EUROPEAN PATENT APPLICATION

(43) Date of publication:

23.08.2006 Bulletin 2006/34

(51) Int Cl.: H04L 29/12^(2006.01)

(11)

(21) Application number: 05290348.1

(22) Date of filing: 16.02.2005

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Designated Extension States:

AL BA HR LV MK YU

(71) Applicant: ALCATEL 75008 Paris (FR)

(72) Inventor: Whal, Stefan
71701 Schwieberdingen (DE)

(74) Representative: Brose, Gerhard et al Alcatel, Intellectual Property Department Stuttgart 70430 Stuttgart (DE)

- (54) Method to establish a peer-to-peer connection between two user agents located behind symmetric NATs
- (57) A method to establish an Internet connection between a first (1) and a second (2) user agent is described, wherein a NAT-table entry in a controllable NAT (7) located in the Internet (3) is generated, wherein said NAT-

table entry comprises public IP-address:Port pairs that are communicated to the user agents (1, 2), wherein the user agents (1, 2) use said public IP-address:port pairs for establishing an Internet connection between each other via the controllable NAT (7).

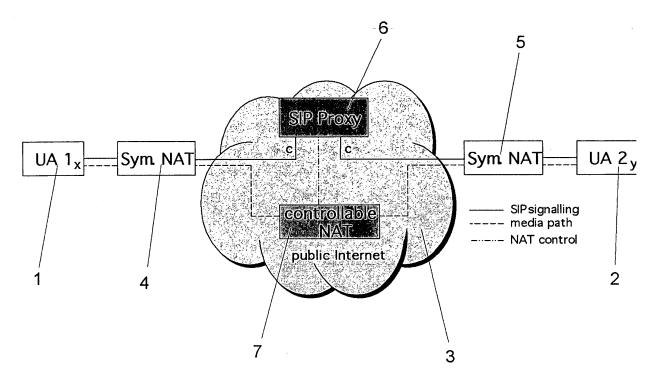


Fig. 1

EP 1 694 034 A1

40

50

Description

Technical field:

[0001] The invention relates to a method to establish an Internet connection between a first and a second user agent optionally each one located behind a symmetric NAT, according to the specifying features of claim 1.

Background of the invention:

[0002] Network Address Translation, NAT commonly is being used by many service providers and private individuals as a way to get around the problem of not having enough IP addresses. An enterprise may have a block of IP addresses assigned to them, but many more computers than the allocated IP addresses. Alternatively, an individual may have a DSL connection with one IP address, but want to have multiple computers hooked up to the Internet. NAT solves this problem by mapping internal addresses to external or public addresses. An internal IP-address:Port pair is mapped to an external IP-address:port pair, and whenever the NAT receives a packet with the external IP-address:Port pair, it knows how to reroute the packet back to the internal IP-address: Port pair.

[0003] There are four types of NATs known:

- full cone NAT
- restricted cone NAT
- port restricted cone NAT
- symmetric NAT.

[0004] A full cone NAT comprises a NAT table that stores temporary IP-address and port bindings. Each record in the NAT-table of a full cone NAT consists of the internal source IP-address of an internal device located on the private site of the NAT, the used internal source port and the assigned external source port on the Internet site of the NAT. Incoming packets from the Internet are allowed to get through the NAT if they are addressed to the external source port of the NAT. New entries within this NAT table are generated each time an outbound packet is sent to the public Internet. If incoming or outgoing packets do not refresh a NAT-table entry said entry will be withdrawn after a specified period of time. Thereby the full cone NAT accepts all incoming packets whose destination port matches an external source port comprised in any entry in the NAT table, independently from where the packet was sent.

[0005] In Fig. 3, showing an example of a full cone NAT, any public Internet host which addresses the NAT and uses the external source port 61795 of the NAT as destination port is accepted by the NAT and the NAT will translate the destination IP-address:port pair to 10.0.0.101:12836.

