(11) EP 1 686 334 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

02.08.2006 Patentblatt 2006/31

(51) Int Cl.: F25B 39/04 (2006.01)

(21) Anmeldenummer: 06000539.4

(22) Anmeldetag: 12.01.2006

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

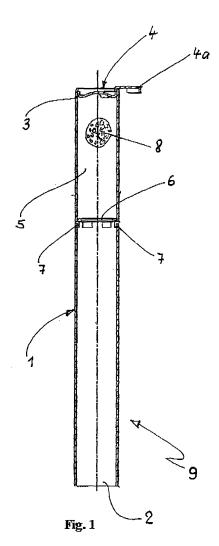
(30) Priorität: 31.01.2005 DE 102005004519

(71) Anmelder: Behr GmbH & Co. KG 70469 Stuttgart (DE)

(72) Erfinder:

Förster, Uwe, Dipl.-Ing.
 71729 Erdmannshausen (DE)

Gross, Dieter
 70176 Stuttgart (DE)


(74) Vertreter: Grauel, Andreas BEHR GmbH & Co. KG Intellectual Property G-IP Mauserstrasse 3

70469 Stuttgart (DE)

(54) Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges

(57) Die Erfindung betrifft einen Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges mit einem Sammler, in welchem ein Trocknermaterial, insbesondere ein Granulat (8) deponierbar ist, wobei Kondensator, Sammier und Trocknermaterial (8) in einer Lötatmosphäre gleichzeitig lötbar sind.

Es wird vorgeschlagen, dass das Trocknermateriat (8) nach dem Deponieren in dem Sammler gegenüber der Atmosphäre abschließbar ist.

EP 1 686 334 A2

Beschreibung

[0001] Die Erfindung betrifft einen Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges nach dem Oberbegriff des Patentanspruches 1.

1

[0002] Kondensatoren für Kraffifahrzeugklimaanlagen bestehen größtenteils aus Aluminiumwerkstoffen und werden daher in einem Lötprozess hartgelötet. Bei einer bekannten Bauweise eines Kondensators nach der DE 42 38 853 C2 der Anmelderin weist der Kondensator einen integrierten Sammler auf, d. h. einen rohrförmigen Sammelbehälter, der parallel zu einem der beiden Sammelrohre des Kondensators angeordnet und käftemitteiseitig mit dem Sammelrohr verbunden ist. In dem Sammler befindet sich eine Trocknerpatrone, d. h ein Behälter oder Käfig, in dem ein Trocknermaterial, insbesondere in Form eines Trocknergranulats angeordnet ist. Das Granulat entzieht dem Kältemittel Feuchtigkeit. Die Trocknerpatrone wird -bedingt durch die Bauart - nach dem Löten des Kondensators in den offenen Sammler eingesetzt und dort positioniert. Anschließend wird der Sammler, z. B. durch einen Schraubverschluss verschlossen. Damit ist die Trocknerpatrone auch später austauschbar, z. B. zu Wartungszwecken.

[0003] Bei neueren Ausführungen für Kondensatormodule, d. h. mit integriertem Sammler, z. B. gemäß der DE 102 13 194 A1 ist vorgesehen, dass der Trockner gleichzeitig mit dem Kondensator und dem Sammler gelötet wird. Dafür ist das Trocknergranulat aus einem hitzebeständigen Material, welches die beim Lötprozess auftretenden Temperaturen unbeschadet übersteht.

[0004] Man spricht hier von so genannten lötbaren oder mitlötbaren Trocknern, welche den Vorteil aufweisen, dass der nachträgliche Einbau der Trocknerpatrone und das Verschließen des Sammlers entfallen.

[0005] Ein Problem bei der Herstellung von lötbaren Trocknern besteht darin, dass das Trocknergranulat in der Zeit zwischen dem Einfüllen des Granulats in den Sammler und dem Beginn des Lötprozesses Feuchtigkeit aus der Umgebung aufnimmt. Beim Lötprozess gelangt die Feuchtigkeit als Wasserdampf in die Lötatmosphäre, was die Qualität des Lötprozesses beeinträchtigt. In der JP-A 2001-141332 wurde daher vorgeschlagen, das Trocknermaterial unmittelbar vor dem Lötprozess zu erhitzen (vorzuheizen), damit die Feuchtigkeit entweicht, bevor das Trocknermaterial in die Lötatmosphäre gelangt. Nachteilig bei dieser Lösung ist, dass ein zusätzlicher Arbeitsschritt vor dem Lötprozess notwendig wird.

