	240
245	250	255	
260	265	270	
275	280	285	
290	295	300	
305	310	315	320
325	330	335	
340	345	350	
355	360	365	
370	375	380	
385	390	395	400
405	410	415	

Tyr Tyr Cys Ala Arg Asp Pro Leu Leu Ala Gly Ala Thr Phe Phe Asp
 5 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys
 Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly
 10 Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro
 Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
 15 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val
 Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn
 20 Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro
 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
 25 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
 30 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
 35 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
 40 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 45 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
 50 55

EP 1 670 825 B9

<213> Homo sapiens

<400> 102

5	Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Ile Ile Lys Gly	15
	1 5 10	
10	Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys	30
	20 25 30	
15	Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe	45
	35 40 45	
20	Ser Asp Tyr Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu	60
	50 55 60	
25	Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala	80
	65 70 75 80	
30	Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn	95
	85 90 95	
35	Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val	110
	100 105 110	
40	Tyr Tyr Cys Ala Arg Gly Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr	125
	115 120 125	
45	Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro	160
	130 135 140	
50	Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly	145 150 155 160
55	Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn	175
	165 170 175	
60	Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln	190
	180 185 190	
65	Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser	205
	195 200 205	
70	Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser	220
	210 215 220	
75	Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr	240
	225 230 235 240	
80	His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser	255
	245 250 255	
85	Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg	

EP 1 670 825 B9

	260	265	270
	Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro		
5	275	280	285
	Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala		
	290	295	300
10	Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val		
	305	310	315
	Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr		
	325	330	335
15	Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr		
	340	345	350
	Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu		
	355	360	365
20	Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys		
	370	375	380
	Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser		
25	385	390	395
	Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp		
	405	410	415
30	Ser Asp Gly Ser Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser		
	420	425	430
	Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala		
	435	440	445
35	Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys		
	450	455	460
	<210> 103		
	<211> 107		
40	<212> PRT		
	<213> Homo sapiens		
	<400> 103		
45	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly		
	1	5	10
	15		
	Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr		
	20	25	30
50	Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile		
	35	40	45

EP 1 670 825 B9

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

5 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Phe
 85 90 95

10 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

<210> 104
 <211> 120
 15 <212> PRT
 <213> Homo sapiens

<400> 104

20 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 25 20 25 30

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

30 Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
 65 70 75 80

35 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Lys Tyr Ser Gly Ser Tyr Tyr Tyr Phe Asp Tyr Trp Gly Gln Gly
 40 100 105 110

Thr Leu Val Thr Val Ser Ser Ala
 115 120

45 <210> 105
 <211> 119
 <212> PRT
 <213> Homo sapiens

<400> 105

50 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

55 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

EP 1 670 825 B9

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

5 Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

10 Leu Gln Met Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

15 Arg Gly Ile Ala Ala Ala Gly Tyr Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser Ala
115

20 <210> 106
<211> 117
<212> PRT
<213> Homo sapiens

25 <400> 106

30 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
20 25 30

35 Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

35 Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val
50 55 60

40 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

45 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

50 Ala Arg Ala Leu Gly Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val
100 105 110

55 Thr Val Ser Ser Ala
115

50 <210> 107
<211> 107
<212> PRT
<213> Homo sapiens

55 <400> 107

Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly
 1 5 10 15

5 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Asn
 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
 35 40 45

10 Tyr Gly Ala Ser Thr Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
 50 55 60

15 Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser
 65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Asn Asn Trp Pro Phe
 85 90 95

20 Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys
 100 105

25 <210> 108
 <211> 115
 <212> PRT
 <213> Homo sapiens

30 <400> 108

Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr
 20 25 30

35 Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

40 Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80

45 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
 100 105 110

50 Ser Ser Ala
 115

55 <210> 109
 <211> 108
 <212> PRT
 <213> Homo sapiens

<400> 109

EP 1 670 825 B9

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
5 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
10 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
15 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
20 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Phe
25 85 90 95

Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
30 100 105

<210> 110
<211> 117
<212> PRT
35 <213> Homo sapiens

<400> 110

Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln Pro Gly Arg
35 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
40 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
45 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
55 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
60 85 90 95

Ala Arg Gly Tyr Ser Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val
65 100 105 110

Thr Val Ser Ser Ala
70 115

<210> 111
<211> 118
75 <212> PRT
<213> Homo sapiens

<400> 111

EP 1 670 825 B9

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

5 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

10 Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala Gln Lys Leu
50 55 60

Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr
65 70 75 80

15 Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

20 Ala Asp Tyr Gly Gly Asn Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu
100 105 110

Val Thr Val Ser Ser Ala
115

25 <210> 112
<211> 114
<212> PRT
<213> Homo sapiens

30 <400> 112

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

35 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

40 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

45 Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

50 Tyr Tyr Ser Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

55 Lys Arg

<210> 113

<211> 116
 <212> PRT
 <213> Homo sapiens

5 <400> 113

 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

10 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
 20 25 30

15 Ser Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

 Ser Tyr Ile Ser Ser Ser Ser Thr Ile Tyr Tyr Ala Asp Ser Val
 50 55 60

20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80

25 Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

 Ala Arg Ile Val Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
 100 105 110

30 Val Ser Ser Ala
 115

<210> 114
 <211> 109
 <212> PRT
 <213> Homo sapiens

<400> 114

40 Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
 1 5 10 15

 Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
 20 25 30

45 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
 35 40 45

 Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
 50 55 60

50 Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu

55

	65	70	75	80
5	Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro 85 90 95			
	Leu Thr Phe Gly Gly Thr Lys Val Glu Ile Lys Arg 100 105			
10	<210> 115 <211> 114 <212> PRT <213> Homo sapiens			
15	<400> 115			
	Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15			
20	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30			
25	Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45			
	Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val 50 55 60			
30	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80			
	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95			
35	Ala Ile Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 100 105 110			
	Ser Ala			
40	<210> 116 <211> 115 <212> PRT <213> Homo sapiens			
45	<400> 116			
	Gln Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly 1 5 10 15			
50	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30			
55	Tyr Met Ser Trp Ile Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45			
	Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala Asp Ser Val 50 55 60			

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
 65 70 75 80

5 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Leu Thr Gly Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
 100 105 110

10 Ser Ser Ala
 115

<210> 117
 <211> 108
 15 <212> PRT
 <213> Homo sapiens

<400> 117

20 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Val Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Trp
 20 25 30

25 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
 30 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

35 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ala Asn Ser Phe Pro Leu
 85 90 95

40 Thr Phe Gly Gly Thr Lys Val Glu Ile Lys Arg
 100 105

Claims

1. A human monoclonal antibody or an antigen-binding portion thereof that specifically binds to M-CSF,
 45 wherein the antibody comprises:
- (a) a heavy chain amino acid sequence that is at least 90% identical to the heavy chain amino acid sequence
 50 of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID
 NO:30), and
 (b) a light chain amino acid sequence that is at least 90% identical to the light chain amino acid sequence of
 55 SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32);
 and
- wherein the antibody has at least one of the properties selected from the group consisting of:
 55
- (i) inhibits M-CSF-dependent cell proliferation with an IC_{50} of 8×10^{-8} M or less;
 (ii) inhibits M-CSF-dependent human monocyte shape change with an IC_{50} of 9×10^{-8} M or less; and
 (iii) inhibits M-CSF receptor binding with an IC_{50} of 7×10^{-8} M or less.

2. The human monoclonal antibody or antigen-binding portion according to claim 1, wherein:

- 5 (a) the heavy chain comprises an amino acid sequence that is at least 95% identical to the heavy chain amino acid sequence of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30), or
 (b) the light chain comprises an amino acid sequence that is at least 95% identical to the light chain amino acid sequence of SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

10 3. The human monoclonal antibody or antigen-binding portion according to claim 1, wherein:

- 15 (a) the heavy chain comprises an amino acid sequence that is at least 99% identical to the heavy chain amino acid sequence of SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30), or
 (b) the light chain comprises an amino acid sequence that is at least 99% identical to the light chain amino acid sequence of SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

20 4. A human monoclonal antibody or antigen-binding portion thereof that specifically binds to M-CSF, wherein the heavy chain of the antibody comprises the amino acid sequences of the CDR1, CDR2, and CDR3 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain of the antibody comprises the amino acid sequences of the CDR1, CDR2, and CDR3 found in the variable domain of a light chain comprising SEQ ID NO: 32.

25 5. The human monoclonal antibody or antigen-binding portion according to claim 4, wherein the heavy chain comprises the amino acid sequences of any one or more of the FR1, FR2, FR3, and FR4 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequences of any one or more of the FR1, FR2, FR3, and FR4 found in the variable domain of a light chain comprising SEQ ID NO: 32.

30 6. The human monoclonal antibody or antigen-binding portion according to claim 4, wherein the heavy chain comprises the amino acid sequence from the beginning of the CDR1 through the end of the CDR3 found in the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequence from the beginning of the CDR1 through the end of the CDR3 found in the variable domain of a light chain comprising SEQ ID NO: 32.

35 7. The human monoclonal antibody or antigen-binding portion according to claim 4, wherein the heavy chain comprises the amino acid sequence of the variable domain of a heavy chain comprising SEQ ID NO: 30 and the light chain comprises the amino acid sequence of the variable domain of a light chain comprising SEQ ID NO: 32.

40 8. A human monoclonal antibody, wherein the heavy chain amino acid sequence of the antibody is SEQ ID NO: 30 without the nineteen amino acid residues of the signal sequence (residues 1-19 of SEQ ID NO:30) and the light chain amino acid sequence of the antibody is SEQ ID NO: 32 without the twenty amino acid residues of the signal sequence (residues 1-20 of SEQ ID NO:32).

45 9. The human monoclonal antibody or antigen-binding portion according to any one of claims 1-7, wherein the antibody is selected from the group consisting of: an IgG, an IgM, an IgE, an IgA and an IgD.

50 10. The antigen-binding portion according to any one of claims 1-7, wherein the portion is selected from the group consisting of: an Fab fragment, an F(ab')₂ fragment and an Fv fragment.

55 11. The human monoclonal antibody or antigen-binding portion according to any one of claims 1-10, wherein the C-terminal lysine of the heavy chain of the antibody or portion is not present.

12. A pharmaceutical composition comprising the human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 and a pharmaceutically acceptable carrier.

55 13. Use of the human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for the preparation of a pharmaceutical composition for treating a condition selected from the group consisting of arthritis, rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's syndrome, gout, traumatic arthritis, rubella

5 arthritis and acute synovitis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, Alzheimer's disease, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis, glomerulonephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, multiple sclerosis, muscle degeneration, eczema, contact dermatitis, psoriasis, sunburn, and conjunctivitis shock in a subject in need thereof.