[0006] In contrast to the Full Cone NAT, a restricted cone NAT additionally uses a destination IP-address to

identify inbound IP packets. Therefore, as shown in Fig. 4, the NAT table entry is extended by the public IP-address of a public Internet host. Restricted cone NATs use the external source IP-address and generate an external source port from the internal source IP-address and port, which means, that as long as those values do not change also the external source IP-address and port remains the same. If an application would use the same internal source port on the internal device to communicate with two different hosts on the public Internet, the external IP source port is exactly the same for both hosts, nevertheless two record entries are generated in the NAT table which differ only concerning the host IP addresses. However, the NAT will block packets coming from another host, until the client sends out a packet to said other hosts public IP-address. Once that is done, both hosts can send packets back to the same internal source port, and they will both have the same mapping through the NAT

[0007] The port restricted cone NAT is a further extension of the restricted cone NAT wherein the NAT will block all packets unless the internal device had previously sent out a packet to the IP-address and port of the host that is sending to the NAT. The port restricted cone NAT performs the follow check for every incoming packet: First, it extracts the destination port and verifies whether there exists an valid entry in the NAT table. If there is no entry then the packet is dropped. In the other case, the NAT compares the host IP-address:port pair with the NAT table entries. If these values match, the NAT performs the IP-address and port translations and forwards the packet to the internal device. Otherwise the packet is dropped (Fig. 5). The external source port used by the NAT is always the same as long as the internal source IP-address and port remain the same. The NAT table could store further entries that differ only concerning the destination IP-address:port pair.

[0008] The behaviour of the symmetric NAT is almost the same as for the port restricted cone NAT. The difference is that a specific mapping of internal source IP-address:port pair to the NAT's external source IP-address: port pair is dependant on the destination IP-address:port pair that the packet is sent to. As soon as one of these four values changes, the symmetric NAT generates at least a new external source port and adds a further entry in the NAT table (Fig. 6). Due to the strategy described above, the devices behind a symmetric NAT are very well secured against any kind of unfriendly access. But a drawback arises from the strong blocking situation in case of e.g. connection set-ups using e.g. the Session Initialization Protocol, SIP. Applications to be used e.g. to establish a peer-to-peer connection to be used for telephone communication via the Internet typically use SIP signaling. Such applications are known as user agents. The SIP signaling protocol has to tell the peer the destination IP-address:port pair for the upcoming media session during the set up phase. But the external port used by the symmetric NAT cannot be determined in advance and the symmetric NAT will generate a NAT port out of

40

45

50

55

the internal source IP-address:port pair of the device providing said user agent located behind the symmetric NAT and the destination IP-address:port pair at the very moment when the first packet is sent to the destination IP-address:port pair. If the other host is also shielded by a symmetric NAT, the worst case situation is reached.

[0009] To connect two user agents located behind symmetric NATs it is known to use relays located in the Internet. Such relays are adding a not negligible packet delay and are not scalable enough. Furthermore relays cut a peer-to-peer session into two sessions from relay to a first peer and from relay to a second peer. Moreover the relay involves functions above transport layer. Due to this, relays are not advantageous to be used e.g. to establish a connection between two user agents to be used for telephone calls via the Internet.

[0010] So up to now, no solution is known to peer-topeer connect two user agents with each other when at least one is located behind a symmetric NAT.

[0011] Since today all kind of the described NATs are used, a potential solution should also be able to be used in combination with user agents not located behind NATs and also in combination with user agents located behind other NATs than symmetric NATs.

[0012] Such potential solutions are disclosed in the Internet Engineering Task Force Internet Draft "NAT and Firewall Scenarios and Solutions for SIP", June, 2002. The problems of firewall and NAT traversal for SIP is classified as complex. This is due, in part, to the large number of different scenarios and the multitude of solutions developed to solve them. In this Internet Draft, various scenarios are enumerated which can arise, and for each, point to some of the existing solutions for that scenario are presented with call flows and explanations for how it works.

Technical purpose of the invention:

[0013] The technical purpose of the invention is to develop a method that allows establishing an Internet connection to be used to exchange data between two user agents, wherein at least one user agent can be located behind a symmetric NAT.

Disclosure of the invention and its advantages:

[0014] The invention's technical purpose is fully met by the proposed method to establish an Internet connection like e.g. a session between a first and a second user agent wherein a NAT-table entry in a controllable NAT located in the Internet is generated, e.g. by a server or by the controllable NAT itself, wherein said NAT-table entry comprises public IP-address:Port pairs that are communicated to the user agents e.g. by the server, wherein the user agents use said public IP-address:port pairs for establishing an Internet connection between each other via the controllable NAT.

