

(11) **EP 1 695 825 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

30.08.2006 Patentblatt 2006/35

(51) Int Cl.: **B41F** 27/12^(2006.01)

(21) Anmeldenummer: 05109008.2

(22) Anmeldetag: 29.09.2005

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 28.02.2005 DE 102005008982

(71) Anmelder: Koenig & Bauer AG 97080 Würzburg (DE)

(72) Erfinder:

Rachor, Burkhard
97273 Kürnach (DE)

• Abts, Klaus 97250 Erlabrunn (DE)

 Koblinger, Michael 97225 Zellingen (DE)

(54) Vorrichtung zum registerhaltigen Ausrichten zumindest einer Druckplatte auf einem Plattenzylinder

(57) Die Erfindung betrifft eine Vorrichtung zum registerhaltigen Ausrichten zumindest einer Druckplatte auf einem Plattenzylinder einer Rotationsdruckmaschine, wobei die Vorrichtung einen axial verstellbaren Registervorsprung umfasst, der in eine der Registerung dienende Ausnehmung der Druckplatte eingreift und innerhalb eines in axialer Richtung der Rotationsachse des Plattenzylinders verlaufenden Hohlraums in axialer Richtung verstellbar ist, welcher über einen hierzu parallel verlaufenden Zylinderkanal mit dem Äußeren des Plattenzylinders in Verbindung steht. Der Registervorsprung ist mit einer längs das Hohlraums verschiebbaren Klemmeinrichtung verbunden, die über Betätigungsmittel in einer gewünschten axialen Position gegen die Oberfläche des Hohlraums klemmbar oder geklemmt bzw. aus einer solchen Position lösbar ist.

EP 1 695 825 A2

Beschreibung

20

30

35

55

[0001] Die Erfindung betrifft eine Vorrichtung zum registerhaltigen Ausrichten zumindest einer Druckplatte auf einem Plattenzylinder gemäß dem Oberbegriff des Anspruchs 1.

[0002] Bei Rollenrotationsdruckmaschinen ist es bekannt, dass sich die zu bedruckende Papierbahn in Abhängigkeit von ihrer Beschaffenheit und von der Feuchtmittelaufnahme während des Druckens in ihrer Breite verändert. Diese Breitenänderung kann von Druckwerk zu Druckwerk unterschiedlich sein. Sie nimmt von Bahn- bzw. Zylindermitte nach außen hin zu. Dies hat zur Folge, dass die Druckplatten auf dem Plattenzylinder hinsichtlich des Seitenpassers individuell eingestellt werden müssen. Hierzu sind diverse Lösungsmöglichkeiten bekannt.

[0003] Aus der EP 04 90 179 A1 ist eine Vorrichtung zum axialen Verstellen und Fixieren eines Registerstiftes im Zylinderkanal eines Plattenzylinders einer Rotationsdruckmaschine bekannt, bei der der Registerstift mindestens zwei zueinander um 90° versetzt angeordnete Langlöcher aufweist, von denen das eine zur Aufnahme eines Befestigungsmittels dient und axial ausgerichtet ist und das andere zur Aufnahme eines Stellmittels vorgesehen ist. Als Stellmittel sind Exzenterbolzen vorgesehen. Auf diese Weise ist nur ein relativ geringes Maß an axialer Verstellung des Registerstiftes möglich.

[0004] Aus der DE 40 38 919 C1 ist ebenfalls eine Vorrichtung zum axialen Verstellen und Fixieren eines Registerstifts im Zylinderkanal eines Plattenzylinders einer Rotationsdruckmaschine bekannt, wobei hier eine Halterung vorgesehen ist, die fest mit einer Einsatzleiste verbunden angeordnet ist und die mit einem Befestigungsteil des Registerstiftes mittels Madenschrauben in Reibschluss bringbar ist. Der maximale Verstellweg des Registerstifts ist auch hier wieder durch die Länge von Langlöchern beschränkt, über die die Madenschrauben zugänglich sind.

[0005] Aus der EP 05 35 502 B1 ist eine Vorrichtung zum registerhaltigen Ausrichten von mehreren in Achsrichtung nebeneinander angeordneten Druckplatten auf einem Plattenzylinder einer Rotationsdruckmaschine bekannt, wobei in der Zylindergrube des Plattenzylinders axial verschiebliche, mittels Schrauben in der Zylindergrube klemmbare Einsatzleisten angeordnet sind, die die Registerzapfen tragen, wobei zum axialen Verschieben der Einsatzleisten sich am Plattenzylinder abstützende Differentialschrauben vorgesehen sind. Diese Differentialschrauben sind nur von den Seitenflächen des Plattenzylinders her zugänglich. Weiterhin ist auch hier nur ein relativ kleiner Verstellweg der Einsatzleisten und somit der Registerzapfen möglich.

[0006] Die vorstehend beschriebenen Vorrichtungen nach dem Stand der Technik ermöglichen Verstellungen des Registervorsprungs bzw. Registerstifts lediglich im Umfang der üblichen Registerabweichungen des Seitenpassers, also in der Größenordnung von einigen mm. Andererseits wären insbesondere dann erheblich größere Verstellwege der Registervorsprünge erforderlich, wenn eine Anpassung der Maschine an sich ändernde zu bedruckende Papierbahnbreiten wegen sich ändernder Formate der zu bedruckenden Bedruckstoffe erforderlich ist. In solchen Fällen mussten bislang Teile der bisherigen Konstruktion durch angepasste Teile ersetzt werden und ggf. sogar der Zylinder nachgearbeitet werden.

[0007] Die DE 44 44 062 C2, die DE 101 21 248 A1 und die US 2002/0 189 472 A1 beschreiben Vorrichtungen zum registerhaltigen Ausrichten von Druckplatten auf einem Plattenzylinder. Dabei ist ein Registervorsprung in einem Kanal des Plattenzylinders verstellbar und klemmbar angeordnet.

