(19)
(11) EP 1 707 745 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
04.10.2006  Patentblatt  2006/40

(21) Anmeldenummer: 06014569.5

(22) Anmeldetag:  23.08.2001
(51) Internationale Patentklassifikation (IPC): 
F01D 5/28(2006.01)
F01D 5/14(2006.01)
(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 05.09.2000 EP 00119203

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
01971957.4 / 1322838

(71) Anmelder: SIEMENS AKTIENGESELLSCHAFT
80333 München (DE)

(72) Erfinder:
  • Simon, Volker, Dr.
    23657 Lemgo (DE)

 
Bemerkungen:
Diese Anmeldung ist am 13 - 07 - 2006 als Teilanmeldung zu der unter INID-Kode 62 erwähnten Anmeldung eingereicht worden.
 


(54) Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine


(57) Zur Schaufelauslegung wird ein neues Schaufeldesign vorgeschlagen, dass bei gegebenen Belastungen die zulässigen Beanspruchungen, insbesondere infolge der Fliehkraft, nicht überschreitet und zugleich einen hohen Wirkungsgrad einer Strömungsmaschine (3) ermöglicht. Dazu wird eine Laufschaufel (1) für eine Strömungsmaschine (3) vorgeschlagen, wobei die Laufschaufel (1) zumindest bereichsweise aus einem zellularen Werkstoff (5), insbesondere einem Metallschaum (21), besteht. Der zellulare Werkstoff (5) kann beispielsweise im Schaufelblattbereich (7) der Laufschaufel (1) vorgesehen sein. Weiterhin wird eine Strömungsmaschine(3) mit einer Laufschaufel (1) nach dem neuen Design vorgeschlagen. Die Strömungsmaschine (3) kann eine Gasturbine, eine Dampfturbine oder ein Verdichter sein.




Beschreibung


[0001] Die Erfindung betrifft eine Laufschaufel für eine Strömungsmaschine. Die Erfindung betrifft weiterhin eine Strömungsmaschine mit einer Laufschaufel.

[0002] Laufschaufeln für Strömungsmaschinen, beispielsweise Laufschaufeln für Hoch-, Mittel- öder Niederdruckteilturbinen einer Dampfturbine oder Gasturbinenlaufschaufeln für Verdichter oder Turbine, werden üblicherweise aus homogenen metallischen Legierungen hergestellt. Dabei kommen neben Fräsverfahren auch Guss und Schmiedetechniken zum Einsatz. Das metallische Rohmaterial wird dabei erschmolzen und anschließend als Stangenmaterial gewalzt bzw. als Schaufelrohling geschmiedet.

[0003] Eine derartige Strömungsmaschine umfasst ein einzelnes Laufrad oder eine Anzahl von Axialrichtung hintereinander angeordneten Laufrädern, deren Laufschaufeln im Betrieb von einem gas- oder dampfförmigen Strömungsmedium umströmt werden. Das Strömungsmedium übt dabei auf die Laufschaufeln eine Kraft aus, die ein Drehmoment des Lauf- oder Schaufelrades und somit die Arbeitsleistung bewirkt. Dazu sind die Laufschaufeln üblicherweise an einer rotierbaren Welle der Strömungsmaschine angeordnet, deren an entsprechenden Leiträdern angeordnete Leitschaufeln am ruhenden, die Welle unter Bildung eines Strömungskanals umgebenden Gehäuse, dem Gehäuse der Strömungsmaschine, angeordnet sind.

[0004] Während bei einem Verdichter oder einem Kompressor dem Strömungsmedium mechanische Energie zugeführt wird, wird bei einer Turbine als Strömungsmaschine dem durchströmenden Strömungsmedium mechanische Energie entzogen. Bei einer herkömmlichen Strömungsmaschine mit einer im Betrieb rotierenden Welle und mit ruhendem Gehäuse erzeugt die Fliehkraft in der oder jeder an der Welle befestigten Laufschaufel eine Zugbelastung, der eine durch die Strömungskräfte des Strömungsmediums hervorgerufenen Biegebelastung überlagert ist. Damit ergibt sich eine kritische Belastung an denjenigen Stellen im Schaufelfuß und in der Welle, an denen sich die Biege-Zugspannung und die Zugspannung infolge der Fliehkraft überlagern. Aufgrund dieser kritischen Belastung ist die Schaufelhöhe in ihrer radialen Dimension und damit der Wirkungsgrad der Turbomaschine begrenzt.

