(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.08.2006 Bulletin 2006/33

(51) Int Cl.:

F04D 25/10 (2006.01)

(11)

(21) Application number: 05017271.7

(22) Date of filing: 09.08.2005

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:

AL BA HR MK YU

(30) Priority: 15.02.2005 US 57785

(71) Applicant: Chien, Hung-Chi

Sec. 5 Taipei (TW) (72) Inventor: Chien, Hung-Chi Sec. 5 Taipei (TW)

(74) Representative: Helms, Joachim Patentanwalt Dantestrasse 27 80637 München (DE)

(54) Oscillation mechanism

A suspension type oscillation mechanism includes a frame set (1), a casing (2), a crank set (3), an axial barrel (4) and a fastening rod (6). The frame set (1) provides an upper frame (11) with a frame hole (12). The casing (2) secures the frame set (1). The crank set (3) provides cranks rotationally joining to each other and an end of the initial one of the cranks is connected to an output shaft (32) of a motor eccentrically and the terminal one of the cranks providing a non-circular crank hole. The axial barrel (4) is cylindrical with a size less than the frame hole (12) and the casing hole (12). A bearing seat is secured to the casing and provides an inner bearing pressed by another end of the axial barrel. The fastening rod set is a screw rod and passes through a suspended article and the axial barrel (4). An upper end of the screw rod (61) engages with the crank hole with a nut and the lower end thereof engages with the suspended article by way of a rod seat. A collar extends from the top of the suspended article and presses against the bottom of the inner bearing.

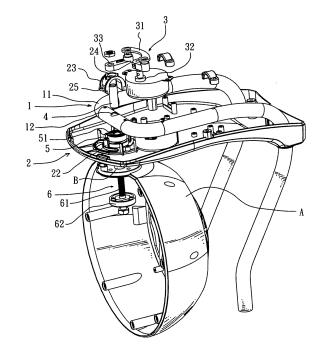


FIG. 1

20

40

45

50

55

FIELD OF THE INVENTION

[0001] The present invention relates to a suspension type oscillation mechanism and particularly to a driving shaft joined to a rotated shaft and the rotated shaft being joined to a suspended device so as allow the suspended device being capable of oscillating to and fro in a preset angular distance.

1

BACKGROUND OF THE INVENTION

[0002] Rotational mechanisms are frequently seen in our daily life being operated in different ways. Conventional cooling fan or hot-air fan can rotate to and fro in a preset angular distance. On the other hand, a stationary article being suspended is frequently used. The reason of the preceding arrangement is to accommodate the environment.

[0003] Taking a cold-air or hot-air casing body an example, the conventional way is to provide an upright frame attached with a cold- air or hot-air casing body and a crank is driven by an eccentric shaft of a motor. Then, the crank actuates a pivot to allow the cold or hot air casing body rotating to and fro in a preset angular distance.

[0004] Although the preceding structure can perform basic rotational function, the deficiency of the conventional way resides in that the cold or hot air casing body moves over the space surrounded by the frame such that a space available for rotation of the casing body has to be reserved in advance. Besides, movement at an open space often creates some problems concerning safety.

SUMMARY OF THE INVENTION

[0005] In order to overcome the shortcomings resulting from the preceding conventional rotational mechanism, the present invention provides a suspension type oscillation mechanism, which includes a frame set, a casing, a crank set, an axial barrel and a fastening rod. The frame set provides an upper frame with a frame hole. The casing secures the frame set. The crank set provides cranks rotationally joining to each other and an end of the initial one of the cranks is connected to an output shaft of a motor eccentrically. The axial barrel is cylindrical with a size less than the frame hole and he casing hole and an end thereof is joined to a crank hole of the terminal one of the cranks. A bearing seat is secured to the casing and provides an inner bearing pressed by another end of the axial barrel. The fastening rod set is a screw rod with both ends extending outward a suspended article after passing through the suspended article and the axial barrel for being fastened with nuts in a way of a collar extending from the top of the suspended article pressing against the inner bearing. Hence, output of the motor drives the suspended article to oscillate in a preset angular distance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention can be more fully understood by reference to the following description and accompanying drawings, in which:

[0007] Fig. 1 is an exploded perspective view of a suspension type oscillation mechanism according to the present invention;

[0008] Figs. 2 is an assembled perspective view of the suspension type oscillation mechanism according to the present invention; and

[0009] Fig. 3 is a sectional view of the suspension type oscillation mechanism according the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0010] The preferred embodiment of a suspension type oscillation mechanism according to the present invention is implemented to a hot-air fan such as a ceramic heating type hot-air fan, a fan such as a cool fan or an ordinary fan, an air cleaner, lighting device, video device, monitor and etc.