[0008] Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum registerhaltigen Ausrichten zumindest einer Druckplatte auf einem Plattenzylinder zu schaffen.

40 [0009] Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.

[0010] Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, dass der Registervorsprung nunmehr in jede beliebige axiale Position innerhalb des Hohlraums bzw. des Verstellraums positioniert werden kann, wobei vorzugsweise die Zugänglichkeit zur Verstellung bei der Neupositionierung über den vorhandenen Schlitz des Plattenzylinderkanals erfolgt.

45 [0011] Im Falle der vorliegenden Erfindung erfolgt somit vorzugsweise im Gegensatz zu diversen Lösungen nach dem Stand der Technik der Zugang zum Verstellen des Registervorsprungs über den Zylinderkanal und nicht über die Zylinderseitenflächen (Zylinderballen) bzw. zusätzliche Freibohrungen im Druckbereich, da dort oftmals aus konstruktiven Gründen die Zugänglichkeit erschwert bzw. nicht möglich ist. Die Erfindung ermöglicht es, die benötigten Teile und somit die Teilevielfalt zu reduzieren, da unabhängig von den Konstruktionsbreiten immer das gleiche Klemmstück verwendet werden kann. Ferner können Fertigungskosten des Zylinders durch Wegfall diverser Bearbeitungsflächen verringert werden. Außerdem ist bei eingerückter Lagerstelle beim Plattenzylinder dies oftmals die einzige Möglichkeit, den Registervorsprung in größerem Maße zu verschieben.

[0012] In einer bevorzugten Ausführungsvariante (z. B. Fig. 12) ist das Klemmstück mit einem zylindrischen Registervorsprung und zwei Klemmstellen ausgeführt. Außerdem sind in axialer Richtung mehrere beabstandete Klemmstücke (mindestens 2, 4 oder 6) angeordnet.

[0013] Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben.

[0014] Es zeigen:

Fig. 1 eine erste perspektivische Ansicht eines ersten Ausführungsbeispiels einer Vorrichtung; Fig. 2 eine zweite perspektivische Ansicht des ersten Ausführungsbeispiels gemäß Fig. 1; 5 Fig. 3 eine schematische Seitenansicht im Teilschnitt der in einen Plattenzylinder einer Rollenoffsetrotationsdruckmaschine eingesetzten Vorrichtung gemäß Fig. 1; Fig. 4 eine perspektivische Darstellung der Anordnung gemäß Fig. 3; 10 Fig. 5 eine perspektivische Ansicht eines zweiten Ausführungsbeispiels einer Vorrichtung; Fig. 6 eine schematische Seitenansicht im Teilschnitt der in einen Plattenzylinder einer Rollenoffsetrotationsdruckmaschine eingesetzten Vorrichtung gemäß Fig. 5; 15 Fig. 7 eine Seitenansicht der Vorrichtung gemäß Fig. 5 in Richtung deren Längsachse; Fig. 8 eine Seitenansicht der Vorrichtung gemäß Fig. 5 quer zu deren Längsachse; Fig. 9 eine perspektivische Ansicht eines dritten Ausführungsbeispiels einer Vorrichtung; 20 Fig. 10 eine schematische Seitenansicht im Teilschnitt der in einen Plattenzylinder einer Rollenoffsetrotationsdruckmaschine eingesetzten Vorrichtung gemäß Fig. 9; eine Seitenansicht der Vorrichtung gemäß Fig. 9 in Richtung deren Längsachse; Fig. 11 25 eine Seitenansicht der Vorrichtung gemäß Fig. 9 quer zu deren Längsachse; Fig. 12 Fig. 13 eine perspektivische Ansicht eines vierten Ausführungsbeispiels einer Vorrichtung; 30 Fig. 14 eine schematische Seitenansicht im Teilschnitt der in einen Plattenzylinder einer Rollenoffsetrotationsdruckmaschine eingesetzten Vorrichtung gemäß Fig. 13; Fig. 15 eine Seitenansicht der Vorrichtung gemäß Fig. 13 in Richtung deren Längsachse; 35 eine Seitenansicht der Vorrichtung gemäß Fig. 13 quer zu deren Längsachse; Fig. 16 Fig. 17 eine perspektivische Ansicht eines fünften Ausführungsbeispiels einer Vorrichtung in halbschematischer Darstellung. 40 [0015] Es wird zunächst auf das Ausführungsbeispiel gemäß Fig. 1 bis 4 Bezug genommen. [0016] Ausgegangen wird, wie auch im Falle der anderen Ausführungsbeispiele, von einer Rollenoffsetrotationsdruckmaschine, von der in den Zeichnungen lediglich ein Plattenzylinder 01 teilweise dargestellt ist, vgl. Fig. 3 und 4. An diesem Plattenzylinder 01 sind eine oder mehrere, nicht dargestellte Druckplatten in einem Zylinderkanal 02, z. B. Plattenzylinderkanal 02 über Schlitzhalterungen gehalten. Der Plattenzylinder weist vorzugsweise mindestens eine unter 45 einem spitzen Winkel α (z. B. 45°) zu einer Tangente 10 (Fig. 6) am Schlitz angeordnete vorlaufende Seitenfläche auf. Vorzugsweise ist die nachlaufende Seitenfläche parallel zur vorlaufenden Seitenfläche angeordnet. Der nach außen offene, parallel zur Achse des Plattenzylinders 01 verlaufende Plattenzylinderkanal 02 schließt mit der Oberfläche des Plattenzylinders 01 einen Winkel von etwa 45° ein und mündet in einem ebenfalls parallel zur Achse des Plattenzylinders 01 im Inneren den Plattenzylinders 01 verlaufenden Hohlraum 03, z. B. eine zylindrische Bohrung 03 die als zylindrische 50 Tieflochbohrung 03 ausgebildet ist. Wie insbesondere aus Fig. 3 gut ersichtlich mündet der Plattenzylinderkanal 02 in die Tieflochbohrung 03 nicht radial, sondern als Sekante. In den Plattenzylinderkanal 02 werden die vorauslaufenden und nachlaufenden Enden der Druckplatten eingehängt, während die Tieflochbohrung 03 zur Aufnahme der Klemmeinrichtung 05 dient.

