(19)
(11) EP 1 672 206 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
21.06.2006  Patentblatt  2006/25

(21) Anmeldenummer: 05251628.3

(22) Anmeldetag:  17.03.2005
(51) Internationale Patentklassifikation (IPC): 
F02D 41/14(2006.01)
F02D 41/24(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR LV MK YU

(30) Priorität: 17.12.2004 DE 102004061462

(71) Anmelder: Delphi Technologies, Inc.
Troy, MI 48007 (US)

(72) Erfinder:
  • Schreurs, Bart
    6700 Waltzing (BE)
  • Schmitt, Julien
    57970 Yutz (FR)

(74) Vertreter: Jones, Keith William et al
Murgitroyd & Company Scotland House 165-169 Scotland Street
Glasgow G5 8PL
Glasgow G5 8PL (GB)

   


(54) Verfahren und Vorrichtung zur Motorsteuerung bei einem Kraftfahrzeug


(57) Es wird ein Verfahren zur Steuerung eines Verbrennungsmotors (10) bei einem Kraftfahrzeug zur optimalen Einstellung eines Luft/Kraftstoffverhältnisses angegeben, das sich dadurch auszeichnet, dass das Luft/Kraftstoffverhältnis Ergebnis eines Regelungsvorgangs ist. Die Erfindung befasst sich darüber hinaus in Einzelaspekten mit einem für eine solche Regelung in Ansehung der zur Verfügung stehenden Eingangs- und Messwerte besonders geeigneten Regelungsverfahren. Zur Unterstützung der Regelung wird ein auch unabhängig von dem Regelungsverfahren oder mit anderen Regelungsverfahren verwendbares Adaptionsverfahren angegeben, das eine kontinuierliche Anpassung der Regelung an die jeweiligen Betriebsbedingungen, wie z.B. die Laufleistung des Motors und damit einhergehende Verschleißerscheinungen, Störungen durch Ablagerungen, etc., ermöglicht.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Motorsteuerung, insbesondere ein Verfahren zur Steuerung des Kraftstoff/Luftverhältnisses bei einem Kraftfahrzeug gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung bezieht sich weiterhin auf eine nach dem Verfahren arbeitende Vorrichtung, nämlich eine Steuerungsvorrichtung, die in die Motorelektronik eines Verbrennungsmotors integriert oder als separate Steuerungsvorrichtung ausgeführt sein kann.

[0002] Eine Steuerung des Kraftstoff/Luftverhältnisses ist bekannt. Die Erfindung schlägt ein Verfahren zur Regelung dieses Verhältnisses anstelle der Steuerung vor, um bessere Ergebnisse hinsichtlich der Energieausnutzung sowie hinsichtlich des unvermeidlichen Abgasausstoßes zu erreichen. Ein optimales Kraftstoff/Luftverhältnis geht nämlich mit einem minimalen Schadstoffausstoß einher.

[0003] Weitere Aspekte der Erfindung befassen sich mit Adaptionsverfahren, die eine optimale Regelung des Kraftstoff/Luftverhältnisses auch bei sich verändernden Bedingungen, z.B. aufgrund der Betriebsdauer des Verbrennungsmotors, ermöglichen. Zudem soll die Adaption eine Möglichkeit eröffnen das Regelungsverfahren schnell an unterschiedliche Fahrzeug- und Motorentypen anzupassen.

[0004] Die Aufgabe der Erfindung besteht darin, die Einstellung des Kraftstoff/Luftverhältnisses zu verbessern. Diese Aufgabe wird mit dem Verfahren in Anspruch 1 und einer nach dem Verfahren arbeitenden Vorrichtung gelöst.

[0005] Die abhängigen Ansprüche sind auf bevorzugte Ausführungsformen der vorliegenden Erfindung sowie Einzelaspekt der Erfindung und deren bevorzugte Ausführungsformen gerichtet.

[0006] Nachfolgend wird ein Ausführungsbeispiel der Erfindung sowie weitere bevorzugte Ausführungsformen anhand der Zeichnung näher erläutert. Einander entsprechende Gegenstände oder Elemente sind in allen Figuren mit den gleichen Bezugszeichen versehen.

[0007] Darin zeigen
Fig. 1
eine schematisch vereinfachte Darstellung eines Verbrennungsmotors,
Fig. 2
ein Blockschaltbild für eine Steuerung einer Pulsdauer zur Ansteuerung (Öffnung) einer Einspritzdüse,
Fig. 3
ein Kennlinienfeld mit verschiedenen Einspritzdrücken, aus dem sich für eine bekannte Treibstoffmenge für den jeweiligen Einspritzdruck die zugehörige Einspritzzeit oder -dauer ermitteln lässt,
Fig. 4
ein Blockschaltbild zur Regelung der Pulsdauer zur Ansteuerung einer Einspritzdüse,
Fig. 5
einen Funktionsblock aus dem Blockschaltbild in Fig. 4 mit zusätzlichen Details,
Fig. 6
ein Blockschaltbild für ein Vorrichtung zur Durchführung von Adaptionsvorgängen zur Unterstützung und Optimierung der Regelung,
Fig. 7
eine zur Verwendung bei der Adaption vorgesehene Adaptionsmatrix und
Fig. 8
eine graphische Darstellung eines Einspritzpulses mit einem vorgelagerten Offsetanteil,