[0006] Es ist Aufgabe der vorliegenden Erfindung, einen Kondensator der eingangs genannten Art, d. h. mit lötbarem Trockner zu schaffen, bei welchem die störenden Einflüsse von in dem Trocknermaterial enthaltener Feuchtigkeit beseitigt oder zumindest erheblich reduziert werden. Ferner ist es Aufgabe der Erfindung, ein entsprechendes Verfahren bereitzustellen, nach welchem ein Lötprozess ohne Feuchtigkedseinflüsse durchführbar ist.

[0007] Diese Aufgabe wird zunächst durch die Merkmale des Patentanspruches 1 gelöst- Erfindungsgemäß ist vorgesehen, dass das Trocknermaterial nach dem Deponieren im Sammler gegenüber der Atmosphäre abschließbar ist, wobei dies vorteilhafterweise durch ein temperaturempfindliches Verschlussmittel geschieht. Vorteilhafterweise kann dies ein Lack sein, der auf ein Sieb des Trockners gesprüht wird und damit die Öffnungen des Siebes verschließt, oder eine Kunststofffolie, welche eine Stirnseite des Sammlers verschließt. Damit wird der Vorteil erreicht, dass das Trocknergranulat nach dem Einfüllen in den Sammler und während der Bereitstellzeit bis zum Lötprozess keine Feuchtigkeit aus der umgebenden Atmosphäre aufnehmen und damit auch nicht während des Lötprozesses an die Lötatmosphäre abgeben kann. Die Lötung wird somit nicht durch Feuchtigkeit beeinträchtigt, und das Lötergebnis wird verbessert. Die temperaturempfindlichen Verschlussmittel in Form von Lack, PU-Binder oder Folie lösen sich unter der Temperatureinwirkung des Lötprozesses rückstandslos auf, zumindest ohne schädliche Rückstände. Möglich wäre beispielsweise auch, das Trocknergranulat vor dem Einfüllen in den Sammler in einer folienartigen Hülle einzuschließen, welche sich ebenfalls unter der Einwirkung der Löttemperatur auflöst. Nach dem Lötprozess hat das Kältemittel dann - während des Betriebes des Kondensators - den erforderlichen Zugang zum Trocknergranulat.

[0008] Die Aufgabe der Erfindung wird auch durch ein Verfahren gelöst, wobei das Trocknermaterial unmittelbar nach dem Einfüllen gegenüber der Atmosphäre versiegelt wird. Während des anschließenden Lötprozesses wird die Versiegelung infolge Hitzeweinwirkung beseitigt, so dass das Kältemittel des Kältemittelkreislaufes Zugang zum Trocknergranulat findet. Die Qualität der Lötung wird somit verbessert.

[0009] Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert. Es zeigen

- Fig. 1 ein Rohr eines Sammlers mit Trockner, verschlossen durch ein versiegeltes Sieb,
- Fig. 2 ein Rohr eines Sammlers mit Trockner, verschlossen durch eine Folie,
- Fig. 3 zwei Ausschnitte des Siebes gemäß Fig. 1, vor und nach dem Löten.

[0010] Fig. 1 zeigt ein Rohr 1 eines nicht vollständig dargestellten Sammlers für einen Kondensator. Letzterer entspricht in seinem Aufbau bekannten Kondensatoren, wie sie in dem eingangs genannten Stand der Technik, d. h. der DE 102 13 194 A1 und in der DE 103 38 526 A1 der Anmelderin dargestellt und beschrieben sind. Der Inhalt dieser beiden Anmeldungen wird voll umfänglich in den Offenbarungsgehalt dieser Anmeldung einbezogen. Demnach ist das in Fig. 1 dargestellte Rohr 1, welches ein unteres offenes Rohrende 2 aufweist, mit einem vorzugsweise extrudierten, nicht dargestellten Rohrab-

schnitt verbunden, welcher den Sammler komplettiert. Letzterer ist auf bekannte Weise mit einem nicht dargestellten Sammelrohr des Kondensators mechanisch und kältemitteiseitig über nicht dargestellte Überströmöffnungen verbunden. Somit hat das Kältemittel über das untere Rohrende 2 Zugang zum Inneren des Rohres 1. Letzteres weist ferner ein oberes Rohrende 3 auf, welches durch einen Deckel 4 verschlossen ist, welcher einen Haltearm 4a zur Befestigung an dem benachbarten nicht dargestellten Sammelrohr aufweist. Der obere Bereich des Rohres 1 ist als Kammer 5 ausgebildet, welche nach unten durch ein Sieb 6 begrenzt ist. Das Sieb 6 ist mit seinem Umfang an der Innenseite des Rohres 1 befestigt, beispielsweise durch Sicken 7 im Rohr 1. Die Kammer 5 ist mit einem Trocknergranulat 8 gefüllt, welches die Aufgabe hat, dem Kältemittel Feuchtigkeit zu entziehen. Die zuvor genannten Teile 1 bis 8 bilden eine Baugruppe, die als Trocknereinheit 9 bezeichnet ist.