[0017] Die Vorrichtung gemäß des ersten Ausführungsbeispiels ist insgesamt mit der Bezugsziffer 04 bezeichnet und wird im Folgenden auch Klemmstück 04 genannt. Das Klemmstück 04 nach Fig. 1 und 2 umfasst einen Grundkörper 06, der insgesamt im Wesentlichen zylindrisch ausgebildet ist mit einem ersten, zylindrischen Abschnitt 07 und einem zweiten, teilzylindrischen Abschnitt 08, der eine Abflachung 09 aufweist. Der gegenüber der Abflachung 09 vorspringende Abschnitt 11 des zylindrischen Abschnitts 07 stellt den Registervorsprung 11, auch "Registerstein" 11 oder "Registerstift"

11 genannt, dar, der zum Eingriff in nicht dargestellte Stanznuten in den nicht dargestellten Druckplatten dient. Der Zylinderdurchmesser des zylindrischen Abschnitts 07 und des teilzylindrischen Abschnitts 08 des Grundkörpers 06 ist derart, dass der in die Tieflochbohrung 03 eingeführte Grundkörper 06 in Achsrichtung des Grundkörpers 06 leicht, aber mit minimalem Spiel verschiebbar ist. Der teilzylindrische Abschnitt 08 erstreckt sich vorzugsweise über einen Winkelbereich von mehr als 180°, beispielsweise über einen Bereich von etwa 240°.

[0018] Der Registervorsprung 11 ist von einem zylindrischen, zur zylindrischen Bohrung 03 koaxialen Abschnitt 07 gebildet, dessen Außenumfang dem Innenumfang der zylindrischen Bohrung 03 im Wesentlichen entspricht.

[0019] Im teilzylindrischen Abschnitt 07 des Grundkörpers 06 ist eine senkrecht zur Abflachung 09 verlaufende Gewindebohrung 12 ausgebildet, in der ein Betätigungsmittel 13, z. B. eine Schraube13, insbesondere Spannschraube 13 aufgenommen ist. Die Spannschraube 13 weist ein Schraubbetätigungselement 14, z. B. einen hexagonalen Kopf 14 auf, der eine Sechskantstruktur aufweist, dessen Oberseite kugelförmig gewölbt ist, wie dies am besten aus Fig. 2 und 3 erkennbar ist. Der Krümmungsradius der kugelförmigen Wölbung entspricht dem Zylinderradius der Tieflochbohrung 03

[0020] Zum Verspannen des Klemmstücks 04 in der gewünschten Position in der Tieflochbohrung 03 wird das Klemmstück 04 mittels geeigneter Werkzeuge 19 in an sich bekannter Weise exakt positioniert und dann die Spannschraube 13 aus dem teilzylindrischen Abschnitt 08 herausgeschraubt, bis der Kopf 14 der Spannschraube 13 mit seiner kugelförmigen Oberfläche an der Wandung der Tieflochbohrung 03 anliegt und den gegenüberliegenden teilzylindrischen Abschnitt 08 des Grundkörpers 06 gegen die Wandung der Tieflochbohrung 03 mit einer solchen Kraft presst, dass das Klemmstück 04 sicher in seiner Position fixiert ist. Zum Lösen des Klemmstücks 04 aus seiner verspannten Position wird die Spannschraube 13 in den teilzylindrischen Abschnitt 08 so weit hineingeschraubt, bis das Klemmstück 04 in axialer Richtung frei beweglich ist.

20

30

35

40

45

50

55

[0021] Das Werkzeug 19 zum Betätigen der Spannschraube 13 ist in den Fig. 3 und 4 dargestellt und nach Art eines Schraubenschlüssels ausgebildet und von besonders flacher Bauart, um durch den Schlitz des Plattenzylinderkanals 02 hindurch in Eingriff mit dem Kopf 14 geführt werden zu können. Der Plattenzylinderkanal 02 weißt an der Mantelfläche des Ballens eine Breite b in Umfangsrichtung, vorzugsweise kleiner als 5 mm, insbesondere kleiner als 2,5 mm, auf.

[0022] Wie aus Fig. 4 erkennbar umfasst das Klemmstück 04 zusätzlich eine (in den Fig. 1 bis 3 nicht dargestellte) Verdrehsicherung 16 in Form einer an der freien Stirnseite des teilzylindrischen Abschnitts 08 befestigten Trägerplatte 17 mit daran angebrachtem Vorsprung 18, der in den Plattenzylinderkanal 02 hineinragt. Hierdurch wird die Winkellage des Klemmstücks 04 innerhalb der Tieflochbohrung 03 relativ zum Plattenzylinderkanal 02 festgelegt und sichergestellt, dass das Klemmstück 04 stets so positioniert ist, dass sich die Abflachung 09 des teilzylindrischen Abschnitts 08 in etwa parallel zur Ebene des Plattenzylinderkanals 02 befindet und somit der Kopf 14 der Spannschraube 13 durch den Plattenzylinderkanal 02 hindurch stets zugänglich und betätigbar ist. Es sei an dieser Stelle darauf hingewiesen, dass auch die übrigen, weiter unten erläuterte Ausführungsbeispiele solche oder ähnliche bzw. gleichwirkende Verdrehsicherungen 16 aufweisen können, auch wenn diese bei diesen Ausführungsbeispiel nicht dargestellt sind.