[0015] Thereby it is important to mention that the public

IP-address:port pairs are generated and entered into the NAT-table of the controllable NAT before a communication between the user agents takes place. Said public IP-address:port pairs are used as destination addresses to which the user agents send their data to be exchanged with each other. Since the public IP-address:port pairs belong to the controllable NAT, the communication between the user agents takes place via the controllable NAT by performing only NAT layer functions.

[0016] Said Method with the specifying features of claim 1 has the advantage over the state of the art, that it allows to establish a connection between two user agents that can be located behind symmetric NATs. Thereby the controllable NAT preferably is a symmetric NAT since this increases the security of the connection between the two user agents. The controllable NAT is a simple component that must not be SIP aware and that translates IP-addresses and port according to the entry in the NAT-table. The end-to-end packet delay only increases negligible. The invention allows to place multiple controllable NATs within the Internet so that the load can be distributed. Thereby, in a first embodiment, wherein a server generates the public IP-address:Port pairs to be entered into the NAT-table, it is possible that only few or only one server can control many controllable NATs located in the Internet. In a second embodiment, the controllable NAT itself generates the public IP-address:Port pairs to be entered into the NAT-table and offers these public IP-address:Port pairs to requesting servers. Furthermore controllable NAT functions can easily be added e.g. into routers. The Method allows to establish any connection between two user agents to be used to exchange data.

[0017] A preferred embodiment of the invention comprises the steps of:

- registration of both user agents at a server,
- sending an invitation message to establish a connection with the second user agent from the first user agent to the server, wherein said invitation message comprises a first destination IP-address:Port pair to which the second user agent shall reply,
- generation of a NAT-table entry in a controllable NAT located in the Internet by the server, wherein said NAT-table entry comprises a first and a second public IP-address:Port pair,
- replacing the first destination IP-address:Port pair within the invitation message with the first public IPaddress:Port pair by the server and
- sending the changed invitation message comprising the first public IP-address:Port pair from the server to the second user agent,
 - receiving the changed invitation message from the server by the second user agent and extracting the first public IP-address:Port pair out of said invitation message,
 - sending a confirmation message to establish the connection with the first user agent from the second

25

35

40

user agent to the server, wherein said confirmation comprises a second destination IP-address:Port pair to which the first user agent shall reply,

- replacing the second destination IP-address:Port pair within the confirmation message with the second public IP-address:Port pair by the server and
- sending the changed confirmation message comprising the second public IP-address:Port pair from the server to the first user agent and
- receiving the changed confirmation message from the server by the first user agent and extracting the second public IP-address:Port pair out of said confirmation message,
- exchanging data between the first and the second user agent via the controllable NAT, wherein the first user agent addresses the data to be sent to the second user agent to the second public IP-address:Port pair extracted out of the confirmation message and wherein the second user agent addresses the data to be sent to the first user agent to the first public IPaddress:Port pair extracted out of the invitation message, and
- completing the NAT-table entry of the controllable NAT by extracting a first source IP-address:Port pair from the very first data sent from the first user agent to the second user agent via the controllable NAT and a second source IP-address:Port pair from the very first data sent from the second user agent to the first user agent via the controllable NAT and inserting the first and the second source IP-address: Port pair into the NAT-table entry of the controllable NAT.

[0018] In a preferred embodiment of said invention, after receiving the confirmation message from the second user agent the server adds a first source IP-address of the first user agent comprised in the invitation message and a second source IP-address of the second user agent comprised in the confirmation message to the NAT-table entry of the controllable NAT, wherein the completion of the NAT-table entry is done by adding a first and a second source port of the first and the second user agent to the NAT-table entry comprised in the very first data exchange between the first and the second user agent via the controllable NAT.

[0019] In another preferred embodiment of said invention, at least one user agent is located behind a symmetric NAT.

[0020] In a preferred embodiment of said invention the server is a proxy server.

[0021] In a particular preferred embodiment of said invention the proxy server is a SIP proxy, wherein the invitation message and the confirmation message are SIP messages.

[0022] Another preferred embodiment of said invention the server is characterized in that the connection to be established between the user agents by the invitation and the confirmation message is a peer-to-peer connec-

tion.

[0023] In a preferred embodiment of said invention the data exchanged between the first and the second user agent comprise a media stream.

[0024] In a further preferred embodiment of said invention the media stream comprises a voice stream. The voice stream e.g. allows a first user using the first user agent to talk with a second user using the second user agent. By using the method according to the invention, telephone via Internet is possible for user agents located behind symmetric NATs.