[0008] Fig. 1 zeigt schematisch eine Darstellung eines Verbrennungsmotors 10 wie er für Kraftfahrzeuge verwendet wird und zwar am Beispiel eines Dieselmotors. Der Verbrennungsmotor 10 umfasst in an sich bekannter Weise mindestens einen Zylinder 11 mit dem darin arbeitenden Kolben 12 sowie ein Frischluftzufuhrsystem 13 und ein Abgasabfuhrsystem 14. Das Abgasabfuhrsystem 14 umfasst, ebenfalls in an sich bekannter Weise, z.B. einen Katalysator 15 und einen Filter 16. Mit einem Pfeil 17 ist in Fig. 1 eine mögliche Position eines Sauerstoff-Sensors 18 im Abgasabfuhrsystem 14 bezeichnet, der im Folgenden, nachdem der vom Sauerstoff-Sensors 18 gelieferte Wert dazu verwendet wird, um das tatsächliche Sauerstoff/Kraftstoffverhältnis im Motor 10 zu ermitteln, in Anlehnung an das korrespondierende englische Akronym (AFR = air/fuel ratio) als AFR Sensor 18 oder im Falle eines breitbandigen Sauerstoff-Sensors 18 als WRAF Sensor 18 (WRAF = wide range air/fuel) bezeichnet wird. Die Grundlage für diese Benennung liegt auch darin, dass sich aus dem Sauerstoffanteil im Abgas das Luft/Kraftstoffverhältnis bei der Verbrennung ermitteln lässt. Als weiterer Sensor ist im Frischluftzufuhrsystem 13 ein MAF Sensor 19 (maf = mass air flow) gezeigt, der ein Maß für die Luftmasse im Verbrennungsmotor 10 oder im einzelnen Zylinder 11 liefert.

[0009] Bei bisher bekannten Motorsteuerungsverfahren ist, wie in Fig. 2 schematisch dargestellt, ein in der Motorsteuerung implementierter Algorithmus zur Berechnung der Dauer der Einspritzpulse vorgesehen. Der Algorithmus wird im Folgenden zur Referenzierung kurz als Einspritzdauerberechnung 20 bezeichnet. Dem Algorithmus wird als Eingangssignal 21 ein Wert für die momentan erforderliche Kraftstoffmenge zugeführt. Damit und anhand einer in der Motorsteuerung hinterlegten Tabelle oder einem korrespondierenden Kennlinienfeld, die bzw. das auf Zusammenhänge zwischen Kraftstoffmenge, Einspritzdruck und Pulsdauer, wie sie in der Graphik in Fig. 3 gezeigt sind, zurückgeht/zurückgehen, kann die Einspritzdauerberechnung 20 die Dauer eines Pulses zur Ansteuerung der jeweiligen Einspritzdüse im Verbrennungsmotor 10, der in Fig. 2 nur noch als Funktionsblock 10 dargestellt ist, berechnen. Die jeweils ermittelte Pulsdauer 22 ist entsprechend als Ausgang der Einspritzdauerberechnung 20 und als Eingang für den Verbrennungsmotor 10 dargestellt.

[0010] Fig. 3 zeigt exemplarisch ein Kennlinienfeld für verschiedene Einspritzdrücke, also z.B. 200 bar, 400 bar, usw. Bei sog. "common rail Systemen" handelt es sich bei diesen Druckwerten um den sog. "Raildruck". Auf der Abszisse ist in Milligramm (mg) die Kraftstoffmenge pro Kolbenhub und auf der Ordinate die jeweilige Pulsdauer in Mikrosekunden abgetragen. Je nach momentanem Einspritzdruck wird anhand der jeweils zugehörigen Kurve des Kennlinienfeldes aus der über der Abszisse abzutragenden geforderten Kraftstoffmenge die zugehörige Pulsdauer über der Ordinate ermittelt, wie dies exemplarisch für eine geforderte Kraftstoffmenge von 10 mg, die bei einem Einspritzdruck von 600 bar eine Pulsdauer von 200 Mikrosekunden erfordert, gezeigt ist. Dies erfolgt anhand eines geeigneten Algorithmus, der auf eine geeignete Speicherung der in Fig. 3 gezeigten Daten zurückgreift, in der Einspritzdauerberechnung 20 automatisch und kontinuierlich.

[0011] Anstelle der bisher bekannten bloßen Steuerung der Pulsdauer, wie in Fig. 2 dargestellt, schlägt die Erfindung eine Regelung der Pulsdauer für die Ansteuerung der jeweiligen Einspritzdüsen vor, wie im Folgenden anhand der weiteren Figuren erläutert wird.