[0023] Es wird nun auf das zweite Ausführungsbeispiel gemäß Fig. 5 bis 8 Bezug genommen. Dieses Ausführungsbeispiel entspricht hinsichtlich des Aufbaus in vielen Aspekten den ersten Ausführungsbeispiel, so dass insoweit hierauf Bezug genommen werden kann und auf eine nochmalige Beschreibung verzichtet wird. Der wesentliche Unterschied des zweiten Ausführungsbeispiels zum ersten Ausführungsbeispiel besteht darin, dass im Falle des zweiten Ausführungsbeispiels zu beiden Seiten des den Registervorsprung 11 definierenden zylindrischen Abschnitts 07 jeweils eine Klemmeinrichtung 05 ausgebildet ist, so dass der Grundkörper 06 dementsprechend zwei teilzylindrische Abschnitte 08 mit jeweils einer Abflachung 09 aufweist und dementsprechend auch zwei Spannschrauben 13 vorgesehen sind. Das Klemmstück 04 ist somit bzgl. des mittigen zylindrischen Abschnitts 07 symmetrisch ausgebildet. Die teilzylindrischen Abschnitte 08 weisen zwischen den Gewindebohrungen 12 und dem zylindrischen Abschnitt 07 jeweils einen Abschnitt 21 mit geringfügig vermindertem Durchmesser auf.

[0024] Es wird nun auf das dritte Ausführungsbeispiel gemäß Fig. 9 bis 12 Bezug genommen. Das dritte Ausführungsbeispiel entspricht in wesentlichen Aspekten derjenigen gemäß Fig. 5 bis 8 und es wird insoweit auf die vorstehende Beschreibung Bezug genommen. Das Klemmstück 04 umfasst wiederum einen Grundkörper 06 mit einem mittleren zylindrischen Abschnitt 07, der den Registervorsprung 11 definiert, und beidseitig jeweils einen teilzylindrischen Abschnitt 08 mit jeweils einer Abflachung 09 und einer Gewindebohrung 12, die jeweils eine Spannschraube 13 aufnimmt, deren Kopf 14 nun allerdings nicht mehr kugelig ausgebildet zu sein braucht.

[0025] Im Falle des dritten Ausführungsbeispiels sind jedoch die Klemmeinrichtungen 05 unterschiedlich ausgebildet. An den beiden Stirnseiten des Grundkörpers 06 ist, in der Darstellung gemäß Fig. 9, 11 und 12 nahe der Unterseite, jeweils ein in Axialrichtung verlaufender Einschnitt 22 ausgebildet, so dass an der Unterseite des Grundkörpers 06, der jeweiligen Gewindebohrung 12 gegenüberliegend, jeweils ein seitlich austragender Steg 23, z. B. ein Ansatz 23 entsteht, an dem die jeweilige Spannschraube 13 mit ihrem unteren Ende anschlägt. Durch weiteres Eindrehen der Spannschrauben 13 werden die Ansätze 23, die in gewissem Umfang elastisch auslenkbar sind, zunehmend nach außen weg vom Rest des Grundkörpers 06 bzw. nach unten gegen die Wandung der Tieflochbohrung 03 gepresst, wodurch der Rest des Grundkörpers 06 zunehmend nach oben gegen die Wandung der Tieflochbohrung 03 gepresst wird und sich das

Klemmstück 04 somit in der Tieflochbohrung 03 verspannt.

[0026] Es wird nun auf das vierte Ausführungsbeispiel gemäß Fig. 13 bis 16 Bezug genommen. Das dritte Ausführungsbeispiel gemäß Fig. 13 bis 16 Bezug genommen. rungsbeispiel entspricht in wesentlichen Aspekten derjenigen gemäß Fig. 5 bis 8 bzw. 9 bis 12 und es wird insoweit wieder auf die vorstehende Beschreibung Bezug genommen. Das Klemmstück 04 umfasst wiederum einen Grundkörper 06 mit einem mittleren zylindrischen Abschnitt 07, der den Registervorsprung 11 definiert, und beidseitig jeweils einen teilzylindrischen Abschnitt 08 mit jeweils einer Abflachung 09 und einer Bohrung, die jeweils ein Spannelement aufnimmt. [0027] Die Bohrungen sind hier jedoch nicht als Gewindebohrungen 12, sondern als Bohrungen 24 ausgebildet und die Spannelemente werden von Bolzen 26, insbesondere von Spannbolzen 26 gebildet, die in den Bohrungen 24 längsverschieblich, aber drehfest geführt sind. Die Bolzen 26 weisen zwei Abschnitte auf, in der Darstellung gemäß Fig. 13, 14 und 16 einen oberen Gewindeabschnitt 27 und einen sich hieran anschließenden unteren Schaftabschnitt 28, wobei der Schaftabschnitt 28 in der Bohrung 24 geführt ist und der Gewindeabschnitt 27 nach oben über die Abflachung 09 hervorsteht und eine als Sechskantmutter 29 ausgebildetes Betätigungsmittel 29, z. B. ein Schraubbetätigungselement 29, insbesondere Spannmutter 29 trägt, die sich ihrerseits mit ihrer Unterseite auf der Abflachung 09 bzw. einer hierin ausgebildeten Ausnehmung abstützt. Zur drehfesten Führung der Bolzen 26 sind diese an ihrem Schaftabschnitt 28 mit je einer Nut 32, z. B. Führungsschlitz 32, insbesondere einem Führungselement 31, z. B. einen Führungsstift 31 versehen, der in je einem Führungsschlitz 32 geführt ist, der jeweils in einer Stirnseite des Grundkörpers 06 ausgebildet ist, parallel zu den Bohrungen 24 verläuft und sich jeweils bis zur benachbarten Bohrung 24 erstreckt.