[0025] A particular preferred embodiment of said invention is characterized in that at least one user agent is running on a computer. Preferably both user agents are running on computers. It is also thinkable, that one of the user agents is running on a Personal Digital Assistant, PDA or the like.

[0026] It is also thinkable that instead of the server the controllable NAT itself generates a new NAT-table entry comprising a first and a second public IP-address:Port pair, wherein the controllable NAT communicates said first and second public IP-address:Port pair to the server for replacing the first and the second destination IP-address:Port pair in the invitation message and in the confirmation message with the first and the second public IP-address:Port pair.

[0027] In another preferred embodiment of the invention, said method is performed by a computer program product stored on a computer usable medium comprising computer readable program means for causing a computer to perform the method mentioned above, when said computer program product is executed on a computer.

Brief description of the drawing, with

[0028]

Figure 1 showing a scheme of an arrangement to be used to execute the method according to the invention before a connection is established,

Figure 2 showing the arrangement of Fig. 1 after a connection has been established,

Figure 3 showing an example for a full cone NAT,

Figure 4 showing an example for a Restricted Cone NAT.

Figure 5 showing an example for a Port Restricted Cone NAT, and

Figure 6 showing an example for a symmetric NAT.

Paths for performing the invention:

[0029] As shown in Figure 1, a first 1 and a second user agent 2 are connected with the Internet 3. Both user agents 1, 2 are located behind symmetric NATs 4, 5. A proxy server 6 is located in the Internet 3. Also a controllable NAT 7 is located in the Internet. The controllable NAT 7 can be controlled by the proxy server 6, wherein the proxy server 6 is able to generate entries in the NAT-

table of the controllable NAT 7.

[0030] Figure 2 shows the situation when a peer-topeer connection is established between the two user agents 1, 2 via the controllable NAT 7. The procedure to establish this connection is the following:

Both user agents 1 and 2 are registered at the proxy server 6. The first user agent 1 wants to establish a connection with the second user agent 2. To do this, an invitation message is sent from the first user agent 1 to the proxy server 6. This invitation message comprises a first destination IP-address:port pair to which the second user agent 2 shall reply. Since the first user agents 1 is located behind the symmetric NAT 4, a reply from the second user agent 2 to the first user agent 1 addressed to the first destination IPaddress:port pair would be dropped at the symmetric NAT 4. To solve this problem, the proxy server 6 examines the invitation message and searches this first destination IP-address:port pair. The proxy server 6 replaces the first destination IP-address:port pair in the invitation message with a first public IP-address:port pair and forwards this changed invitation message to the second user agent 2 via the hole in the symmetric NAT 5 that has been generated with the registration of the second user agent 2 at the proxy server 6. At the same time the proxy server also generates a NAT-table entry in the controllable NAT 7. This NAT-table entry comprises the first public IP-address:port pair and a second public IP-address:port pair. The second user agent 2 receives the invitation message and extracts the first public IP-address:port pair out of said message. The second user agent 2 uses the first public IP-address: port pair to configure the destination address for all data packets, e.g. a data stream, sent to the first user agent 1. Then, the second user agent 2 generates a confirmation message and is sending this confirmation message to the proxy server 6. This confirmation message comprises a second destination IPaddress:port pair to which the first user agent 1 shall reply. Since the second user agents 1 is located behind the symmetric NAT 5, a reply from the first user agent 1 to the second user agent 2 addressed to the second destination IP-address:port pair would be dropped at the symmetric NAT 5. To solve this problem, the proxy server 6 also replaces the second destination IP-address:port pair in the confirmation message with the second public IP-address:port pair and forwards this changed confirmation message to the first user agent 1 via the hole in the symmetric NAT 4 that has been generated with the registration of the first user agent 1 at the proxy server 6. The first user agent 1 receives the confirmation message and extracts the second public IP-address:port pair out of said message. The first user agent 1 uses the second public IP-address:port pair to configure the destination address for all data packets, e.g. a data

stream, sent to the second user agent 2.

