| (19) |
 |
|
(11) |
EP 1 676 807 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
17.12.2014 Bulletin 2014/51 |
| (22) |
Date of filing: 19.02.1999 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Elevator system with overhead drive motor
Aufzugssystem mit obenliegendem Antriebsmotor
Systeme d'ascenseur avec moteur d'entrainement monté en haut de la gaine
|
| (84) |
Designated Contracting States: |
|
DE ES FR IT PT |
| (30) |
Priority: |
26.02.1998 US 31108 29.09.1998 US 163218 22.12.1998 US 218990
|
| (43) |
Date of publication of application: |
|
05.07.2006 Bulletin 2006/27 |
| (62) |
Application number of the earlier application in accordance with Art. 76 EPC: |
|
99936067.0 / 1066213 |
| (73) |
Proprietor: Otis Elevator Company |
|
Farmington, CT 06032 (US) |
|
| (72) |
Inventors: |
|
- Rico, Fernando
92500 Rueil Malmaison (FR)
- Ferrary, Jean Marc
75017 Paris (FR)
- Rebillard, Pascal
45500 Gien (FR)
- Fargo, Richard N.
Plainville
Connecticut 06062 (US)
- Servia, Armando
11 Madrid (ES)
- Adams, Frank W.
Avon
Connecticut 06001 (US)
- Adifon, Leandre
Farmington
Connecticut 06032 (US)
- St. Pierre, Bruce
Unionville
Connecticut 06085 (US)
|
| (74) |
Representative: Ramsay, Laura Anne |
|
Dehns
St Bride's House
10 Salisbury Square London EC4Y 8JD London EC4Y 8JD (GB) |
| (56) |
References cited: :
EP-A- 0 745 552 EP-A2- 0 710 618 NL-A- 7 210 063
|
EP-A1- 0 846 645 GB-A- 2 134 209
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The present invention relates generally to an elevator system, and more particularly
to an elevator system including a drive motor provided at an overhead level within
the hoistway between an elevator car and hoistway ceiling.
BACKGROUND OF THE INVENTION
[0002] Considerable expense is involved in the construction of a machine room for an elevator.
The expense includes the cost of constructing the machine room, the structure required
to support the weight of the machine room and elevator equipment, and the cost of
shading adjacent properties from sunlight (e.g., sunshine laws in Japan and elsewhere).
[0003] It is an object of the present invention to provide an elevator system without a
machine room which avoids the above-mentioned drawbacks associated with prior elevator
systems.
[0004] Such an elevator system can be seen in
EP 0846645.
[0005] It is another object of the present invention to employ flat ropes or belts to reduce
the size of either conventional or flat drive motors in the overhead of the hoistway,
and thereby reduce the overall size and cost of constructing the hoistway.
SUMMARY OF THE INVENTION
[0006] An elevator system includes a hoistway defined in a surrounding structure, and an
elevator car and at least one counterweight disposed in the hoistway. The hoistway
defines an overhead space over a vertical extent of the hoistway between a ceiling
of the hoistway and a top portion of the elevator car at its highest operable location
along the hoistway. At least one drive motor is disposed in the overhead space and
drivingly couples and suspends the elevator car via at least one flat rope or belt.
[0007] An advantage of the present invention is that avoiding the construction of a machine
room significantly reduces the cost of elevator installation and construction.
[0008] A second advantage of the present invention is that the employment of flat ropes
or belts reduces the size of conventional or flat drive motors to thereby reduce the
space in the overhead of the hoistway needed to accommodate the drive motors.
[0009] A third advantage of the present invention is the provision of several alternative
drive motor locations in the overhead space.
[0010] Other advantages will be made apparent with references to the specification and accompanying
drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
FIG.1 is a schematic, partial, front perspective view of an elevator system having
the drive motor disposed in the overhead space of the hoistway in accordance with
the present invention.
FIG. 2 is a schematic, partial, rear perspective view of the elevator system of FIG.1.
FIG. 3 is a schematic, partial, rear perspective view of an elevator system employing
synchronously driven motors in accordance with a second embodiment of the present
invention.
FIG. 4 is a schematic, partial, side elevational view of an elevator system having
a 2:1 roping configuration in accordance with a third embodiment of the present invention.
FIG. 5 is a schematic, partial, perspective view of an underslung elevator system
in accordance with a fourth embodiment of the present invention.
FIG. 6 is a schematic, partial, perspective view of an underslung elevator system
in accordance with a fifth embodiment of the present invention.
FIG. 7 is a schematic, partial view illustrating the roping configuration of an underslung
elevator system in accordance with a sixth embodiment of the present invention.
FIG. 8 is a schematic, partial, perspective view of the elevator system of FIG. 7.
FIG. 9 is a schematic, partial, perspective view of an overslung elevator system in
accordance with an seventh embodiment of the present invention.
FIG. 10 is a sectional, side view of a traction sheave and a plurality of flat ropes,
each having a plurality of cords.
FIG.11 is a sectional view of one of the flat ropes.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0012] Referring to FIGS. 1 and 2, an elevator system embodying the present invention is
generally designated by the reference number 10. The elevator system 10 includes a
hoistway 12 defined by the surrounding structure of a building. An elevator car 14
is disposed in the hoistway 12 for upward and downward movement therealong. First
and second support columns 16,18 each extend along a vertical extent of the hoistway
12 associated with elevator car travel, and are respectively disposed adjacent to
oppositely facing sidewalls 20, 22 of the elevator car 14. Each of the first and second
support columns 16, 18 defines a hollow interior or recess for accommodating an associated
counterweight 24 (only one shown) for vertical movement along the associated support
column. As shown in FIGS. 1 and 2, brackets 26, 26 extend frontwardly from the first
and second support columns 16, 18 for attachment to a front sidewall 28 of the hoistway
12.
[0013] A support member 30 extends generally horizontally between and is mounted on the
first and second support columns 16, 18 in an overhead space 32 of the hoistway 12
defined by the vertical length or extent "V" of the hoistway between a ceiling 34
of the hoistway and a top portion or ceiling 36 of the elevator car 14 at its highest
operable position within the hoistway. A drive motor 38 is mounted on the support
member 30 in the overhead space 32, and is shown in FIG.1 to be positioned substantially
over the ceiling 36 of the elevator car 14. A first drive sheave 40 is drivingly coupled
to the drive motor 38 and is disposed over the first support column 16. A second drive
sheave 42 is drivingly coupled to the drive motor 38 via an elongated drive shaft
44, and is disposed over the second support column 18. A first flat, flexible rope
or belt 46, has a first end 48 coupled to a top portion of the counterweight 24 which
is disposed within the first support column 16 and a second end 50 (see FIG.1) coupled
to the sidewall 20 of the elevator car 14. The flat rope 46 extends upwardly from
its first end 48, loops generally 180° about the first drive sheave 40, and extends
downwardly and terminates at its second end 50 at an underside 52 of the elevator
car 14. A second flat rope 54 is similarly configured with the second drive sheave
42 to couple the counterweight 24 which is disposed in the second support column 18
to the elevator car 14, thereby forming a twin roping configuration.