[0028] Zum Verspannen des Klemmstücks 04 gemäß der viertes Ausführungsbeispiel werden die Spannmuttern 29 derart gedreht, dass sich die beiden Bolzen 26 unter zunehmendem Austreten aus den Bohrungen 24 mit ihren oberen Enden gegen die innere Wandung der Tieflochbohrung 03 anlegen und den Grundkörper 06 nach unten gegen die innere Wandung der Tieflochbohrung 03 drücken, bis das Klemmstück 04 ausreichend verspannt ist.

[0029] Es wird nun auf das fünfte Ausführungsbeispiel Bezug genommen, die in Fig. 17 halbschematisch dargestellt ist. Das Klemmstück 04 umfasst hier zwei in axialer Ebene geteilte Abschnitte 33, z. B. Bauteile 33, insbesondere Klemmteile 33 von jeweils im Wesentlichen halbzylindrischer Form, die sich unter Bildung eines Spalts 34 gegenüberliegen. An einem der Klemmteile 33 ist ein Registervorsprung 11 befestigt. Beidseitig des Registervorsprungs 11 ist jeweils eine Klemmeinrichtung 05 ausgebildet. Jede Klemmeinrichtung 05 umfasst eine in entsprechende Vertiefungen in den Klemmteilen 33 eingesetzte Druckfeder 36, mittels der die Klemmteile 33 in unverrückbare Anlage an die innere Wandung der Tieflochbohrung 03 gepresst werden.

[0030] Weiterhin umfasst jede Klemmeinrichtung 05 einen Schraubbolzen 37, der an einer Seite ein Rechtsgewinde und an der anderen Seite ein Linksgewinde aufweist. Der Schraubbolzen 37 ist an einer Seite in eine Gewindebohrung in einem der beiden Klemmteile 33 und an der anderen Seite in eine Gewindebohrung im anderen der beiden Klemmteile 33 eingeschraubt. Zwischen den beiden Gewindeabschnitten trägt jeder Schraubbolzen 37 eine mit ihm drehfest verbundenes Betätigungsmittel 38, z. B. Schraubbetätigungselement 38, z. B. eine Mutter 38, insbesondere eine Spannmutter 38, die eine Sechskantstruktur aufweist, die im Spalt zwischen den Bauteilen angeordnet ist.

[0031] Das Klemmstück 04 gemäß des fünften Ausführungsbeispiel fixiert sich aufgrund der Vorspannung der Druckfedern 36 selbsttätig in der eingestellten Position. Soll diese Position verstellt werden, so wird die Spannmutter 38 derart gedreht, dass die beiden Klemmteile 33 mittels der Schraubbolzen 37 aufeinander zu bewegt werden, bis schließlich das Klemmstück 04 frei verschoben werden kann.

[0032] Es versteht sich, dass im Falle des fünften Ausführungsbeispiels die Tieflochbohrung 03 relativ zum Plattenzylinderkanal 02 so angeordnet ist, dass der Plattenzylinderkanal 02 in etwa radial auf die Tieflochbohrung 03 trifft. Bei nicht radialem Auftreffen sind Modifikationen des beispielsweise dargestellten Klemmstücks 04 ohne weiteres möglich, insbesondere können die Klemmteile 33 hinsichtlich ihrer beiden Teilzylinderabschnitte jeweils unterschiedlich groß ausgebildet sein.

[0033] Die Klemmeinrichtung 05 umfasst mindestens eine Schraubeinrichtung 12, 13, 14; 26, 27, 29; 37, 38.

45 [0034] Das Klemmstück 06 mit Registervorsprung 11 und zwei Klemmeinrichtungen ist als einzelne Baueinheit ausgebildet.

[0035] In axialer Richtung der Rotationsachse des Plattenzylinders (01) sind mindestens zwei zueinander beabstandete Klemmstücke 04 angeordnet.

50 Bezugszeichenliste

[0036]

20

30

- 01 Plattenzylinder
- 55 02 Zylinderkanal, Plattenzylinderkanal
 - 03 Hohlraum, zylindrische Bohrung, Tieflochbohrung
 - 04 Vorrichtung, Klemmstück
 - 05 Klemmeinrichtung

06 Grundkörper 07 Abschnitt, zylindrische 80 Abschnitt, teilzylindrische 09 Abflachung 5 10 Tangente 11 Abschnitt, vorspringender, Registervorsprung, Registerstein, Registerstift 12 Gewindebohrung 13 Betätigungsmittel, Schraube, Spannschraube 14 Schraubbetätigungselement, Kopf 15 16 Verdrehsicherung 17 Trägerplatte 18 Vorsprung 19 Werkzeug 15 20 21 Abschnitt 22 Einschnitt 23 Steg, Ansatz 24 **Bohrung** 20 25 26 Bolzen, Spannbolzen 27 Gewindeabschnitt 28 Schaftabschnitt 29 Betätigungsmittel, Schraubbetätigungselement, Mutter, Spannmutter 25 30 31 Führungselement, Führungsstift 32 Führungsschlitz, Nut 33 Abschnitt, Bauteil, Klemmteil 34 Spalt

Betätigungsmittel, Schraubbetätigungselement, Mutter, Spannmutter

b **Breite** Winkel α

35 36

37

38

Patentansprüche

Druckfeder

Schraubbolzen

40

35

30

1. Vorrichtung zum registerhaltigen Ausrichten zumindest einer Druckplatte auf einem Plattenzylinder (01) einer Rotationsdruckmaschine, wobei die Vorrichtung einen axial verstellbaren Registervorsprung (11) umfasst, der in eine der Registerung dienende Ausnehmung der Druckplatte eingreift und innerhalb eines in axialer Richtung der Rotationsachse des Plattenzylinders (01) verlaufenden Hohlraums (03) in axialer Richtung verstellbar ist, welcher über einen hierzu parallel verlaufenden Zylinderkanal (02) mit dem Äußeren des Plattenzylinders (01) in Verbindung steht, dadurch gekennzeichnet, dass der Registervorsprung (11) mit einer längs das Hohlraums (03) verschiebbaren Klemmeinrichtung (05) verbunden ist, die über Betätigungsmittel (13; 29; 38) in einer gewünschten axialen Position gegen die Oberfläche des Hohlraums (03) klemmbar oder geklemmt bzw. aus einer solchen Position lösbar

50

55

- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlraum (03) eine zylindrische Bohrung (03) ist.
- 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Registervorsprung (11) und/oder die Klemmeinrichtung (05) mindestens einen umfangsmäßig an die zylindrische Bohrung (03) angepassten Abschnitt (07; 08; 33) aufweist.
- 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Registervorsprung (11) von einem zylindrischen, zur zylindrischen Bohrung (03) koaxialen Abschnitt (07) gebildet ist.