[0031] Now the first 1 and the second user agent 2 can communicate with each other via the controllable NAT. To complete the NAT-table entry in the controllable NAT 7, a first source IP-address:port pair is extracted from the very first data sent from the first user agent 1 to the second user agent 2 and a second source IP-address:port pair is extracted from the very first data sent from the second user agent 2 to the first user agent 1. The extraction of these source IP-address:port pairs is done by the controllable NAT. The first and the second source IPaddress:port pair are inserted into the NAT-table entry of the controllable NAT. By doing so, the NAT-table entry of the controllable NAT considering the session between the first 1 and the second user agent 2 is completed. [0032] It is important to mention that in Fig. 1 and 2 only a single controllable NAT 7 is shown to keep the figures concise, but the concept allows also arranging several controllable NATs in the Internet 3. In general the proxy server 6 is aware of several controllable NATs, so that it can distribute the load between different controllable NATs to prevent hot spots in the network as well as to rearrange media session paths through the Internet to overcome e.g. error situations, network quality of services degradations and the like. The concept is extendible towards a quality of services controlled load balancing system with data load accounting per media session. [0033] In an alternative embodiment of the invention, the controllable NAT itself generates its NAT-table entries comprising public IP-address:port pairs. The controllable NAT communicates these public IP-address: port pairs to the proxy server. The proxy server uses these public IP-address:port pairs to replace the destination IP-address:port pairs in the invitation message and in the confirmation message. This embodiment differs from the example described above thereby, that in-

Commercial applicability:

[0034] The invention is commercially applicable particularly in the field of production and operation of networks to be used for Internet traffic.

stead of the proxy server the controllable NAT itself gen-

erates the NAT-table entry comprising public IP-address:

port pairs. In order that the proxy server knows which

public IP-address:port pairs can be used to replace the

destination IP-address:port pairs in the invitation mes-

sage and in the confirmation message, the public IP-ad-

dress:port pairs comprised in the NAT-table entry gen-

erated by the controllable NAT are communicated from

the controllable NAT to the proxy server.

Claims

1. Method to establish an Internet connection between a first (1) and a second (2) user agent, **characterized**

40

45

20

35

in

that a NAT-table entry in a controllable NAT (7) located in the Internet (3) is generated, wherein said NAT-table entry comprises public IP-address:Port pairs that are communicated to the user agents (1, 2), wherein the user agents (1, 2) use said public IP-address:port pairs for establishing an Internet connection between each other via the controllable NAT (7).

- 2. Method according to claim 1, comprising the steps of
 - registration of both user agents (1, 2) at a server (6),
 - sending an invitation message to establish a connection with the second user agent (2) from the first user agent (1) to the server (6), wherein said invitation message comprises a first destination IP-address:Port pair,
 - generation of a NAT-table entry in a controllable NAT (7) located in the Internet (3) by the server (6), wherein said NAT-table entry comprises a first and a second public IP-address: Port pair,
 - replacing the first destination IP-address:Port pair within the invitation message with the first public IP-address:Port pair by the server (6) and sending the changed invitation message from the server (6) to the second user agent (2),
 - receiving the changed invitation message by the second user agent (2) and extracting the first public IP-address:Port pair out of said invitation message,
 - sending a confirmation message from the second user agent (2) to the server (6), wherein said confirmation comprises a second destination IP-address:Port pair,
 - replacing the second destination IP-address: Port pair within the confirmation message with the second public IP-address:Port pair by the server (6) and
 - sending the changed confirmation message comprising the second public IP-address:Port pair from the server (6) to the first user agent (1) and
 - receiving the changed confirmation message by the first user agent (1) and extracting the second public IP-address:Port pair out of said confirmation message,
 - exchanging data between the first (1) and the second user agent (2) via the controllable NAT (7), wherein the first user agent (1) addresses to the second public IP-address:Port pair and wherein the second user agent (2) addresses to the first public IP-address:Port pair, and
 - completing the NAT-table entry of the controllable NAT (7) by extracting a first source IP-address:Port pair from the very first data sent from

the first user agent (1) to the second user agent (2) via the controllable NAT (7) and a second source IP-address:Port pair from the very first data sent from the second user agent (2) to the first user agent (1) via the controllable NAT (7) and inserting the first and the second source IP-address:Port pair into the NAT-table entry of the controllable NAT (7).

10 3. Method according to claim 2,

characterized in

that the server (6) after receiving the confirmation message from the second user agent (2) adds a first source IP-address of the first user agent (1) comprised in the invitation message and a second source IP-address of the second user agent (2) comprised in the confirmation message to the NAT-table entry, and wherein the completion of the NAT-table entry is done by adding a first and a second source port of the first (1) and the second user agent (2) to the NAT-table entry comprised in the very first data exchange between the first (1) and the second user agent (2) via the configurable NAT (7).