- 10 14. Use of the human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for the preparation of a pharmaceutical composition for treating cancer in a subject in need thereof.
- 15 15. The use according to claim 14, wherein the cancer is a brain cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, breast cancer, head cancer, neck cancer, liver cancer, esophageal cancer, prostate cancer, colorectal cancer, lung cancer, renal cancer, kidney cancer, ovarian cancer, uterine cancer, gynecological cancer, nasopharyngeal cancer, thyroid cancer, parathyroid cancer, adrenal gland cancer, small intestine cancer, colon cancer, stomach cancer, rectal cancer, anal cancer, skin cancer, head and neck cancer, urethral cancer, penile cancer, melanoma, a solid tumor of childhood, lymphoma, leukemia, or multiple myeloma.
- 20 16. Use of the human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for the preparation of a pharmaceutical composition.
- 25 17. An isolated cell line that produces the human monoclonal antibody or antigen-binding portion according to any one of claims 1-11.
- 30 18. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes both the heavy chain and light chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of claims 1-11.
- 35 19. A first isolated nucleic acid molecule comprising a nucleotide sequence that encodes the heavy chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of claims 1-11; and a second isolated nucleic acid molecule comprising a nucleotide sequence that encodes the light chain, or an antigen-binding portion thereof, of a human monoclonal antibody according to any one of claims 1-11.
- 40 20. A vector comprising the nucleic acid molecule according to claim 18, wherein the vector optionally comprises an expression control sequence operably linked to said nucleic acid molecule.
- 45 21. An isolated host cell comprising the vector according to claim 20.
- 50 22. An isolated host cell comprising a nucleic acid molecule encoding the heavy chain and a nucleic acid molecule encoding the light chain of the antibody or antigen-binding portion according to any one of claims 1-11.
- 55 23. A method of making an anti-M-CSF antibody or antigen-binding portion thereof, comprising culturing the cell line according to claim 17 or the host cell according to claim 22 under suitable conditions and recovering the antibody or portion.
- 60 24. The human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for use in the treatment of a condition selected from the group consisting of arthritis, rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Reiter's syndrome, gout, traumatic arthritis, rubella arthritis and acute synovitis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, Alzheimer's disease, stroke, neurotrauma, asthma, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption disease, osteoporosis, restenosis, cardiac and renal reperfusion injury, thrombosis, glomerulonephritis, diabetes, graft vs. host reaction, allograft rejection, inflammatory bowel disease, Crohn's disease, ulcerative colitis, multiple sclerosis, muscle degeneration, eczema, contact dermatitis, psoriasis, sunburn, and conjunctivitis shock in a subject in need thereof.
- 65 25. The human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for use in the treatment of cancer in a subject in need thereof.
- 70 26. The human monoclonal antibody or antigen-binding portion for use according to claim 25, wherein the cancer is a

5 brain cancer, squamous cell cancer, bladder cancer, gastric cancer, pancreatic cancer, breast cancer, head cancer, neck cancer, liver cancer, esophageal cancer, prostate cancer, colorectal cancer, lung cancer, renal cancer, kidney cancer, ovarian cancer, uterine cancer, gynecological cancer, nasopharyngeal cancer, thyroid cancer, parathyroid cancer, adrenal gland cancer, small intestine cancer, colon cancer, stomach cancer, rectal cancer, anal cancer, skin cancer, head and neck cancer, urethral cancer, penile cancer, melanoma, a solid tumor of childhood, lymphoma, leukemia, or multiple myeloma.

- 10 27. The human monoclonal antibody or antigen-binding portion according to any one of claims 1-11 for use in the treatment of a patient in need thereof.

15 Patentansprüche

- 20 1. Humaner monoklonaler Antikörper oder ein Antigen-bindender Teil davon, der spezifisch an M-CSF bindet, wobei der Antikörper umfasst:

- 25 (a) eine Aminosäuresequenz einer schweren Kette, die mindestens 90% identisch mit der Aminosäuresequenz der SEQ ID NO:30 der schweren Kette ohne die neunzehn Aminosäurereste der Signalsequenz (Reste 1 bis 19 der SEQ ID NO:30) ist, und
 30 (b) eine Aminosäuresequenz einer leichten Kette, die mindestens 90% identisch mit der Aminosäuresequenz der SEQ ID NO:32 der leichten Kette ohne die zwanzig Aminosäurereste der Signalsequenz (Reste 1 bis 20 der SEQ ID NO:32) ist; und

35 wobei der Antikörper mindestens eine der Eigenschaften aufweist, die ausgewählt sind aus der Gruppe bestehend aus:

- 40 (i) hemmt M-CSF-abhängige Zellproliferation mit einer IC_{50} von 8×10^{-8} M oder weniger;
 (ii) hemmt M-CSF-abhängige Veränderung der humanen Monozytenform mit einer IC_{50} von 9×10^{-8} M oder weniger; und
 (iii) hemmt M-CSF-Rezeptorbindung mit einer IC_{50} von 7×10^{-8} M oder weniger.

- 45 2. Humaner monoklonaler Antikörper oder Antigen-bindender Teil nach Anspruch 1, wobei:

- 50 (a) die schwere Kette eine Aminosäuresequenz umfasst, die mindestens 95% identisch mit der Aminosäuresequenz der SEQ ID NO:30 der schweren Kette ohne die neunzehn Aminosäurereste der Signalsequenz (Reste 1 bis 19 der SEQ ID NO:30) ist, oder
 (b) die leichte Kette eine Aminosäuresequenz umfasst, die mindestens 95% identisch mit der Aminosäuresequenz der SEQ ID NO:32 der leichten Kette ohne die zwanzig Aminosäurereste der Signalsequenz (Reste 1 bis 20 der SEQ ID NO:32) ist.

- 55 3. Humaner monoklonaler Antikörper oder Antigen-bindender Teil nach Anspruch 1, wobei:

- 40 (a) die schwere Kette eine Aminosäuresequenz umfasst, die mindestens 99% identisch mit der Aminosäuresequenz der SEQ ID NO:30 der schweren Kette ohne die neunzehn Aminosäurereste der Signalsequenz (Reste 1 bis 19 der SEQ ID NO:30) ist, oder
 (b) die leichte Kette eine Aminosäuresequenz umfasst, die mindestens 99% identisch mit der Aminosäuresequenz der SEQ ID NO:32 der leichten Kette ohne die zwanzig Aminosäurereste der Signalsequenz (Reste 1 bis 20 der SEQ ID NO:32) ist.

- 50 4. Humaner monoklonaler Antikörper oder Antigen-bindender Teil davon, der spezifisch an M-CSF bindet, wobei die schwere Kette des Antikörpers die Aminosäuresequenzen der CDR1, CDR2 und CDR3 umfasst, die sich in der variablen Domäne einer schweren Kette, die SEQ ID NO:30 umfasst, befinden, und wobei die leichte Kette des Antikörpers die Aminosäuresequenzen der CDR1, CDR2 und CDR3 umfasst, die sich in der variablen Domäne einer leichten Kette, die SEQ ID NO:32 umfasst, befinden.

- 55 5. Humaner monoklonaler Antikörper oder Antigen-bindender Teil nach Anspruch 4, wobei die schwere Kette, die Aminosäuresequenzen einer beliebigen oder mehreren aus FR1, FR2, FR3 und FR4 umfasst, die sich in der variablen Domäne einer schweren Kette, die SEQ ID NO:30 umfasst, befinden, und wobei die leichte Kette die Aminosäure-

sequenzen einer beliebigen oder mehreren aus FR1, FR2, FR3 und FR4 umfasst, die sich in der variablen Domäne einer leichten Kette, die SEQ ID NO:32 umfasst, befinden.

- 5 6. Humaner monoklonaler Antikörper oder Antigen-bindender Teil davon nach Anspruch 4, wobei die schwere Kette die Aminosäuresequenz vom Anfang der CDR1 bis zum Ende der CDR3 umfasst, die sich in der variablen Domäne einer schweren Kette, die SEQ ID NO:30 umfasst, befinden, und wobei die leichte Kette die Aminosäuresequenz vom Anfang der CDR1 bis zum Ende der CDR3 umfasst, die sich in der variablen Domäne einer leichten Kette, die SEQ ID NO:32 umfasst, befinden.
- 10 7. Humaner monoklonaler Antikörper oder Antigen-bindender Teil davon nach Anspruch 4, wobei die schwere Kette die Aminosäuresequenz der variablen Domäne einer schweren Kette umfasst, die SEQ ID NO:30 umfasst, und wobei die leichte Kette die Aminosäuresequenz der variablen Domäne einer leichten Kette umfasst, die SEQ ID NO:32 umfasst.
- 15 8. Humaner monoklonaler Antikörper, wobei die Aminosäuresequenz der schweren Kette des Antikörpers SEQ ID NO:30 ohne die neunzehn Aminosäurereste der Signalsequenz (Reste 1 bis 19 der SEQ ID NO:30) ist, und wobei die Aminosäuresequenz der leichten Kette des Antikörpers SEQ ID NO:32 ohne die zwanzig Aminosäurereste der Signalsequenz (Reste 1 bis 20 der SEQ ID NO:32) ist.
- 20 9. Humaner monoklonaler Antikörper oder Antigen-bindender Teil davon nach einem der Ansprüche 1 bis 7, wobei der Antikörper ausgewählt ist aus der Gruppe bestehend aus einem IgG, einem IgM, einem IgE, einem IgA und einem IgD.
- 25 10. Antigen-bindender Teil nach einem der Ansprüche 1 bis 7, wobei der Teil ausgewählt ist aus der Gruppe bestehend aus einem Fab-Fragment, einem F(ab')₂-Fragment und einem Fv-Fragment.
- 30 11. Humaner monoklonaler Antikörper oder Antigen-bindender Teil nach einem der Ansprüche 1 bis 10, wobei das Lysin am C-Terminus der schweren Kette des Antikörpers oder des Teils nicht vorliegend ist.
- 35 12. Arzneimittel, das den humanen monoklonalen Antikörper oder den Antigen-bindenden Teil nach einem der Ansprüche 1 bis 11 und einen pharmazeutisch verträglichen Träger umfasst.
- 40 13. Verwendung des humanen monoklonalen Antikörpers oder des Antigen-bindenden Teils nach einem der Ansprüche 1 bis 11 zur Herstellung eines Arzneimittels zur Behandlung eines Leidens, das ausgewählt ist aus der Gruppe bestehend aus Arthritis, rheumatoider Arthritis, Psoriasis-Arthritis, Spondylitis ankylosans (Morbus Bechterew), Morbus Reiter, Gichtarthritis, traumatischer Arthritis, Rötelnarthritis und akuter Synovitis und anderen arthritischen Leiden, Sepsis, septischem Schock, endotoxischem Schock, gram-negativer Sepsis, toxischem Schocksyndrom, Alzheimer-Erkrankung, Schlaganfall, Neurotrauma, Asthma, Atemnotsyndrom des Erwachsenen (adult respiratory distress syndrome), zerebraler Malaria, chronisch entzündlicher Lungenerkrankung, Silikose, pulmonaler Sarkoidose, Knochenresorptionserkrankung, Osteoporose, Restenose, Herz- oder Nieren-Reperfusionssschaden, Thrombose, Glomerulonephritis, Diabetes, Graftversus-Host-Erkrankung, Allotransplantatabstoßung, entzündlicher Darmerkrankung, Morbus Crohn, Colitis ulcerosa, multipler Sklerose, Muskeldegeneration, Ekzem, Kontaktdermatitis, Psoriasis, Sonnenbrand und Konjunktivitis-Schock bei einem Individuum, das dieses benötigt.
- 45 14. Verwendung des humanen monoklonalen Antikörpers oder des Antigen-bindenden Teils nach einem der Ansprüche 1 bis 11 zur Herstellung eines Arzneimittels zur Behandlung von Krebs bei einem Individuum, das dieses benötigt.
- 50 15. Verwendung nach Anspruch 14, wobei der Krebs ein Hirntumor, Plattenepithelkarzinom, Blasenkrebs, Magenkarzinom, Pankreaskrebs, Brustkrebs, Kopfkrebs, Halskrebs, Leberkrebs, Speiseröhrenkrebs, Prostatakrebs, Dickdarmkrebs, Lungenkrebs, Nierenkrebs (renal cancer), Nierenkrebs (kidney cancer), Eierstockkrebs, Gebärmutterkrebs, gynäkologischer Krebs, Nasenrachenkrebs, Schilddrüsenkrebs, Nebenschilddrüsenkrebs, Nebennierenkrebs, Dünndarmkrebs, Darmkrebs, Magenkrebs, Mastdarmkrebs, Analkrebs, Hautkrebs, Kopf- und Halskrebs, Harnröhrenkrebs, Peniskrebs, Melanom, ein solider Tumor im Kindesalter, Lymphom, Leukämie oder multiples Myelom ist.
- 55 16. Verwendung des humanen monoklonalen Antikörpers oder des Antigen-bindenden Teils nach einem der Ansprüche 1 bis 11 zur Herstellung eines Arzneimittels.