[0014] The employment of flat ropes or belts permits smaller drive motors and sheaves to
drive and suspend elevator car and counterweight loads relative to drive motors and
sheaves using conventional round ropes. The diameter of drive sheaves used in elevators
with conventional round ropes is limited to 40 times the diameter of the ropes, or
larger, due to fatigue of the ropes as they repeatedly conform to the diameter of
the sheave and straighten out. Flat ropes or belts have an aspect ratio greater than
one, where aspect ratio is defined as the ratio of rope or belt width w to thickness
t (Aspect Ratio = w/t). Therefore flat ropes or belts are stretched out and inherently
thin relative to conventional round ropes. Being thin, there is less bending stress
in the fibers when the belt is wrapped around a given diameter sheave. This allows
the use of smaller diameter traction sheaves. Torque is proportional to the diameter
of the traction sheave. Therefore, the use of a smaller diameter traction sheave reduces
motor torque. Motor size (rotor volume) is roughly proportional to torque; therefore,
although the mechanical output power remains the same regardless of sheave size, flat
ropes or belts allow the use of a smaller drive motor operating at a higher speed
relative to systems using conventional round ropes. Consequently, smaller conventional
and flat drive motors may be accommodated in the overhead space of the hoistway which
significantly reduces the size and construction cost of the overhead space.
[0015] In summary, reducing the machine size (i.e., drive motor and sheaves) has a number
of advantages. First, the smaller machine reduces the overhead space requirement when
the machine is located above the elevator car. This can potentially allow the building
to be constructed with a flat roof to thereby reduce building construction costs and
to comply with sunshine laws. Second, a small machine utilizes less material, and
will be less costly to produce relative to a larger machine. Third, the light weight
of a small machine reduces the time for handling the machine and the need for equipment
to lift the machine into place so as to significantly reduce installation cost. Fourth,
low torque and high speed allow the elimination of gears, which are costly. Further,
gears can cause vibrations and noise, and require maintenance of lubrication. Geared
machines may also be used, but the present invention is particularly advantageous
for gearless machines.
[0016] Flat ropes or belts also distribute the elevator and counterweight loads over a greater
surface area on the sheaves relative to round ropes for reduced specific pressure
on the ropes, thus increasing its operating life. Furthermore, the flat ropes or belts
may be made from a high traction material such as urethane or rubber jacket with fiber
or steel reinforcement.
[0017] FIG. 3 schematically illustrates an elevator system 100 which is similar to the elevator
system 10 of FIGS. 1 and 2 except for the implementation of the drive motor and the
elimination of the support member 30. As shown in FIG. 3, first and second drive motors
102, 104 and associated first and second drive sheaves 106, 108 are respectively supported
on the first and second support columns 16, 18. A synchronizing means 110, such as
a controller, causes the first and second drive sheaves 106, 108 to rotate synchronously
with one another.
[0018] FIG. 4 schematically shows an elevator system 200 having a 2:1 roping configuration
which may be employed as a modification to the elevator systems of FIGS. 1-3. (In
other words, the elevator car moves a half unit of distance for each unit of distance
moved by the rope about the drive sheave.) Like elements with the previous embodiments
are labeled with like reference numbers. Because the roping configuration components
on each side of the elevator car 14 are similar, the twin roping configuration and
components will only be shown and explained with respect to one side of the elevator
car.
[0019] Roping ratios act similarly to gears. A 2:1 roping arrangement will reduce the motor
torque by a factor of two while increasing the motor speed by a factor of two for
a given diameter. This results in a smaller motor since the limiting factor for the
motor tends to be torque, as opposed to speed. An additional advantage of 2:1 roping
is a reduction of the sheave shaft load, i.e., the radial force applied to the drive
motor from the ropes. This reduces the motor size by allowing smaller bearings. The
radial load removed from the drive sheave is carried by the rope hitch points. The
total amount of rope used in 1:1 or 2:1 configurations is roughly the same. Ropes
for 2:1 configurations are about twice as long as ropes for 1:1. However, ropes for
2:1 configurations carry half the load and may have a smaller cross section or be
fewer in number. The above-mentioned advantages are also the same for higher numbered
roping configurations, such as 4:1 roping.
[0020] As shown in FIG. 4, the elevator system 200 includes a deflector sheave 202 mounted
on a top portion of a support column 16, and is located adjacent to and below a drive
motor 204 and associated drive sheave 206. A counterweight sheave 208 is coupled to
a top portion of a counterweight 210, and an elevator sheave 212 is coupled to an
underside of the elevator car 14. A flat rope 214 has first and second ends 216, 218
coupled to an overhead portion of the hoistway, preferably at a top portion of the
support column 16. The flat rope 214 extends downwardly from its first end 216, loops
generally 180° about the elevator sheave 212, extends upwardly and arcs slightly about
the deflector sheave 202 and loops generally 180° about the drive sheave 206, extends
downwardly and loops generally 180° about the counterweight sheave 208, and extends
upwardly and terminates at its second end 218.
[0021] FIGS. 5-9 show further embodiments of elevator systems having drive motors disposed
in the overhead space of the hoistway in accordance with the present invention. These
embodiments employ roping configurations which undersling (FIGS. 5-8) or oversling
(FIG. 9) an elevator car and which employ conventional T-shaped guide rails as opposed
to the hollow support columns of FIGS. 1-4.
[0022] The underslung roping configurations of FIGS. 5-8, as well as the twin roping configurations
of FIGS. 1-4, both lift the elevator car from the bottom and symmetrically about the
center of gravity so that the elevator car is balanced. Balancing the elevator car
reduces the load on the elevator guides so as to provide superior ride quality. Neither
of these configurations requires overslung hardware on the top of the elevator car,
and consequently overhead space is minimized. An underslung configuration requires
a counterweight only on one side of the elevator car such that the clearance between
the elevator car or hoistway and counterweight on one side of the hoistway is eliminated.
This allows the underslung elevator car to use a smaller hoistway. On the other hand,
the twin arrangement uses fewer sheaves with a 1:1 roping configuration, and may exhibit
less vibration and noise than the underslung systems.
