| (19) |
 |
|
(11) |
EP 1 691 886 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims EN |
| (48) |
Corrigendum issued on: |
|
24.10.2012 Bulletin 2012/43 |
| (45) |
Mention of the grant of the patent: |
|
13.06.2012 Bulletin 2012/24 |
| (22) |
Date of filing: 19.11.2004 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/US2004/039154 |
| (87) |
International publication number: |
|
WO 2005/051477 (09.06.2005 Gazette 2005/23) |
|
| (54) |
SLIDE CLAMP
SCHIEBEKLEMME
REGULATEUR DE DEBIT A COULISSE
|
| (84) |
Designated Contracting States: |
|
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK
TR |
| (30) |
Priority: |
21.11.2003 US 719828
|
| (43) |
Date of publication of application: |
|
23.08.2006 Bulletin 2006/34 |
| (73) |
Proprietor: CareFusion 303, Inc. |
|
San Diego, CA 92130 (US) |
|
| (72) |
Inventor: |
|
- BOYNE-AITKEN, David E.
Cadnam,
Southampton S040 2NG (GB)
|
| (74) |
Representative: Richards, John et al |
|
Ladas & Parry LLP
Dachauerstrasse 37 80335 München 80335 München (DE) |
| (56) |
References cited: :
DE-A1- 3 631 411
|
US-A- 4 307 869
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
BACKGROUND OF THE INVENTION
[0001] The present invention relates generally to clamps used to control the flow of medical
fluid through an intravenous ("I.V.") tube, and more particularly, to a slide clamp
that safeguards against the inadvertent movement of the clamp from an occluding position
to a non-occluding position on the tube.
[0002] Physicians often desire that medical fluids be delivered to a patient with precision.
Therefore, instruments such as infusion pumps are used to regulate the delivery of
fluids with a high degree of accuracy. Such infusion pumps provide an occlusion of
the fluid line at all times. That is, there is never a direct flow path from fluid
source to patient at any time, although the point of occlusion provided by the infusion
pump varies. An undesirable situation may occur when fluid is free to flow through
the I.V. tube without regulation by the infusion pump or other instrument. This condition
is known as a free flow hazard. Activities such as priming of the fluid line or removal
of the fluid line from the pump raise the possibility of a free flow hazard. In order
to avoid such a free flow situation, a manual clamp may be placed along a portion
of the I.V. tube to crimp the tube and occlude the fluid passageway when necessary
to stop any flow.
[0003] Prior art clamps usable for occluding fluid lines took many different forms, including
the commonly known roller clamps and slide clamps. An example of a roller clamp is
shown in
U.S. Patent No. 3,802,463. Slide clamps are usually less expensive than roller clamps, operate in a different
manner, and are useful with automated activation and deactivation mechanisms. Many
slide clamps are formed of a plate having a flow regulating slot formed therein through
which the fluid line is disposed. The aperture typically has an occluding section
and a flow section. An I.V. tube is mounted through the aperture and is slidable in
the aperture to the occluding section, at which the tube is occluded, and to the flow
section at which position, fluid flow through the tube is not impeded. Even though
the occluding section imposes a high degree of friction to hold the tube in the slot
in an occluded configuration, the plate remains susceptible to dislodgement from this
configuration by an accidental blow or by snagging. If dislodgement were to occur
and the tube move from the occluding section and this movement pass undetected by
a nurse or other caregiver, then a potentially dangerous free flow hazard may exist.
[0004] A solution to accidental dislodgement has been contemplated by the prior art. By
making the tube contacting surface of the aperture extend over the entire depth of
the slide clamp, a relatively wide surface is left contacting the I.V. tube in an
operative position. This provides a significant frictional force to oppose accidental
dislodgement of the I.V. tube relative to the slide clamp between the flow section
and the occluding section. However, a drawback to this solution is that the increased
frictional resistance imparted by this device may make it difficult to move the tube
from the occluded section to the flow section and vice versa. Moreover, increased
frictional resistance may lead to rupturing of the tube wall after repeated clamping
and unclamping by the clamp.
[0005] Hence, a need has been recognized by those skilled in the art for an improved slide
clamp that will provide a more secure occluding configuration with a fluid line, yet
can be more easily moved to a flow position when desired. A need has also been recognized
for a simple design that is both less expensive to manufacture yet more effective
in operation.
[0006] U.S. Patent No. 4,307,869 discloses a one-way slide clamp having a slot member with a one-way passageway intermediate
a tube receiving section and a tube crimping section to restrain the tubing in the
crimping section, thereby permanently sealing the fluid passageway.
[0007] German Patent No.
3631411 discloses a hose clamp having a plurality of clamping cutouts of different internal
widths, arranged in a disc plane, in connection with one another.
INVENTION SUMMARY
[0008] The present invention provides a slide clamp for controlling the flow of medical
fluid through an I.V. tube. The slide clamp includes a pinch zone or necked-down section
that can resist movement of the tube out of the occlusion section of the clamp unless
an increased level of force is applied to the tube.
[0009] According to the invention, a slide clamp for use with a tube having a fluid passageway
comprises a plate having a longitudinal length and a transverse width and a slot disposed
within the plate, the slot having a width; the slot comprising a flow section in which
the width of the slot is dimensioned to allow free flow of fluid through the fluid
passageway when the tube is located in the flow section and an occlusion section in
which the width of the slot is dimensioned to prevent free flow of fluid through the
fluid passageway when the tube is located in the occlusion section, the slot also
comprising a pinch zone interconnecting the flow section and the occlusion section
in which the width of the slot has a narrow configuration in which it is less than
the width of the slot in the occlusion section, the pinch zone thereby resisting movement
of the tube from either the flow section or the occlusion section to another section,
wherein the width of the slot of the pinch zone also has an expanded configuration
in which it expands to permit movement of the tube through the pinch zone upon application
of a threshold force to the tube in the desired direction of movement of the tube,
wherein the pinch zone is bi-directional in that the tube may be moved through the
pinch zone from either the flow section or the occlusion section and the pinch zone
comprises a pair of curved beams between which is located the slot of the pinch zone.