[0012] Fig. 4 zeigt anhand eines schematisch vereinfachten Blockschaltbilds einen ersten Aspekt der Erfindung, nämlich die Regelung des Luft/Kraftstoffverhältnisses durch geeignete Beeinflussung der Pulsdauer 22 anhand eines vom WRAF Sensor 18 gelieferten Messwertes 24. Dieser wird mittels einer Vorverarbeitung 25 aufbereitet. Dabei wird aus dem vom WRAF Sensor 18 gelieferten Stromstärke- oder Spannungssignal, das ggf. zusätzlich gefiltert oder geglättet wird, ein korrespondierender Zahlenwert, z.B. mittels A/D Wandlung, gebildet. Am Ausgang der Vorverarbeitung 25 steht dann ein Wert zur Verfügung, der im Folgenden als "gemessenes " Luft/ Kraftstoffverhältnis 26 oder, in Anlehnung an die oben erläuterten Abkürzungen, als MAFR (measured air fuel ratio) 26 bezeichnet wird. Der MAFR Wert wird einem AFR Beobachter 28 (AFR = air/fuel ratio) zugeführt.

[0013] Ein weiterer Eingang für den AFR Beobachter 28 wird aus der momentan erforderlichen Kraftstoffmenge 21 abgeleitet. Dazu wird in einer AFR Berechnung 30 anhand der Kraftstoffmenge 21 und der jeweiligen Luftmasse im Zylinder 11 das Luft/Kraftstoffverhältnis berechnet und als Ausgangswert 32 für die weitere Verarbeitung bereitgestellt. Die AFR Berechnung basiert auf der Luftmasse im Zylinder 11, also nicht auf dem konstanten Luftvolumen, sondern der je nach Umgebungssituation (Temperatur, Umgebungsdruck) variierenden Luftmasse. Ein Wert für die jeweilige Luftmasse wird der AFR Berechnung 30 als Eingangswert 34 vom MAF Sensor 19 (MAF = mass air flow) im Verbrennungsmotor 10 zugeführt. Bevorzugt basiert dieser Eingangswert 34 auf der Geschwindigkeitsdichte (speed density; Einheit: [g/s]) des Massenstroms der angesaugten Frischluft.

[0014] Der Ausgangswert 32 kann auch als AFR Sollwert (AFR command) bezeichnet werden und wird in einem Modell 36 zur Nachbildung der Dynamik des Verbrennungsvorgangs und der Reaktionszeit des WRAF Sensors 18 einer Vorverarbeitung unterzogen. Dabei werden insbesondere mögliche Laufzeiten, die sich aus der Position des WRAF Sensors 18 im Abgasabfuhrsystem 14 ergeben (vgl. Fig. 1), berücksichtigt. Je weiter der WRAF Sensor 18 vom eigentlichen Ort der Verbrennung, also vom Brennraum im Zylinder 11, entfernt ist, desto stärker muss mittels des Modells 36 die mit der Dauer, die das Abgas nach der Verbrennung benötigt, um den WRAF Sensor 18 zu erreichen, korrelierte Laufzeit berücksichtigt werden. Am Ausgang des Modells 36 steht damit ein Wert zur Verfügung, der als verzögerter AFR Sollwert 38 oder DAFR Sollwert 38 (delayed AFR command) dem AFR Beobachter 28 zugeführt wird.

[0015] Im theoretischen Idealfall sollten die beiden Eingangssignale des AFR Beobachter 28, also MAFR (measured air fuel ratio) 26 und DAFR Sollwert 38 übereinstimmen. In der Praxis und im Betrieb des Verbrennungsmotors 10 ist eine solche Übereinstimmung üblicherweise nicht gegeben. Die verbleibende Abweichung zwischen den beiden Eingangswerten des AFR Beobachters 28, wird mittels eines dem AFR Beobachter 28 zugeordneten und in FIG 4 nicht separat dargestellten PI-Reglers kompensiert. Der intern dem AFR Beobachter 28 zugeordnete PI-Regler wird also verwendet, um den DAFR Sollwert 38 mit dem MAFR 26 zur Deckung zu bringen. Der I-Anteil des dem AFR Beobachter 28 zugeordneten PI Reglers wird, ggf. noch dividiert durch den jeweiligen Momentanwert von DAFR 38, als geschätzter AFR "Fehler" 40 ausgegeben und einem AFR Regler 42, der bevorzugt ebenfalls als PI-Regler ausgeführt ist, zugeführt. Abweichend von üblichen Konstellationen wird also dem AFR Regler 42 kein Fehlersignal, z.B. in Form der absoluten Abweichung zwischen MAFR 26 und DAFR Sollwert 38, sondern der I-Anteil eines vorgeschalteten Reglers zugeführt. Dieser Aspekt der Erfindung wird als Aspekt mit eigener erfinderischer Qualität angesehen. Der Ausgang 44 des AFR Reglers wird multiplikativ mit der Pulsdauer 22 verknüpft und als korrigierte Pulsdauer 46 dem Verbrennungsmotor 10 bzw. der jeweiligen Einspritzdüse zugeführt. Der AFR Beobachter 28 liefert als weiteren Ausgangswert das geschätzte Luft/Kraftstoffverhältnis 41.