[0023] FIG. 5 schematically illustrates an elevator system 400 employing a roping configuration
which underslings an elevator car 14 in accordance with the present invention. The
elevator system 400 includes a drive motor 402 and associated drive sheave 404 disposed
in the overhead portion of a hoistway 12 and aligned along a vertically extending
portion of the hoistway between the elevator car 14 and a sidewall 420 of the hoistway.
The elevator car 14 has elevator sheaves 406, 406 (only one shown) coupled to its
underside at opposite sides of the elevator car relative to each other. A counterweight
410 and counterweight sheave 412 coupled to a top portion of the counterweight are
disposed within the vertically extending portion of the hoistway 12 between the elevator
car 14 and the adjacent sidewall 420 of the hoistway, and are situated below the drive
motor 402. A flat rope or belt 414 has first and second ends 416, 418 fixed within
a top portion of the hoistway 12, such as a ceiling or sidewall of the hoistway. The
flat rope 414 extends downwardly from its first end 416, loops generally 180° about
the counterweight sheave 412, extends upwardly and loops generally 180° about the
drive sheave 404, extends downwardly and underslings the elevator car 14 via the elevator
sheaves 406, 406, and extends upwardly and terminates at its second end 418.
[0024] As can be seen in FIG. 5, the rotational axis of the drive motor 402 is oriented
at oblique angles relative to sidewalls 420-426 of the hoistway 12. The orientation
of the drive motor 402 permits the drive sheave 404 to project into a vertically extending
space along the hoistway 12 between a sidewall 428 of the elevator car 14 and the
sidewall 420 of the hoistway where the counterweight 410 is disposed, whereby the
need is eliminated for a deflector sheave to direct the flat rope or belt 414 from
the drive sheave 404 and into the vertically-extending space for communication with
the counterweight 410. Fewer sheaves results in lower cost and better performance
because there are fewer components which may malfunction.
[0025] FIG. 6 shows an elevator system 600 including a drive motor 602 and associated drive
sheave 604 disposed entirely over a ceiling 36 of an elevator car 14 in the overhead
space of a hoistway 12. First and second deflector sheaves 606, 608 are disposed in
the overhead space of the hoistway 12 and within the vertically extending space along
the hoistway between the elevator car 14 and a sidewall 610 of the hoistway. The first
and second deflector sheaves 606, 608 cooperate to direct a flat rope or belt 612
from this vertically extending space to the drive sheave 604 and back to the vertically
extending space where a counterweight 614 is disposed. The system 600 of FIG. 6 provides
more space for the drive motor as compared with the system 400 of FIG. 5. The additional
space may be necessary in circumstances where the drive motor does not fit as shown
in FIG. 5.
[0026] FIGS. 7 and 8 respectively show a simplified, schematic, side view and front perspective
view of an elevator system 900 employing a 4:1 roping configuration which means that
an elevator car moves one unit of distance for four units of distance moved by a rope
over the drive sheave. To better illustrate the roping configuration, the elevator
car is not illustrated in FIG. 7.
[0027] An elevator car 14 disposed within a hoistway 12 has first and second elevator sheaves
902, 904 coupled underneath the elevator car and at opposite sides of the elevator
car relative to each other. Third and fourth elevator sheaves 906, 908 are also coupled
underneath the elevator car 14 and at opposite sides of the elevator car relative
to each other. As best shown in FIG. 8, the first and second elevator sheaves 902,
904 are located on opposite sides of the elevator car 14 relative to the third and
fourth elevator sheaves 906, 908. A counterweight 910 disposed within the hoistway
12 has first and second counterweight sheaves 912, 914 coupled to a top portion of
the counterweight.
[0028] A drive motor 916, associated drive sheave 918, and first and second deflector sheaves
920, 922 are situated in the overhead space of the hoistway 12. As best shown in FIG.
7, a flat rope or belt 924 has a first and second ends 926, 928 to be coupled to a
top portion of the hoistway 12. The flat rope 924 extends downwardly from its first
end 926, generally loops 180° about the first counterweight sheave 912, extends upwardly
and generally loops 180° about the first deflector sheave 920, extends downwardly
and generally loops 180° about the second counterweight sheave 914, extends upwardly
and generally loops 180° about the drive sheave 918, extends downwardly and underslings
the elevator car 14 via the first and second elevator sheaves 902, 904, extends upwardly
and generally loops 180° about the second deflector sheave 922, extends downwardly
and underslings the elevator car via the third and fourth elevator sheaves 906, 908,
and extends upwardly and terminates at its second end 928. The 4:1 roping configuration
provides mechanical advantage to permit the flat rope 924 to move a relatively heavy
load in comparison with a 1:1 or 2:1 roping configuration.
[0029] FIG. 9 illustrates an elevator system 1000 employing first and second elevator sheaves
1002, 1004 coupled to a ceiling 36 (overslung roping arrangement) of an elevator car
14 at opposite sides of the elevator car relative to each other. A drive motor 1006
and associated drive sheave 1008 are disposed in the overhead space of a hoistway
12 over a ceiling 36 of the elevator car 14. A deflector sheave 1010 is disposed in
the overhead space of the hoistway 12 and extends into a vertically extending space
along the hoistway between the elevator car 14 and a sidewall 1012 of the hoistway
where a counterweight 1014 and counterweight sheave 1016 are provided. A flat rope
or belt 1018 has first and second ends 1020, 1022 coupled to a top portion of the
hoistway 12. The flat rope 1018 extends downwardly from its first end 1020, generally
loops 180° about the counterweight sheave 1016, extends upwardly and arcs slightly
about the deflector sheave 1010 and then generally loops 180° about the drive sheave
1008, extends downwardly and generally loops 90° about the first elevator sheave 1002,
extends generally horizontally and generally loops 90° about the second elevator sheave
1004, and extends upwardly and terminates at its second end 1022.
[0030] The overslung roping arrangement allows easy access to the sheaves and ropes for
maintenance and installation. If the configuration shown in FIG. 9 is rotated 90°,
it allows the use of a wide elevator car with the counterweight in the rear. Underslung
arrangements cannot be used with the counterweight in the rear since the ropes would
pass in front of the elevator doors, or else many deflector sheaves and undesirable
rope twists would occur.
[0031] A principal feature of the present invention is the flatness of the ropes used in
the above described elevator system. The increase in aspect ratio results in a rope
that has an engagement surface, defined by the width dimension "w", that is optimized
to distribute the rope pressure. Therefore, the maximum rope pressure is minimized
within the rope. In addition, by increasing the aspect ratio relative to a round rope,
which has an aspect ratio equal to one, the thickness "t1" of the flat rope (see FIG.11)
may be reduced while maintaining a constant cross-sectional area of the portions of
the rope supporting the tension load in the rope.