17. Isolierte Zelllinie, die den humanen monoclonalen Antikörper oder den Antigen-bindenden Teil nach einem der Ansprüche 1 bis 11 herstellt.
- 5 18. Isoliertes Nucleinsäuremolekül, die eine Nucleotidsequenz umfasst, die sowohl die schwere Kette als auch die leichte Kette, oder einen Antigen-bindenden Teil davon, eines humanen monoclonalen Antikörpers nach einem der Ansprüche 1 bis 11 codiert.
- 10 19. Erstes isoliertes Nucleinsäuremolekül, das eine Nucleotidsequenz umfasst, die die schwere Kette, oder einen Antigen-bindenden Teil davon, eines humanen monoclonalen Antikörpers nach einem der Ansprüche 1 bis 11 codiert; und ein zweites isoliertes Nucleinsäuremolekül, das eine Nucleotidsequenz umfasst, die die leichte Kette, oder einen Antigen-bindenden Teil davon, eines humanen monoclonalen Antikörpers nach einem der Ansprüche 1 bis 11 codiert.
- 15 20. Vektor, der das Nucleinsäuremolekül nach Anspruch 18 umfasst, wobei der Vektor gegebenenfalls eine Expressionskontrollsequenz umfasst, die mit dem Nucleinsäuremolekül funktionell verknüpft ist.
21. Isolierte Wirtszelle, die den Vektor nach Anspruch 20 umfasst.
- 20 22. Isolierte Wirtszelle, umfassend ein Nucleinsäuremolekül, das die schwere Kette codiert und umfassend ein Nucleinsäuremolekül, das die leichte Kette des Antikörpers oder des Antigen-bindenden Teils nach einem der Ansprüche 1 bis 11 codiert.
- 25 23. Verfahren zum Herstellen eines Anti-M-CSF-Antikörpers oder eines Antigen-bindenden Teils davon, umfassend das Züchten der Zelllinie nach Anspruch 17 oder der Wirtszelle nach Anspruch 22 unter geeigneten Bedingungen und das Gewinnen des Antikörpers oder des Teils.
24. Humaner monoclonaler Antikörper oder Antigen-bindender Teil nach einem der Ansprüche 1 bis 11 zur Verwendung bei der Behandlung eines Leidens, das ausgewählt ist aus der Gruppe bestehend aus Arthritis, rheumatoider Arthritis, Psoriasis-Arthritis, Spondylitis ankylosans (Morbus Bechterew), Morbus Reiter, Gichtarthritis, traumatischer Arthritis, Rötelnarthritis und akuter Synovitis und anderen arthritischen Leiden, Sepsis, septischem Schock, endotoxischem Schock, gram-negativer Sepsis, toxischem Schocksyndrom, Alzheimer-Erkrankung, Schlaganfall, Neurotrauma, Asthma, Atemnotsyndrom des Erwachsenen (adult respiratory distress syndrome), zerebraler Malaria, chronisch entzündlicher Lungenerkrankung, Silikose, pulmonaler Sarkoidose, Knochenresorptionserkrankung, Osteoporose, Restenose, Herz- oder Nieren-Reperfusionssschaden, Thrombose, Glomerulonephritis, Diabetes, Graftversus-Host-Erkrankung, Allotransplantatabstoßung, entzündlicher Darmerkrankung, Morbus Crohn, Colitis ulcerosa, multipler Sklerose, Muskeldegeneration, Ekzem, Kontaktdermatitis, Psoriasis, Sonnenbrand und Konjunktivitis-Schock bei einem Individuum, das diesen benötigt.
- 30 25. Humaner monoclonaler Antikörper oder Antigen-bindender Teil nach einem der Ansprüche 1 bis 11 zur Verwendung bei der Behandlung von Krebs bei einem Individuum, das diesen benötigt.
- 35 26. Humaner monoclonaler Antikörper oder Antigen-bindender Teil zur Verwendung nach Anspruch 25, wobei der Krebs ein Hirntumor, Plattenepithelkarzinom, Blasenkrebs, Magenkarzinom, Pankreaskrebs, Brustkrebs, Kopfkrebs, Halskrebs, Leberkrebs, Speiseröhrenkrebs, Prostatakrebs, Dickdarmkrebs, Lungenkrebs, Nierenkrebs (renal cancer), Nierenkrebs (kidney cancer), Eierstockkrebs, Gebärmutterkrebs, gynäkologischer Krebs, Nasenrachenkrebs, Schilddrüsenkrebs, Nebenschilddrüsenkrebs, Nebennierenkrebs, Dünndarmkrebs, Darmkrebs, Magenkrebs, Mastdarmkrebs, Analkrebs, Hautkrebs, Kopf- und Halskrebs, Harnröhrenkrebs, Peniskrebs, Melanom, ein solider Tumor im Kindesalter, Lymphom, Leukämie oder multiples Myelom ist.
- 40 27. Humaner monoclonaler Antikörper oder Antigen-bindender Teil nach einem der Ansprüche 1 bis 11 zur Verwendung bei der Behandlung eines Patienten, der diesen benötigt.

55 **Revendications**

1. Anticorps monoclonal humain ou une portion de celui-ci possédant des propriétés de liaison à antigène qui se lie spécifiquement au M-CSF,
l'anticorps comprenant :

- (a) une séquence d'acides aminés de chaîne lourde qui est au moins identique à 90 % à la séquence d'acides aminés de chaîne lourde de SEQ ID NO : 30 sans les dix-neuf résidus d'acides aminés de la séquence signal (résidus 1 à 19 de SEQ ID NO : 30), et
 5 (b) une séquence d'acides aminés de chaîne légère qui est au moins identique à 90 % à la séquence d'acides aminés de chaîne légère de SEQ ID NO : 32 sans les vingt résidus d'acides aminés de la séquence signal (résidus 1 à 20 de SEQ ID NO : 32) ; et

l'anticorps possédant au moins l'une des propriétés sélectionnées dans le groupe consistant en :

- 10 (i) inhibe la prolifération cellulaire dépendante du M-CSF avec une IC_{50} de 8×10^{-8} M ou moins ;
 (ii) inhibe le changement de forme des monocytes humains dépendant du M-CSF avec une IC_{50} de 9×10^{-8} M ou moins ; et
 (iii) inhibe la liaison du récepteur du M-CSF avec une IC_{50} de 7×10^{-8} M ou moins.

15 2. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon la revendication 1, dans lequel/laquelle :

- 20 (a) la chaîne lourde comprend une séquence d'acides aminés qui est au moins identique à 95 % à la séquence d'acides aminés de chaîne lourde de SEQ ID NO : 30 sans les dix-neuf résidus d'acides aminés de la séquence signal (résidus 1 à 19 de SEQ ID NO : 30), ou
 (b) la chaîne légère comprend une séquence d'acides aminés qui est au moins identique à 95 % à la séquence d'acides aminés de chaîne légère de SEQ ID NO : 32 sans les vingt résidus d'acides aminés de la séquence signal (résidus 1 à 20 de SEQ ID NO : 32).

25 3. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon la revendication 1, dans lequel/laquelle :

- 30 (a) la chaîne lourde comprend une séquence d'acides aminés qui est au moins identique à 99 % à la séquence d'acides aminés de chaîne lourde de SEQ ID NO : 30 sans les dix-neuf résidus d'acides aminés de la séquence signal (résidus 1 à 19 de SEQ ID NO : 30), ou
 (b) la chaîne légère comprend une séquence d'acides aminés qui est au moins identique à 99 % à la séquence d'acides aminés de chaîne légère de SEQ ID NO : 32 sans les vingt résidus d'acides aminés de la séquence signal (résidus 1 à 20 de SEQ ID NO : 32).

35 4. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène qui se lie spécifiquement au M-CSF, dans lequel/laquelle la chaîne lourde de l'anticorps comprend les séquences d'acides aminés des CDR1, CDR2, et CDR3 trouvées dans le domaine variable d'une chaîne lourde comprenant SEQ ID NO : 30 et la chaîne légère de l'anticorps comprend les séquences d'acides aminés des CDR1, CDR2, et CDR3 trouvées dans le domaine variable d'une chaîne légère comprenant SEQ ID NO : 32.

40 5. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon la revendication 4, dans lequel/laquelle la chaîne lourde comprend les séquences d'acides aminés de l'une quelconque ou de plusieurs des FR1, FR2, FR3, et FR4 trouvées dans le domaine variable d'une chaîne lourde comprenant SEQ ID NO : 30 et la chaîne légère comprend les séquences d'acides aminés de l'une quelconque ou de plusieurs des FR1, FR2, FR3, et FR4 trouvées dans le domaine variable d'une chaîne légère comprenant SEQ ID NO : 32.

50 6. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon la revendication 4, dans lequel/laquelle la chaîne lourde comprend la séquence d'acides aminés du début de la CDR1 à la fin de la CDR3 trouvées dans le domaine variable d'une chaîne lourde comprenant SEQ ID NO : 30 et la chaîne légère comprend la séquence d'acides aminés du début de la CDR1 à la fin de la CDR3 trouvées dans le domaine variable d'une chaîne légère comprenant SEQ ID NO : 32.

55 7. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon la revendication 4, dans lequel/laquelle la chaîne lourde comprend la séquence d'acides aminés du domaine variable d'une chaîne lourde comprenant SEQ ID NO : 30 et la chaîne légère comprend la séquence d'acides aminés du domaine variable d'une chaîne légère comprenant SEQ ID NO : 32.

8. Anticorps monoclonal humain, dans lequel la séquence d'acides aminés de la chaîne lourde de l'anticorps est SEQ

ID NO : 30 sans les dix-neuf résidus d'acides aminés de la séquence signal (résidus 1 à 19 de SEQ ID NO : 30) et la séquence d'acides aminés de la chaîne légère de l'anticorps est SEQ ID NO : 32 sans les vingt résidus d'acides aminés de la séquence signal (résidus 1 à 20 de SEQ ID NO : 32).

- 5 9. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 7, l'anticorps étant sélectionné dans le groupe consistant en : une IgG, une IgM, une IgE, une IgA et une IgD.
- 10 10. Portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 7, la portion étant sélectionnée dans le groupe consistant en :
- un fragment Fab, un fragment F(ab')₂ et un fragment Fv.
- 15 11. Anticorps monoclonal humain ou portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 10, dans lequel/laquelle la lysine C-terminale de la chaîne lourde de l'anticorps ou de la portion n'est pas présente.
- 20 12. Composition pharmaceutique comprenant l'anticorps monoclonal humain ou la portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 et un support pharmaceutiquement acceptable.
- 25 13. Utilisation de l'anticorps monoclonal humain ou portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour la préparation d'une composition pharmaceutique destinée au traitement d'une affection sélectionnée dans le groupe consistant en l'arthrite, la polyarthrite rhumatoïde, l'arthrite psoriasique, la spondylarthrite ankylosante, le syndrome de Reiter, la goutte, l'arthrite traumatique, l'arthrite de la rubéole et la synovite aiguë et d'autres affections arthritiques, la septicémie, le choc septique, le choc endotoxique, la septicémie à Gram négatif, le syndrome du choc toxique, la maladie d'Alzheimer, l'accident vasculaire cérébral, un neurotraumatisme, l'asthme, le syndrome de détresse respiratoire de l'adulte, le paludisme cérébral, les maladies pulmonaires inflammatoires chroniques, la silicose, la sarcoïdose pulmonaire, les maladies de résorption osseuse, l'ostéoporose, la resténose, les lésions de reperfusion cardiaque et rénale, la thrombose, la glomérulonéphrite, le diabète, la réaction du greffon contre l'hôte, le rejet d'allogreffe, les maladies intestinales inflammatoires, la maladie de Crohn, la colite ulcéreuse, la sclérose en plaques, la dégénérescence musculaire, l'eczéma, la dermatite de contact, le psoriasis, les coups de soleil, et la conjonctivite chez un sujet en ayant besoin.
- 30 14. Utilisation de l'anticorps monoclonal ou portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour la préparation d'une composition pharmaceutique destinée au traitement du cancer chez un sujet en ayant besoin.
- 35 15. Utilisation selon la revendication 14, dans laquelle le cancer est un cancer du cerveau, un cancer à cellules squameuses, un cancer de la vessie, un cancer gastrique, un cancer pancréatique, un cancer du sein, un cancer de la tête, un cancer du cou, un cancer du foie, un cancer oesophagien, un cancer de la prostate, un cancer colorectal, un cancer du poumon, un cancer rénal, un cancer du rein, un cancer ovarien, un cancer de l'utérus, un cancer gynécologique, un cancer nasopharyngé, un cancer de la thyroïde, un cancer de la parathyroïde, un cancer des glandes surrénales, un cancer de l'intestin grêle, un cancer du côlon, un cancer de l'estomac, un cancer rectal, un cancer anal, un cancer de la peau, un cancer de la tête et du cou, un cancer urétral, un cancer pénien, un mélanome, une tumeur solide de l'enfant, un lymphome, une leucémie, ou un myélome multiple.
- 40 16. Utilisation de l'anticorps monoclonal humain ou de la portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour la préparation d'une composition pharmaceutique.
- 45 17. Lignée cellulaire isolée qui produit l'anticorps monoclonal humain ou la portion possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11.
- 50 18. Molécule d'acide nucléique isolée comprenant une séquence nucléotidique qui code pour à la fois la chaîne lourde et la chaîne légère, ou une portion de celui-ci possédant des propriétés de liaison à antigène, d'un anticorps monoclonal humain selon l'une quelconque des revendications 1 à 11.
- 55 19. Première molécule d'acide nucléique isolée comprenant une séquence nucléotidique qui code pour la chaîne lourde,

ou une portion de celui-ci possédant des propriétés de liaison à antigène, d'un anticorps monoclonal humain selon l'une quelconque des revendications 1 à 11 ; et une seconde molécule d'acide nucléique isolée comprenant une séquence nucléotidique qui code pour la chaîne légère, ou une portion de celui-ci possédant des propriétés de liaison à antigène, d'un anticorps monoclonal humain selon l'une quelconque des revendications 1 à 11.