[0011] Die derart vormontierte Trocknereinheit 9 wird mit dem übrigen Kondensator komplettiert und gelötet. Damit das Trocknergranulat 8 in der Zeitspanne zwischen Vormontage der Trocknereinheit 9 und der Verbringung in einen Lötofen keine Feuchtigkeit aus der Umgebung aufnimmt, muss dies möglichst schnell erfolgen. Dennoch kann eine Feuchtigkeitsaufnahme nicht ausgeschlossen werden. Hier setzt die Erfindung ein, indem die Kammer 5 mit dem Trocknergranulat 8 nach außen, d. h. in Richtung unteres Rohrende 2 gas- bzw. feuchtigkeitsdicht abgeschlossen wird. Dies geschieht erfindungsgemäß durch eine Versiegelung bzw. Beschichtung des Siebes 6 mit einem geeigneten Lack, der die Öffnungen des Siebes 6 verschließt. in Fig. 3 ist dies genauer dargestellt und wird im Anschluss an Fig. 2 beschrieben.

[0012] Fig. 2 zeigt ein zweites Ausführungsbeispiel der Erfindung, dargestellt an dem gleichen Rohr 1 für die gleiche Trocknereinheit 9. Im Unterschied zum Ausführungsbeispiel gemäß Fig. 1 ist das untere Rohrende 2 durch eine Folie 10, vorzugsweise aus Kunststoff feuchtigkeitsdicht verschlossen (das Sieb 6 ist hier nicht versiegelt).

[0013] Fig. 3 zeigt zwei Ausschnitte A (vor dem Löten) und B (nach dem Löten) des Siebes 6 in Fig. 1. Im oberen Ausschnitt ist das Siebgewebe mit einem Polyurethan-Binder (PU) versiegelt, d. h. die Maschen sind durch eine dünne Schicht des PU-Binders geschlossen und bilden somit einen Feuchtigkeitsabschluss. Während die vormontierte Trocknereinheit 9 für die Montage mit dem Kondensator und den Lötprozess bereitgestellt ist, kann aus der Umgebung keine Feuchtigkeit in das Innere der mit Granulat gefüllten Kammer eindringen.

[0014] Der untere Ausschnitt B zeigt das Siebgewebe nach dem Lötprozess, d. h. nachdem der Kondensator mit Sammler und Trockner in einer Lötatmosphäre bei Löttemperaturen von ca. 580° Celsius gelötet worden ist. Während des Lötprozesses, beispielsweise in einer Stickstoffatmosphäre löst sich der Polyurethan-Binder auf bzw. verdampft. Für die Lötatmosphäre bzw. den Löt-

prozess ist dies unschädlich. Nach der Entnahme des Kondensators aus dem Lötofen ist das Sieb wieder voll funktionsfähig, d. h. das Kältemittel des Kältekreislaufes hat über das Sieb Zugang zum Trocknergranulat, welches somit seine Aufgabe der Trocknung erfüllen kann. [0015] Das gleiche geschieht prinzipiell mit der in Fig. 2 dargestellten Folie 10. Das Trocknergranulat bleibt während der Wartezeit vor dem Lötprozess "trocken", d. h. es kann keine Feuchtigkeit von außen aufnehmen. Die Trocknereinheit 9 mit Folie 10 wird mit dem extrudierten Endstück des Sammlers und mit dem restlichen Kondensator komplettiert und in die Lötatmosphäre verbracht. Dabei schmilzt die Folie 10. Feuchtigkeit kann nicht in die Lötatmosphäre gelangen, da keine Feuchtigkeit im Granulat während des Lötprozess enthalten war. Nach dem Löten hat das Kältemittel infolge Auflösung der Folie Zugang zum Trocknergranulat.