[0010] The pinch zone may be formed such that the width of the slot resiliently returns
to the narrow configuration after the tube has passed through the pinch zone. Also,
the pinch zone may have a length less than a diameter of the tube when the tube is
located in the pinch zone. The pinch zone may be fabricated of a material having low
friction surface properties.
[0011] The curved beams may be movable between a first position at which the slot is in
the narrow configuration and a second position at which the slot is in the expanded
configuration, and the curved beams are formed so as to resiliently move between the
first and second positions, whereby the curved beams resist movement of the tube from
either the flow section or the occlusion section to another section. A pair of relieved
portions may be formed in the plate wherein one of the relieved portions is located
laterally outward from one of the curved beams and the other of the relieved portions
is located laterally outward from the other of the curved beams. The relieved portions
located outward of each curved beam may comprise rounded holes, the sizes of which
are selected to result in curved beams of a desired shape and flexibility, whereby
the flexibility of the curved beams determines the threshold of force required on
the tube to move through the pinch zone. The curved beams may be formed of a deformable
material that has a resiliency to regain its original shape after being subjected
to a force capable of deforming the material.
[0012] The curved beams may be symmetric whereby the pinch zone is bilateral in relation
to the adjacent flow section and the adjacent occlusion section. A biasing means for
biasing the curved beams to the first position is also provided and comprise material
of the plate from which the curved beams are formed wherein the curved beams are curved
toward one another when the pinch zone is in the narrow configuration, and wherein
the curved beams are flexed laterally outward away from one another when the pinch
zone is in the expanded configuration.
[0013] In some embodiments, the curved beams may be movable between a first position, wherein
the space between the curved beams has a width narrower than a width of the occlusion
section, and a second position wherein the curved beams flex to expand the width of
the slot to permit movement of the tube from the non-occlusion section to the occlusion
section and from the occlusion section to the non-occlusion section when the tube
is subjected to a force adequate to flex the curved beams, the curved beams being
formed so that they flex back to the first position after the tube has moved through
the slot, and wherein the curved beams resist movement of the tube from the occlusion
section to the non-occlusion section when the tube is subjected to a force inadequate
to flex the curved beams. Such a pinch zone may have a flat surface for contacting
the tube, wherein the surface is fabricated from a material having low friction surface
properties. A surface of the occlusion section for contacting the tube may be defined
by an edge coming to a point, and the occlusion section surface may be fabricated
from a material having low friction surface properties. Finally, the plate may be
made of a deformable and resilient material; the material having a resiliency to regain
its original shape after being subjected to a force capable of deforming the material.
Other features and advantages of the present invention will become apparent from the
following detailed description, taken in conjunction with the accompanying drawings,
which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014]
FIG. 1 is a top view of a slide clamp in accordance with aspects of the present invention
showing a slot having a flow section, an occlusion section, and a pinch zone interconnecting
the two
FIG. 2 is a side cross-sectional view of FIG. 1 taken along lines 2-2 showing the
flow section of the slot;
FIG. 3 is a side cross-sectional view of FIG. 1 taken along lines 3-3 showing the
occlusion section of the slot;
FIG. 4 is a side cross-sectional view of FIG. 1 taken along lines 4-4 showing the
pinch zone of the slot;
FIG. 5 is a perspective view of a slide clamp in accordance with aspects of the invention
showing a tube located in the flow section;
FIG. 6 is a perspective view of a slide clamp in accordance with aspects of the invention
showing a tube located in the pinch zone;
FIG. 7 is a top view of a slide clamp in accordance with aspects of the present invention
showing a tube located in the pinch zone with curved beams flexed outward to allow
the tube to pass;
FIG. 8 is a perspective view of a slide clamp in accordance with aspects of the invention
showing a tube located in the occluding section; and
FIG. 9 is a perspective view of a slide clamp in accordance with aspects of the invention
showing a tube located in the flow section of the slot, a mechanism for holding the
tube in position as the slide clamp is moved in relation to the tube, a mechanism
for moving the slide clamp, and a detector system for sensing the existence of the
two relieved portions of the plate to identify the slide clamp.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0015] Referring now to the drawings in more detail in which like numerals used across several
views indicate like or corresponding elements, there is shown in FIG. 1 a slide clamp
10 for controlling the flow of medical fluid through an intravenous (I.V.) tube (not
shown) located through the clamp. The clamp includes a plate 12 that forms the body
of the slide clamp and a slot 14 formed in the plate. The slot includes a flow section
16, shown in cross-sectional detail in FIG. 2, and an occlusion section 18, shown
in cross-sectional detail in FIG. 3. The slot further encompasses a pinch zone 20
located between the flow section and the occlusion section for resisting the accidental
dislodgement of the I.V. tube from the occlusion section to help prevent hazards associated
with free flow, as discuss above.
[0016] The pinch zone 20 appears as a necked down area and provides a slot length of reduced
width in comparison to the occlusion section 18 and thus functions as a stop that
resists movement of a tube that has been placed in the occlusion section from leaving
that section and moving to the flow section 16. The pinch zone of FIG. 1 is bilateral
and is located between the occlusion section and the flow section 16 and in the embodiment
of FIG. 1 it also resists movement of a tube from the flow section. Yet the stop section
is resilient so that its resistance can be overcome by applying increased force to
the tube to move the tube into and past the pinch zone in either direction. Because
the pinch zone is located between both the occlusion section and the flow section
and because it is bilateral, it provides a stop against movement from either section
into the other but will allow such movement when sufficient override force has been
applied to the tube in the desired direction of movement. Further, because of the
resilience of the pinch zone, overcoming its resistance will not permanently or plastically
deform the stop section and it will function multiple times.