[0016] Eine detailliertere Darstellung des AFR Beobachters ist in Fig. 5 gezeigt. In Fig. 5 ist auch der interne PIRegler 50 des AFR Beobachters 28 dargestellt. Wie zuvor beschreiben ist der interne PI Regler 50 zur Kompensation evtl. Abweichungen zwischen MAFR 26 und DAFR Sollwert 38 vorgesehen. Der Eingang 52 des internen PI-Reglers stellt damit den WRAF Schätzfehler dar, der vor dem internen PI Regler durch Subtraktion eines mittels eines WRAF Sensor Modells 54 erhaltenen WRAF Schätzwertes 56 vom MAFR 26 gebildet wird. Mit 58 ist der Abgriff des I Anteils des internen PI Reglers 50 gezeigt, der zur Normierung durch den DARF Sollwert 38 dividiert wird. Insgesamt ergibt sich nach dieser Division der geschätzte AFR Fehler 40, der im Falle der vorbeschriebenen Division auch als relativer AFR Fehler 40 bezeichnet werden kann. Die Verwendung nur des I-Anteils des internen PI-Reglers 50 entspricht einer Tiefpassfilterung des Fehlers zwischen geschätztem AFR 56 und MAFR 26.

[0017] Die Reglung der Pulsdauer zur Ansteuerung der Einspritzdüsen mittels des AFR Reglers 42 bewirkt dann, dass bei einem
relativen AFR Fehler 40 > 0 (größer "0"),
wenn also das tatsächliche Luft/Kraftstoffverhältnis (AFR = air/fuel ratio) größer als das benötigte/angeforderte AFR ist, dass der vom AFR Regler 42 ausgegebene Korrekturwert 44 kleiner als "1,0" ist und dass entsprechend die Pulslänge für die Öffnungszeiten der Einspritzdüsen durch Multiplikation mit dem Korrekturwert 44 verkürzt wird;
relativen AFR Fehler 40 = 0 (gleich "0"),
wenn also das tatsächliche AFR gleich dem benötigte/angeforderten AFR ist, dass der vom AFR Regler 42 ausgegebene Korrekturwert 44 gleich "1,0" ist und dass entsprechend die Pulslänge für die Öffnungszeiten der Einspritzdüsen unverändert bleibt;
relativen AFR Fehler 40 < 0,
wenn also das tatsächliche AFR größer als das benötigte/angeforderte AFR ist, dass der vom AFR Regler 42 ausgegebene Korrekturwert 44 größer als "1,0" ist und dass entsprechend die Pulslänge für die Öffnungszeiten der Einspritzdüsen verlängert wird.

[0018] Die Regelung der Pulsdauer zur Ansteuerung der Einspritzdüsen, wie vorstehend beschrieben, wird als "schnelle Regelung" bezeichnet. Neben dieser schnellen Regelung, also komplementär oder ggf. auch selbständig und unabhängig davon wird ein Adaptionsverfahren zur Verstellung der Pulsdauern zur Ansteuerung der Einspritzdüsen vorgeschlagen, das ebenfalls selbständige erfinderische Qualität hat. Das Adaptionsverfahren bzw. dessen Anwendung wird zur Unterscheidung von der "schnellen Regelung" zur Referenzierung entsprechend als "langsame Regelung" bezeichnet.

[0019] Das Adaptionsverfahren wird anhand von Fig. 6 weiter erläutert. Fig. 6 ist als Ausschnitt aus Fig. 4 dargestellt und zeigt entsprechend den AFR Regler 42, die Einspritzdauerberechnung 20 und den Verbrennungsmotor 10. Die in Fig. 6 nicht dargestellten Elemente aus Fig. 4 sind nur aus Gründen der Übersichtlichkeit weggelassen.

[0020] Für das Adaptionsverfahren wird - analog zur zuvor beschriebenen Situation beim AFR Beobachter 28 - nur der I-Anteil 60 des AFR Reglers 42 verwendet. Es wird also wieder die Tiefpasscharakteristik des I-Anteils des Reglers ausgenutzt um die Adaption im Wesentlichen aufgrund länger andauernder Fehler durchzuführen.

[0021] Die Erfindung sieht zwei grundsätzlich unabhängige, d.h. alternativ oder kombiniert verwendbare, Adaptionsverfahren vor. Eines der Adaptionsverfahren wird zur Referenzierung als "Multiplikatives Lernen" und das andere Adaptionsverfahren als "Startpunkt Lernen" oder "Offset Lernen" bezeichnet.