20 Patentansprüche

25

30

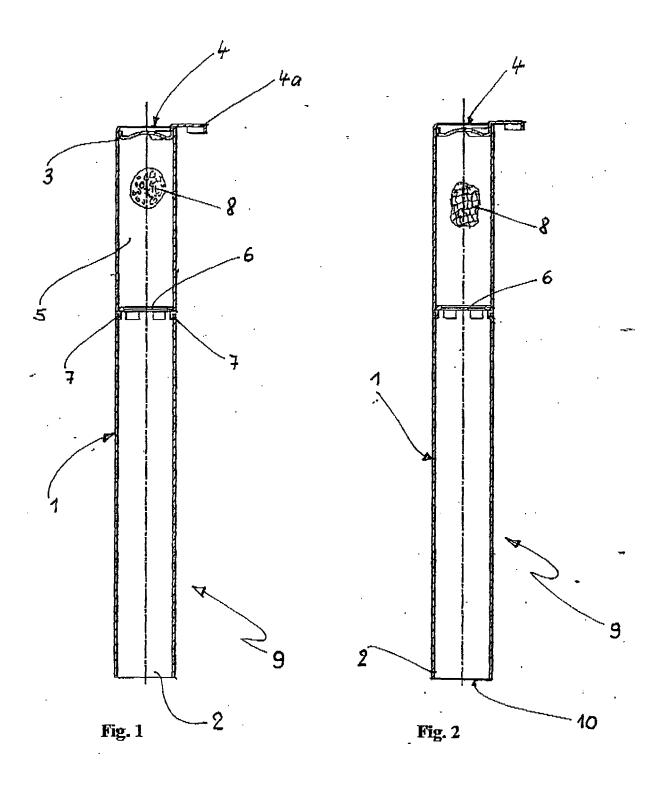
35

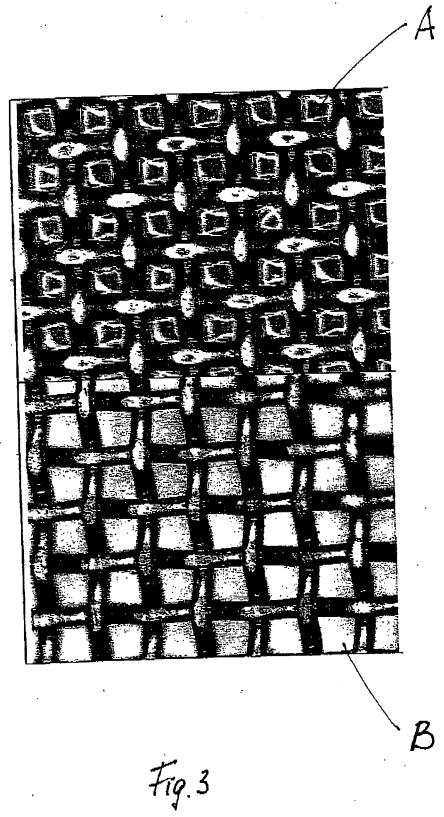
40

50

55

- Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges mit einem Sammler, in welchem ein Trocknermaterial, insbesondere ein Granulat (8) deponierbar ist, wobei Kondensator, Sammler und Trocknermaterial (8) in einer Lötatmosphäre gleichzeitig lötbar sind, dadurch gekennzeichnet, dass das Trocknermaterial (8) nach dem Deponieren in dem Sammler gegenüber der Atmosphäre abschließbar ist.
- Kondensator nach Anspruch 1, dadurch gekennzeichnet, dass das Trocknermaterial (8) durch ein temperaturempfindliches Verschlussmittet abschließbar ist.
- Kondensator nach Anspruch 2, dadurch gekennzeichnet, dass das Trocknermaterial (8) in einer Kammer (5) mit einem Sieb (6) angeordnet und dass das Sieb (6) mit dem Verschlussmittel applizierbar ist.
- Kondenstor nach Anspruch 3, dadurch gekennzeichnet, dass das Verschlussmittel ein Lack oder
 PU-Binder ist, durch welchen das Sieb (6) versiegelbar ist.
 - 5. Kondensator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Sammler ein Rohr (1) mit einer offenen Stirnfläche (2) aufweist und dass das Verschlussmittel als Folie (10) ausgebildet ist, welche die Stimfläche (2) abschließt.
 - 6. Kondensator nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass das Rohr (1) mit dem gegenüber der Atmosphäre versiegelten Trocknermaterial (8) als vormontierte Baueinheit (9) ausgebildet ist, die vor dem Lötprozess mit dem Kondensator


komplettierbar ist.


7. Verfahren zum gleichzeitigen Löten eines Kondensators mit einem ein Trocknermaterial (8) enthaltenden Sammler, dadurch gekennzeichnet,

- dass das Trocknermaterial (8) in einem Vormontageschritt in einem Teil (1) des Sammlers deponiert,

- dass der Trocknermaterial anschließend gegenüber der Atmosphäre, insbesondere gegenüber Feuchtigkeit versiegelt,

- dass das Teil (1) des Sammlers mit dem restlichen Kondensator komplettiert und in einen Lötofen verbracht und

 dass die Versiegelung des Trocknermaterials
 (8) während des Lötprozesses unter Einwirkung der Löttemperaturen entfernt wird.