[0017] As shown in FIG. 1, the pinch zone 20 is not only bilateral, but it is also symmetrical.
The end of it facing the occlusion section has the same configuration as the end of
it facing the flow section. A tapered lead section 22 is placed between pinch zone
20 and the flow section 16 in the embodiment of FIG. 1 although it may be considered
to form a part of the flow section. In another case, the tapered lead section may
be thought of as forming a part of the pinch zone, in which case the stop section
is then not symmetrical.
[0018] Considering the pinch zone 20 of FIG. 1 in further detail, a pair of curved beams
24 and 26 has the pinch zone slot 28 located between them. This configuration is shown
in more detail in the cross-sectional view of FIG. 4. As briefly discussed above,
the pinch zone slot is narrower than both the slot of the flow section 16 and the
slot of the occlusion section 18 and therefore provides resistance to movement of
a tube located in either section. However, the pinch zone slot nevertheless is a slot
through which a tube mounted in the slide clamp 10 may move under the right conditions.
In this case, the pinch zone slot is configured to expand to a larger size (expanded
configuration) to accommodate passage of a tube when pressure is placed upon the pinch
zone slot by a tube being forced into the pinch zone with a force greater than the
force holding the pinch zone in the narrow configuration shown in FIG. 1.
[0019] To achieve the expandable nature of the pinch zone 20 aperture 28, two apertures
are formed laterally outward from the pinch zone on opposite sides of the pinch zone
slot. The apertures are round in shape and due to their placement near the pinch zone
slot, they form the curved beams 24 and 26. That is, the first curved beam 24 is formed
as a result of forming the first aperture 30 laterally outward of the slot. Likewise,
the second curved beam 26 is formed by forming the second aperture 32 laterally outward
of the slot. The location and size of the apertures form the curved beams as well
as determine the amount of force necessary to overcome the beams and expand the pinch
zone slot. For example, the thinner the beams, the less force it will require to expand
the slot while the thicker the beams, the more force it will require to expand the
slot. It should also be recognized that thinner beams provide less of a stop force
against a tube in the occlusion section 18 moving to the flow section 16 and are more
prone to breakage. Thinner beams provide less protection against the free flow hazard
discussed above while thicker beams may require so much force to expand the pinch
zone that the tube integrity may be compromised.
[0020] The apertures 30 and 32 thus provide a spring-like feature that results in biasing
or urging the curved beams 24 and 26 inward to the pinch zone to stop or resist undesired
movement of the tube between occlusion section 18 and flow section 16. This is known
as the narrow configuration of the pinch zone slot. When the curved beams are at the
narrow configuration, pinch zone slot has a width that is narrower than the width
of the occlusion section 18. When the pinch zone is in the expanded configuration
in which the beams are pressed outwardly, the slot 28 of the pinch zone expands to
a wider width to permit the tube to traverse the pinch zone 20.
[0021] The curved beams 24 and 26 are integral with the plate 12 since they are formed of
the plate due to the apertures 30 and 32, as discussed above. It can be seen by reference
to FIG. 1 that the curved beams are rounded inwardly, i.e., towards the pinch zone
slot. They therefore present a rounded taper to the pinch zone facing in both directions;
i.e., towards the occlusion section and towards the flow section. The pinch zone is
therefore bilateral, or two-way, in that a tube can be moved from either the occlusion
section into the pinch zone or from the flow section into the pinch zone. Provided
that enough force is imparted to the tube in the desired direction of movement, the
curved beams will move outwardly to expand the pinch zone slot. Because the curved
beams are attached at either end to the plate with the aperture behind their centers,
and because the beams are formed of a resilient material, the beams may bend or flex
outwardly to the expanded configuration to accommodate the movement of a tube through
the pinch zone, yet will return to the narrow configuration shown in FIG. 1 once the
tube has passed through the pinch zone due to their resiliency and mounting configuration.
[0022] The above can be seen by reference to FIGS. 5, 6, 7, and 8. In FIG. 5, an I.V. tube
34 is shown residing in the flow section 16 of the slide clamp 10. When an occlusion
is desired, the I.V. tube is moved from the flow section through the pinch zone 20.
As shown in FIG. 6, the resilient curved beams 24 and 26 flex or deform outwardly
as the tube passes through the pinch zone. The action of the pinch zone can also be
seen in the top view of FIG. 7 in which the deformation of the apertures 30 and 32
from circles can be more clearly seen. The curved beams have flexed outwardly such
that they appear flattened to accommodate the passage of the tube. It may also be
noted from FIG. 7 that the length of the curved beams is less than the diameter of
the tube when the tube is flattened as shown. A portion of the inner passage 36 of
the tube is actually open and flow may occur. This is acceptable because the tube
is either coming from the flow section and moving to the occluding section or vice
versa. The purpose of the occluding section is to provide complete occlusion while
the pinch zone functions only to resist movement of the tube in either direction within
the clamp 10. The function of the occluding section 18 can be seen in FIG. 8 where
the tube is completely occluded across its entire diameter. Because the pinch zone
20 need not provide full occlusion of the complete tube diameter, it can be made shorter
in length and is easier-to-manufacture.
[0023] In the drawings, the apertures 30 and 32 used to form the curved beams 24 and 26
are circular; however, other shapes may be used.