25 [0011] Referring to Figs. 1 to 3, basically, the suspension type oscillation mechanism according to the present invention includes a frame set 1, a casing 2, a crank set 3, an axial barrel 4, a bearing seat 5 and a fastening rod set 6.

30 [0012] The frame set 1 is a support frame and a hung article A can be confined in a space surrounded by the frame set 1. In order to be capable of hanging articles, the frame set 1 has an upper frame 11 with a frame hole 12 for being passed through with the axial barrel 4 and
35 the fastening rod set 6.

[0013] The casing 2, to which the bearing 5 and the fastening rod 6 is secured, provides a casing hole 21 corresponding to the axial barrel 4 and has a perforated casing post 22 and a post cover 23 at two sides thereof for confining and locating the upper frame 11. The post cover 23 has a cover hole 24 at the center thereof for the axial barrel 4 passing through and has a post hole 25 at both lateral sides thereof for engaging with the holes of the casing post 22. This is one of ways to confine the upper frame 11 between the post cover 23 and the casing 22. It is noted that other equivalent ways can be used too. [0014] The crank set 3 is attached to the casing 2 and provides a plurality of cranks joining each other to connect with an output shaft 32 of an eccentric motor such that the crank set 3 swings to and fro in an angular distance while the motor rotates. Because this is conventional art, no detail will described further. The crank 31 at the output end has a non-circular crank hole 33 for fitting with the axial barrel 4.

[0015] The axial barrel 4 is cylindrical has a size corresponding to the frame hole 12 and the casing hole 21 and passes through the frame hole 12 and with a little interference. During assembling, the upper end of the

15

20

35

45

50

axial barrel 4 is located at the crank hole 33 and the lower end thereof closely contacts with an inner bearing 51 of the bearing seat 5.

[0016] The bearing seat 5 is secured to the casing 22 with the inner bearing 51 being pressed by the axial barrel 4

[0017] The fastening rod set 6 has a screw rod 61 and a rod seat 62 and passes through the axial barrel 4. The lower end of the fastening rod set 6 passes through and engages with the suspended article A and the upper end thereof has a size corresponding to the crank hole 33 so as to engage with the crank hole 33 with a nut. Thus, the fastening rod set 6 with the suspended article A is driven by the crank set 3 to perform oscillation movement. The suspended article A tightly presses against the bottom of the inner bearing 51 with a collar B extending from the top thereof oscillate after the suspension type oscillation mechanism is completely assembled as shown in Fig. 3.

[0018] Referring to Figs. 1 to 3, the upper frame 11 is located at the casing 2 and the axial barrel 4 passes through the cover hole 24 and the frame hole 12 before pressing against the inner bearing 51. The screw rod 61 of the fastening rod assembly 6 passes through the suspended article A and the axial barrel 4 from the bottom and the upper end thereof is inserted into the crank hole 33 and secured with a nut. The extended collar B of the suspended article A presses against the bottom of the inner bearing 51 tightly so that the suspended article A can swing to and fro in a preset angular distance so as to form the suspension type oscillation mechanism.

[0019] While the suspension type oscillation mechanism according to the present invention is in operation, once the motor is started, output of the crank set 3 is swing to and fro in a preset angular distance to actuate the screw rod 61 so that the suspended article A can swing to and fro in a preset angular distance with respect to the frame set 1.

[0020] It is appreciated that the suspended article A oscillating with a preset angular distance in the frame set 1 is a type of oscillation confined in the frame set 1 by way of suspending and it is a novel structure among articles in the same class.

[0021] While the invention has been described with reference to the a preferred embodiment thereof, it is to be understood that any modifications or variations which without departing from the spirit of this invention defined by the appended claims, are still within the scope of the protection of the present invention.

Claims

- A suspension type oscillation mechanism, comprising:
 - a frame set, providing an upper frame with a frame hole;
 - a casing, securing the frame set;

a crank set, providing a plurality of cranks rotationally joining to each other and an end of the initial one of the cranks being connected to an output shaft of a motor eccentrically, the terminal one of the cranks providing a non-circular crank hole:

an axial barrel, being cylindrical with a size less than the frame hole and the casing hole at an end thereof;

a bearing seat, being secured to the casing and providing an inner bearing being pressed by another end of the axial barrel; and

a fastening rod set, being a screw rod, passing through a suspended article and the axial barrel, an upper end thereof engaging with the crank hole with a nut, a lower end thereof engaging with suspended article by way of a rod seat and a collar extending from the top of the suspended article pressing against the bottom of the inner bearing;

whereby, output of the motor drives the suspended article to oscillate in a preset angular distance.