[0022] Zunächst wird das Multiplikative Lernen näher beschrieben, das mittels eines dafür vorgesehenen ersten Funktionsblocks 62 durchgeführt wird. Eingangssignal des ersten Funktionsblocks 62 ist der Abgriff des I-Anteils 60 des AFR Reglers 42. Je nachdem, ob dieser I-Anteil kleiner als Null, gleich Null oder größer als Null ist, werden in einer Adaptionsmatrix 64, die in Fig. 7 exemplarisch dargestellt ist, entsprechende Änderungen vorgenommen.

[0023] Fig. 7 zeigt die Adaptionsmatrix 64, deren Spalten einen Einspritzdruck in bar und deren Zeilen eine Kraftstoffmenge in mg pro Kolbenhub repräsentieren. Zu Beginn des Adaptionsverfahrens ist in jeder Zelle der Adaptionsmatrix 64 ein neutraler Wert, bei einer späteren multiplikativen Berücksichtigung des Ergebnisses des Adaptionsvorgangs also z.B. der Wert "1.0", gespeichert. Je nach Betriebssituation, also z.B. je nach Einspritzdruck, wird die jeweils relevante Zelle oder Zeile der Adaptionsmatrix 64 ausgewählt. In der ausgewählten Zeile wird die konkrete Zelle anhand der momentan erforderlichen Kraftstoffmenge 21 ausgewählt. Der Zahlenwert der auf diese Weise ausgewählten Zelle der Adaptionsmatrix wird nun nach folgendem Schema geändert:

[0024] Wenn der Abgriff des I-Anteils 60 des AFR Reglers 42
< 1 (kleiner als "1,0")
ist, wird der momentane Zahlenwert der ausgewählten Zelle, der hier mit "x" bezeichnet werden soll, verringert, indem z.B. eine Division oder Subtraktion nach folgendem Schema durchgeführt wird:


oder


> 1 (größer als "1,0")
ist, wird der momentane Zahlenwert der ausgewählten Zelle erhöht, indem z.B. eine Multiplikation oder Addition nach folgendem Schema durchgeführt wird:


oder



[0025] Der jeweilige Zahlenwert der der jeweiligen Betriebssituation zugeordneten Zelle wird am Ausgang 66 des ersten Funktionsblocks 62 multiplikativ mit der ermittelten Pulsdauer 22 verknüpft. Der jeweilige Zahlenwert ist ein Wert in der Größenordnung von "1,0", d.h. bei einem Zahlenwert größer als "1,0" wird die Pulsdauer durch das Adaptionsverfahren verlängert, bei einem Zahlenwert kleiner als "1,0" wird die Pulsdauer durch das Adaptionsverfahren entsprechend verkürzt.

[0026] Das Adaptionsverfahren hat vor allem den Vorteil, dass durch die Adaption veränderte Bedingungen im Motor, z.B. Verschleißerscheinungen und dergleichen berücksichtigt und kompensiert werden können. Soweit dies auch durch die Regelung mit dem AFR Regler 42 möglich wäre, hat dies zumindest grundsätzlich den unerwünschten Effekt, dass zur Kompensation von dauerhaften Fehlern der AFR Regler ständig aktiv sein muss. Wünschenswert wäre aber, wenn der Ausgang 44 des AFR Reglers im Dauerbetrieb stets nah bei "1,0" bleibt, d.h. der AFR Regler 42 selbst kaum eingreift. Dies ist möglich, wenn ein evtl. Fehler aufgrund der Adaption stetig verringert werden kann, so dass damit der AFR Fehler 40 klein bleibt. Bei kleinem oder verschwindendem AFR Fehler 40 bleibt der Ausgang 44 des AFR Reglers im Bereich des gewünschten Wertes von "1,0", so dass die Dynamik des Gesamtsystems optimiert wird indem der Einfluss des AFR Reglers auf diese Dynamik minimiert wird.

[0027] Hinsichtlich des oben beschriebenen Verfahrens zur Änderung der Zahlenwerte der jeweils relevanten Zelle der Adaptionsmatrix 64 können Minimal- und Maximalwerte berücksichtigt werden, derart, dass der Zahlenwert einer Zelle den jeweiligen oder für einzelne Zeilen der Adaptionsmatrix 64 oder für die Adaptionsmatrix 64 insgesamt vorgegebenen Minimal- oder Maximalwert nicht unterschreiten bzw. nicht überschreiten darf. Sinnvolle Minimal- und Maximalwerte sind z.B. "0,8" oder "0,9" bzw. "1,1" oder "1,2". Selbstverständlich kommen, je nach Situation, also z.B. Motor- oder Fahrzeugtyp, auch andere, um mehr als 10% oder 20% von "1,0" entfernte Minimal- und Maximalwerte in Betracht.

[0028] In der Adaptionsmatrix 64 in Fig. 7 sind nur exemplarisch einige Beispielwerte eingetragen. Im Betrieb des Verbrennungsmotors 10 oder beim Betrieb eines Fahrzeugs mit dem Verbrennungsmotor 10 werden die Zahlenwerte in der Adaptionsmatrix kontinuierlich angepasst.