[0032] As shown in FIG. 10 and 11, the flat ropes 722 include a plurality of individual
load carrying cords 726 encased within a common layer of coating 728. The coating
layer 728 separates the individual cords 726 and defines an engagement surface 730
for engaging the traction sheave 724. The load carrying cords 726 may be formed from
a high-strength, lightweight non-metallic material, such as aramid fibers, or may
be formed from a metallic material, such as thin, high-carbon steel fibers. It is
desirable to maintain the thickness "d" of the cords 726 as small as possible in order
to maximize the flexibility and minimize the stress in the cords 726. In addition,
for cords formed from steel fibers, the fiber diameters should be less than .25 millimeters
in diameter and preferably in the range of about .10 millimeters to .20 millimeters
in diameter. Steel fibers having such diameter improve the flexibility of the cords
and the rope. By incorporating cords having the weight, strength, durability and,
in particular, the flexibility characteristics of such materials into the flat ropes,
the traction sheave diameter "D" may be reduced while maintaining the maximum rope
pressure within acceptable limits.
[0033] The engagement surface 730 is in contact with a corresponding surface 750 of the
traction sheave 724. The coating layer 728 is formed from a polyurethane material,
preferably a thermoplastic urethane, that is extruded onto and through the plurality
of cords 726 in such a manner that each of the individual cords 726 is restrained
against longitudinal movement relative to the other cords 726. Other materials may
also be used for the coating layer if they are sufficient to meet the required functions
of the coating layer: traction, wear, transmission of traction loads to the cords
and resistance to environmental factors. It should be understood that although other
materials may be used for the coating layer, if they do not meet or exceed the mechanical
properties of a thermoplastic urethane, then the benefits resulting from the use of
flat ropes may be reduced. With the thermoplastic urethane mechanical properties the
traction sheave 724 diameter is reducible to 100 millimeters or less.
[0034] As a result of the configuration of the flat rope 722, the rope pressure may be distributed
more uniformly throughout the rope 722. Because of the incorporation of a plurality
of small cords 726 into the flat rope elastomer coating layer 728, the pressure on
each cord 726 is significantly diminished over prior art ropes. Cord pressure is decreased
at least as n
-½, with n being the number of parallel cords in the flat rope, for a given load and
wire cross section. Therefore, the maximum rope pressure in the flat rope is significantly
reduced as compared to a conventionally roped elevator having a similar load carrying
capacity. Furthermore, the effective rope diameter 'd' (measured in the bending direction)
is reduced for the equivalent load bearing capacity and smaller values for the sheave
diameter 'D' may be attained without a reduction in the D/d ratio. In addition, minimizing
the diameter D of the sheave permits the use of less costly, more compact, high speed
motors as the drive machine.
[0035] A traction sheave 724 having a traction surface 750 configured to receive the flat
rope 722 is also shown in FIG. 10. The engagement surface 750 is complementarily shaped
to provide traction and to guide the engagement between the flat ropes 722 and the
sheave 724. The traction sheave 724 includes a pair of rims 744 disposed on opposite
sides of the sheave 724 and one or more dividers 745 disposed between adjacent flat
ropes. The traction sheave 724 also includes liners 742 received within the spaces
between the rims 744 and dividers 745. The liners 742 define the engagement surface
750 such that there are lateral gaps 754 between the sides of the flat ropes 722 and
the liners 742. The pair of rims 744 and dividers, in conjunction with the liners,
perform the function of guiding the flat ropes 722 to prevent gross alignment problems
in the event of slack rope conditions, etc. Although shown as including liners, it
should be noted that a traction sheave without liners may be used.
1. An elevator system, comprising:
a hoistway (12) defined in a surrounding structure;
an elevator car (14) and at least one counterweight (24; 210; 410; 614; 910; 1014)
disposed in the hoistway, the hoistway defining an overhead space over a vertical
extent of the hoistway between a ceiling of the hoistway and a top portion of the
elevator car at its highest operable location along the hoistway;
at least one drive motor (38; 102; 104; 204; 402; 602; 916; 1006) disposed in the
overhead space and drivingly coupling and suspending the elevator car via at least
one flat rope (46, 54; 214; 414; 612; 924; 1018; 722).
2. An elevator system as defined in claim 1, further including first and second support
columns (16,18) each extending vertically along a vertical portion of the hoistway
associated with elevator car travel, the first and second support columns being disposed
adjacent opposite sidewalls of the elevator car relative to each other, and wherein
the drive motor (38; 102, 104; 204) is mounted on at least one of the first and second
support columns.
3. An elevator system as defined in claim 2, wherein the first and second support columns
(16, 18) are generally hollow, and the at least one counterweight includes first and
second counterweights (24; 210) respectively disposed within the first and second
support columns.
4. An elevator system as defined in claim 3, further including a support member (30)
extending generally horizontally between and mounted on the first and second support
columns (16,18) in the overhead space for supporting the drive motor, first and second
drive sheaves (40; 42) rotatably coupled to the drive motor (38) and respectively
disposed adjacent the first and second support columns in the overhead space, and
wherein the at least one flat rope includes first and second flat ropes (46, 54) respectively
engaging the first and second drive sheaves to couple a respective first and second
counterweight (24) to the elevator car (14).
5. An elevator system as defined in claim 3, further including a support member (30)
extending generally horizontally between and mounted on the first and second support
columns (16; 18) in the overhead space for supporting the drive motor (204), first
and second drive sheaves (206) respectively disposed adjacent the first and second
support columns in the overhead space, means for rotatably coupling the drive motor
to the first and second drive sheaves, first and second deflector sheaves (202) coupled
to the elevator car, first and second counterweight sheaves (208) respectively coupled
to top portions of the first and second counterweights (210), first and second elevator
sheaves (212) coupled to the elevator car (14), and the at least one flat rope (214)
including first and second flat ropes, the first and second flat ropes having first
ends (218) fixed within the overhead space of the hoistway, extending downwardly and
respectively looping about the first and second counterweight sheaves (208), extending
upwardly and respectively looping about the first and second drive sheaves (206),
extending downwardly via respective first and second deflector sheaves (202) and respectively
looping about the first and second elevator sheaves (212) and extending upwardly and
terminating at second ends (216) fixed within the overhead space of the hoistway.