[0005] Insbesondere die Laufschaufeln von Dampfturbinen-Niederdruckteilen (ND-Laufschaufeln) werden überwiegend durch Fliehkraft infolge der Rotation der Welle belastet. Die Belastung ist damit direkt proportional zur Dichte des verwendeten Schaufelmaterials. Da die Dichten der verwendeten Materialien dem von Eisen sehr ähnlich sind, ist die Belastung bei langen ND-Schaufeln so groß, dass eine bestimmte Schaufellänge nicht überschritten werden kann. Dies ist besonders für die höheren Stufen der ND-Beschaufelung von Bedeutung, deren radiale Abmessungen durch die Grenzen der Fliehkraftbelastung limitiert sind. Durch die begrenzte Schaufellänge lässt sich nur ein bestimmter Austrittsquerschnitt für das Strömungsmedium erzielen, so dass das Strömungsmedium, z.B. der Abdampf einer Niederdruck-Teilturbine, mit hoher Geschwindigkeit und demzufolge mit hohen Verlusten die Strömungsmaschine verlässt.

[0006] Bisherige Problemlösungen für ND-Laufschaufeln sehen vor, dass bei sehr großen Schaufellängen Materialien aus Titan-Legierungen verwendet werden. Titan-Legierungen weisen eine gegenüber Legierungen auf Eisen-, Kobalt- oder Nickelbasis geringere Dichte auf und Laufschaufeln aus diesem Material unterliegen daher bei sonst gleichen Abmessungen geringeren Beanspruchungen als Laufschaufeln aus den bis dahin üblichen metallischen Materialien. Der Nachteil dieser Problemlösung besteht allerdings darin, dass Titan-Legierungen sehr teuer sind und dass Problem der Fliehkraftbelastung nach wie vor, wenn auch in etwas geringerem Maße, besteht.

[0007] Aufgabe der Erfindung ist es für eine Laufschaufel für eine Strömungsmaschine ein Schaufeldesign anzugeben, dass bei den gegebenen Belastungen in der Strömungsmaschine die zulässigen Beanspruchungen nicht überschreitet und dennoch einen hohen Wirkungsgrad ermöglicht. Eine weitere Aufgabe der Erfindung ist es eine Strömungsmaschine für hohe Beanspruchungen bei hohem Wirkungsgrad anzugeben.

[0008] Erfindungsgemäß wird die auf eine Laufschaufel gerichtete Aufgabe durch eine Laufschaufel für eine Strömungsmaschine gelöst, wobei die Laufschaufel zumindest bereichsweise aus einem zellularen Werkstoff besteht.

[0009] Gegenüber den herkömmlichen Ausgestaltungen von Laufschaufeln für Strömungsmaschinen, beispielsweise Gas- oder Dampfturbinen, beschreitet die Erfindung einen völlig neuen Weg. Wurden bisher homogene metallische Werkstoffe für die Laufschaufeln eingesetzt, beruht das Konzept der Erfindung auf der strukturellen Ausgestaltung der Laufschaufel und der sie bildenden Werkstoffe. Durch den Einsatz von zellularen Werkstoffen für die Laufschaufel wird eine erhebliche Reduzierung der mittleren Dichte der Laufschaufel erzielt. Die zellulare Struktur gewährleistet eine wesentlich geringere Dichte als bisher übliche homogene Materialien. Durch gezielte bereichsweise Anordnung des zellularen Werkstoffs rufen Laufschaufeln gemäß der Erfindung daher wesentlich geringere Beanspruchungen infolge der Fliehkraft hervor. Somit lassen sich bei Verwendung von zellularen Werkstoffen Laufschaufeln mit deutlich größerer Schaufellänge realisieren, so dass ein größerer Strömungsquerschnitt mit geringeren Verlusten beim Einsatz der Laufschaufel in einer Strömungsmaschine realisierbar ist.