[0024] In order to provide an effective pinch zone 20, the curved beams 24 and 26 must have
enough resistance against flexing outwardly such that it would take a significantly
larger force against the tube than that normally encountered in the ordinary use of
the slide clamp to move the tube through the pinch zone. This pinch zone force threshold
would normally be set above the force that could be expected from ordinary snagging
and accidental blows. As mentioned above, the flexibility of the curved beams is determined
by the thickness and width of the beams as well as the material from which the beams
are formed. Absent a force above the threshold, any attempt to move the tube out of
the occlusion section and back into the flow section would fail.
[0025] It should be noted also that after the tube has passed through the pinch zone 20,
the beams 24 and 26 flex back to their rest position at which the pinch zone slot
is in the narrow configuration. Once again, the pinch zone will provide an effective
stop against undesirable movement of the tube 34.
[0026] The plate 12 may be made of a deformable material with the resiliency to regain its
original shape after being deformed. It may consist of any plastic material that can
be injection molded and possess good elasticity such as, for example, polypropylene,
polyvinyl chloride, acrylonitrile butadiene styrene (ABS), or similar materials. Because
of this material, the particular configuration of the curved beams, and aided by the
presence of the apertures 30 and 32 located outwardly from their corresponding curved
beams, the curved beams demonstrate a spring-like characteristic. Thus, when adequate
force from the tube 34 is applied to the beams, the beams flex away from the tube
permitting the tube to pass into the occlusion section 18. Once the tube has passed
the pinch zone, the beams spring back to their original shape, as shown in FIGS. 1
and 8. However, too much resistance to flexing outwardly by the curved beams can have
a damaging effect on the wall of the tube. Thus the threshold force should not be
set too high.
[0027] The occlusion section 18 includes the pointed surface 38, seen in cross section in
FIG. 3. This pointed surface contacts the tube 34 and applies sufficient force to
crimp the wall of the tube. This results in an occlusion wherein all liquid flow through
the tube is stopped. Such an edge reduces the surface area contacting the tube to
thereby reduce the frictional force exerted on the tube as it is moved from the flow
section 16 to the occlusion section 18 and vice versa. Because of reduced frictional
force, moving the tube within the slide clamp 10 is less difficult than it would be
if the contacting surfaces of the occlusion section had a larger surface area. Further,
the surfaces of the occlusion section contacting the tube may be fabricated from a
material having low-friction surface properties such as Teflon, Delrin® (acetal resin),
Kel-F® (polychlorotrifluoroethylene), or any other suitable material. A material having
low friction surface properties helps eliminate difficulty in moving the tube within
the occlusion section. Moreover, the lower frictional forces created when the tubing
is crimped between the surfaces reduces the tendency of cutting or of substantially
weakening the tubing wall at the point of repeated crimping.
[0028] In a preferred embodiment, the surfaces of the pinch zone 20 contacting the tube
34 are flat as shown in FIG. 4 to avoid shearing the tube wall as it is moved through
the pinch zone should repetitive movement of the tube in the slide clamp be necessary.
As mentioned above, complete occlusion of the tube is not the function of the pinch
zone. To further avoid shearing or damage to the tube wall, the surfaces of the pinch
zone contacting the tube 32 may also be fabricated from a material having low-friction
surface properties such as Teflon, Delrin® (acetal resin), Kel-F® (polychlorotrifluoroethylene),
or any other suitable material.
[0029] Hence, an infusion set utilizing the clamp of the present invention may successfully
control fluid flow through an I.V. tube by manipulating the clamp and tube as stated
above. Unlike many prior art clamps, the clamp of the present invention safeguards
against the undesirable situation where a tube is inadvertently dislodged from an
occluding position. Here, the situation may occur when the tube 34, already in the
occlusion section 18, receives inadvertent force against it in the direction of the
flow section 16 of the slot. Such inadvertent force may result from an accidental
blow or snagging. Without the safeguard of the pinch zone, the tube may well move
to the flow section of the slide clamp 10 where fluid flow is uncontrolled. However
in accordance with aspects of the invention, the pinch zone blocks unintentional movement
of the tube 34 toward the flow section 16 thus preventing the possible hazard associated
with unexpected free flow.
[0030] While the slide clamp 10 may be moved manually across the tube to achieve the desired
flow or non-flow configuration of the tube, a mechanism may also be used. FIG. 9 presents
a system view of the use of the slide clamp in which it functions in a medical instrument
40. As before, a tube 34 is engaged in the slide clamp, in this case, in the flow
section 16 of the slot 14. The tube is anchored above and below the slide clamp with
tube anchors 42 and 44. The slide clamp is engaged with a slide clamp controller 46
that controls the position of the slide clamp in relation to the tube. In one case,
the tube anchors hold the tube stationary while the slide clamp is moved in relation
to the tube by the slide clamp. In this case, the slide clamp controller has just
moved the slide clamp to the right to allow flow through the tube. When the flow is
completed and the tube is to be removed from the instrument, the slide clamp controller
will then move the slide clamp to the left to occlude the tube before it is removed
from the instrument. In another embodiment, the slide clamp controller remains stationary
and the tube anchors move the tube towards or away from the slide clamp to permit
or stop flow through the tube as desired.
[0031] A slide clamp identification system 48 is also provided in which transmitters 50
transmit beams of energy through the apertures 30 and 32 of the slide clamp 10. Sensors
52 located on the opposite side of the slide clamp detect the beams and convey their
signals to a processor 54. The processor monitors the transmitters and the sensors
and based on receiving or not receiving detection signals from the sensors, identifies
the slide clamp or determines that it is not appropriate for use in the instrument
40. The processor may also control the slide clamp controller 46. Many details have
not been included in this discussion to preserve clarity. For example, another detector
system may be used to determine that a slide clamp, any slide clamp, has been inserted
into the instrument. A display or audio device may be provided to communicate information
concerning the identification of lack of identification of the slide clamp. The clamp
controller 46 may not function if the processor determines that the slide clamp cannot
be identified.