6. An elevator system as defined in claim 3, wherein the at least one drive motor includes
first and second drive motors (102, 104) and associated first and second drive sheaves
(106, 108) respectively supported on the first and second support columns (16, 18)
in the overhead space, the at least one flat rope includes first and second flat ropes
(46, 54) respectively engaging the first and second drive sheaves (106, 108) to couple
a respective first and second counterweight (24) to the elevator car (14), and further
including means (110) for synchronizing the rotation of the first and second drive
sheaves (106, 108) with each other.
7. An elevator system as defined in claim 3, wherein the at least one drive motor includes
first and second drive motors (102, 104) and associated first and second drive sheaves
(106, 108) respectively supported on the first and second support columns (16, 18)
in the overhead space, and further including means (110) for synchronizing the rotation
of the first and second drive sheaves with each other, first and second deflector
sheaves (202) coupled to the elevator car (14), first and second counterweight sheaves
(208) respectively coupled to top portions of the first and second counterweights
(210), first and second elevator sheaves (212) coupled to the elevator car, and the
at least one flat rope including first and second flat ropes (214), each of the flat
ropes having a first end (218) fixed within the overhead space of the hoistway, extending
downwardly and looping about a respective counterweight sheave (208), extending upwardly
and looping about a respective drive sheave (206), extending downwardly via a respective
deflector sheave (202) and looping about a respective elevator sheave (212), and extending
upwardly and terminating at a second end (216) fixed within the overhead space of
the hoistway.
8. An elevator system as defined in claim 6 or 7, wherein the synchronizing means (110)
includes a controller.
9. An elevator system as defined in claim 5 or 7, wherein the first ends (218) of the
first and second flat ropes (214) are respectively coupled to the first and second
support columns (16, 18) and the second ends (216) of the first and second flat ropes
(214) are respectively coupled to the first and second support columns (16, 18).
10. An elevator system as defined in claim 1, further including a drive sheave (404; 604)
drivingly coupled to the drive motor (402; 602), a counterweight sheave (412) coupled
to a top portion of the counterweight (410; 614), and at least one elevator sheave
(406) coupled to an underside of the elevator car (14), the flat rope (414; 612) having
first and second ends (416, 418) each fixed within the overhead space of the hoistway,
the flat rope (414; 612) extending downwardly from its first end (416), looping about
the counterweight sheave (412), extending upwardly and looping about the drive sheave
(404; 604), extending downwardly and underslinging the elevator car (14) via the at
least one elevator sheave (406), and extending upwardly and terminating at its second
end (418).
11. An elevator system as defined in claim 1, further including a drive sheave (1008)
drivingly coupled to the drive motor (1006), a counterweight sheave (1016) coupled
to a top portion of the counterweight (1014), and at least one elevator sheave (1002,1004)
coupled to a top portion of the elevator car (14), the flat rope (1018) having first
and second ends (1020,1022) each fixed within the overhead space of the hoistway,
the flat rope (1018) extending downwardly from its first end (1020), looping about
the counterweight sheave (1016), extending upwardly and looping about the drive sheave
(1008), extending downwardly and overslinging the elevator car (14) via the at least
one elevator sheave (1002,1004), and extending upwardly and terminating at its second
end (1022).
12. An elevator system as defined in claim 1, further including a drive sheave (918) drivingly
coupled to the drive motor (916), first and second counterweight sheaves (912, 914)
coupled to a top portion of the counterweight (910), first and second elevator sheaves
(902, 904) coupled underneath the elevator car (14), third and fourth elevator sheaves
(906, 908) coupled underneath the elevator car at an opposite side of the elevator
car relative to the first and second elevator sheaves, and first and second deflector
sheaves (920, 922) disposed within the overhead space of the hoistway, the flat rope
(924) having first and second ends (926, 928) each fixed within the overhead space
of the hoistway, the flat rope (924) extending downwardly from its first end (926),
looping about the first counterweight sheave (912), extending upwardly and looping
about the first deflector sheave (920), extending downwardly and looping about the
second counterweight sheave (914), extending upwardly and looping about the drive
sheave (918), extending downwardly and underslinging the elevator car (14) via the
first and second elevator sheaves (902, 904), extending upwardly and looping about
the second deflector sheave (922), extending downwardly and underslinging the elevator
car via the third and fourth elevator sheaves (906, 908), and extending upwardly and
terminating at its second end (928).
13. An elevator system as defined in any preceding claim, wherein the drive motor is gearless.
1. Aufzugsystem, umfassend:
einen Aufzugschacht (12), der in einer umgebenden Struktur begrenzt ist;
eine Aufzugkabine (14) und wenigstens ein Gegengewicht (24; 210; 410; 614; 910; 1014),
das im Aufzugschacht angeordnet ist, wobei der Aufzugschacht einen Deckenraum über
einer vertikalen Erstreckung des Aufzugschachts zwischen einer Decke des Aufzugschachts
und einem oberen Abschnitt der Aufzugkabine in ihrer höchsten betriebsfähigen Position
im Aufzugschacht begrenzt;
wenigstens einen Antriebsmotor (38; 102; 104; 204; 402; 602; 916; 1006), der in dem
Deckenraum angeordnet ist und die Aufzugkabine über wenigstens ein Flachseil (46,
54; 214; 414; 612; 924; 1018; 722) antreibend koppelt und aufhängt.
2. Aufzugsystem nach Anspruch 1, ferner aufweisend einen ersten und zweiten Stützpfeiler
(16, 18), die sich jeweils vertikal an einem vertikalen Abschnitt des Aufzugschachts,
der der Bewegung der Aufzugkabine zugeordnet ist, entlang erstrecken, wobei der erste
und zweite Stützpfeiler benachbart zu gegenüberliegenden Seitenwänden der Aufzugkabine
relativ zueinander angeordnet sind, und wobei der Antriebsmotor (38; 102, 104; 204)
an wenigstens einem von dem ersten und zweiten Stützpfeiler angebracht ist.
3. Aufzugsystem nach Anspruch 2, wobei der erste und zweite Stützpfeiler (16, 18) allgemein
hohl sind und das wenigstens eine Gegengewicht ein erstes und zweites Gegengewicht
(24; 210) einschließt, die jeweils in dem ersten und zweiten Stützpfeiler angeordnet
sind.
4. Aufzugsystem nach Anspruch 3, ferner aufweisend ein Tragelement (30), das sich allgemein
horizontal zwischen und angebracht an dem ersten und zweiten Stützpfeiler (16, 18)
im Deckenraum erstreckt, um den Antriebsmotor zu tragen, eine erste und zweite Treibscheibe
(40; 42), die drehbar an den Antriebsmotor (38) gekoppelt und jeweils benachbart zum
ersten und zweiten Stützpfeiler im Deckenraum angeordnet sind, und wobei das wenigstens
eine Flachseil ein erstes und ein zweites Flachseil (46, 54) einschließt, die jeweils
in Eingriff mit der ersten und zweiten Treibscheibe stehen, um ein jeweiliges erstes
und zweites Gegengewicht (24) an die Aufzugkabine (14) zu koppeln.
