

Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 681 359 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 19.07.2006 Bulletin 2006/29

(21) Application number: 04772713.6

(22) Date of filing: 27.08.2004

(51) Int Cl.:

C21D 9/00 (1968.09) C22C 38/18 (2000.01) F01D 25/24 (1968.09)

(11)

C22C 38/00 (1974.07) C22C 38/54 (2000.01) F02C 7/00 (1968.09)

(86) International application number: **PCT/JP2004/012764**

(87) International publication number:WO 2005/021806 (10.03.2005 Gazette 2005/10)

(84) Designated Contracting States: **DE FR GB**

(30) Priority: 29.08.2003 JP 2003306103

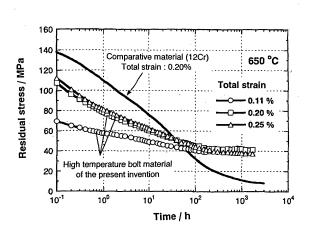
(71) Applicant: National Institute for Materials Science Tsukuba-shi,
Ibaraki 305-0047 (JP)

(72) Inventors:

 OHBA, Toshio, National Inst. for Materials Scien. Tsukuba-shi, Ibaraki 305-0047 (JP)

 SAWADA, Kota, National Inst. for Materials Scien. Tsukuba-shi, Ibaraki 305-0047 (JP) KIMURA, Kazuhiro, National Inst. Materials Scien. Tsukuba-shi, Ibaraki 305-0047 (JP)

 OKADA, Hirokazu, National Inst. MaterialsScien. Tsukuba-shi, Ibaraki 305-0047 (JP)


 ABE, Fujio, National Inst. for Materials Scien. Tsukuba-shi, Ibaraki 305-0047 (JP)

(74) Representative: Calamita, Roberto Frank B. Dehn & Co. St Bride's House 10 Salisbury Square London EC4Y 8JD (GB)

(54) HIGH TEMPERATURE BOLT MATERIAL

(57) A high temperature bolt material, **characterized in that** it is a ferrite steel comprising 8 wt % or more of Cr and having a tempered martensite structure and can be used in a high temperature region of higher than 500°C; and a method for producing the high temperature bolt material which comprises subjecting the above-mentioned steel material to a heat treatment comprising a quenching or normalizing at a temperature of 1000°C or higher and then to a tempering at a temperature of 730°C or higher. The above ferrite steel high temperature bolt material is excellent in characteristics of the resistance to stress relaxation.

Fig.2

Description

Technical Field

[0001] The present invention relates to a ferrite high temperature bolt material excellent in characteristics of resistance to stress relaxation at a high temperature, and more particularly to a heat treatment method for improving characteristics of resistance to stress relaxation, and a ferrite high temperature bolt material manufactured in this method.

Background Art

10

20

30

35

40

[0002] Bolt materials used in steam turbine plant for thermal power generation include 12Cr steel mainly used in a low temperature region (500°C or less) and Ni base superalloy used in a high temperature region. The 12Cr steel for a low temperature region is large in stress relaxation and it is hard to use in a high temperature region of 500°C or more, and Ni base superalloy is used in a high temperature region of over 500°C.

[0003] However, the turbine casing is manufactured of ferrite steel, coefficient of thermal expansion differs between casing and bolt, and design is complicated and difficult. If a ferrite high temperature bolt material usable at a high temperature is developed, it is not required to consider difference in coefficient of thermal expansion, and the steam turbine can be designed easily, and the structure can be simplified.

[0004] On the other hand, the Ni base superalloy is always expensive, and its manufacture or processing is not necessarily easy. Accordingly, steel materials usable in a high temperature region of 500°C or more are desired.

[0005] Indeed, price of ferrite steel is one-tenth of Ni base superalloy. If ferrite steel can be used as high temperature bolt material, the turbine design is easy and structure is simplified as discussed above. From the viewpoint of improvement of energy efficiency of power generation, steam temperature tends to elevate every year, demand for bolt material usable at a high temperature is strong. Therefore, necessity of ferrite high temperature bolt material usable at a high temperature is extremely high, and its economical effects will be tremendous.

[0006] The inventors have specifically investigated into conventional bolt material of 12Cr steel, and evaluated the prior art as follows.