1. A slide clamp (10) for use with a tube having a fluid passageway, the slide clamp
(10) comprising:
a plate (12) having a longitudinal length and a transverse width; and
a slot (14) disposed within the plate (12), the slot (14) having a width;
the slot (14) comprising a flow section (16) in which the width of the slot (14) is
dimensioned to allow free flow of fluid through the fluid passageway when the tube
is located in the flow section (16) and an occlusion section (18) in which the width
of the slot (14) is dimensioned to prevent free flow of fluid through the fluid passageway
when the tube is located in the occlusion section (18);
the slot (14) also comprising a pinch zone (20) interconnecting the flow section (16)
and the occlusion section (18) in which the width of the slot (14) has a narrow configuration
at which the width of the slot (14) is less than the width in the occlusion section
(18), the pinch zone (20) thereby resisting movement of the tube from either the flow
section (16) or the occlusion section (18) to another section, the slot (14) of the
pinch zone (20) also having an expanded configuration at which the width of the slot
(14) expands to permit movement of the tube through the pinch zone (20) upon application
of a threshold force to the tube in the desired direction of movement of the tube;
characterized in that:
the pinch zone (20) is bi-directional in that the tube may be moved through the pinch zone (20) from either the flow section (16)
or the occlusion section (18); and
the pinch zone (20) comprises a pair of curved beams (24, 26) between which is located
the slot (28) of the pinch zone (20).
2. The slide clamp (10) of claim 1 wherein the pinch zone (20) is formed such that the
width of the slot (28) of the pinch zone (20) resiliently returns to the narrow configuration
after the tube has passed through the pinch zone (20).
3. The slide clamp (10) of claim 1 wherein the pinch zone (20) has a length and the tube
has a diameter, the length of the pinch zone (20) being less than the diameter of
the tube when the tube is located in the pinch zone (20).
4. The slide clamp (10) of claim 1 wherein the pinch zone (20) is fabricated of a material
having low friction surface properties.
5. The slide clamp (10) of claim 1:
wherein the curved beams (24, 26) comprise a first position at which the slot (28)
of the pinch zone (20) is in the narrow configuration and a second position at which
the slot (28) of the pinch zone (20) is in the expanded configuration; and
the curved beams (24, 26) are formed so as to resiliently move between the first and
second
positions;
whereby the curved beams (24, 26) resist movement of the tube from either the flow
section (16) or the occlusion section (18) to another section.
6. The slide clamp (10) of claim 5 further comprising a pair of apertures (30, 32) formed
in the plate (12) wherein one (30) of the apertures is located laterally outward from
one (24) of the curved beams and the other (32) of the apertures is located laterally
outward from the other (26) of the curved beams.
7. The slide clamp (10) of claim 6 wherein the apertures (30, 32) located outward of
each curved beam (24, 36) comprise rounded holes, the sizes of which are selected
to result in curved beams (24, 26) of a desired shape and flexibility;
whereby the flexibility of the curved beams (24, 26) determines the threshold of force
required on the tube to move through the pinch zone (20).
8. The slide clamp (10) of claim 5 wherein the curved beams (24, 26) are formed of a
deformable material that has a resiliency to regain its original shape after being
subjected to a force capable of deforming the material.
9. The slide clamp (10) of claim 5 wherein the curved beams (24, 26) are symmetrical;
whereby the pinch zone (20) is bilateral in relation to the adjacent flow section
(16) and the adjacent occlusion section (18).
10. The slide clamp (10) of claim 6 further comprising a biasing means for biasing the
curved beams to the first position.
11. The slide clamp (10) of claim 10 wherein the biasing means comprise material of the
plate (12) from which the curved beams are formed;
wherein the curved beams (24, 26) are curved toward one another when the pinch zone
(20) is in the narrow configuration;
wherein the curved beams (24, 26) are flexed laterally outward away from one another
when the pinch zone (20) is in the expanded configuration.
12. The slide clamp (10) of claim 1, wherein the curved beams (24, 26) are movable between
a first position wherein the slot (28) between the curved beams has an unexpanded
width narrower than a width of the occlusion section (18) and a second position wherein
the curved beams (24, 26) flex to expand the width of the slot (28) to permit movement
of the tube from the flow section (16) to the occlusion section (18) and from the
occlusion section (18) to the flow section (16) when the tube is subjected to a force
adequate to flex the curved beams (24, 26);
wherein the curved beams (24, 26) being formed so that they flex back to the first
position after the tube has moved through the slot (14); and
wherein the curved beams (24, 26) resist movement of the tube from the occlusion section
(18) to the flow section (16) when the tube is subjected to a force inadequate to
flex the curved beams (24, 26).
13. The slide clamp (10) of claim 12 further comprising a relief portion adjacent each
curved beam for providing relief during flexing of the curved beam.
14. The slide clamp (10) of claim 12 wherein the pinch zone (20) has a flat surface for
contacting the tube.
15. The slide clamp (10) of claim 14 wherein the flat surface is fabricated from a material
having low friction surface properties.
16. The slide clamp (10) of claim 12 wherein a surface of the occlusion section for contacting
the tube is defined by an edge coming to a point.
17. The clamp (10) of claim 16 wherein the occlusion section surface is fabricated from
a material having low friction surface properties.