5. Aufzugsystem nach Anspruch 3, ferner aufweisend ein Tragelement (30), das sich allgemein
horizontal zwischen und angebracht an dem ersten und zweiten Stützpfeiler (16; 18)
im Deckenraum erstreckt, um den Antriebsmotor (204) zu tragen, eine erste und zweite
Treibscheibe (206), die jeweils benachbart zum ersten und zweiten Stützpfeiler im
Deckenraum angeordnet sind, ein Mittel zum drehbaren Koppeln des Antriebsmotors an
die erste und zweite Treibscheibe, eine erste und eine zweite Umlenkscheibe (202),
die an die Aufzugkabine gekoppelt sind, eine erste und eine zweite Gegengewichtscheibe
(208), die jeweils an den oberen Abschnitt des ersten und zweiten Gegengewichts (210)
gekoppelt sind, eine erste und eine zweite Aufzugscheibe (212), die an die Aufzugkabine
(14) gekoppelt sind, und wenigstens ein Flachseil (214), das ein erstes und zweites
Flachseil einschließt, wobei das erste und das zweite Flachseil erste Enden (218)
aufweisen, die im Deckenraum des Aufzugschachts angeordnet sind, sich nach unten erstrecken
und jeweils um die erste und zweite Gegengewichtscheibe (208) herum verlaufen, sich
nach oben erstrecken und jeweils um die erste und zweite Treibscheibe (206) herum
verlaufen, sich über die jeweilige erste und zweite Umlenkscheibe (202) nach unten
erstrecken jeweils um die erste und zweite Aufzugscheibe (212) herum verlaufen und
sich nach oben erstrecken und an zweiten Enden (216) enden, die im Deckenraum des
Aufzugschachts befestigt sind.
6. Aufzugsystem nach Anspruch 3, wobei der wenigstens eine Antriebsmotor einen ersten
und einen zweiten Antriebsmotor (102,104) und eine zugehörige erste und zweite Treibscheibe
(106,108) aufweist, die jeweils vom ersten und zweiten Stützpfeiler (16,18) im Deckenraum
getragen werden, wobei das wenigstens eine Flachseil ein erstes und ein zweites Flachseil
(46, 54) einschließt, das jeweils mit der ersten und zweiten Treibscheibe (106, 108)
in Eingriff steht, um ein jeweiliges erstes und zweites Gegengewicht (24) an die Aufzugkabine
(14) zu koppeln, und ferner aufweisend ein Mittel (110) zum Synchronisieren der Drehung
der ersten und zweiten Treibscheibe (106, 108) miteinander.
7. Aufzugsystem nach Anspruch 3, wobei der wenigstens eine Antriebsmotor einen ersten
und einen zweiten Antriebsmotor (102,104) und eine zugehörige erste und zweite Treibscheibe
(106,108) aufweist, die jeweils vom ersten und zweiten Stützpfeiler (16, 18) im Deckenraum
getragen werden, und ferner ein Mittel (110) zum Synchronisieren der Drehung der ersten
und zweiten Treibscheibe miteinander, eine erste und zweite Umlenkscheibe (202), die
an die Aufzugkabine (14) gekoppelt sind, eine erste und eine zweite Gegengewichtscheibe
(208), die jeweils an den oberen Abschnitt des ersten und zweiten Gegengewichts (210),
eine erste und eine zweite Aufzugscheibe (212), die an die Aufzugkabine gekoppelt
sind, und das wenigstens eine Flachseil, das ein erstes und ein zweites Flachseil
(214) einschließt, wobei jedes Flachseil ein erstes Ende (218) aufweist, das im Deckenraum
des Aufzugschachts befestigt ist, sich nach unten erstreckt und um eine jeweilige
Gegengewichtscheibe (208) verläuft, sich nach oben erstreckt und um eine jeweilige
Treibscheibe (206) herum verläuft, sich über eine jeweilige Umlenkscheibe (202) nach
unten erstreckt und um eine jeweilige Aufzugscheibe (212) herum verläuft und sich
nach oben erstreckt und an einem zweiten Ende (216) endet, das im Deckenraum des Aufzugschachts
befestigt ist.
8. Aufzugsystem nach Anspruch 6 oder 7, wobei das Synchronisierungsmittel (110) eine
Steuereinrichtung einschließt.
9. Aufzugsystem nach Anspruch 5 oder 7, wobei die ersten Enden (218) des ersten und zweiten
Flachseils (214) jeweils an den ersten und zweiten Stützpfeiler (16,18) gekoppelt
sind und die zweiten Enden (216) des ersten und zweiten Flachseils (214) jeweils an
den ersten und zweiten Stützpfeiler (16, 18) gekoppelt sind.
10. Aufzugsystem nach Anspruch 1, ferner aufweisend eine Treibscheibe (404; 604), die
antreibend an den Antriebsmotor (402; 602) gekoppelt ist, eine Gegengewichtscheibe
(412), die an einen oberen Abschnitt des Gegengewichts (410; 614) gekoppelt ist, und
wenigstens eine Aufzugscheibe (406), die an eine Unterseite der Aufzugkabine (14)
gekoppelt ist, wobei das Flachseil (414; 612) ein erstes und ein zweites Ende (416,
418) aufweist, die jeweils im Deckenraum des Aufzugschachts befestigt sind, wobei
sich das Flachseil (414; 612) von seinem ersten Ende (416) nach unten erstreckt, um
die Gegengewichtscheibe (412) herum verläuft, sich nach oben erstreckt und um die
Treibscheibe (404; 604) herum verläuft, sich nach unten erstreckt und über die wenigstens
eine Aufzugscheibe (406) um die Aufzugkabine (14) herum verläuft und sich nach oben
erstreckt und an seinem zweiten Ende (418) endet.