- 25 2. The suspension type oscillation mechanism as defined in claim 1, wherein the casing provides a perforated casing post and a post cover 23 with a cover hole at two sides thereof for securing the upper frame with screws the upper frame and the post cover has a cover hole for the axial barrel passing through.
 - **3.** The suspension type oscillation mechanism as defined in claim 1, wherein the suspended article is a cooling fan, a fan, a hot-air fan or a air cleaner.
 - 4. The suspension type oscillation mechanism as defined in claim 1, wherein the suspended article is disposed in a space surrounded by the frame set.
- 40 5. The suspension type oscillation mechanism as defined in claim 1, wherein the screw rod at the part passing through the rod seat is not provided with screw threads.

55

3

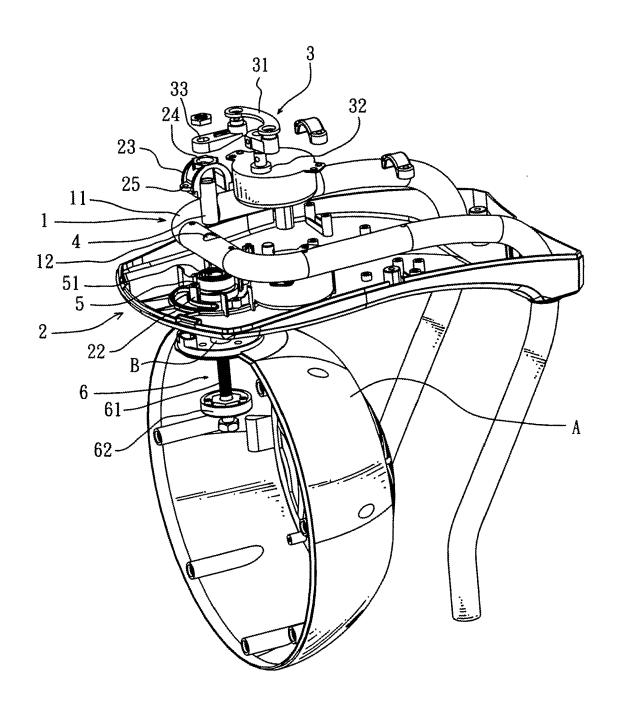


FIG. 1

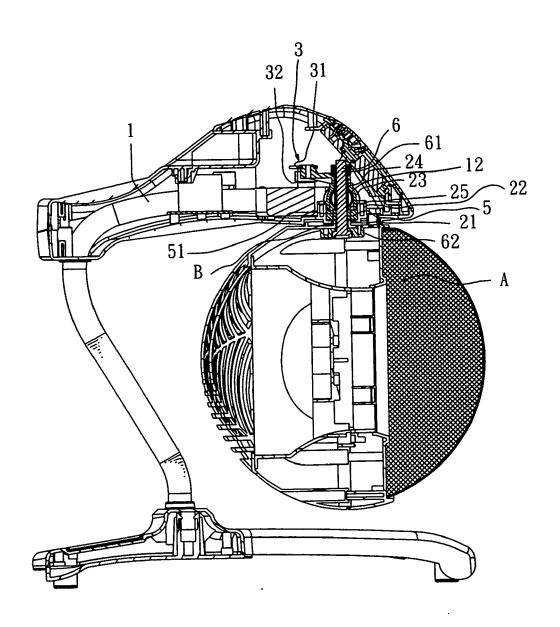


FIG. 2

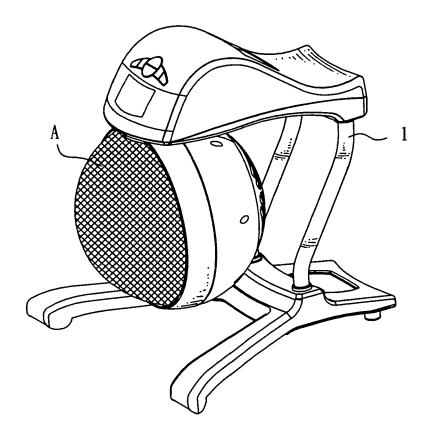


FIG. 3