[0029] Alternativ oder zusätzlich zum Multiplikativen Lernen mit der Adaptionsmatrix 64 und dem ersten Funktionsblock 62 kommt der Einsatz eines weiteren Adaptionsvorgangs in Betracht, nämlich das "Offset Lernen". Dabei wird berücksichtigt, dass der Puls zur Ansteuerung der Einspritzventile immer im wesentlichen die gleiche Amplitude hat, dass aber für eine Reaktion des Einspritzventils, also das eigentliche Öffnen der Einspritzöffnung, je nach Betriebssituation, insbesondere je nach vorherrschenden Druckverhältnissen, das Anstehen des Pulses für eine gewisse Zeit (offset) nötig ist, bis das Einspritzventil reagiert und die Einspritzöffnung freigibt. Dies ist exemplarisch in Fig. 8 dargestellt, wobei ein Puls 70 zur Ansteuerung einer Einspritzdüse mit einer Dauer entsprechend der ermittelten Pulsdauer 22 gezeigt ist. Wenn ein nennenswerter Anteil der Pulsdauer 22 vergeht, bis die Einspritzdüse öffnet, ist die tatsächliche Öffnungszeit der Einspritzdüse kürzer als die ermittelte Pulsdauer 22. Die abgerufene Kraftstoffmenge kann dann nicht die eigentlich erforderliche Kraftstoffmenge erreichen. Dies versucht man zu kompensieren, indem die Pulsdauer verlängert wird, d.h. indem der Puls früher beginnt, so dass das Einspritzventil synchron zum Motortakt geöffnet wird und genau für die ermittelte Pulsdauer 22 geöffnet bleibt. Die Gesamtverlängerung des Pulses 70 um einen Offsetanteil 72 kann variieren und ist in Fig. 8 nur exemplarisch dargestellt.

[0030] Wichtig ist, dass der Adaptionsvorgang des Offset Lernens bevorzugt nur bei bestimmten Betriebssituationen des Verbrennungsmotors, also z.B. nur bei geringer Last (geringem abgegebenem Drehmoment) und/oder bei Leerlaufdrehzahlen oder bei Drehzahlen im Bereich der Leerlaufdrehzahl, zusammenfassend als "geringe Last" bezeichnet, und bei Erreichen des Grenz- oder Schwellwertes beim Multiplikativen Lernen durchgeführt wird. Zum einen ergibt sich bei geringer Last das Erfordernis vergleichsweise großer Offsetanteile 72 des Pulses 70. Zum anderen soll das Offset Lernen bevorzugt dann zum Einsatz kommen, wenn eine Kompensation mit dem Multiplikativen Lernen nicht zu den gewünschten Resultaten führt. Die Dauer des Offsetanteils 72 des Pulses 70 wird im Rahmen des Offset Lernens nach dem nachfolgend beschriebenen Schema ermittelt:

Es wird von einer vorgegebenen oder vorgebbaren Initaldauer des Offsetanteils 72 ausgegangen. Diese I-nitialdauer wird je nach dem momentanen Wert des Abgriffs des I-Anteils 60 des AFR Reglers 42, also je nach Eingangssignal für das Offset Lernen, mit einem konstanten Faktor oder Summand multiplikativ oder additiv beaufschlagt. Wenn also die Dauer des Offsetanteils 72 des Pulses 70 mit y bezeichnet wird, ergibt sich - analog zur oben beim Multiplikativen Lernen beschriebenen Situation - z.B. der folgende formelmäßige Zusammenhang:
Wenn der Abgriff des I Anteils 60 des AFR Reglers 42
< 1 (kleiner als "1,0")
ist, wird die momentane Dauer des Offsetanteils 72 des Pulses 70, verringert, indem z.B. eine Division oder Subtraktion nach folgendem Schema durchgeführt wird:


oder


> 1 (größer als "1,0")
ist, wird die momentane Dauer des Offsetanteils 72 des Pulses 70 erhöht, indem z.B. eine Multiplikation oder Addition nach folgendem Schema durchgeführt wird:


oder



[0031] Zur Anpassung der Dauer des Offsetanteils 72 des Pulses 70 an unterschiedliche Einspritzdrücke kann bevorzugt vorgesehen sein, dass der o.g. Initialwert und der daraus ermittelte momentane Wert y zunächst nicht direkt einen Zeitwert sondern vielmehr eine "Kraftstoffmenge" darstellt. Unter Verwendung der der Motorelektronik ja ohnehin zur Verfügung stehenden Tabelle zur Abbildung von Kraftstoffmengen auf Einspritzdauern wie in Fig. 3 dargestellt, kann in besonders eleganter und effizienter Weise eine beim Offset Lernen angepasste "Kraftstoffmenge" auf eine Dauer des Offsetanteils 72 des Einspritzpulses 70 abgebildet werden. Durch die Verwendung unterschiedlicher charakteristischer Kurven für die unterschiedlichen Einspritzdrücke ist sogar eine Skalierung des jeweils "gelernten Wertes" im Hinblick auf den jeweiligen Einspritzdruck möglich. Insgesamt ist damit das Lernen nur eines Zahlenwertes beim Offset Lernen erforderlich.