11. Aufzugsystem nach Anspruch 1, ferner aufweisend eine Treibscheibe (1008), die antreibend
an den Antriebsmotor (1006) gekoppelt ist, eine Gegengewichtscheibe (1016), die an
einen oberen Abschnitt des Gegengewichts (1014) gekoppelt ist, und wenigstens eine
Aufzugscheibe (1002, 1004), die an einen oberen Abschnitt der Aufzugkabine (14) gekoppelt
ist, wobei das Flachseil (1018) ein erstes und ein zweites Ende (1020,1022) aufweist,
die jeweils im Deckenraum des Aufzugschachts befestigt sind, wobei sich das Flachseil
(1018) von seinem ersten Ende (1020) nach unten erstreckt, um die Gegengewichtscheibe
(1016) herum verläuft, sich nach oben erstreckt und um die Treibscheibe (1008) herum
verläuft, sich nach unten erstreckt und über die wenigstens eine Aufzugscheibe (1002,
1004) um die Aufzugkabine (14) herum verläuft und sich nach oben erstreckt und an
seinem zweiten Ende (1022) endet.
12. Aufzugsystem nach Anspruch 1, ferner aufweisend eine Treibscheibe (918), die antreibend
an den Antriebsmotor (916) gekoppelt ist, eine erste und eine zweite Gegengewichtscheibe
(912,914), die an einen oberen Abschnitt des Gegengewichts (910) gekoppelt sind, eine
erste und eine zweite Aufzugscheibe (902, 904), die unter die Aufzugkabine (14) gekoppelt
sind, eine dritte und eine vierte Aufzugscheibe (906, 908), die an einer gegenüberliegenden
Seite der Aufzugkabine relativ zur ersten und zweiten Aufzugscheibe unter die Aufzugkabine
gekoppelt sind, und eine erste und eine zweite Umlenkscheibe (920, 922), die im Deckenraum
des Aufzugschachts angeordnet sind, wobei das Flachseil (924) ein erstes und ein zweites
Ende (926, 928) aufweist, die jeweils im Deckenraum des Aufzugschacht befestigt sind,
wobei sich das Flachseil (924) von seinem ersten Ende (926) nach unten erstreckt,
um die erste Gegengewichtscheibe (912) herum verläuft, sich nach oben erstreckt und
um die erste Umlenkscheibe (920) herum verläuft, sich nach unten erstreckt und um
die zweite Gegengewichtscheibe (914) herum verläuft, sich nach oben erstreckt und
um die Treibscheibe (918) herum verläuft, sich nach unten erstreckt und über die erste
und die zweite Aufzugscheibe (902, 904) unter der Aufzugkabine (14) her geführt wird,
sich nach oben erstreckt und um die zweite Umlenkscheibe (922) herum verläuft, sich
nach unten erstreckt und über die dritte und vierte Aufzugscheibe (906, 908) unter
der Aufzugkabine her geführt wird, sich nach oben erstreckt und an seinem zweiten
Ende (928) endet.
13. Aufzugsystem nach einem der vorangehenden Ansprüche, wobei der Antriebsmotor getriebelos
ist.
1. Système d'ascenseur, comprenant :
une gaine (12) définie dans une structure environnante ;
une cabine d'ascenseur (14) et au moins un contrepoids (24 ; 210 ; 410 ; 614 ; 910
; 1014) disposé dans la gaine, la gaine définissant un espace au-dessus d'une extension
verticale de la gaine, entre un plafond de la gaine et une partie supérieure de la
cabine d'ascenseur à son emplacement opérable le plus élevé le long de la gaine ;
au moins un moteur d'entraînement (38 ; 102 ; 104 ; 204 ; 402 ; 602 ; 916 ; 1006)
disposé dans l'espace supérieur et couplant avec entraînement et suspendant la cabine
d'ascenseur par le biais d'au moins un câble plat (46, 54 ; 214 ; 414 ; 612 ; 924,
1018 ; 722).
2. Système d'ascenseur selon la revendication 1, comprenant en outre de première et deuxième
colonnes de soutien (16, 18), chacune s'étendant verticalement le long d'une partie
verticale de la gaine associée à la course de la cabine d'ascenseur, les première
et deuxième colonnes de soutien étant disposées adjacentes de parois latérales opposées
de la cabine d'ascenseur l'une par rapport à l'autre, et où le moteur d'entraînement
(38 ; 102 ; 104 ; 204) est monté sur au moins l'une des première et deuxième colonnes
de soutien.
3. Système d'ascenseur selon la revendication 2, dans lequel les première et deuxième
colonnes de soutien (16, 18) sont globalement creuses, et où l'au moins un contrepoids
comprend de premier et deuxième contrepoids (24 ; 210) disposés respectivement dans
les première et deuxième colonnes de soutien.
4. Système d'ascenseur selon la revendication 3, comprenant en outre un élément de soutien
(30) s'étendant globalement horizontalement entre les première et deuxième colonnes
de soutien (16, 18) dans l'espace supérieur, afin de soutenir le moteur d'entraînement,
de première et deuxième poulies d'entraînement (40 ; 42) couplées en rotation au moteur
d'entraînement (38) et respectivement disposées à côté des première et deuxième colonnes
de soutien dans l'espace supérieur, et où l'au moins un câble plat comprend de premier
et deuxième câbles plats (46, 54) engageant respectivement les première et deuxième
poulies d'entraînement pour coupler un premier et un deuxième contrepoids respectifs
(24) à la cabine d'ascenseur (14).
5. Système d'ascenseur selon la revendication 3, comprenant en outre un élément de soutien
(30) s'étendant globalement horizontalement entre les première et deuxième colonnes
de soutien (16, 18) dans l'espace supérieur, afin de soutenir le moteur d'entraînement
(204), de première et deuxième poulies d'entraînement (206) respectivement disposées
à côté des première et deuxième colonnes de soutien dans l'espace supérieur, un moyen
de couplage en rotation du moteur d'entraînement aux première et deuxième poulies
d'entraînement, de première et deuxième poulies de déflecteur (202) couplées à la
cabine d'ascenseur, de première et deuxième poulies de contrepoids (208) couplées
respectivement aux parties supérieures des premier et deuxième contrepoids (210),
de première et deuxième poulies d'ascenseur (212) couplées à la cabine d'ascenseur
(14) et où l'au moins un câble plat (214) comprend de premier et deuxième câbles plats,
les premier et deuxième câbles plats comportant de premières extrémités (218) fixées
dans l'espace supérieur de la gaine, s'étendant vers le bas et formant respectivement
une boucle autour des première et deuxième poulies de contrepoids (208) s'étendant
vers le haut et formant respectivement une boucle autour des première et deuxième
poulies d'entraînement (206), s'étendant vers le bas par le biais de première et deuxième
poulies de déflecteur (202) et formant respectivement une boucle autour des première
et deuxième poulies d'ascenseur (212) et s'étendant vers le haut et se terminant au
niveau de deuxièmes extrémités (216) fixées dans l'espace supérieur de la gaine.