25 4. Method according to claim 2 or 3,

characterized in

that at least one user agent (1, 2) is located behind a symmetric NAT (4, 5).

5. Method according to claim 2, 3 or 4, characterized in that the server is a proxy server (6).

6. Method according to claim 5,

characterized in

that the proxy server (6) is a SIP proxy, wherein the invitation message and the confirmation message are SIP messages.

40 **7.** Method according to one of the previous claims, characterized in

that the connection is a peer-to-peer connection.

8. Method according to one of the previous claims, characterized in

that the data exchanged between the first (1) and the second user agent (2) comprise a media stream.

9. Method according to claim 8,

characterized in

that the media stream comprises a voice stream.

Method according to one of the previous claims, characterized in

that at least one user agent (1, 2) is running on a computer.

11. Method according to one of the claims 2 to 10,

50

55

characterized in

that instead of the server the controllable NAT itself generates a new NAT-table entry comprising a first and a second public IP-address:Port pair, wherein the controllable NAT communicates said first and second public IP-address:Port pair to the server for replacing the first and the second destination IP-address:Port pair in the invitation message and in the confirmation message with the first and the second public IP-address:Port pair.

10

12. Computer program product stored on a computer usable medium comprising computer readable program means for causing a computer to perform the method of anyone of the claims 1 to 11, when said computer program product is executed on a computer.