[0010] Zellulare Werkstoffe weisen zudem eine größere innere Dämpfung als homogene Materialien auf, so dass sie vorteilhafterweise mögliche Schwingungen besonders effizient dämpfen. Darüber hinaus zeigen zellulare Werkstoffe gute Steifigkeitseigenschaften, so dass sie durch die hohe spezifische Festigkeit annähernd die zulässige Belastung von vergleichbaren homogenen Werkstoffen aufweisen. Dies ist besonders vorteilhaft bei der Anwendung in einer Strömungsmaschine, wo erhebliche thermomechanische Belastungen zu verzeichnen sind. Durch die gezielte Auswahl von Bereichen der Laufschaufel, wo der zellulare Werkstoff vorgesehen ist, kann ein belastungsangepasstes Schaufeldesign für die Laufschaufel angegeben werden. Je nach Anwendungsfall können daher unterschiedliche Bereiche der Laufschaufel den zellularen Werkstoff aufweisen.

[0011] Die Laufschaufel weist vorzugsweise einen Schaufelblattbereich mit dem zellularen Werkstoff auf. Gerade der Schaufelblattbereich einer Laufschaufel ist beim Einsatz der Laufschaufel in einer Strömungsmaschine infolge der Fliehkrafteinwirkung besonders hohen Schaufelbeanspruchungen ausgesetzt, da der Schaufelblattbereich gegenüber anderen Bereichen der Laufschaufel einen größeren radialen Abstand von der Rotationsachse aufweist. Ein den zellularen Werkstoff aufweisenden Schaufelblattbereich führt aufgrund der deutlich geringeren Dichte eine entsprechend geringere Zentrifugalbelastung.

[0012] Vorzugsweise weist die Laufschaufel einen Befestigungsbereich, insbesondere einen Schaufelfuß, auf, wobei der zellulare Werkstoff in dem Befestigungsbereich vorgesehen ist. Die Befestigung einer Laufschaufel erfolgt üblicherweise an einer rotierbaren Welle, wobei ein Befestigungsbereich der Laufschaufel mit einem korrespondierenden Aufnehmbereich der Welle verbunden ist. Es sind verschiedene Schaufelbefestigungskonzepte bekannt, beispielsweise Tannenbaumnut-Verbindungen oder Hammerkopf-Verbindungen, auf die das neue Laufschaufelkonzept anwendbar ist. Durch das Vorsehen des zellularen Werkstoffs in dem Befestigungsbereich der Laufschaufel, können auch in dem Befestigungsbereich die Schaufelbeanspruchungen entsprechend reduziert werden. Durch die Kombination verschiedener Bereiche der Laufschaufel, in denen der zellulare Werkstoff vorgesehen ist, wird eine gezielte Anpassung an die jeweiligen Belastungen ermöglicht. Beispielsweise kann der zellulare Werkstoff sowohl im Schaufelblattbereich als auch im Befestigungsbereich vorgesehen sein.

[0013] Die Laufschaufel kann auch als Ganzes aus einem zellularen Werkstoff bestehen, wodurch aufgrund der Dichtereduzierung gegenüber einem vergleichbaren massiven Werkstoff, eine Leichtbauweise der Laufschaufel insgesamt erreicht ist. Hinsichtlich der physikalischen Eigenschaften wie Gewicht, Härte und Flexibilität ist der zellulare Aufbau der Laufschaufel gegenüber dem Einsatz von massiven Leichtmetallen, beispielsweise Titan-Legierungen, weitaus überlegen.

[0014] In einer bevorzugten Ausgestaltung weist die Laufschaufel einen Innenbereich und einen den Innenbereich umgebenden Mantelbereich auf, wobei in dem Mantelbereich und/oder in dem Innenbereich der zellulare Werkstoff vorgesehen ist.

[0015] Weiter bevorzugt bildet der zellulare Werkstoff eine äußere Oberfläche mit gegenüber den Zellen geschlossener Struktur. Dies ist besonders vorteilhaft, sofern die äußere Oberfläche eine Teilfläche des Schaufelblattbereichs der Laufschaufel ist, wobei der Schaufelblattbereich im Betrieb mit einem Strömungsmedium beaufschlagt ist. Durch das Ausbilden einer geschlossenen Struktur der äußeren Oberfläche ist eine Oberfläche, z.B. eine Oberfläche im Schaufelblattbereich, mit entsprechend geringer Rauhigkeit bereitgestellt. Sofern die äußere Oberfläche der zellularen Struktur einem Strömungsmedium ausgesetzt ist, sind die Strömungswiderstände und damit die Strömungsverluste entsprechend gering. Vorteilhafterweise wird durch die zellulare Struktur des Werkstoffs eine äußere Oberfläche bereitgestellt, die auch gegenüber Sekundärverlusten infolge von Querströmungen stark dämpfend wirkt. Die Oberfläche weist hierzu Barrieren für eine mögliche Querströmung auf, die entlang aneinander grenzende Zellen der zellularen Struktur ausgebildet sein können.