[0032] Wenn der Zahlenwert direkt einen Zeitwert darstellt, kann eine Skalierung auch mittels vorgegebener oder vorgebbarer Skalierungsfaktoren erfolgen, damit lässt sich jedoch der nichtlineare Zusammenhang zwischen Kraftstoffmenge und dafür erforderlicher Pulsdauer weniger gut abbilden.

[0033] Die Veränderung beim Offset Lernen angepassten Zahlenwertes kann ebenfalls durch geeignet gewählte Grenzwerte beschränkt werden.

[0034] Das Offset Lernen erfolgt mittels eines zweiten Funktionsblocks 68, der die oben beschriebene Funktionalität realisiert, parallel zum ersten Funktionsblock 62 angeordnet ist und dem ebenfalls der Abgriff des I Anteils 60 des AFR Reglers 42 als Eingangssignal zugeführt wird. Das Ausgangssignal des zweiten Funktionsblocks ist ein Zeitwert 74, der zu der ermittelten Pulsdauer 22 addiert wird.

[0035] Eine Anpassung des Regelungsverfahrens an unterschiedliche Motoren und Fahrzeuge ist z.B. auch dadurch möglich, dass für solche Motoren und Fahrzeuge jeweils eine Adaptionsmatrix 64 vorgehalten wird, die nicht in sämtlichen Zellen mit dem neutralen Wert, z.B. "1,0" vorbesetzt ist, sondern in einzelnen Zellen vom neutralen Wert abweichende Werte beinhaltet, die sich als Erfahrungswerte oder aufgrund entsprechender Berechnungen ergeben. Dann kann der jeweilige Motor mit einem Adaptionsverfahren in Betrieb gehen, dessen Parameter bereits das Ergebnis eines "Vorab-Trainings" sind. Die optimale Betriebssituation des Motors wird auf diese Weise schneller erreicht weil einzelne Abschnitte der Adaption, des "Training", bereits vorweggenommen wurden.

[0036] Der erste und der zweite Funktionsblock 62, 68 stellt einen Algorithmus dar, der bevorzugt in der Motorelektronik implementiert ist. Die Implementation der jeweiligen Algorithmen erfolgt besonders bevorzugt als Software-Task, so dass der jeweilige Algorithmus in einem festen Zeitraster aufgerufen werden kann. Ein festes Zeitraster, also äquidistante Aufrufzeitpunkte, hat den bekannten Vorteil, dass Instabilität, oder Oszillieren am ehesten vermieden wird.

[0037] Damit lässt sich die Erfindung kurz wie folgt darstellen:

[0038] Es wird ein Verfahren zur Steuerung eines Verbrennungsmotors 10 - Motorsteuerung - bei einem Kraftfahrzeug, nämlich zur optimalen Einstellung eines Luft/Kraftstoffverhältnisses, angegeben, das sich dadurch auszeichnet, dass das Luft/Kraftstoffverhältnis Ergebnis eines Regelungsvorgangs ist. Die Erfindung befasst sich darüber hinaus in Einzelaspekten mit einem für eine solche Regelung in Ansehung der zur Verfügung stehenden Eingangs- und Messwerte besonders geeigneten Regelungsverfahren. Zur Unterstützung der Regelung wird ein auch unabhängig von dem Regelungsverfahren oder mit anderen Regelungsverfahren verwendbares Adaptionsverfahren angegeben, das eine kontinuierliche Anpassung der Regelung an die jeweiligen Betriebsbedingungen, wie z.B. die Laufleistung des Motors und damit einhergehende Verschleißerscheinungen, Störungen durch Ablagerungen, etc., ermöglicht.

Bezugszeichenliste



[0039] 
10 -
Verbrennungsmotor
11 -
Zylinder
12 -
Kolben
13 -
Frischluftzufuhrsystem
14 -
Abgasabfuhrsystem
15 -
Katalysator
16 -
Filter
17 -
Pfeil
18 -
Sauerstoffsensors
19 -
MAF Sensor
20 -
Einspritzdauerberechnung
21 -
Eingangssignal / Kraftstoffmenge
22 -
Pulsdauer
24 -
Messwert
25 -
Vorverarbeitung
26 -
MAFR (measured air fuel ratio)
28 -
AFR Beobachter
30 -
AFR Berechnung
32 -
Ausgangswert
34 -
Eingangswert
36 -
Modell
38 -
AFR Sollwert
40 -
AFR "Fehler"
41 -
Luft/Kraftstoffverhältnis
42 -
AFR Regler
44 -
Ausgang / Korrekturwert
46 -
Pulsdauer
50 -
PI-Regler
52 -
Eingang
54 -
WRAF Sensor Modell
56 -
WRAF Schätzwert
58 -
Abgriff des I-Anteils des PI-Reglers
60 -
I-Anteil
62 -
Funktionsblock
64 -
Adaptionsmatrix
66 -
Ausgang
68 -
Funktionsblock
70 -
Puls
72 -
Offsetanteil
74 -
Zeitwert



Ansprüche

1. Verfahren zur Steuerung eines Verbrennungsmotors (10) - Motorsteuerung - bei einem Kraftfahrzeug, nämlich zur optimalen Einstellung eines Luft/Kraftstoffverhältnisses,
dadurch gekennzeichnet, dass
das Luft/Kraftstoffverhältnis Ergebnis eines Regelungsvorgangs ist.
 