- **5.** Vorrichtung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Klemmeinrichtung (05) zumindest eine Schraubeinrichtung (12, 13, 14; 26, 27, 29; 37, 38) umfasst.
- **6.** Vorrichtung nach Anspruch 5, **dadurch gekennzeichnet**, **dass** die Schraubeinrichtung (12, 13, 14; 26, 27, 29; 37, 38) ein Schraubbetätigungselement (14; 29; 38) umfasst.
 - 7. Vorrichtung nach Anspruch 6, **dadurch gekennzeichnet**, **dass** das Schraubbetätigungselement (14; 29; 38) durch den Zylinderkanal (02) hindurch betätigbar ist.
- **8.** Vorrichtung nach Anspruch 7, **dadurch gekennzeichnet**, **dass** die Achse des Schraubbetätigungselements (14; 29; 38) senkrecht zur Ebene einer der verlaufenden Seitenflächen des Zylinderkanals (02) angeordnet ist.

15

35

45

- **9.** Vorrichtung nach Anspruch 8, **dadurch gekennzeichnet**, **dass** das Schraubbetätigungselement (14; 29; 38) in Verlängerung des Zylinderkanals (02) angeordnet ist.
- **10.** Vorrichtung nach Anspruch 9, **dadurch gekennzeichnet**, **dass** das Schraubbetätigungselement (14; 29; 38) eine Sechskantstruktur aufweist.
- **11.** Vorrichtung nach Anspruch 10, **dadurch gekennzeichnet**, **dass** das Schraubbetätigungselement (29; 38) eine Mutter (29; 38) ist.
 - **12.** Vorrichtung nach Anspruch 10, **dadurch gekennzeichnet**, **dass** das Schraubbetätigungselement (14) der Kopf (14) einer Schraube (13) ist.
- 13. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmeinrichtung (05) einen Grundkörper (06) und eine in den Grundkörper (06) gewindemäßig eingesetzte Spannschraube (13) umfasst.
- 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Klemmeinrichtung (05) durch Vergrößern des Abstandes zwischen einem Ende der Spannschraube (13) und dem diesem gegenüberliegenden Ende des Grundkörpers (06) im Hohlraum (03) verspannbar ist.
 - **15.** Vorrichtung nach Anspruch 14, **dadurch gekennzeichnet**, **dass** die Klemmeinrichtung (05) durch Herausdrehen der Spannschraube (13) aus dem Grundkörper (06) verspannbar ist.
 - **16.** Vorrichtung nach Anspruch 15, **dadurch gekennzeichnet, dass** die Form des Kopfes (14) der Spannschraube (13) der Form der hieran anliegenden Wandung des Hohlraums (03) angepasst ist.
- **17.** Vorrichtung nach Anspruch 12 oder Anspruch 16, **dadurch gekennzeichnet, dass** der Kopf (14) kugelförmig gekrümmt ist.
 - 18. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Grundkörper (06) für die Spannschraube (13) eine durchgehende Gewindebohrung (12) aufweist, dass an der dem Kopf (14) gegenüberliegenden Seite der Spannschraube (13), der Gewindebohrung (12) gegenüberliegend, am Grundkörper (06) ein elastisch deformierbarer Steg (23) ausgebildet ist, und dass die Klemmeinrichtung (05) durch Einschrauben der Spannschraube (13) in die Gewindebohrung (12) und dementsprechendes Auslenken des Stegs (23) nach außen verspannbar ist.
 - **19.** Vorrichtung nach einem der Ansprüche 1 bis 12, **dadurch gekennzeichnet**, **dass** die Klemmeinrichtung (05) einen Grundkörper (06) und einen im Grundkörper (06) quer zur Achse des Hohlraums (03) verschieblichen Spannbolzen (26) umfasst.
 - **20.** Vorrichtung nach Anspruch 19, **dadurch gekennzeichnet**, **dass** der Spannbolzen (26) in einer Bohrung (24) im Grundkörper (06) in Längsrichtung verschieblich, aber verdrehsicher geführt ist.
- 21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass der Spannbolzen (26) mit einem sich quer zur Achse des Spannbolzens (26) erstreckenden Führungselement (31) versehen ist, das in einer parallel zur Bohrung (24) verlaufenden Nut (32) in der Wandung der Bohrung (24) geführt ist.

- **22.** Vorrichtung nach Anspruch 21, **dadurch gekennzeichnet**, **dass** die Nut (32) von einem sich von einer Stirnwandung das Grundkörpers (06) bis zur Bohrung (24) erstreckenden Führungsschlitz (32) gebildet ist.
- 23. Vorrichtung nach Anspruch 20, 21 oder 22, **dadurch gekennzeichnet, dass** der Spannbolzen (26) an einem Ende einen Gewindeabschnitt (27) aufweist, auf den eine Mutter (29) aufgesetzt ist, die sich an einer ihrer Stirnseiten am Grundkörper (06) abstützt.
 - **24.** Vorrichtung nach einem der Ansprüche 13 bis 23, **dadurch gekennzeichnet**, **dass** der Grundkörper (06) teilzylindrisch ausgebildet ist und eine Abflachung (09) aufweist.
 - **25.** Vorrichtung nach Anspruch 24, **dadurch gekennzeichnet**, **dass** die Abflachung (09) im Wesentlichen parallel zum Zylinderkanal (02) angeordnet ist.
- **26.** Vorrichtung nach Anspruch 24 oder 25, **dadurch gekennzeichnet**, **dass** sich der zylindrische Abschnitt (08) des teilzylindrischen Grundkörpers (06) über einen Winkelbereich von mehr als 180° erstreckt.