[0016] In einer besonders bevorzugten Ausgestaltung ist der zellulare Werkstoff ein Metallschaum. Vor allem Metallschäume gelten als Leichtbauwerkstoffe mit hohem Potential und einem breit gefächerten Anwendungsgebiet. Metallschäume können in verschiedenen Herstellverfahren, beispielsweise mittels Schmelz- sowie pulvermetallurgischen Abscheide- sowie Sputtertechniken gewonnen werden. Bei einem pulvermetallurgischen Verfahren wird durch Mischen eines Metallpulvers mit einem Treibmittel, beispielsweise Metallhydrid, ein Austauschmaterial hergestellt, dass nach anschließendem axialen Heißpressen oder Strangpressen zu einem vorgefertigten Halbzeug verdichtet wird, dass durch entsprechendes Umformen an ein jeweiliges Endprodukt formgetreu angepasst werden kann und durch entsprechendes Erwärmen bis knapp über die Schmelztemperatur des Metalls regelrecht aufgeschäumt wird. Das in dem Halbzeug enthaltene Treibmittel, für das typischerweise Titanhydrid verwendet wird, zersetzt sich bei Erwärmung und spaltet Wasserstoffgas ab. Der gasförmig entstehende Wasserstoff führt als Treibgas in der Metallschmelze zur entsprechenden Porenbildung. Die durch die Poren gebildete Porosität des Metallschaums kann dabei über die Dauer des Aufschäumvorgangs gezielt eingestellt werden.

[0017] Vorzugsweise beträgt die Dichte des Metallschaums zwischen etwa 5% bis 50%, insbesondere zwischen etwa 8% bis 20%, der Dichte des Massivmaterials.

[0018] Vorzugsweise besteht der Metallschaum aus einem hochtemperaturfesten Material, insbesondere eine Nickelbasis- oder Kobaltbasislegierung. Die Wahl eines hochtemperaturfesten Materials ist insbesondere für die Anwendung in einer Gasturbine, mit Turbineneintrittstemperaturen von bis zu 1200°C besonders vorteilhaft. Auch die Anwendung in einer Dampfturbine mit hohen Dampfzuständen von über 600°C Dampftemperatur wird durch diese Materialwahl für den Metallschaum ermöglicht.

[0019] Bevorzugt ist die Laufschaufel als eine Gasturbinenlaufschaufel, eine Dampfturbinenlaufschaufel, insbesondere eine Niederdruck-Dampfturbinenlaufschaufel, oder eine Verdichterlaufschaufel ausgestaltet. Insbesondere der Einsatz der Laufschaufel in einer Niederdruck-Dampfturbine erscheint besonders vorteilhaft, weil durch die Verwendung des zellularen Werkstoffs, beispielsweise eines Metallschaums, größere Schaufellängen bei niedrigerer Fliehkraftbelastung gegenüber den herkömmlichen Laufschaufeln realisierbar sind. Dies wirkt sich unmittelbar günstig auf den Wirkungsgrad der Strömungsmaschine, beispielsweise einer Niederdruck-Dampfturbine aus.

[0020] Die auf eine Strömungsmaschine gerichtete Aufgabe wird erfindungsgemäß gelöst durch eine Strömungsmaschine mit einer Laufschaufel gemäß den obigen Ausführungen.

[0021] Vorteilhafterweise ist die Strömungsmaschine als eine Gasturbine, eine Dampfturbine oder ein Verdichter ausgestaltet.

[0022] Die Vorteile einer solchen Strömungsmaschine ergeben sich entsprechend den Ausführungen zur Laufschaufel.