18. The slide clamp (10) of claim 12 wherein the plate (12) is made of a deformable and
resilient material, the material has a resiliency to regain its original shape after
being subjected to a force capable of deforming the material.
1. Schiebeklemme (10) zum Einsatz in Verbindung mit einer Röhre mit einem Fluiddurchgang,
wobei die Schiebeklemme (10) folgendes umfasst:
eine Platte (12) mit einer longitudinalen Länge und einer transversalen Breite; und
einen Schlitz (14), der in der Platte (12) angeordnet ist, wobei der Schlitz (14)
eine Breite aufweist;
wobei der Schlitz (14) einen Strömungsabschnitt (16) umfasst, in dem die Breite des
Schlitzes (14) so bemessen ist, dass sie eine ungehinderte Fluidströmung durch den
Fluiddurchgang ermöglicht, wenn sich die Röhre in dem Strömungsabschnitt (16) befindet,
und mit einem Okklusionsabschnitt (18), in dem die Breite des Schlitzes (14) so bemessen
ist, dass sie eine ungehinderte Fluidströmung durch den Fluiddurchgang verhindert,
wenn sich die Röhre in dem Okklusionsabschnitt (18) befindet;
wobei der Schlitz (14) ferner eine Klemmzone (20) umfasst, welche den Strömungsabschnitt
(16) und den Okklusionsabschnitt (18) miteinander verbindet, in der die Breite des
Schlitzes (14) eine schmale Konfiguration aufweist, bei der die Breite des Schlitzes
(14) kleiner ist als die Breite des Okklusionsabschnitts (18), wobei die Klemmzone
(20) dadurch einer Bewegung der Röhre entweder von dem Strömungsabschnitt (16) oder
von dem Okklusionsabschnitt (18) zu einem anderen Abschnitt widersteht, wobei der
Schlitz (14) der Klemmzone (20) ferner eine erweiterte Konfiguration aufweist, bei
der die Breite des Schlitzes (14) expandiert, um eine Bewegung der Röhre durch die
Klemmzone (20) zu ermöglichen, wenn eine Schwellenkraft in die gewünschte Bewegungsrichtung
der Röhre auf die Röhre ausgeübt wird
dadurch gekennzeichnet, dass:
die Klemmzone (20) dahingehend bidirektional ist, dass die Röhre entweder von dem
Strömungsabschnitt (16) oder von dem Okklusionsabschnitt (18) durch die Klemmzone
(20) bewegt werden kann; und
die Klemmzone (20) ein Paar gekrümmter Träger (24, 26) umfasst, zwischen denen der
Schlitz (28) der Klemmzone (20) angeordnet ist.
2. Schiebeklemme (10) nach Anspruch 1, wobei die Klemmzone (20) so ausgebildet ist, dass
die Breite des Schlitzes (28) der Klemmzone (20) elastisch zu der schmalen Konfiguration
zurückkehrt, nachdem die Röhre durch die Klemmzone (20) getreten ist.
3. Schiebeklemme (10) nach Anspruch 1, wobei die Klemmzone (20) eine Länge aufweist,
und wobei die Röhre einen Durchmesser aufweist, wobei die Länge der Klemmzone (10)
kleiner ist als der Durchmesser der Röhre, wenn sich die Röhre in der Klemmzone (20)
befindet.
4. Schiebeklemme (10) nach Anspruch 1, wobei die Klemmzone (20) aus einem Material mit
den Oberflächeneigenschaften einer geringen Reibung hergestellt wird.
5. Schiebeklemme (10) nach Anspruch 1,
wobei die gekrümmten Träger (24, 26) eine erste Position umfassen, an der der Schlitz
(28) der Klemmzone (20) sich in der schmalen Konfiguration befindet, und mit einer
zweiten Position, an der sich der Schlitz (28) in der Klemmzone (20) in der erweiterten
Konfiguration befindet; und
wobei die gekrümmten Träger (24, 26) so ausgebildet sind, dass sie sich elastisch
zwischen den ersten und zweiten Positionen bewegen;
wodurch die gekrümmten Träger (24, 26) einer Bewegung der Röhre entweder von dem Strömungsabschnitt
(16) oder von dem Okklusionsabschnitt (18) zu dem anderen Abschnitt widerstehen.
6. Schiebeklemme (10) nach Anspruch 5, wobei diese ferner ein Paar von Öffnungen (30,
32) umfasst, die in der Platte (12) ausgebildet sind, wobei eine (30) der Öffnungen
lateral auswärts eines (24) der gekrümmten Träger angeordnet ist, und wobei die andere
(32) Öffnung lateral auswärts des anderen (26) der gekrümmten Träger angeordnet ist.
7. Schiebeklemme (10) nach Anspruch 6, wobei die außerhalb jedes gekrümmten Trägers (24,
26) angeordneten Öffnungen (30, 32) abgerundete Löcher umfassen, deren Größen so ausgewählt
werden, dass sie zu gekrümmten Trägern (24, 26) einer gewünschten Form und Flexibilität
führen;
wobei die Flexibilität der gekrümmten Träger (24, 26) die an der Röhre erforderliche
Schwellenkraft zur Bewegung durch die Klemmzone (20) bestimmt.
8. Schiebeklemme (10) nach Anspruch 5, wobei die gekrümmten Träger (24, 26) aus einem
verformbaren Material gebildet werden, das eine Elastizität aufweist, um wieder seine
ursprüngliche Form anzunehmen, nachdem es einer Kraft ausgesetzt worden ist, die in
der Lage ist, das Material zu verformen.
9. Schiebeklemme (10) nach Anspruch 5, wobei die gekrümmten Träger (24, 26) symmetrisch
sind; wobei die Klemmzone (20) bilateral ist im Verhältnis zu dem benachbarten Strömungsabschnitt
(16) und dem benachbarten Okklusionsabschnitt (18).