- 5
20. Vecteur comprenant la molécule d'acide nucléique selon la revendication 18, dans lequel le vecteur comprend éventuellement une séquence de contrôle de l'expression liée de façon fonctionnelle à ladite molécule d'acide nucléique.
- 10 21. Cellule hôte isolée comprenant le vecteur selon la revendication 20.
22. Cellule hôte isolée comprenant une molécule d'acide nucléique codant pour la chaîne lourde et une molécule d'acide nucléique codant pour la chaîne légère de l'anticorps ou une portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11.
- 15 23. Méthode de fabrication d'un anticorps anti-M-CSF ou d'une portion de celui-ci possédant des propriétés de liaison à antigène, comprenant la culture de la lignée cellulaire selon la revendication 17 ou de la cellule hôte selon la revendication 22 dans des conditions appropriées et la récupération de l'anticorps ou de la partie.
- 20 24. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour une utilisation dans le traitement d'une affection sélectionnée dans le groupe consistant en l'arthrite, la polyarthrite rhumatoïde, l'arthrite psoriasique, la spondylarthrite ankylosante, le syndrome de Reiter, la goutte, l'arthrite traumatique, l'arthrite de la rubéole et la synovite aiguë et d'autres affections arthritiques, la septicémie, le choc septique, le choc endotoxique, la septicémie à Gram négatif, le syndrome du choc toxique, la maladie d'Alzheimer, l'accident vasculaire cérébral, un neurotraumatisme, l'asthme, le syndrome de détresse respiratoire de l'adulte, le paludisme cérébral, les maladies pulmonaires inflammatoires chroniques, la silicose, la sarcôdose pulmonaire, les maladies de résorption osseuse, l'ostéoporose, la resténose, les lésions de reperfusion cardiaque et rénale, la thrombose, la glomérulonéphrite, le diabète, la réaction du greffon contre l'hôte, le rejet d'allogreffe, les maladies intestinales inflammatoires, la maladie de Crohn, la rectocolite hémorragique, la sclérose en plaques, la dégénérescence musculaire, l'eczéma, la dermatite de contact, le psoriasis, les coups de soleil, et la conjonctivite chez un sujet en ayant besoin.
- 30 25. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour une utilisation dans le traitement du cancer chez un sujet en ayant besoin.
- 35 26. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène pour une utilisation selon la revendication 25, dans laquelle le cancer est un cancer du cerveau, un cancer à cellules squameuses, un cancer de la vessie, un cancer gastrique, un cancer pancréatique, un cancer du sein, un cancer de la tête, un cancer du cou, un cancer du foie, un cancer oesophagien, un cancer de la prostate, un cancer colorectal, un cancer du poumon, un cancer rénal, un cancer du rein, un cancer ovarien, un cancer de l'utérus, un cancer gynécologique, un cancer nasopharyngé, un cancer de la thyroïde, un cancer de la parathyroïde, un cancer des glandes surrénales, un cancer de l'intestin grêle, un cancer du côlon, un cancer de l'estomac, un cancer rectal, un cancer anal, un cancer de la peau, un cancer de la tête et du cou, un cancer urétral, un cancer pénien, un mélanome, une tumeur solide de l'enfant, un lymphome, une leucémie, ou un myélome multiple.
- 40 27. Anticorps monoclonal humain ou portion de celui-ci possédant des propriétés de liaison à antigène selon l'une quelconque des revendications 1 à 11 pour une utilisation dans le traitement d'un patient en ayant besoin.
- 45