[0023] Die Erfindung wird beispielhaft anhand der Zeichnung näher erläutert. Es zeigen hierbei schematisch und teilweise vereinfacht:
FIG 1
in perspektivischer Ansicht eine Laufschaufel für eine Strömungsmaschine,
FIG 2
in perspektivischer Ansicht eine Laufschaufel für eine Strömungsmaschine, die bereichsweise aus einem zellularen Werkstoff besteht,
FIG 3
eine perspektivische Darstellung einer gegenüber FIG 2 modifizierten Laufschaufel,
FIG 4
eine Ansicht der in FIG 3 gezeigten Laufschaufel senkrecht zur Ebene entlang der Schnittlinie IV-IV,
FIG 5 bis FIG 6
jeweils eine Schnittansicht einer Laufschaufel mit gegenüber FIG 4 modifizierten Ausgestaltung,
FIG 7
in vergrößerter Darstellung die Einzelheit VII der in FIG 6 gezeigten Laufschaufel, und
FIG 8
einen stark vereinfachten Längsschnitt eines Ausschnitts einer Strömungsmaschine mit Laufschaufeln.


[0024] Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.

[0025] FIG 1 zeigt in perspektivischer Ansicht eine Laufschaufel 1, die sich entlang einer Längsachse 25 erstreckt.
Die Laufschaufel weist entlang der Längsachse aufeinander folgend einen Befestigungsbereich 9, eine daran angrenzende Schaufelplattform 23 sowie einen Schaufelblattbereich 7 auf. Im Befestigungsbereich 9 ist ein Schaufelfuß 11 gebildet, der zur Befestigung der Laufschaufel 1 an der Welle einer in der FIG 1 nicht dargestellten Strömungsmaschine (vgl. FIG 8) dient. Der Schaufelfuß 11 ist als Hammerkopf ausgestaltet. Andere Ausgestaltungen, beispielsweise als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. Bei herkömmlichen Laufschaufeln 1 werden in allen Bereichen 9, 23, 7 der Laufschaufel 1 massive metallische Werkstoffe verwendet. Die Laufschaufel 1 kann hierbei durch ein Gussverfahren, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.

[0026] Eine Laufschaufel 1 gemäß der Erfindung ist in FIG 2 dargestellt.
Die Laufschaufel 1 besteht gegenüber der in FIG 1 gezeigten herkömmlichen Laufschaufel 1 bereichsweise aus einem zellularen Werkstoff 5. Der zellulare Werkstoff 5 ist hierbei in dem Schaufelblattbereich 7 der Laufschaufel 1 vorgesehen, wobei der gesamte Schaufelblattbereich 7 den zellularen Werkstoff 5 aufweist. Der zellulare Werkstoff 5 weist eine Vielzahl von Zellen 17, 17a, 17b auf. Der Zellenaufbau des zellularen Werkstoffs 5 kann dergestalt sein, dass eine geschlossen poröse Struktur erzielt ist, wobei jede der Zellen 17, 17a, 17b geschlossen ist. In einer alternativen Ausgestaltung des zellularen Werkstoffs können die Zellen 17, 17A, 17B auch eine zumindest teilweise nicht geschlossene poröse Struktur bilden. Durch das Vorsehen des zellularen Werkstoffs 5 in dem Schaufelblattbereich 7 ist in dem Schaufelblattbereich 7 eine gegenüber herkömmlichen Laufschaufeln 1 mit massivem Materialeinsatz (vgl. FIG 1) ein Bereich 7 mit deutlich verringerter Materialdichte gegeben. Dies ist aufgrund der zellularen Struktur des Werkstoffs 5 erzielt. Durch die verringerte Dichte im Schaufelblattbereich 7 ist im Betriebsfall, d. h. beispielsweise beim Einsatz der Laufschaufel 1 in einer Strömungsmaschine, eine erhebliche Verringerung der Belastung infolge der entlang der Längsachse 25 radial auswärts gerichteten Zentrifugalkraft Fz erreicht. Der Bereich der Laufschaufel 1, der aufgrund des größeren radialen Abstandes zur Rotationsachse eine größere Zentrifugalkraft Fz erfährt, nämlich der Schaufelblattbereich 7, ist dabei gezielt mit dem zellularen Werkstoff versehen. Mit der Erfindung ist eine Anpassung an die jeweiligen Anforderungen, die vom Einsatzfall und der dadurch herrschenden Belastungen auf die Laufschaufel 1 abhängen, möglich. Dabei werden gegenüber herkömmlichen Konzepten erstmals die strukturellen Eigenschaften der Werkstoffe berücksichtigt und vorteilhaft eingesetzt.