10

25

30

45

- **27.** Vorrichtung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** der Registervorsprung (11) zwischen zwei Klemmeinrichtungen (05) angeordnet ist.
- 28. Vorrichtung nach Anspruch 27, **dadurch gekennzeichnet, dass** die beiden Klemmeinrichtungen (05) symmetrisch ausgebildet sind.
 - 29. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Klemmeinrichtung (05) mindestens zwei Bauteile (33) umfasst, die mittels mindestens einer Druckfeder (36) jeweils in Richtung zur Wandung des Hohlraums (03) hin vorgespannt sind.
 - **30.** Vorrichtung nach Anspruch 29, **dadurch gekennzeichnet**, **dass** die Klemmeinrichtung (05) eine Einrichtung zum Zusammenführen der mindestens zwei Bauteile (33) entgegen der Kraft der mindestens einen Druckfeder (36) umfasst.
 - **31.** Vorrichtung nach Anspruch 30, **dadurch gekennzeichnet**, **dass** die Einrichtung zum Zusammenführen mindestens einen Schraubbolzen (37) umfasst, der mit einer Gewindebohrung eines Bauteils (33) in Eingriff steht, sowie eine Mutter (38), die mit dem Schraubbolzen (37) drehfest verbunden ist und über den Zylinderkanal (02) zugänglich ist.
- 32. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass die Klemmeinrichtung (05) genau zwei Bauteile (33) umfasst, zwischen die mindestens eine Druckfeder (36) unter Vorspannung gespannt ist und die über mindestens einen Schraubbolzen (37) samt Mutter (38) miteinander verbunden sind, dass in jedem Bauteil (33) je eine Gewindebohrung für jeden Schraubbolzen (37) vorgesehen ist, wobei die je einem Schraubbolzen (37) zugeordneten beiden Gewindebohrungen sich gegenüberliegen und miteinander fluchten, dass bei jedem Schraubbolzen (37) je ein Gewinde rechtsdrehend und je ein Gewinde linksdrehend ist, dass die unterschiedlichen Gewinde der Schraubbolzen (37) an gegenüberliegenden Seiten der Mutter (38) ausgebildet sind, und dass die mindestens eine Mutter (38) in dem von den beiden Bauteilen (33) gebildeten Spalt (34) angeordnet ist.
 - **33.** Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet, dass** die Vorrichtung mit einer Verdrehsicherung (16) ausgestattet ist.
 - **34.** Vorrichtung nach Anspruch 33, **dadurch gekennzeichnet**, **dass** die Verdrehsicherung (16) einen mit der Klemmeinrichtung (05) verbundenen Vorsprung (18) umfasst, der in den Zylinderkanal (02) hineinragt.
- 35. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Rotationsdruckmaschine eine Rollenrotationsdruckmaschine ist.
 - **36.** Vorrichtung nach Anspruch 35, **dadurch gekennzeichnet, dass** die Rollenrotationsdruckmaschine eine Rollenoffsetrotationsdruckmaschine ist.
 - 37. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Zylinderkanal (02) schlitzförmig ausgebildet ist.
 - 38. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Betätigungsmittel (13; 29; 38) zum Klemmen

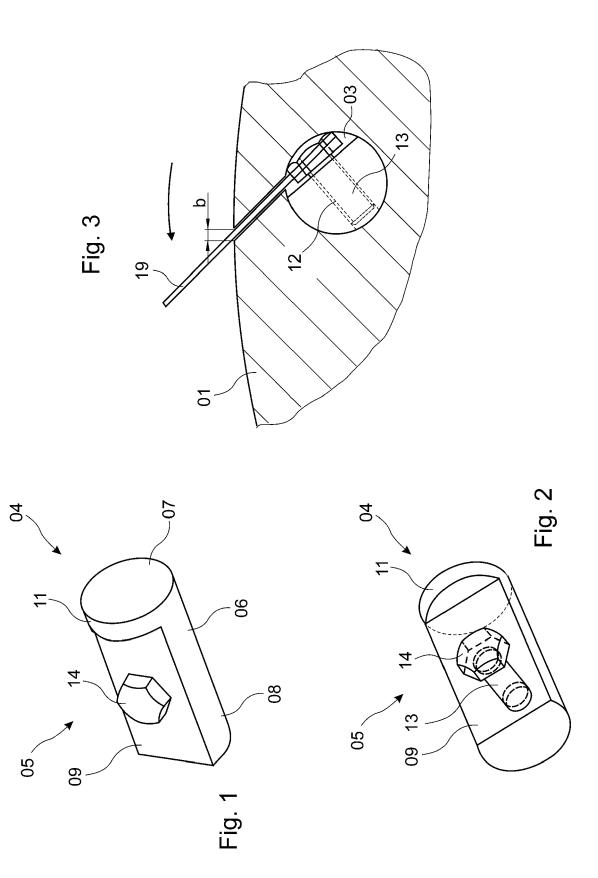
bzw. Lösen von außen durch den Zylinderkanal (02) hindurch zugänglich sind.