2. Verfahren nach Anspruch 1,
wobei für den Regelungsvorgang als Messwerte ein Sauerstoffanteil im Abgas (24) und eine Luftmasse im Verbrennungsmotor (34) oder im jeweiligen Zylinder herangezogen und als Sollwert ein Wert für die momentan erforderliche Kraftstoffmenge (21) herangezogen werden.
 
3. Verfahren nach Anspruch 1 oder 2,
wobei die Luftmasse im Verbrennungsmotor (34) und die momentan erforderliche Kraftstoffmenge (21) Eingangswerte eines Modells (36) für die Kombination aus Verbrennungsmotor (10) und für das Verfahren benötigter Sensorik (18) ist.
 
4. Verfahren nach Anspruch 3,
wobei ein Ausgangswert (38) des Modells (36) ein gefordertes Luft/Kraftstoffverhältnis (38) darstellt, das neben einem anhand des Messwertes für den Sauerstoffanteil im Abgas (24) erhaltenen momentanen Luft/Kraftstoffverhältnis (26) einem AFR Beobachter (28) zugeführt wird, und
wobei der AFR Beobachter (28) einen internen Regler (50) zur Minimierung der Abweichung zwischen beiden Eingangssignalen des AFR Beobachters (28) aufweist.
 
5. Verfahren nach Anspruch 4,
wobei ein Integralanteil des internen Reglers (50) des AFR Beobachters einem AFR Regler (42) zur Anpassung der Pulsdauer des Einspritzpulses zugeführt wird.
 
6. Verfahren nach Anspruch 4 oder Anspruch 5,
wobei ein Integralanteil des internen Reglers (50) des AFR Beobachters einem ersten und/oder einem zweiten Funktionsblock (62, 68) zugeführt wird und wobei der erste und/oder der zweite Funktionsblock zur Adaption der Pulsdauer des Einspritzpulses vorgesehen ist.
 
7. Verfahren nach Anspruch 6,
wobei dem ersten Funktionsblock (62) eine Adaptionsmatrix (64) oder dergleichen zugeordnet ist, in der für einzelne Betriebsparameterkombinationen hinsichtlich geforderter Kraftstoffmenge und Einspritzdruck Korrekturfaktoren hinterlegt sind, mit denen die ermittelte Pulsdauer (22) der Einspritzimpulse additiv oder multiplikativ beaufschlagbar ist.
 
8. Verfahren nach Anspruch 7,
wobei ein Korrekturfaktor, bei einer Adaptionsmatrix also der Inhalt oder Wert eines Matrixelementes, mittels eines vorgegebenen Faktors oder Summanden in Abhängigkeit vom Integralanteil des internen Reglers (50) des AFR Beobachters erhöht oder verringert wird.
 
9. Verfahren nach Anspruch 8,
wobei beim Erhöhen oder Verringern eines Korrekturfaktors vorgegebene oder vorgebbare Grenzwerte berücksichtigt werden.
 
10. Verfahren nach Anspruch 6 oder einem der Ansprüche 7 bis 9,
wobei mit dem zweiten Funktionsblock (68) eine Dauer eines Offsetanteils (72) des Einspritzpulses angepasst wird, mit der die ermittelte Pulsdauer (22) der Einspritzimpulse additiv oder multiplikativ beaufschlagbar ist.
 
11. Verfahren nach Anspruch 10,
wobei die Dauer des Offsetanteils (72) des Einspritzpulses mittels eines vorgegebenen Faktors oder Summanden in Abhängigkeit vom Integralanteil des internen Reglers (50) des AFR Beobachters erhöht oder verringert wird.
 
12. Verfahren nach Anspruch 11,
wobei die ermittelte Dauer des Offsetanteils (72) im Hinblick auf unterschiedliche Einspritzdrücke skaliert wird.
 
13. Vorrichtung zur Steuerung eines Verbrennungsmotors (10) - Motorsteuerung - bei einem Kraftfahrzeug, nämlich zur optimalen Einstellung eines Luft/Kraftstoffverhältnisses,
dadurch gekennzeichnet, dass
die Vorrichtung nach einem Verfahren der Ansprüche 1 bis 12 arbeitet und/oder dass die Vorrichtung eine Implementation des Verfahrens nach einem der Ansprüche 1 bis 12 umfasst.
 




Zeichnung