6. Système d'ascenseur selon la revendication 3, dans lequel l'au moins un moteur d'entraînement
comprend de premier et deuxième moteurs d'entraînement (102, 104) et de première et
deuxième poulies d'entraînement associées (106, 108) soutenues respectivement sur
les première et deuxième colonnes de soutien (16, 18) dans l'espace supérieur, l'au
moins un câble plat comprenant de premier et deuxième câbles plats (46, 54) engageant
respectivement les première et deuxième poulies d'entraînement associées (106, 108)
pour coupler un premier et deuxième contrepoids respectif (24) à la cabine d'ascenseur
(14), et comprenant en outre un moyen (110) permettant de synchroniser la rotation
mutuelle des première et deuxième poulies d'entraînement (106, 108).
7. Système d'ascenseur selon la revendication 3, dans lequel l'au moins un moteur d'entraînement
comprend de premier et deuxième moteurs d'entraînement (102, 104) et de première et
deuxième poulies d'entraînement associées (106, 108) soutenues respectivement sur
les première et deuxième colonnes de soutien (16, 18) dans l'espace supérieur, et
comprenant en outre un moyen (110) de synchronisation de la rotation mutuelle des
première et deuxième poulies, de première et deuxième poulies de déflecteur (202)
couplées à la cabine d'ascenseur (14), de premières et deuxième poulies de contrepoids
(208) couplées respectivement aux parties supérieures des premier et deuxième contrepoids
(210), de première et deuxième poulies d'ascenseur (212) couplées à la cabine d'ascenseur,
et l'au moins un câble plat comprenant de premier et deuxième câbles plats (214),
chacun des câbles plats comportant une première extrémité (218) fixée à l'intérieur
de l'espace supérieur de la gaine, s'étendant vers le bas et formant une boucle autour
d'une poulie respective de contrepoids (208) s'étendant vers le haut et formant une
boucle autour d'une poulie respective d'entraînement (206), s'étendant vers le bas
par le biais d'une poulie respective de déflecteur (202) et formant une boucle autour
d'une poulie respective d'ascenseur (212), et s'étendant vers le haut et se terminant
au niveau d'une deuxième extrémité (216) fixée au sein de l'espace supérieur de la
gaine.
8. Système d'ascenseur selon la revendication 6 ou 7, dans lequel le moyen (110) de synchronisation
contient un contrôleur.
9. Système d'ascenseur selon la revendication 5 ou 7, dans lequel les premières extrémités
(218) des premier et deuxième câbles plats (214) sont respectivement couplées aux
première et deuxième colonnes de soutien (16, 18) et où les deuxièmes extrémités (216)
des premier et deuxième câbles plats (214) sont respectivement couplées aux première
et deuxième colonnes de soutien (16, 18).
10. Système d'ascenseur selon la revendication 1, comprenant en outre une poulie d'entraînement
(404 ; 604) couplée avec entraînement au moteur d'entraînement (402 ; 602), une poulie
de contrepoids (412) couplée à une partie supérieure du contrepoids (410 ; 614) et
au moins une poulie d'ascenseur (406) couplée à un côté inférieur de la cabine d'ascenseur
(14), le câble plat (414 ; 612) comportant de première et deuxième extrémités (416,
418), chacune étant fixée au sein de l'espace supérieur de la gaine, le câble plat
(414 ; 612) s'étendant vers le bas à partir de sa première extrémité (416), formant
une boucle autour de la poulie de contrepoids (412), s'étendant vers le haut et formant
une boucle autour de la poulie d'entraînement (404 ; 604), s'étendant vers le bas
et sous-élinguant la cabine d'ascenseur (14) par le biais de l'au moins une poulie
d'ascenseur (406), et s'étendant vers le haut et se terminant au niveau de sa deuxième
extrémité (418).
11. Système d'ascenseur selon la revendication 1, comprenant en outre une poulie d'entraînement
(1008) couplée avec entraînement au moteur d'entraînement (1006), une poulie de contrepoids
(1016) couplée à une partie supérieure du contrepoids (1014) et au moins une poulie
d'ascenseur (1002, 1004) couplée à une partie supérieure de la cabine d'ascenseur
(14), le câble plat (1018) comportant de première et deuxième extrémités (1020, 1022),
chacune étant fixée au sein de l'espace supérieur de la gaine, le câble plat (1018)
s'étendant vers le bas à partir de sa première extrémité (1020), formant une boucle
autour de la poulie de contrepoids (1016), s'étendant vers le haut et formant une
boucle autour de la poulie d'entraînement (1008), s'étendant vers le bas et sous-élinguant
la cabine d'ascenseur (14) par le biais de l'au moins une poulie d'ascenseur (1002,
1004), et s'étendant vers le haut et se terminant au niveau de sa deuxième extrémité
(1022).
12. Système d'ascenseur selon la revendication 1, comprenant en outre une poulie d'entraînement
(918) couplée avec entraînement au moteur d'entraînement (916), de première et deuxième
poulies de contrepoids (912, 914) couplées à une partie supérieure du contrepoids
(910), de première et deuxième poulies d'ascenseur (902, 904) couplées au-dessous
de la cabine d'ascenseur (14), de troisième et quatrième poulies d'ascenseur (906,
908) couplées au-dessous de la cabine d'ascenseur au niveau d'un côté opposé de la
cabine d'ascenseur par rapport aux première et deuxième poulies d'ascenseur, et de
première et deuxième poulies de déflecteur (920, 922) disposées dans l'espace supérieur
de la gaine, le câble plat (924) comportant de première et deuxième extrémités (926,
928), chacune étant fixée au sein de l'espace supérieur de la gaine, le câble plat
(924) s'étendant vers le bas à partir de sa première extrémité (926), formant une
boucle autour de la première poulie de contrepoids (912), s'étendant vers le haut
et formant une boucle autour de la première poulie de déflecteur (920), s'étendant
vers le bas et formant une boucle autour de la deuxième poulie de contrepoids (914),
s'étendant vers le haut et formant une boucle autour de la poulie d'entraînement (918),
s'étendant vers le bas et sous-élinguant la cabine d'ascenseur (14) par le biais des
première et deuxième poulies d'ascenseur (902, 904), s'étendant vers le haut et formant
une boucle autour de la poulie de déflecteur (922), s'étendant vers le bas et sous-élinguant
la cabine d'ascenseur par le biais de la troisième et de la quatrième poulies d'ascenseur
(906, 908) et s'étendant vers le haut et se terminant au niveau de sa deuxième extrémité
(928).
13. Système d'ascenseur selon l'une quelconque des revendications précédentes, dans lequel
le moteur d'entraînement est sans engrenage.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description