10. Schiebeklemme (10) nach Anspruch 6, wobei diese ferner eine Vorbelastungseinrichtung
zur Vorbelastung der gekrümmten Träger an die erste Position umfasst.
11. Schiebeklemme (10) nach Anspruch 10, wobei die Vorbelastungseinrichtung ein Material
der Platte (12) umfasst, aus dem die gekrümmter Träger gebildet werden;
wobei die gekrümmten Träger (24, 26) in Richtung zueinander gekrümmt werden, wenn
sich die Klemmzone (20) in der schmalen Konfiguration befindet;
wobei die gekrümmten Träger (24, 26) lateral nach außen, voneinander weggehend gebogen
werden, wenn sich die Klemmzone (20) in der erweiterten Konfiguration befindet.
12. Schiebeklemme (10) nach Anspruch 1, wobei die gekrümmten Träger (24, 26) beweglich
sind zwischen einer ersten Position, an der der Schlitz (28) zwischen den gekrümmten
Trägern eine Breite im nicht erweiterten Zustand aufweist, die schmaler ist als eine
Breite des Okklusionsabschnitts (18), und einer zweiten Position, an der sich die
gekrümmten Träger (24, 26) biegen, um die Breite des Schlitzes (28) zu erweitern,
um eine Bewegung der Röhre von dem Strömungsabschnitt (16) zu dem Okklusionsabschnitt
(18) und vom dem Okklusionsabschnitt (18) zu dem Strömungsabschnitt (16) zu ermöglichen,
wenn die Röhre einer Kraft ausgesetzt wird, die ausreicht, um die gekrümmten Träger
(24, 26) zu biegen;
wobei die gekrümmten Träger (24, 26) so geformt sind, dass sie zurück an die erste
Position springen, nachdem sich die Röhre durch den Schlitz (14) bewegt hat; und
wobei die gekrümmten Träger (24, 26) einer Bewegung der Röhre von dem Okklusionsabschnitt
(18) zu dem Strömungsabschnitt (16) widerstehen, wenn die Röhre einer Kraft ausgesetzt
wird, die nicht ausreicht, um die gekrümmten Träger (24, 26) zu biegen.
13. Schiebeklemme (10) nach Anspruch 12, wobei diese ferner einen Entlastungsabschnitt
angrenzend an jeden gekrümmten Träger umfasst, um eine Entlastung während dem Biegen
des gekrümmten Trägers vorzusehen.
14. Schiebeklemme (10) nach Anspruch 12, wobei die Klemmzone (20) eine flache Oberfläche
zur Kontaktherstellung mit der Röhre aufweist.
15. Schiebeklemme (10) nach Anspruch 14, wobei die flache Oberfläche aus einem Material
mit Oberflächeneigenschaften einer geringen Reibung hergestellt wird.
16. Schiebeklemme (10) nach Anspruch 12, wobei eine Oberfläche des Okklusionsabschnitts
zur Kontaktherstellung mit der Röhre durch eine zu einer Spitze verlaufenden Kante
definiert wird.
17. Klemme (10) nach Anspruch 16, wobei die Oberfläche des Okklusionsabschnitts aus einem
Material mit Oberflächeneigenschaften einer geringen Reibung hergestellt wird.
18. Schiebeklemme (10) nach Anspruch 12, wobei die Platte (12) aus einem verformbaren
und elastischen Material besteht, wobei da Material die nötige Elastizität besitzt,
um wieder an seine ursprüngliche Form zurückzukehren, nachdem es einer Kraft ausgesetzt
worden ist, die in der Lage ist, das Material zu verformen.
1. Régulateur de débit à coulisse (10) à utiliser avec un tube ayant un passage de fluide,
le régulateur de débit à coulisse (10) comprenant :
une plaque (12) ayant une longueur longitudinale et une largeur transversale ; et
une fente (14) disposée à l'intérieur de la plaque (12), la fente (14) ayant une largeur
;
la fente (14) comprenant une section d'écoulement (16) dans laquelle la largeur de
la fente (14) est dimensionnée pour permettre l'écoulement libre de fluide à travers
le passage de fluide lorsque le tube est situé dans la section d'écoulement (16) et
une section d'occlusion (18) dans laquelle la largeur de la fente (14) est dimensionnée
pour empêcher un écoulement libre de fluide à travers le passage de fluide lorsque
le tube est situé dans la section d'occlusion (18) ;
la fente (14) comprenant également une zone de pincement (20) interconnectant la section
d'écoulement (16) et la section d'occlusion (18) dans laquelle la largeur de la fente
(14) a une configuration étroite à laquelle la largeur de la fente (14) est inférieure
à la largeur dans la section d'occlusion (18), la zone de pincement (20) résistant
ainsi au mouvement du tube depuis la section d'écoulement (16) ou la section d'occlusion
(18) vers une autre section, la fente (14) de la zone de pincement (20) ayant également
une configuration étendue à laquelle la largeur de la fente (14) s'étend pour permettre
un mouvement du tube à travers la zone de pincement (20) lors de l'application d'une
force seuil au tube dans la direction souhaitée de mouvement du tube ;
caractérisé en ce que :
la zone de pincement (20) étant bidirectionnelle, le tube peut être déplacé à travers
la zone de pincement (20) depuis la section d'écoulement (16) ou la section d'occlusion
(18) ; et
la zone de pincement (20) comprend une paire de poutres courbes (24, 26) entre lesquelles
se trouve la fente (28) de la zone de pincement (20).