[0007] According to the standard of 12Cr high temperature bolt material (non-patent documents 1 and 2), as tempering condition, only the lowest temperature (593°C or 620°C) is specified. However, from the viewpoint of maintaining the strength characteristics such as proof stress, tempering is generally performed at a temperature of 700°C or less (non-patent document 3).

[0008] By contrast, materials for thermal power plant boilers are tempered at 730°C or higher, that is, higher than in bolt materials, in consideration of microstructure stability for long time. If tempered at a high temperature of 730°C or more, stress relaxation is large in a short time of about several hours, and the residual stress is smaller than in conventional 12Cr high temperature bolt material. However, since microstructure stability is high, in a long time exceeding hundreds of hours, degree of stress relaxation is decreased, and a higher residual stress than in conventional 12Cr high temperature bolt material is shown stably for a long time.

[0009] Improvements are attempted in Ni base superalloy, and, for example, a high temperature bolt material composed of Ni base superalloy comprising Cr 18 to 21%, Ti 1.3 to 1.8%, and Al 0.7 to 1.3% has been proposed (patent document 1). But this is a superalloy, and is not intended to realize an inexpensive steel excellent in high temperature characteristics.

Non-patent document 1: ASTMA 193/A 193M-98a, Grade B6, B6X Non-patent document 2: ASTMA 437/A 437M-99, Grade B4B, B4C

Non-patent document 3: H. Schaff, Performance of Bolting Materials in High Temperature Plant Applications, p. 410 Patent document 1: Japanese Patent Publication No. 3281685

[0010] The invention is devised in the light of the above background, and it is hence an object thereof to present a ferrite steel high temperature bolt material usable in a high temperature region of 500°C or more and excellent in characteristics of resistance to stress relaxation, and a method of manufacturing the same.

Disclosure of Invention

[0011] To solve the problems, it is a first aspect of the present invention to present a high temperature bolt material, being a ferrite steel having a tempered martensite structure comprising 8 wt % or more of Cr, and usable in a high temperature region of 500°C or more, and it is a second aspect to present a manufacturing method of high temperature bolt material characterized by quenching or normalizing a steel material containing Cr by 8 wt % or more at a temperature of 1000°C or more, and then tempering at a temperature of 730°C or more.

[0012] Since the high temperature bolt material of the invention is a bolt material usable in a high temperature region

2

45

50

55

of 500°C or more, it is called "high temperature bolt material."

[0013] The invention, as bolt material not predicted or estimated from the prior art, presents a ferrite steel high temperature bolt material excellent in characteristics of resistance to stress relaxation and usable in a high temperature region of 500°C or more, and a method of manufacturing the same.

[0014] The existing ferrite high temperature bolt material is low in characteristics of resistance to stress relaxation at a high temperature, and cannot be used at a high temperature of 500°C or more, and hence at a high temperature of 500°C or more, Ni base superalloy high in high temperature strength has been used. However, since the turbine casing is manufactured of ferrite steel, coefficient of thermal expansion differs between casing and bolt, and the design is complicated and difficult. By this invention, ferrite high temperature bolt material usable at a high temperature is realized, and difference in coefficient of thermal expansion is not taken into consideration, and the design of steam turbine becomes easy, and the structure is simplified.

[0015] Being a ferrite steel, the high temperature bolt material of the invention is presented at a cost of 1/10 or less of Ni base superalloy conventionally used as high temperature bolt material.

15 Brief Description of Drawings

[0016]

20

30

35

45

50

55

Fig. 1 is a microscopic image of microstructure of steel of the present invention.

Fig. 2 shows characteristics of resistance to stress relaxation of high temperature bolt material of the invention and a comparative material.

Best Mode for Carrying Out the Invention

[0017] The present invention has features as described above, and one of its embodiments is explained below.

[0018] The high temperature bolt material of the invention is a ferrite steel comprising 8 wt% or more of Cr (chromium) in chemical composition, and having a tempered martensite structure as microstructure. A more preferred chemical composition includes the following components.

[0019] C: It forms carbide or carbonitride and effective to add by 0.04 wt% or more for improving strength, but if added by more than 0.2 wt %, strength is lowered in a long time range.

[0020] Si: an important element for assuring resistance to oxidation, and 0.01 wt % or more is preferred, but if exceeding 0.9 wt %, toughness is lowered, and creep rupture strength is lowered.