[0027] Der zellulare Werkstoff 5 kann in unterschiedlichen Bereichen 9, 23, 7 der Laufschaufel 1 vorgesehen sein. Um diese Flexibilität zu veranschaulichen, zeigt FIG 3 in perspektivischer Darstellung eine Laufschaufel 1 mit einer gegenüber der in FIG 2 dargestellten Laufschaufel 1 modifizierten Ausgestaltung hinsichtlich des Einbringens des zellularen Werkstoffs 5. Der Einfachheit und Übersichtlichkeit halber ist dies anhand der Einzelheiten X1 und X2 der Laufschaufel 1 verdeutlicht. Der zellulare Werkstoff 5 ist gemäß Einzelheit X1 im Befestigungsbereich 9 sowie im Bereich der Schaufelplattform 23 gemäß Einzelheit X2 eingebracht. Die Einzelheiten X1 sowie X2 repräsentieren dabei beispielhaft Teilbereiche des Befestigungsbereichs 9 bzw. der Schaufelplattform 23. Selbstverständlich kann in einer vorteilhafter Ausgestaltung der gesamte Befestigungsbereich 9 und/oder der Bereich der Schaufelplattform 23 aus dem zellularen Werkstoff 5 bestehen. Der zellulare Werkstoff 5 umfasst dabei eine Vielzahl von Zellen 17.

[0028] FIG 4 zeigt eine Schnittansicht der in FIG 3 gezeigten Laufschaufel 1 entlang einer Schnittlinie IV-IV.
Die Laufschaufel 1 weist eine Eintrittskante 31 sowie eine Austrittskante 33 auf. Weiter weist die Laufschaufel 1 eine Druckseite 35 sowie eine der Druckseite 35 gegenüberliegende Saugseite 37 auf. Ein typisches Schaufelprofil ist hierdurch gegeben. Die Laufschaufel 1 weist einen Innenbereich 13 sowie einen den Innenbereich 13 umgebenden Mantelbereich 15 auf. Der Mantelbereich 15 bildet eine äußere Oberfläche 39 der Laufschaufel 1, wobei die äußere Oberfläche 39 im Betriebsfall mit einem Strömungsmedium, z.B. einem heißen Gas oder Dampf beaufschlagt ist. Gemäß FIG 4 besteht der Mantelbereich 15 aus einem herkömmlichen, nicht näher spezifizierten, beispielsweise metallischen Massivmaterial 27. Der Innenbereich 13 besteht zumindest bereichsweise aus einem zellularen Werkstoff 5, wobei der zellulare Werkstoff 5 aus einem Metallschaum 21 mit einer Vielzahl von aneinander grenzenden Zellen 17 gebildet ist. In dem Innenbereich 13 sind Kühlkanäle 29, 29A, 29B vorgesehen, so dass die Laufschaufel 1 im Betriebsfall für eine Innenraumkühlung ausgelegt ist. Hierbei werden die Kühlkanäle 29, 29A, 29B mit einem Kühlmittel, z.B. Kühlluft oder Kühldampf beaufschlagt. Der Kühlkanal 29 dient beispielsweise der Zufuhr des Kühlmittels, während die Kühlkanäle 29A, 29B der Abfuhr des Kühlmittels dienen. Die Kühlkanäle 29, 29A, 29B sind im Innenbereich 13 durch entsprechende Ausnehmungen des zellularen Werkstoffs 5 gebildet. Die Schaufel der FIG 3 kann hierbei beispielsweise dadurch hergestellt werden, dass der dünnwandige das Schaufelprofil bildende Mantelbereich 15 als Hohlform mit dem Metallschaum 21 ausgespritzt wird, wobei entsprechende entfernbare oder herauslösbare Gusskerne zum Ausbilden der Kühlkanäle 29, 29A, 29B vor dem Einspritzen des Metallschaums 21 in dem Innenbereich 13 positioniert werden. Mit dem gezeigten Aufbau der Laufschaufel 1 ist ein dünnwandiger Mantelbereich 15 hergestellt, der durch den zellularen Werkstoff 5 im Innenbereich 13 als Stützstruktur gestützt ist.