50

55

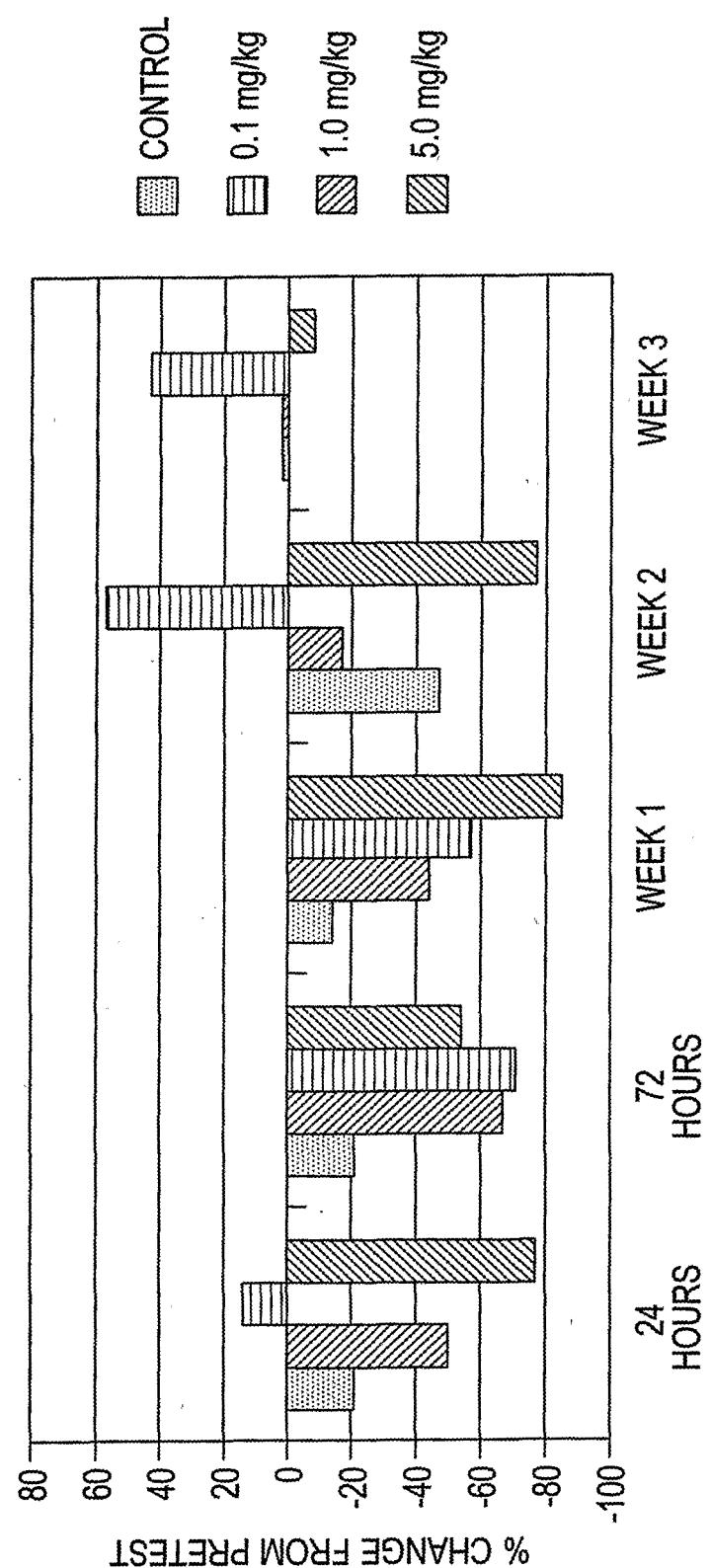


FIG. 1A

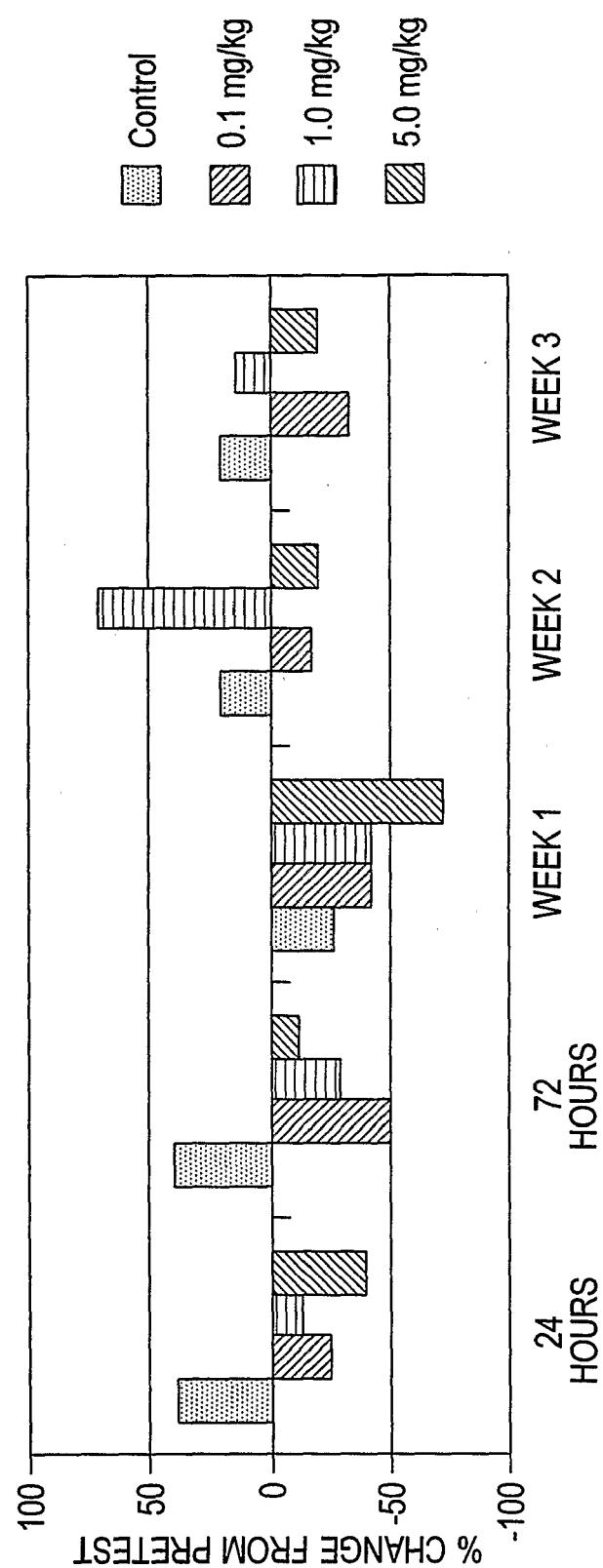


FIG. 1B

FIG. 2A

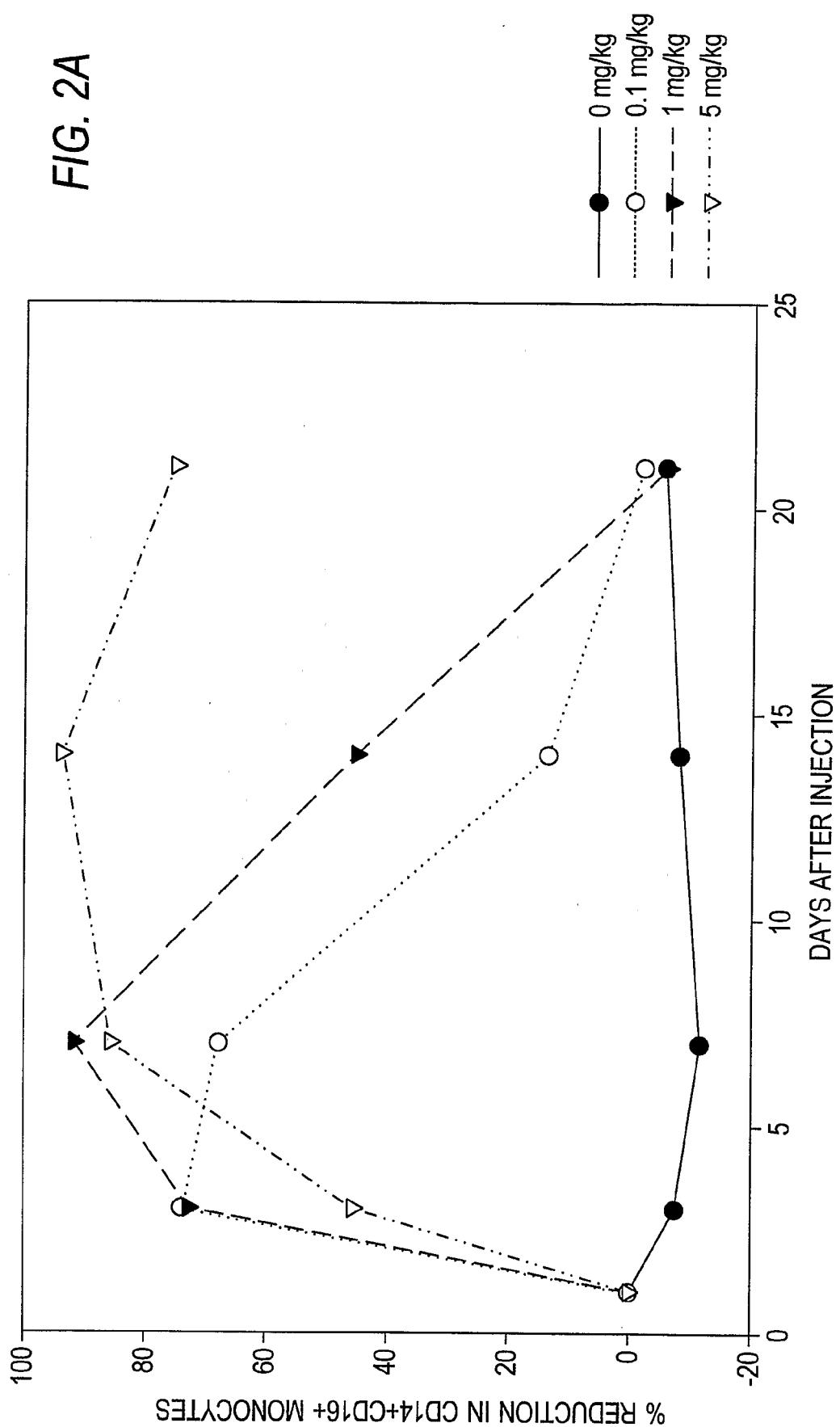


FIG. 2B

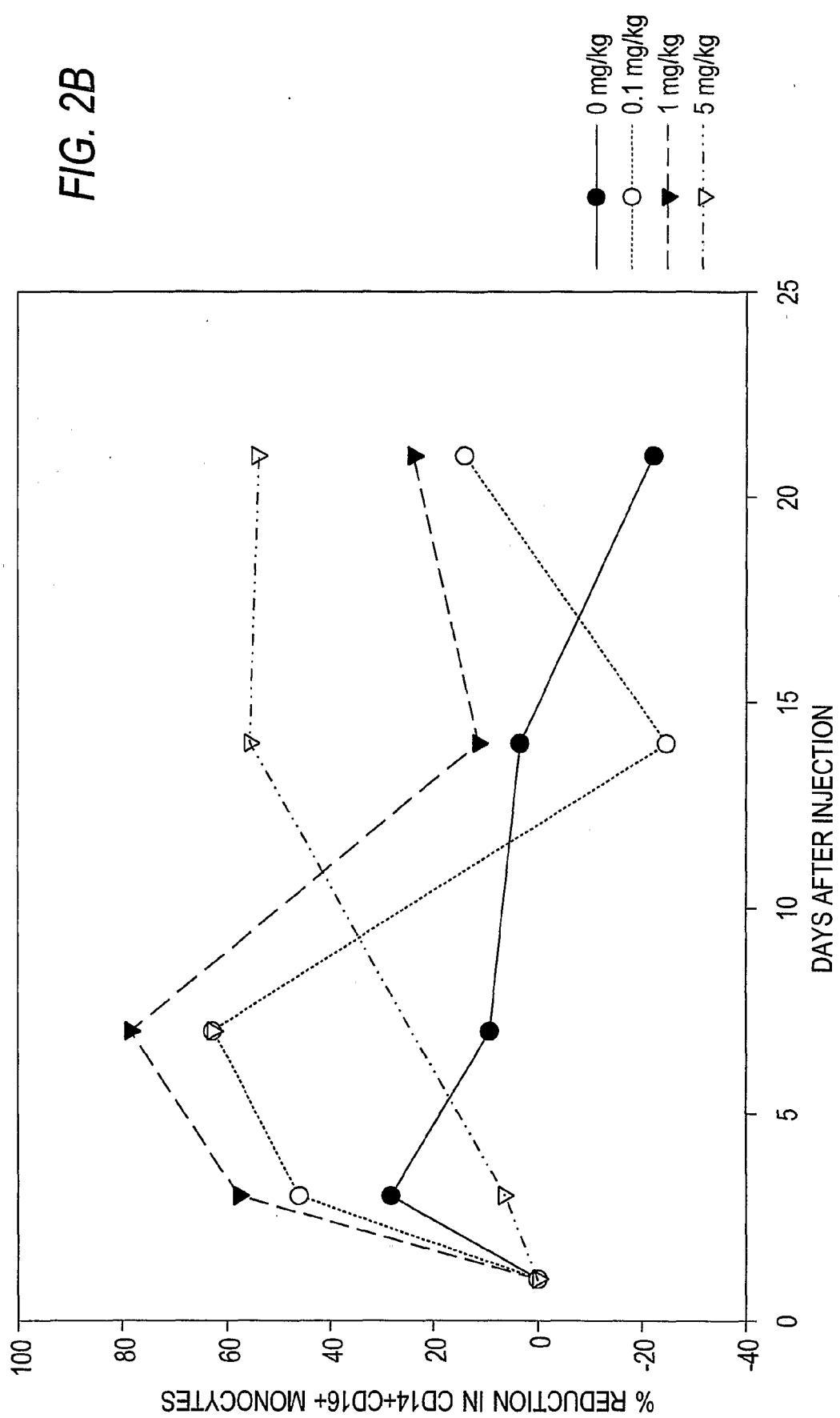
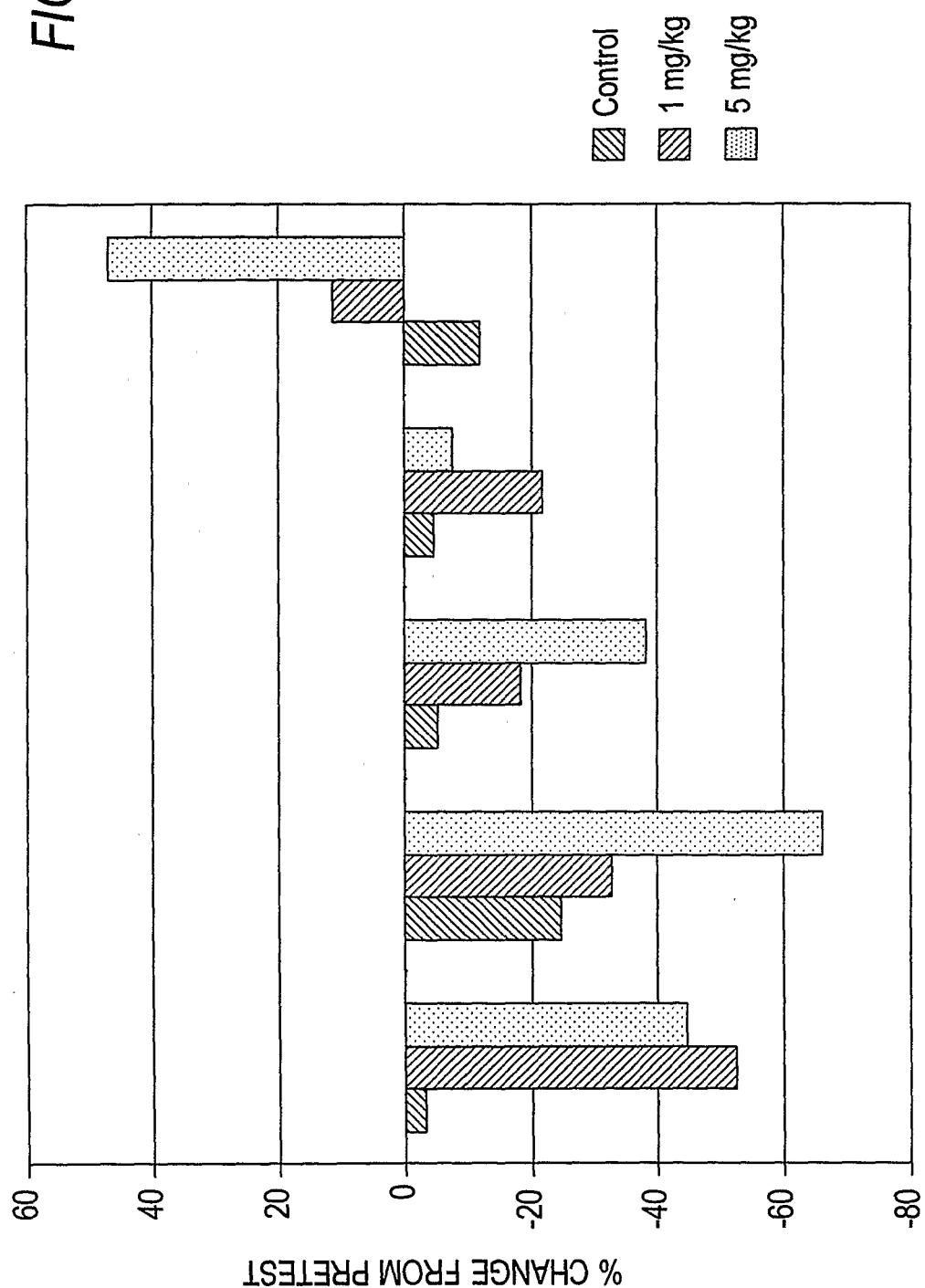



FIG. 3A

FIG. 3B

FIG. 4A

Germline V=012, J=JK3

252 DIGMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQKPGKAPKLII AASSLQS GVPSRSGSGSGTDFLTISLQPEDFATYYC QQSYSTPFT
FR1 CDR1 ER2 CDR2 ER3 CDR3

----- (residues 21-127 of SEQ ID NO: 4)

Germ FGPGTKVDIK (SEQ ID NO: 103)
J

FIG. 4B

Germline V=012, J=JK3

88 DIGMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQKPGKAPKLII AASSLQS GVPSRSGSGSGTDFLTISLQPEDFATYYC QQSYSTPFT
FR1 CDR1 ER2 CDR2 ER3 CDR3

----- (residues 21-127 of SEQ ID NO: 8)

Germ FGPGTKVDIK (SEQ ID NO: 103)
J

FIG. 4C

Germline V=L2, J=JK3

100 EIVMTQSPATLVSPPGERATLSC RASQSVSSNLA WYQQKPGQAPRLLII GASTRAT GIPARESGSGSGTEFTLTISLQSEDFAVYYC QQYNNWPF
FR1 CDR1 ER2 CDR2 ER3 CDR3

----- (residues 21-127 of SEQ ID NO: 12)

Germ FGPGTKVDIK (SEQ ID NO: 107)
J

FIG. 4D

Germline V=L5, J=JK3
3.8.3
(residues 23-130 of SEQ ID NO: 16)

Germline V=L5, J=JK4
2.7.3
(residues 23-130 of SEQ ID NO: 20)

Germline V=L5, J=JK4
1.120.1
(residues 23-130 of SEQ ID NO: 24)