[0021] Mn: an element functioning as deoxidation agent, added preferably in the range of 0.3 to 1.5 wt %.

[0022] Cr: 8.0 wt % or more is needed for assuring resistance to oxidation, but if exceeding 13.5 wt %, delta ferrite phase is generated, and strength is lowered.

[0023] Mo: effective for solid solution strengthening, but if exceeding 2.0 wt%, brittleness is promoted.

[0024] W: effective for solid solution strengthening, but if exceeding 4.0 wt %, brittleness is promoted.

[0025] V: effective by 0.02 wt % or more for forming carbonitride and enhancing strength, but if exceeding 0.35 wt %, undisolved precipitates increase and it is not effective for strength.

[0026] Nb: effective by 0.01 wt % or more for forming carbonitride and enhancing strength, but if exceeding 0.2 wt %, undisolved precipitates increase and it is not effective for strength.

[0027] Co: effective for assuring high temperature strength because generation of delta ferrite phase is suppressed, but if exceeding 4.0 wt %, long time strength is lowered.

[0028] Ni: effective for assuring high temperature strength because generation of delta ferrite phase is suppressed, but not effective if exceeding 3.0 wt % because transformation temperatures of ferrite and austenite are lowered.

[0029] Al: important as deoxidation agent, preferably contained by 0.01 wt % or less.

[0030] N: 0.002 wt % or more is effective for forming carbide or carbonitride and improving strength, but if exceeding 0.15 wt %, manufacturing is difficult.

[0031] B: effective for improving strength at about 0.02 wt % or less because precipitates are refined and stability at a high temperature is improved.

[0032] In the manufacturing method of the invention, the following points are important.

[0033] A quenching or normalizing temperature is 1000°C or more, and a tempering temperature is 730°C or more. That is, in quenching or normalizing, a temperature must be kept at 1000°C or more in order to form austenite single phase and form a solid solution of alloying elements such as V and Nb in base phase.

[0034] In tempering, to enhance high temperature stability of tempered martensite structure, tempering heat treatment at 730°C or more is needed. A general tempering temperature of conventional ferrite high temperature bolt material is 700°C or lower (see non-patent document 3), and in a thermal power plant boiler required to have enough high temperature stability of microstructure, a general tempering temperature of high Cr ferrite heat resistant steel is specified to be 730°C

or more (Thermal Power Plant Standard, Japan Society of Mechanical Engineers, 2002).

[0035] An example is shown below, and the invention is more specifically described. It must be noted, however, that the invention is not limited to this example alone.

5 Example

10

15

20

25

30

35

40

50

55

[0036] Sample materials were manufactured in a chemical composition as shown in Table 1. The sample materials were heat treated in the condition specified in Table 2. Tempering temperature of comparative material is 640°C, and a tempering temperature of the steel of the invention is 800°C, and it is a feature of the high temperature bolt material of the invention that it is tempered at a higher temperature than in the comparative material. Fig. 1 is a microscopic image of microstructure of the steel of the invention. Grain size of martensite phase is about 50 µm.

				Table 1					
Sample material	С	Si	Mn	Р	S	Ni	Cr	Мо	W
Steel of the invention	0.077	0.29	0.50	0.002	0.002	-	9.28	-	3.13
Comparative material	0.21	0.44	0.62	0.023	0.004	0.85	11.46	0.97	0.94
Sample material	Со	V	Nb	Ti	Sn	Al	N	В	Fe
Steel of the invention	3.03	0.20	0.045	-	-	0.002	0.0024	0.0130	balance
Comparative material	0.10	0.28	-	0.090	0.027	0.033	0.0239	-	balance

	<u>Table 2</u>	
Sample material	Heat treatment	condition
	Quenching/normalizing	Tempering
Steel of the invention	1080°C/60 min. \rightarrow air cooling	800°C/60 min. \rightarrow air cooling
Comparative material	1050°C/25 min. → oil cooling	640°C/60 min. → air cooling

[0037] Stress relaxation behavior of sample material at 650°C is shown in Fig. 2. Right after start of test, the residual stress of the steel of the invention is smaller than that of comparative material. However, as the holding time exceeds about 100 hours, degree of drop of residual stress is decreased in the steel of the invention, and a nearly constant value of about 40 MPa is shown. In the comparative material, by contrast, for tens of hours after start of test, the residual stress is higher than the steel of the invention, but as the holding time exceeds 100 hours, the residual stress is lowered substantially. In the long time range of holding time exceeding 100 hours, the steel of the invention shows a higher residual stress than the comparative material, and it is known that the steel of the invention is superior in characteristics of resistance to stress relaxation. It is a great feature of high temperature bolt material of steel of the invention that resistance to stress relaxation is excellent in long time range of over 100 hours.