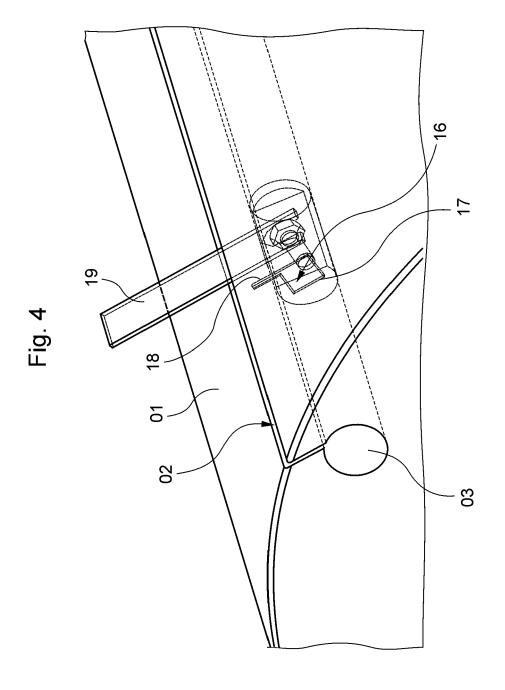
5

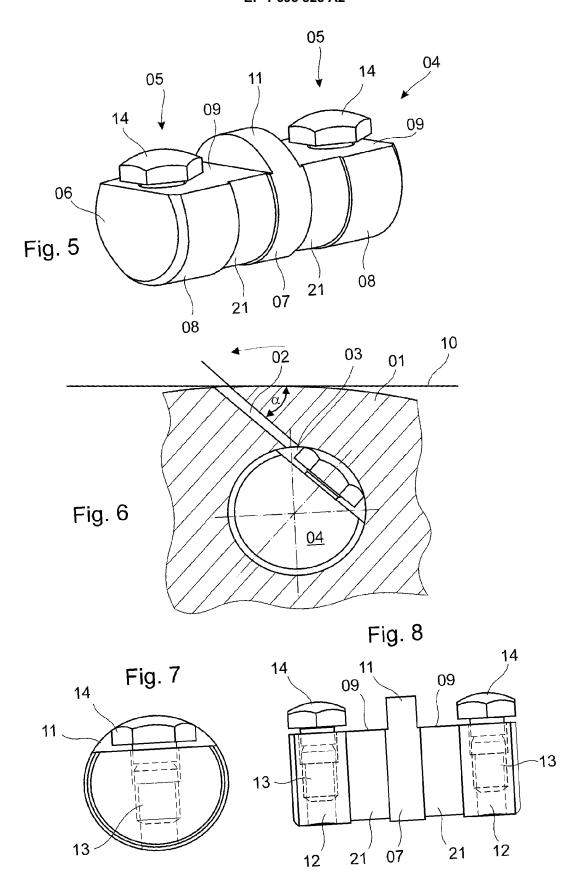
20

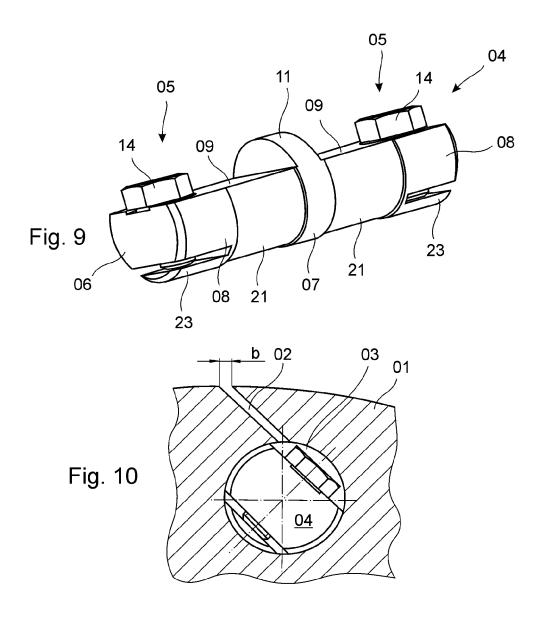
30

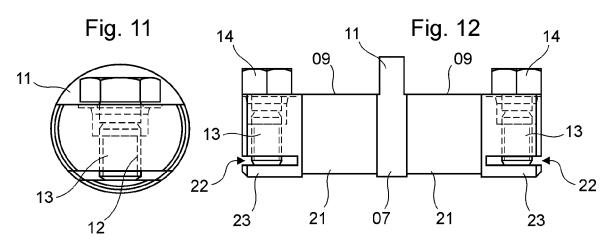
35


40


45


50


55


- **39.** Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet**, **dass** der Registervorsprung (11) und mindestens eine Klemmeinrichtung (05) als eine Baueinheit ausgebildet sind.
- **40.** Vorrichtung nach Anspruch 27, **dadurch gekennzeichnet, dass** der Registervorsprung (11) und die zwei Klemmeinrichtungen (05) als eine Baueinheit ausgebildet sind.
- **41.** Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet, dass** in axialer Richtung der Rotationsachse des Plattenzylinders (01) mindestens zwei Registervorsprünge (11) angeordnet sind.
 - **42.** Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet**, **dass** in axialer Richtung der Rotationsachse des Plattenzylinders (01) mindestens vier Registervorsprünge (11) angeordnet sind.
- 43. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in axialer Richtung der Rotationsachse des Plattenzylinders (01) mindestens sechs Registervorsprünge (11) angeordnet sind.
 - **44.** Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet**, **dass** in axialer Richtung der Rotationsachse des Plattenzylinders (01) mindestens zwei, vorzugsweise vier einzelne Klemmstücke (04) angeordnet sind.
 - **45.** Vorrichtung nach Anspruch 44, **dadurch gekennzeichnet**, **dass** die Klemmstücke (04) nicht miteinander verbunden sind.
- **46.** Vorrichtung nach Anspruch 4, **dadurch gekennzeichnet**, **dass** ein Außenumfang des koaxialen Abschnittes (07) dem Innenumfang der zylindrischen Bohrung (03) im Wesentlichen entspricht.