Germline (SEQ ID NO: 109) DIQMTQSPSSVSSAVGDRVTITC RASQGIGSSWLA WYQQKPGKAPKLLIY AASSLQS GVEPSRFSGSGGTDEFITLTISSLQPEDFATYYC QQANNEPFT EPPGTTKVVDIKR
FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4E

Germline V=L5, J=JK4
2.7.3
(residues 23-130 of SEQ ID NO: 20)

Germline (SEQ ID NO: 117) DIQMTQSPSSVSSAVGDRVTITC RASQGIGSSWLA WYQQKPGKAPKLLIY AASSLQS GVEPSRFSGSGGTDEFITLTISSLQPEDFATYYC QQANNEPFT EPPGTTKVVEIKR
FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4F

Germline V=B3, J=JK1
1.120.1
(residues 21-134 of SEQ ID NO: 24)

Germline (J) DIVMTQSPDSLAVSLGERATINC KSSQSVLYSSNNKNYLA WYQQKPGQPPKLLIY WASTRES GVPDRFSGSGSGTDEFITLTISSLQAEDEVYYC QQYYSIPTWT
FR1 CDR1 FR2 CDR2 FR3 CDR3
1.120.1
1.120.1
Germline EQQGTTKVVEIKR (SEQ ID NO: 112)

FIG. 4G

Germline V=3-11, D=D7-27, J=JH6
252

Germ QVQLVSEGGGLVQPGGSLRLSCAAS GFTESDYAMS WVRQAPGKGLEWVS YISSSGSTIYYADSVKG RETISRDNAKNSLYLQMNSLRAEDTAVYYCAR ALGGMDV
FR1 CDR1 FR2 CDR2 FR3

252 WGGTIVTVSSA (SEQ ID NO: 106)
FR4

FIG. 4H

Germline V=3-7, D=6-13, J=JH4
88

Germ EVQLVLEGGGLVQPGGSLRLSCAAS GFTESSYAMS WVRQAPGKGLEWVA NIKQDGSEKYYVDSVKG RETISRDNAKNSLYLQMNSLRAEDTAVYYCAR GIAAGXYFDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

88 WGGTIVTVSSA (SEQ ID NO: 105)
FR4

FIG. 4I

Germline V=3-23, D=D1-26, J=JH4
100

Germ EVQLVLEGGGLVQPGGSLRLSCAAS GFTESSYAMS WVRQAPGKGLEWVS AISGGGSTYYADSVKG RETISRDNSKNTLYLQMNSLRAEDTAVYYCAR ##YSGSYYFDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

100 WGGTIVTVSSA (SEQ ID NO: 104)
FR4

FIG. 4J

Germline V=3-11, D=D7-27, J=JH4

3.8.3

Germ QVQLVESGGGVVKPGGSIRLSCAAS GFTFSYYMS WVROAPGKGLEWVS YISSLGGSTIYYADSVKG RFTISRDNAKNSLYLOMNSLRAEDDAVYCAR #LTGDY CDR3

FR1 CDR1 FR2 CDR2

3.8.3

----- (residues 20-135 of SEQ ID NO: 14)

Germ WGQGTLLVTVSSA (SEQ ID NO: 108)

FR4

FIG. 4K

Germline V=3-33, D=D1-26, J=JH4

2.7.3

Germ QVQLVESGGGVQGRSIRLSCAAS GFTSSYGMH WVROAPGKGLEWVA VIWYDGSNKYYADSVKG RFTISRDNSKNTLYLOMNSLRAEDDAVYCAR GYS#YFDY CDR3

FR1 CDR1 FR2 CDR2

2.7.3

----- (residues 20-137 of SEQ ID NO: 18)

Germ WGQGTLLVTVSSA (SEQ ID NO: 110)

FR4

FIG. 4L

Germline V=1-18, D=D4-23, J=JH4

1.120.1

Germ QVQLVQSGAEVKKPGASVKVSKCAS GYTFTSYGIS WVROAPGQGLEWMG WISAYNGNTNYAQKLOG RVTMFTTDTSSTAVANEILRSDDTAVYCA# #DYGNNYFDY CDR3

FR1 CDR1 FR2 CDR2

1.120.1

----- (residues 20-139 of SEQ ID NO: 22)

Germ WGQGTLLVTVSSA (SEQ ID NO: 111)

FR4

FIG. 4M

Germline V=VH3-48, J=JH4b
8.10.3 -F- -V-

Germline EIVLTQSPGTLSLSPGERATLSC RASQSVSSSYLA WYQOKPGQAPRILLY GASSRAT GIPDRFSGSGSGTDFLTLSRLEPEDFAVYIC
FR1 CDR1 FR2 CDR2 FR3

8.10.3 ----- (residues 21-129 of SEQ ID NO: 44)

Germline QOYGSPLT FGGGTKEVIEIKR (SEQ ID NO: 114)
CDR3 J

FIG. 4N

Germline V=VH3-48, D=D1-26, J=JH4b
8.10.3 -F-T- -R-S- -DPLA-ATF-

Germline EVQLVSEGGGLYQPGGSLRLSCAAS GFTFSSYSMN WVRQAPGKGLEWVS YISSSSSTIYYADSVKG RETIISRDNAKNSLYLQMNSLRDEDTAVYYCAR ##IVG##FEDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

8.10.3 ----- (residues 20-141 of SEQ ID NO: 30)

Germline WGGTGLIVYSSA (SEQ ID NO: 113)
J

FIG. 4O

Germline V=VH3-48, J=JH4b
9.14.4 -P-I-L-H-

(residues 23-130 of SEQ ID NO: 28)

Germline DIQMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQOKPGKAPKLLY AASSLQS GVPSSRFSGSGSCTDFLTISISSLQPEDFATYYC QQSXYSTPFT EGPGTKVDIKRV
(SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4P

Germline V=VH3-11, D=D7-27, J=JH4b
9.14.4

Germ	<u>QVQLVEGGGLVKPGGSLRLSCAAS</u>	<u>GRTFSDYYMS</u>	<u>WIRQAPGKGLEWVS</u>	<u>YISSSGSTIYYADSVKG</u>	<u>RETISRDNAKNSLYIQMNSLRAEDTAVYCAR</u>	#LTGDY CDR3
	FR1	CDR1	FR2	CDR2	FR3	
9.14.4	----- (residues 20-135 of SEQ ID NO: 38)					

FIG. 4Q

Germline V=012, J=JK3
9.7.2
(residues 23-130 of SEQ ID NO: 103)
Germ (SEQ ID NO: 103)
DIOMTQSPE FR1

FIG. 4R

Germline $V=VH3-11$, $D=D6-13$, $J=JH6b$
 θ, γ, τ

Germ	<u>QVOLVESGGGLVPRGGSLRLSCAAS</u>	<u>GFTESDYIMS</u>	<u>WIRQAPGKGLEWVS</u>	<u>YISSSGSTIYYADSVKG</u>	<u>RFTISRDIAKNSLYLQMNSLRAEDDAVYYCA#</u>	# 1 #GMDV CDR3
0.7.2	----- (residues 20-136 of SEQ ID NO: 46)					
Germ				<u>WGGGTTVTVSSA</u> (SEQ ID NO: 115)		T

FIG. 4S

Germline V=012, J=JK3
9.14.4I (residues 23-130 of SEQ ID NO: 28)

Germline D1QMTQSPSSLASASYGDRVLTIC RASOSISSYIN WYQQKPGKAPKLIX AASSLQS
(SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

GYPSRSGSGTIDDEFATIYC QQSISTPFT EGGTIVKVDIKR

FIG. 4T

Germline V=VH3-11, D=D7-27, J=JH4b
9.14.4I

Germline QVQLVESGGGLVKGSSLRLSCAAS GFTESDYMS WIRQAPGKGLEWVS YISSSSGSTIYYADSVKG RETISRDNAKNSLYLOMNSLRAEDTIVYYCAR
(SEQ ID NO: 26)

Germline WQGTLVIVSSA (SEQ ID NO: 116) J

FIG. 4U

Germline V=A27, J=JK4
8.10.3F

Germline EIVLTIQSPGTLSSLSPGERATLSC RASOSVSSSYLA WYQQKPGQAPRLIY GASSRAT
(SEQ ID NO: 32)

Germline QQYGSPLT FGGGTVKEIKR (SEQ ID NO: 114) J

GIPDRFSGSGTIDFTLTISRLEPEDFAVYC
FR3 CDR2 CDR1 FR2 FR3

FIG. 4V

Germline V=VH3-48, D=D1-26, J=JH4b
8.10.3F

FIG. 4W

Germline V=012, J=JK3
9.7.21F _____
(residues 23-130 of SE)

Germline V=012, J=JK3
 9.7.2 IF (residues 23-130 of SEQ ID NO: 36)

FIG. 4X

Germline V=VH3-11, D=D6-13, J=JH6b
9.7.2IF

FIG. 4Y

Germline V=012, J=JK3
9.7.2C-Ser

FR1	CDR1	GF-I	-T	FR3	CDR3	J
(residues 23-130 of SEQ ID NO: 52)			CDR2			
<u>DIQMTQSPSSLSASVGDRVTITC</u>	<u>RASQSISSYLN</u>	<u>WYQQKPGKAPKLLIY</u>	<u>AASSLQS</u>	<u>GVPSRFSGSGSTDFLTISLQPEDFATYC</u>	<u>QQSYSTPFT</u>	<u>EFGPTKVDIKR</u>
FR1	CDR1	FR2	CDR2	FR3	CDR3	J
(SEQ ID NO: 103)						

FIG. 4Z

Germline V=VH3-11, D=D6-13, J=JH6b
9.7.2C-Ser

FR1	CDR1	GF-I	-T	FR3	CDR3	R-G-----
(residues 23-130 of SEQ ID NO: 52)			CDR2			
<u>QVQLVYESGGGLVKPGGSLRLSCAAS</u>	<u>GFTESDYMS</u>	<u>WIRQAPGKGLEWVS</u>	<u>YISSSGSTIYYADSVKG</u>	<u>RETISRDNAKNSLYLQMNSLRAEDTAVYYCA</u>	<u>#I#GMDV</u>	
FR1	CDR1	FR2	CDR2	FR3	CDR3	
9.7.2C-Ser (residues 20-136 of SEQ ID NO: 50)						
Germ <u>WGQGTIVTVSSA</u> (SEQ ID NO: 115) J						

FIG. 4AA

Germline V=012, J=JK3
9.14.4C-Ser

FR1	CDR1	GF-I	-T	FR3	CDR3	J
(residues 23-130 of SEQ ID NO: 56)			CDR2			
<u>DIQMTQSPSSLSASVGDRVTITC</u>	<u>RASQSISSYLN</u>	<u>WYQQKPGKAPKLLIY</u>	<u>AASSLQS</u>	<u>GVPSRFSGSGSTDFLTISLQPEDFATYC</u>	<u>QQSYSTPFT</u>	<u>EFGPTKVDIKR</u>
FR1	CDR1	FR2	CDR2	FR3	CDR3	J
(SEQ ID NO: 103)						

FIG. 4BB

GermLine V=vH3-11, D=D7-27, J=JH4b
9.14.4C-Ser

Germ QVQLVESEGGGLVKPGGSLRLSCAAS GFTESDYMS WIRQAPGKGLEWVS YISSSGSTIYYADSVKG RETIISRDNAKNSLYLQMNNSLRDEDTAVYYCAR #ITGDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

9.14.4C-Ser (residues 20-135 of SEQ ID NO: 54)

Germ WGOGTLLTVVSSA (SEQ ID NO: 116)
J

FIG. 4CC

GermLine V=A27, J=JK4
8.10.3C-Ser

Germ EIVLTIOSPGTILSLSGERATLSC RASQSVSSSYLA WYQQKPGQAPRLLY GASSRAT GIPDRFSGSGSGTDETLTISRLEPEDEAVYYC
FR1 CDR1 FR2 CDR2 FR3

Germ QQYGSSSPLT FGGGTVKVEIKR (residues 21-129 of SEQ ID NO: 60)
CDR3 J

8.10.3 (SEQ ID NO: 114)