13

20

25

30

35

40

45

50

55

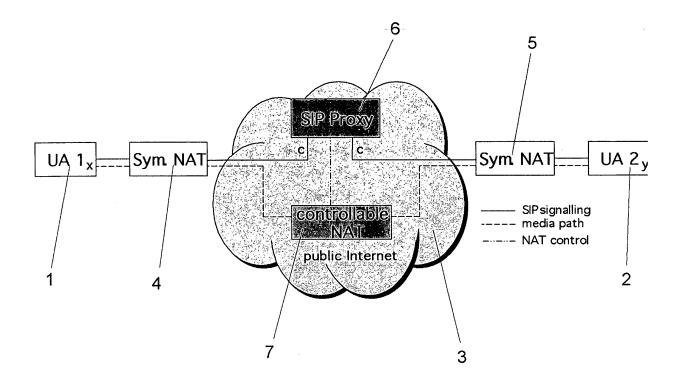


Fig. 1

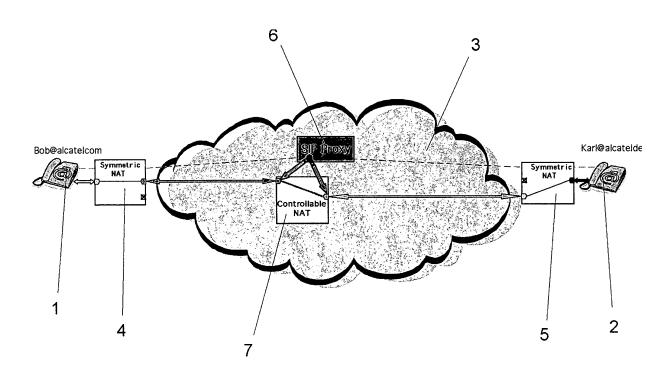


Fig. 2

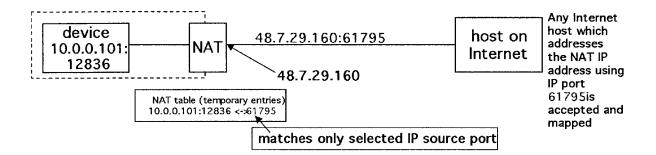


Fig. 3

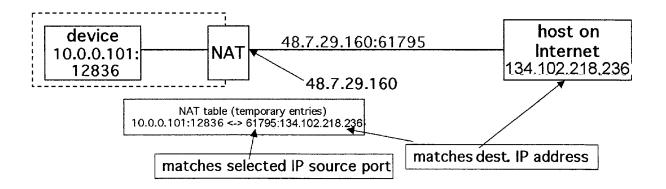


Fig. 4

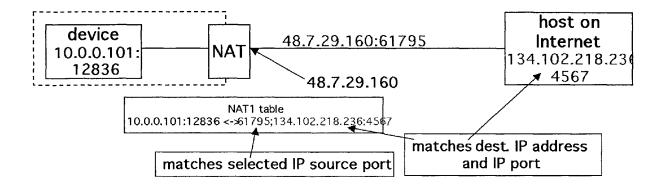


Fig. 5

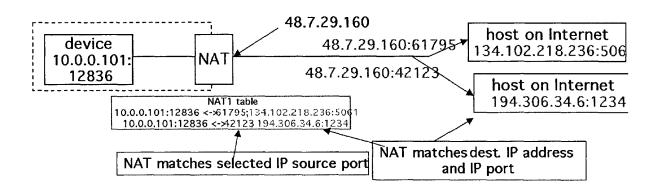


Fig. 6

EUROPEAN SEARCH REPORT

Application Number EP 05 29 0348

Category	Citation of document with i of relevant pass	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
X	J. ROSENBERG; R. MA Firewall Scenarios DRAFT-IETF-SIPPING- 24 June 2002 (2002-	HY; S. SEN: "NAT and and Solutions for SIP" NAT-SCENARIOS-00.TXT,	1,2, 4-10,12	H04L29/12
,	IETF, GENEVA Complete Chapter 5. External B2BUAWM" * page 46 - page 52		3,11	
	EP 1 185 069 A (NOR 6 March 2002 (2002- * the whole documen	-03-06)	1,12	
, ,	ERICSSON; LANDFELD ARUN) 14 October 20	ELEFONAKTIEBOLAGET LM OT, BJOERN; SENEVIRATNE, OO4 (2004-10-14) Opage 17, line 19 *	3	
1	MARTIN NEC C AOUN N "NAT/Firewall NSIS Protocol (NSLP)" IETF STANDARD-WORKI ENGINEERING TASK FO vol. nsis, no. 1,	Signaling Layer NG-DRAFT, INTERNET NCE, IETF, CH, 1004-02-16), XP015024465 figure 1 * including) 5.3.4	3	TECHNICAL FIELDS SEARCHED (Int.CI.7)
\	AL) 9 September 200	BAUCH DAVID JAMES ET 4 (2004-09-09) - paragraph '0118!; 	3	
	The present search report has	been drawn up for all claims]	
	Place of search	Date of completion of the search		Examiner
	Munich	28 July 2005	Rai	ble, M
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anouncent of the same category inological background—written disclosure mediate document	E : earlier palent doc after the filing dat	cument, but publi e n the application or other reasons	ished on, or

EUROPEAN SEARCH REPORT

Application Number EP 05 29 0348

	Citation of decument with indicate		Delawari	000.00.00.00.00.00			
Category	Citation of document with indicatio of relevant passages	n, wnere appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)			
Υ	US 2002/085561 A1 (CHOI 4 July 2002 (2002-07-04 * paragraph '0031!; fig * paragraph '0050! - pa) ures 6,7,8a *	11				
A	US 2003/118002 A1 (BRAD) 26 June 2003 (2003-06-2) * paragraph '0040! - par figures 4,5 *	6)	11				
				TECHNICAL FIELDS SEARCHED (Int.Cl.7)			
				-			
:							
	The present search report has been dr	awn up for all claims					
Place of search Munich		Date of completion of the search	Examiner hle M				
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category		T: theory or princip E: earlier patent de after the filing d D: document cited L: document cited	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons				
A : technological background O : non-written disclosure P : intermediate document		& : member of the s	&: member of the same patent family, corresponding document				

Application Number

EP 05 29 0348

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report hat been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 05 29 0348

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. claims: 1,2,4-10,12

A system for call setup between users located behind symmetric NATs, whereby server configures address/port pairs in NAT device.

2. claim: 3

An alternative configuration for server controlled entries in a NAT device and alternative completion procedure for NAT table entries.

3. claim: 11

An alternative generation procedure for entries in a NAT device, i.e. values are chosen by NAT device itself.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 05 29 0348

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28-07-2005

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 1185069	A	06-03-2002	CA EP	2352911 1185069		28-02-2002 06-03-2002
W0 2004088923	A	14-10-2004	AU WO	2003251265 2004088923		25-10-2004 14-10-2004
US 2004177158	A1	09-09-2004	US WO WO	2004177359 2004081715 2004082152	A2	09-09-2004 23-09-2004 23-09-2004
US 2002085561	A1	04-07-2002	KR	2002057079	Α	11-07-2002
US 2003118002	A1	26-06-2003	NONE			

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82