45 Industrial Applicability

[0038] By the high temperature bolt material of the invention, an inexpensive ferrite bolt material excellent in high temperature characteristics is presented.

[0039] Indeed, the price of ferrite steel is less than 1/10 of Ni base superalloy. By using ferrite steel, for example, in high temperature bolt material, the turbine design becomes easy, and the structure is simplified. From the viewpoint of improvement of energy efficiency in power generation, steam temperature tends to rise every year, and there is an increasing demand for bolt material usable at a high temperature. Therefore, ferrite high temperature bolt material usable at a high temperature is very much demanded, and its economical effect is tremendous.

Claims

1. A high temperature bolt material, characterized in that it is a ferrite steel comprising 8 wt % or more of Cr and

having a tempered martensite structure, and usable in a high temperature region of over 500°C. 2. A manufacturing method of the high temperature bolt material of claim 1, characterized by quenching or normalizing a steel material containing Cr by 8 wt % or more at a temperature of 1000°C or more, and then tempering at a temperature of 730°C or more.

Fig.1

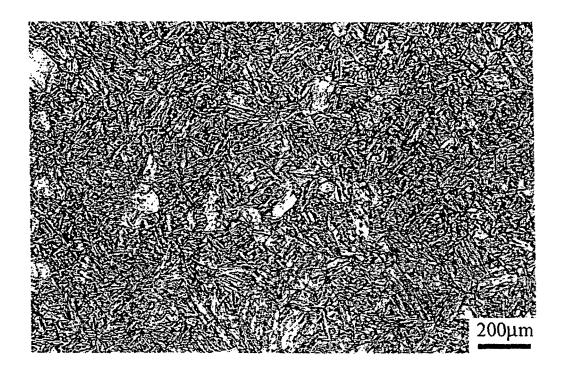
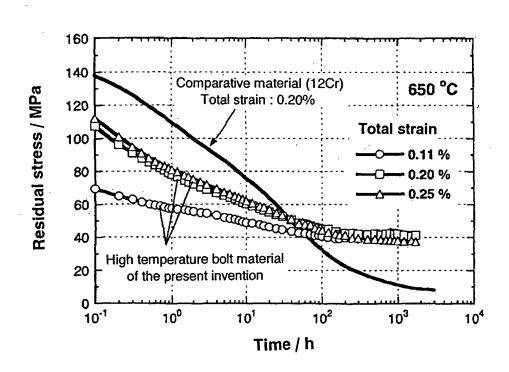



Fig.2

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2004/012764 A. CLASSIFICATION OF SUBJECT MATTER C21D9/00, C22C38/00, C22C38/18, C22C38/54, F01D25/24, F02C7/00 Int.Cl7 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C21D9/00-50, C22C38/00-60, F01D25/24, F02C7/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2-290950 A (Hitachi Metals, Ltd.), 1,2 30 November, 1990 (30.11.90), Claims; Industrial Field of Invention; Problem to be solved by the invention; examples & EP 0384433 B1 & US 5061440 A Χ JP 6-306550 A (Toshiba Corp.), 1,2 01 November, 1994 (01.11.94), Claims; Par. No. [0001]; examples (Family: none) X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international "E" document of particular relevance; the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 11 November, 2004 (11.11.04) 30 November, 2004 (30.11.04) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Form PCT/ISA/210 (second sheet) (January 2004)

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/012764

	PCT/C	JP2004/012764
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<pre>JP 2002-226946 A (Independent Administrative Institution National Institute for Materials Science, Sumitomo Metal Industries, Ltd.), 14 August, 2002 (14.08.02), Claims; Par. Nos. [0001], [0007], [0015], [0047] to [0064] & EP 1275744 A1 & US 2004/057862 A1 & WO 02/061162 A1</pre>	1,2
Y		1,2

Form PCT/ISA/210 (continuation of second sheet) (January 2004)