FIG. 4DD

GermLine V=vH3-48, D=D1-26, J=JH4b
8.10.3C-Ser

Germ EVQLVESEGGGLVQBGGSRLRLSCAAS GFTESSYSMN WYRQAPGKGLEWVS YISSSSSTIYYADSVKG RETIISRDNAKNSLYLQMNNSLRDEDTAVYYCAR ##IVG##EDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

8.10.3C-Ser (residues 20-141 of SEQ ID NO: 58)

Germ WGOGTLLTVVSSA (SEQ ID NO: 113)
J

FIG. 4EE

Gemline V=A27, J=JK4
8.10.3-CG2

Germ	<u>EIVLITOSPGTISLSPGERATLSC</u>	<u>RASQSVSSSYLA</u>	<u>WYQQKPGQAPRLLY</u>	<u>GASSRAT</u>	<u>GIPDRFSSGSGTDFYLITISRLPEDFAVYYC</u>
8.10.3-CG2	-----	-----	-----	-----	(residues 21-129 of SEQ ID NO: 60)
Germ	<u>QQYGSSPLT</u>	<u>EGGGTKVEILKR</u>	(SEQ ID NO: 114)		
	<u>CDR3</u>	<u>J</u>			

FIG. 4FF

Germline V=VH3-48, D=D1-26, J=JH4b
8.10.3-CG2

Germ

Germ WGGTLLTVSSA (SEQ ID NO: 113) (residues 20-141 of SEQ ID NO: 62) 8.10.3-CG2

FIG. 4GG

Germline V=012, J=JK3
9.7.2-CG2

(residues 23-130 of SEQ ID NO: 52) ^{FRI}

Germline (SEQ ID NO: 103) DIQMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQPKGAKPLIY AASSLQS GVPSRFGSGSGTDFLTITSSLQPEDFATYCYC QOSYSTPET FGPGTKVUDIKR

FIG. 4HH

Germline V=VH3-11, D=D6-13, J=JH6b
9.7.2-CG2
(residues 20-136 of SEQ ID NO: 66)

Germ QVQIVESGGGLVKPGGSLRLSAAAS GFTFSDDYMS WIRQAPGKGLEWVS YISSSGSTIYYADSVKRG RTTISRDNAKNSLYIQMNSLRAEDTAVYCA #11#GMDV
 (SEQ ID NO: 115) FR1 CDR1 ER2 CDR2 FR3
 9.7.2-CG2 WGOQTTTVTVSSA
 Germ J

FIG. 411

Germline V=012, J=JK3
9.7.2-CG4
(residues 23-130 of SE)

German (SEQ ID NO: 103) DIQMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQKPGKAPKLIIY AASSLQS GVPSRFGSGSGTDFLTISLQPEDFATYCC QQSYSTTPET FGPGTKVVDIKR
FR1 FR1 CDR1 FR2 CDR2 FR3 CDR3 J

EIG. 4JJ

Germline V=VH3-11, D=D6-13, J=JH6b
9.7.2-CG4

Germ	<u>QVOLVESGGGLVKPGGSLRLSCAAS</u>	<u>GETESDYNS</u>	<u>WIRQAPGKGLEWVS</u>	<u>YISSSGSTIYYADSVKG</u>	<u>REFTISRDNAKNSLYLQMNSLRAEDTAVYYCA</u>	#1#GMVD
9.7.2-CG4	<u>FR1</u>	<u>CDR1</u>	<u>FR2</u>	<u>CDR2</u>	<u>FR3</u>	CDR3
	----- (residues 20-135 of SEQ ID NO: 70)					
Germ	<u>WGCGTTVTVSSA</u>	(SEQ ID NO: 115)	J			

FIG. 4KK

Germline V=012, J=JK3

9.14.4-CG2

(residues 23-130 of SEQ ID NO: 56)

Germline DIQMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQKPGKAPKLLIY AASSLQS GVESRFGSGSGTDFLTISLQPEDFATYC QQSYSTPFT EFGPTKVDIKR
 (SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4LL

Germline V=VH3-11, D=D7-27, J=JH4b

9.14.4-CG2

Germline QVQLVYESGGGLVKPQEGSLRLISCAAS GFTESDYMS WIRQAPGKGLEWVS YISSSSGTTIYYADSVKG RTTISRDNAKNSLYLOMNSLRAEDTAVYYCAR #LTGDY
 (residues 20-135 of SEQ ID NO: 74)
 Germline WCGQTLVTVSSA (SEQ ID NO: 116) J

FIG. 4MM

Germline V=012, J=JK3

9.14.4-CG4

(residues 23-130 of SEQ ID NO: 56)

Germline DIQMTQSPSSLSASVGDRVTITC RASQSISSYLN WYQQKPGKAPKLLIY AASSLQS GVESRFGSGSGTDFLTISLQPEDFATYC QQSYSTPFT EFGPTKVDIKR
 (SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4NN

Germline V=VH3-11, D=D7-27, J=JH4b
9.14.4-CG4

Germline QVQLVYESGGGLVKPQGSILRLSCAAS GFTESDYMS WIRQAPGKGLEWWS YISSLGSIYADSVKG RETIISRDNAKNSLYLOMNSLRAEDTAVYCAR #LTGDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

9.14.4-CG4 (residues 20-135 of SEQ ID NO: 78)

Germline WGQGTIVTVSSA (SEQ ID NO: 116)

J

FIG. 400

Germline V=012, J=JK3
9.14.4-Ser (residues 23-130 of SEQ ID NO: 28)

Germline DIQWTOQSPSSLSASAVGDRVITIC RASQSISSYLN WYQQKPGKAPKLLY AASSLQG GVPRESGSGGTDFTLTISLQPEDFATVYC QOSYSTPFT EGPGTKVVDIKR
(SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4PP

Germline V=VH3-11, D=D7-27, J=JH4b
9.14.4-Ser

Germline QVQLVYESGGGLVKPQGSILRLSCAAS GFTESDYMS WIRQAPGKGLEWWS YISSLGSIYADSVKG RETIISRDNAKNSLYLOMNSLRAEDTAVYCAR #LTGDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

9.14.4-Ser (residues 20-135 of SEQ ID NO: 82)

Germline WGQGTIVTVSSA (SEQ ID NO: 116)

J

FIG. 4QQ

Germline V=012, J=JK3

9.7.2-Ser

FR1 CDR1 FR2 CDR2 FR3 CDR3 J

(residues 23-130 of SEQ ID NO: 48)

Germline D10MTOSSPLSASVGDRTTTC RASQSISSYLN WYQQKPGKAPKLLIY AASSLQS GVP SRFSGSGSGTDEFTLTISSLQPEDFATYYC QQSYSTPEP EGPGTTKVDIKR (SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J

FIG. 4RR

Germline V=VH3-11, D=D6-13, J=JH6b

9.7.2-Ser

FR1 CDR1 FR2 CDR2 FR3 CDR3 R-G

Germline QVQLVSEGGGLVPRGGSLRLSCAAS GTFTESDYYMS WIRQAPGKGLEWVS YISSSSGSIYYADSVKG RFTISRDNAKNSLYLQMNSSLRAEDTAVIYCA #I#GMDV (SEQ ID NO: 167) FR1 CDR1 FR2 CDR2 FR3 CDR3

9.7.2-Ser residues 20-136 of SEQ ID NO: 50)

Germline WGGQTTVVSSA (SEQ ID NO: 115) J

FIG. 4SS

Germline V=VH3-11, J=JH6b

8.10.3-Ser

FR1 CDR1 FR2 CDR2 FR3 V

Germline EIVLTOSPGTLISLSPGERATLSC RASQSVSSSYLA WYQQKPGQAPRLLIY GASSRAT GIPDRFSGSGSGTDEFTLTIISRLEPEDFAVYVC (SEQ ID NO: 44) FR1 CDR1 FR2 CDR2 FR3

8.10.3-Ser residues 21-129 of SEQ ID NO: 44)

Germline QQYGSPLT EGGGTTKVEIKR (SEQ ID NO: 114) CDR3 J

FIG. 4TT

GermLine V=VH3-48, D=D1-26, J=JH4b
8.10.3-Ser

F-T-----

R-----

S-----

DPLLA-ATF-----

Germ EVOLVESGGGLYDGGSLRLSCAAS GFTESSYSMN WVRQAPGKGLEWVS YISSSSSTIYYADSYKG RETISRDNAKNSLYLOMNSLRDEDTAVYYCAR ##IVG##EDY
FR1 CDR1 FR2 CDR2 CDR3
FR3

8.10.3-Ser ----- (residues 20-141 of SEQ ID NO: 90)

Germ WGGTILVTVSSA (SEQ ID NO: 113)
J

FIG. 4UU

GermLine V=VH3-48, J=JK4
8.10.3-CG4

F-T-----

R-----

S-----

DPLLA-ATF-----

Germ EIVLTQSPGTISLSPGERATLSC RASOSVSSSYLA WYQQKPGQAPRLLIY GASSRAT GIPDRFSGSGGTDFTLTISRLEPEDFAYYC
FR1 CDR1 FR2 CDR2 CDR3
FR3

8.10.3-CG4 ----- (residues 21-129 of SEQ ID NO: 60)

Germ QQYGSPLT EGGGTKVEIKR (SEQ ID NO: 114)
CDR3 J

FIG. 4VV

GermLine V=VH3-48, D=D1-26, J=JH4b
8.10.3-CG4

F-T-----

R-----

S-----

DPLLA-ATF-----

Germ EVOLVESGGGLYDGGSLRLSCAAS GTEESSYSMN WVRQAPGKGLEWVS YISSSSSTIYYADSYKG RETISRDNAKNSLYLOMNSLRDEDTAVYYCAR ##IVG##EDY
FR1 CDR1 FR2 CDR2 CDR3
FR3

8.10.3-CG4 ----- (residues 20-141 of SEQ ID NO: 94)

Germ WGGTILVTVSSA (SEQ ID NO: 113)
J

FIG. 4WW

Germline V=012, J=JK3

9.14.4G1

(residues 23-130 of SEQ ID NO: 28)

Germline DIQWTPSPSSLSASVGDRVITC RASQSISSYLN WYQQKPGKAPKLLIY MASSLQS GVPSRFSGS GTDFLTISSTLSSLOPDEATYYC QQSYSTPFT EPGTKVDIKR
(SEQ ID NO: 103) FR1 CDR1 FR2 CDR2 FR3 CDR3 J**FIG. 4XX**

Germline V=VH3-11, D=D7-27, J=JH4b

9.14.4G1

Germline QVOLVYESGGGLVPPGGSIRLSCAAS GFTESDYMS WIRQAPGKGLENWS YISSSSGSGTIIYYADSVRG RTTISRDNAKNSLYLOMNSLRAEDTIAVYYCAR #LTGDY
FR1 CDR1 FR2 CDR2 FR3 CDR3

9.14.4G1 (residues 20-135 of SEQ ID NO: 102)

Germline WGOQGTIVTVSSA (SEQ ID NO: 116)
J**FIG. 4YY**

Germline V=A27, J=JK4

8.10.3FG1

Germline EIVLTIQSPGTLSLSPGERATLSC RASQSISSYLN WYQQKPGQAPRLLIY GASSRAT GIPDRESGSGSGTDFLTISRLEPEDFAVYYC
FR1 CDR1 FR2 CDR2 FR3

8.10.3FG1 (residues 21-129 of SEQ ID NO: 32)