2. Régulateur de débit à coulisse (10) selon la revendication 1, dans lequel la zone
de pincement (20) est formée de telle sorte que la largeur de la fente (28) de la
zone de pincement (20) revient de façon élastique à la configuration étroite après
que le tube est passé à travers la zone de pincement (20).
3. Régulateur de débit à coulisse (10) selon la revendication 1, dans lequel la zone
de pincement (20) a une longueur et le tube a un diamètre, la longueur de la zone
de pincement (20) étant inférieure au diamètre du tube lorsque le tube est situé dans
la zone de pincement (20).
4. Régulateur de débit à coulisse (10) selon la revendication 1, dans lequel la zone
de pincement (20) est fabriquée en un matériau ayant des propriétés de surface à faible
friction.
5. Régulateur de débit à coulisse (10) selon la revendication 1 :
dans lequel les poutres courbes (24, 26) comprennent une première position à laquelle
la fente (28) de la zone de pincement (20) est dans la configuration étroite et une
seconde position à laquelle la fente (28) de la zone de pincement (20) est dans la
configuration étendue ; et
les poutres courbes (24, 26) sont formées de manière à se déplacer de façon élastique
entre les première et seconde positions ;
moyennant quoi les poutres courbes (24, 26) résistent au mouvement du tube depuis
la section d'écoulement (16) ou la section d'occlusion (18) vers une autre section.
6. Régulateur de débit à coulisse (10) selon la revendication 5, comprenant en outre
une paire d'ouvertures (30, 32) formées dans la plaque (12) dans lequel l'une (30)
des ouvertures est située latéralement vers l'extérieur depuis l'une des poutres courbes
(24) et l'autre (32) des ouvertures est située latéralement vers l'extérieur depuis
l'autre des poutres courbes (26).
7. Régulateur de débit à coulisse (10) selon la revendication 6, dans lequel les ouvertures
(30, 32) situées vers l'extérieur de chaque poutre courbe (24, 26) comprennent des
trous arrondis, dont les tailles sont sélectionnées pour produire des poutres courbes
(24, 26) d'une forme et d'une flexibilité souhaitées ;
moyennant quoi la flexibilité des poutres courbes (24, 26) détermine le seuil de la
force requise sur le tube pour qu'il se déplace à travers la zone de pincement (20).
8. Régulateur de débit à coulisse (10) selon la revendication 5, dans lequel les poutres
courbes (24, 26) sont formées d'un matériau déformable qui a une résilience pour reprendre
sa forme initiale après avoir été soumis à une force capable de déformer le matériau.
9. Régulateur de débit à coulisse (10) selon la revendication 5, dans lequel les poutres
courbes (24, 26) sont symétriques ;
moyennant quoi la zone de pincement (20) est bilatérale par rapport à la section d'écoulement
adjacente (16) et à la section d'occlusion adjacente (18).
10. Régulateur de débit à coulisse (10) selon la revendication 6, comprenant en outre
un moyen de rappel pour rappeler les poutres courbes vers la première position.
11. Régulateur de débit à coulisse (10) selon la revendication 10, dans lequel les moyens
de rappel comprennent un matériau de la plaque (12) à partir duquel les poutres courbes
sont formées ;
dans lequel les poutres courbes (24, 26) sont courbées l'une vers l'autre lorsque
la zone de pincement (20) est dans la configuration étroite ;
dans lequel les poutres courbes (24, 26) sont courbées l'une à l'opposé de l'autre
lorsque la zone de pincement (20) est dans la configuration étendue.
12. Régulateur de débit à coulisse (10) selon la revendication 1, dans lequel les poutres
courbes (24, 26) sont mobiles entre une première position dans laquelle la fente (28)
entre les poutres courbes a une largeur non étendue plus étroite qu'une largeur de
la section d'occlusion (18) et une seconde position dans laquelle les poutres courbes
(24, 26) fléchissent pour s'étendre sur la largeur de la fente (28) pour permettre
le mouvement du tube depuis la section d'écoulement (16) vers la section d'occlusion
(18) et depuis la section d'occlusion (18) vers la section d'écoulement (16) lorsque
le tube est soumis à une force suffisante pour fléchir les poutres courbes (24, 26)
;
dans lequel les poutres courbes (24, 26) sont formées de sorte qu'elles fléchissent
pour reprendre la première position après que le tube s'est déplacé à travers la fente
(14) ; et
dans lequel les poutres courbes (24, 26) résistent au mouvement du tube depuis la
section d'occlusion (18) vers la section d'écoulement (16) lorsque le tube est soumis
à une force inadéquate pour fléchir les poutres courbes (24, 26).
13. Régulateur de débit à coulisse (10) selon la revendication 12, comprenant en outre
une partie de décharge adjacente à chaque poutre courbe pour fournir une décharge
pendant la flexion de la poutre courbe.
14. Régulateur de débit à coulisse (10) selon la revendication 12, dans lequel la zone
de pincement (20) a une surface plate pour entrer en contact avec le tube.
15. Régulateur de débit à coulisse (10) selon la revendication 14, dans lequel la surface
plate est fabriquée en un matériau ayant des propriétés de surface à faible friction.
16. Régulateur de débit à coulisse (10) selon la revendication 12, dans lequel une surface
de la section d'occlusion pour entrer en contact avec le tube est définie par un bord
venant à un point.
17. Régulateur de débit à coulisse (10) selon la revendication 16, dans lequel la surface
de la section d'occlusion est fabriquée en un matériau ayant des propriétés de surface
à faible friction.
18. Régulateur de débit à coulisse (10) selon la revendication 12, dans lequel la plaque
(12) est faite en un matériau déformable et élastique, le matériau a une résilience
pour reprendre sa forme initiale après avoir été soumis à une force capable de déformer
le matériau.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description