Germline QQYGSPLT EGGGTKVEIKR (SEQ ID NO: 114)
CDR3 J

FIG. 477

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9009400 A [0013]
- WO 0348731 A [0046]
- US 5151510 A [0051]
- US 5916771 A [0093]
- US 5939598 A [0093]
- US 5985615 A [0093]
- US 5998209 A [0093]
- US 6075181 A [0093]
- US 6091001 A [0093]
- US 6114598 A [0093]
- US 6130364 A [0093]
- US 6162963 A [0093]
- US 6150584 A [0093]
- WO 9110741 A [0093]
- WO 9402602 A [0093]
- WO 9634096 A [0093]
- WO 9633735 A [0093]
- WO 9816654 A [0093]
- WO 9824893 A [0093] [0095]
- WO 9850433 A [0093]
- WO 9945031 A [0093]
- WO 9953049 A [0093]
- WO 0009560 A [0093] [0151]
- WO 00037504 A [0093]
- US 5994619 A [0094] [0099]
- US 5545807 A [0096]
- US 55458X06 A [0096]
- US 5569825 A [0096]
- US 5625126 A [0096]
- US 5633425 A [0096]
- US 5661016 A [0096]
- US 5770429 A [0096]
- US 5789650 A [0096]
- US 5814318 A [0096]
- US 5591669 A [0096]
- US 5612205 A [0096]
- US 5721367 A [0096]
- US 5789215 A [0096]
- US 5643763 A [0096]
- WO 0037504 A [0101]
- US 5168062 A [0134]
- US 4510245 A [0134]
- US 4968615 A [0134]
- US 6517529 B [0134]
- US 4399216 A [0135] [0136]
- US 4634665 A [0135]
- US 5179017 A [0135]
- US 4912040 A [0136]
- US 4740461 A [0136]
- US 4959455 A [0136]
- EP 0216846 A [0138]
- EP 0256055 A [0138]
- EP 0323997 A [0138]
- EP 89303964 A [0138]
- US 5827690 A [0140]
- US 5756687 A [0140]
- US 5750172 A [0140]
- US 5741957 A [0140]
- US 6046037 A [0140]
- US 5959177 A [0140]
- US 6417429 B [0141]
- US 5223409 A [0143]
- WO 9218619 A [0143]
- WO 9117271 A [0143]
- WO 9220791 A [0143]
- WO 9215679 A [0143]
- WO 9301288 A [0143]
- WO 9201047 A [0143] [0144]
- WO 9209690 A [0143]
- WO 9306213 A [0144]
- WO 9852976 A [0149]
- WO 0034317 A [0149]
- WO 9633172 A [0180]
- WO 9627583 A [0180]
- EP 97304971 A [0180]
- EP 99308617 A [0180]
- WO 9807697 A [0180]
- WO 9803516 A [0180]
- WO 9834918 A [0180]
- WO 9834915 A [0180]
- WO 9833768 A [0180]
- WO 9830566 A [0180]
- EP 606046 A [0180]
- EP 931788 A [0180]
- WO 9005719 A [0180]
- WO 9952910 A [0180]
- WO 9952889 A [0180]
- WO 9929667 A [0180]
- WO IB9801113 A [0180]
- EP 99302232 A [0180]
- GB 9912961 A [0180]
- US 14846499 P [0180]
- US 5863949 A [0180]
- US 5861510 A [0180]
- EP 780386 A [0180]
- WO 9519970 A [0181] [0182]
- WO 9814451 A [0181]
- WO 9802434 A [0181] [0182]

- US 5747498 A [0181]
- WO 9924440 A [0182]
- WO IB9900797 A [0182]
- WO 9521613 A [0182]
- WO 9961422 A [0182]
- US 5834504 A [0182]
- WO 9850356 A [0182]
- US 5883113 A [0182]
- US 5886020 A [0182]
- US 5792783 A [0182]
- WO 9910349 A [0182]
- WO 9732856 A [0182]
- WO 9722596 A [0182]
- WO 9854093 A [0182]
- WO 9802438 A [0182]
- WO 9916755 A [0182]
- WO 9802437 A [0182]
- WO 9935146 A [0182]
- WO 9935132 A [0182]
- WO 9713760 A [0182]
- US 5587458 A [0182]
- US 5877305 A [0182]
- US 6465449 B [0182]
- US 6284764 B [0182]
- WO 60502163 A [0242]

Non-patent literature cited in the description

- STANLEY E.R. et al. *Mol. Reprod. Dev.*, 1997, vol. 46, 4-10 [0001]
- ABD, A.H. et al. *Lymphokine Cytokine Res.*, 1991, vol. 10, 43-50 [0003]
- CAMPBELL I.K. et al. *J. Leuk. Biol.*, 2000, vol. 68, 144-150 [0003]
- YUI M.A. et al. *Am. J. Pathol.*, 1991, vol. 139, 255-261 [0003]
- SEYEDHOSSEIN, A. et al. *Cancer Research*, 2002, vol. 62, 5317-5324 [0004]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0023]
- AUSUBEL et al. Current Protocols in Molecular Biology. Greene Publishing Associates, 1992 [0023]
- HARLOW ; LANE. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1990 [0023]
- Proteins, Structures and Molecular Principles. W. H. Freeman and Company, 1984 [0033]
- Introduction to Protein Structure. Garland Publishing, 1991 [0033]
- THORNTON et al. *Nature*, 1991, vol. 354, 105 [0033]
- FAUCHERE. *J. Adv. Drug Res.*, 1986, vol. 15 (29) [0034]
- VEBER ; FREIDINGER. *TINS*, 1985, 392 [0034]
- EVANS et al. *J. Med. Chem.*, 1987, vol. 30, 1229 [0034]
- RIZO ; GIERASCH. *Ann. Rev. Biochem.*, 1992, vol. 61 (387) [0034]
- KABAT. Sequences of Proteins of Immunological Interest. National Institutes of Health, 1987 [0036]
- CHOTHIA ; LESK. *J. Mol. Biol.*, 1987, vol. 196, 901-917 [0036]
- CHOTHIA et al. *Nature*, 1989, vol. 342, 878-883 [0036]
- WARD et al. *Nature*, 1989, vol. 341, 544-546 [0038]
- BIRD et al. *Science*, 1988, vol. 242, 423-426 [0039] [0154]
- HUSTON et al. *Proc. Natl. Acad. Sci. USA*, 1988, vol. 85, 5879-5883 [0039] [0154]
- HOLLIGER P. et al. *Proc. Natl. Acad. Sci. USA*, 1993, vol. 90, 6444-6448 [0039]
- POLJAK R. J. et al. *Structure*, 1994, vol. 2, 1121-1123 [0039]
- BOWIE et al. *Science*, 1991, vol. 253, 164 [0043]
- JONSSON U. et al. *Ann. Biol. Clin.*, 1993, vol. 51, 19-26 [0044]
- JONSSON U. et al. *Biotechniques*, 1991, vol. 11, 620-627 [0044]
- JONSSON B. et al. *J. Mol. Recognit.*, 1995, vol. 8, 125-131 [0044]
- JOHNSSON B. et al. *Anal. Biochem.*, 1991, vol. 198, 268-277 [0044]
- Immunology - A Synthesis. Sinauer Associates, 1991 [0047]
- LAPLANCHE et al. *Nucl. Acids Res.*, 1986, vol. 14, 9081 [0051]
- STEC et al. *J. Am. Chem. Soc.*, 1984, vol. 106, 6077 [0051]
- STEIN et al. *Nucl. Acids Res.*, 1988, vol. 16, 3209 [0051]
- ZON et al. *Anti-Cancer Drug Design*, 1991, vol. 6, 539 [0051]
- ZON et al. Oligonucleotides and Analogues: A Practical Approach. Oxford University Press, 1991, 87-108 [0051]
- UHLMANN ; PEYMAN. *Chemical Reviews*, 1990, vol. 90, 543 [0051]
- PEARSON. *Methods Enzymol.*, 1990, vol. 183, 63-98 [0056] [0062]
- PEARSON. *Methods Mol. Biol.*, 2000, vol. 132, 185-219 [0056]
- PEARSON. *Methods Enzymol.*, 1996, vol. 266, 227-258 [0056]
- PEARSON. *J. Mol. Biol.*, 1998, vol. 276, 71-84 [0056]
- PEARSON. *Methods Mol. Biol.*, 1994, vol. 243, 307-31 [0060]
- GONNET et al. *Science*, 1992, vol. 256, 1443-45 [0061]
- PEARSON. *Methods Mol. Biol.*, 2000, vol. 132, 185-219 [0062]

- **ALTSCHUL et al.** *J. Mol. Biol.*, 1990, vol. 215, 403-410 [0062]
- **ALTSCHUL et al.** *Nucleic Acids Res.*, 1997, vol. 25, 3389-402 [0062]
- **LEWIS D.A. et al.** *Anal. Chem.*, 1994, vol. 66 (5), 585-95 [0079]
- **GREEN et al.** *Nature Genetics*, 1994, vol. 7, 13-21 [0093]
- **MENDEZ et al.** *Nature Genetics*, 1997, vol. 15, 146-156 [0095]
- **GREEN ; JAKOBOWITS.** *J. Exp. Med.*, 1998, vol. 188, 483-495 [0095]
- **HARLOW ; LANE.** *Antibodies: A Laboratory Manual*. Cold Spring Harbor Press, 1990 [0099]
- **BABCOOK, J.S. et al.** *Proc. Natl. Acad. Sci. USA*, 1996, vol. 93, 7843-48 [0106]
- **GRIFFITHS et al.** *EMBO J.*, 1994, vol. 13, 3245-3260 [0107]
- **NISSIM et al.** *EMBO J.*, 692-698 [0107]
- **GRIFFITHS et al.** *EMBO J.*, vol. 12, 725-734 [0107]
- **KABAT et al.** *Sequences of Proteins of Immunological Interest*. NIH Publ, 1991 [0128]
- **HOGAN et al.** *Manipulating the Mouse Embryo: A Laboratory Manual*. Cold Spring Harbor Press, 1999 [0141]
- **JACKSON et al.** *Mouse Genetics and Transgenics: A Practical Approach*. Oxford University Press, 2000 [0141]
- **PINKERT.** *Transgenic Animal Technology: A Laboratory Handbook*. Academic Press, 1999 [0141]
- **FUCHS et al.** *Bio/Technology*, 1991, vol. 9, 1370-1372 [0143]
- **HAY et al.** *Hum. Antibod. Hybridomas*, 1992, vol. 3, 81-85 [0143]
- **HUSE et al.** *Science*, 1989, vol. 246, 1275-1281 [0143]
- **MCCAFFERTY et al.** *Nature*, 1990, vol. 348, 552-554 [0143] [0144] [0154]
- **GRIFFITHS et al.** *EMBO J.*, 1993, vol. 12, 725-734 [0143] [0144]
- **HAWKINS et al.** *J. Mol. Biol.*, 1992, vol. 226, 889-896 [0143]
- **CLACKSON et al.** *Nature*, 1991, vol. 352, 624-628 [0143]
- **GRAM et al.** *Proc. Natl. Acad. Sci. USA*, 1992, vol. 89, 3576-3580 [0143]
- **GARRAD et al.** *Bio/Technology*, 1991, vol. 9, 1373-1377 [0143]
- **HOOGENBOOM et al.** *Nuc. Acid Res.*, 1991, vol. 19, 4133-4137 [0143]
- **BARBAS et al.** *Proc. Natl. Acad. Sci. USA*, 1991, vol. 88, 7978-7982 [0143]
- **AALBERSE, R.C. ; SCHUURMAN, J.** *Immunology*, 2002, vol. 105, 9-19 [0148]
- **ILL et al.** *Protein Eng.*, 1997, vol. 10, 949-57 [0155]
- **MARTIN et al.** *EMBO J.*, 1994, vol. 13, 5303-9 [0155]
- **HOLLIGER et al.** *Proc. Natl. Acad. Sci. USA*, 1993, vol. 90, 6444-6448 [0155]
- **TRAUNECKER et al.** *EMBO J.*, 1991, vol. 10, 3655-3659 [0155]
- **TRAUNECKER et al.** *Int. J. Cancer*, 1992, vol. 7, 51-52 [0155]
- **SONGSIVILAI ; LACHMANN.** *Clin. Exp. Immunol.*, 1990, vol. 79, 315-321 [0156]
- **KOSTELNY et al.** *J. Immunol.*, 1992, vol. 148, 1547-1553 [0156]
- **Sustained and Controlled Release Drug Delivery Systems**. Marcel Dekker, Inc, 1978 [0170]
- **GALFRE ; MILSTEIN.** *Methods Enzymol.*, 1981, vol. 73, 3-46 [0212]
- **BABCOOK, J.S. et al.** *Proc. Natl. Acad. Sci.* 1996, vol. 93, 7843-48 [0212]
- **ZIEGLER-HEITBROCK H.W.** *Immunology Today*, 1996, vol. 17, 424-428 [0237]
- **FRANKENBERGER, M.T. et al.** *Blood*, 1996, vol. 87, 373-377 [0238]
- **SALEH M.N. et al.** *Blood*, 1995, vol. 85, 2910-2917 [0238]