[0029] Eine alternative Ausgestaltung des in FIG 4 gezeigten Schaufelprofils einer Laufschaufel 1 ist in FIG 5 dargestellt. Hierbei besteht der Mantelbereich 15 aus einem Metallschaum 21, der einen Innenbereich 13 umschließt. Der Innenbereich 13 bildet einen Hohlraum der Laufschaufel 1, so dass eine Innenraumkühlung möglich ist. Der Mantelbereich 15 weist eine äußere Oberfläche 39 auf, die im Betriebsfall mit einem Strömungsmedium beaufschlagt ist. Gegenüber der in FIG 4 gezeigten Variante bildet der Metallschaum 21 die äußere Oberfläche 39.

[0030] Eine weitere Variante einer Laufschaufel 1 ist in einer Schnittansicht in FIG 6 gezeigt.
Hierbei besteht das Schaufelprofil vollständig aus einem zellularen Werkstoff 5, wobei hier wiederum ein Metallschaum 21 hierfür vorgesehen ist. Zugleich bildet, analog wie im Zusammenhang mit der FIG 5 diskutiert, der Metallschaum 21 eine äußere Oberfläche 39. Der Innenbereich 13 sowie der Mantelbereich 15 der Laufschaufel 1 bestehen somit aus zellularem Werkstoff 5.

[0031] FIG 7 zeigt in einem vergrößerten Ausschnitt eine Einzelheit VII der in FIG 6 dargestellten Laufschaufel 1. Die zellulare Struktur des Werkstoffs 5, der hier durch einen Metallschaum 21 bereitgestellt ist, soll hierdurch verdeutlicht werden. Es sind eine Vielzahl von Zellen 17, 17A, 17B gezeigt, wobei die Zellen 17A, 17B aneinander grenzen und einen Teil der Oberfläche 39 der Laufschaufel 1 bilden. Es sind daneben auch Zellen 17 vorgesehen, die keine äußere Oberfläche 39 bilden. Diese Zellen 17 können auch als innere Zellen 17 bezeichnet werden. Die Zellen 17, 17A, 17B weisen in der Schnittansicht beispielhaft eine Vieleckstruktur auf. In einer dreidimensionalen Sichtweise entspricht dies Polyedern oder Linearkombinationen von Polyedern. Durch die Struktur und Anordnung der Zellen 17A, 17B bildet der zellulare Werkstoff 5 eine äußere Oberfläche 39 mit gegenüber den Zellen 17A, 17B geschlossener Struktur. Somit wird eine äußere Oberfläche 39 der Laufschaufel 1 bereitgestellt, die eine hinreichend geringe Oberflächenrauhigkeit aufweist, so dass damit einhergehend entsprechend geringe Strömungsverluste beim Einsatz der Laufschaufel 1 in einer Strömungsmaschine (vgl. FIG 8) gewährleistet sind. Gegenüber herkömmlichen Laufschaufeln 1 ist somit auch im Hinblick auf eine möglichst glatte Oberfläche eine konkurrenzfähige, wenn nicht überlegene, Lösung aufgezeigt. Vorteilhafterweise kann die lokale Oberflächenstruktur im Bereich aneinander grenzender oberflächennaher Zellen 17A, 17B insbesondere die Sekundärverluste infolge von Querströmungen zusätzlich deutlich herabsetzen.

[0032] In FIG 8 ist in vereinfachter Darstellung in einem Längsschnitt ein Ausschnitt einer Strömungsmaschine 3 am Beispiel einer Niederdruck-Dampfturbine 59 gezeigt. Die Niederdruck-Dampfturbine 59 weist einen Läufer 43 auf, der sich entlang der Rotationsachse 41 der Dampfturbine 59 erstreckt. Weiter weist die Niederdruck-Dampfturbine 59 entlang der Achse 41 aufeinander folgend einen Einströmbereich 49, einen Beschaufelungsbereich 51 sowie einen Abströmbereich 53 auf. In dem Beschaufelungsbereich 51 sind rotierbare Laufschaufeln 1 und feststehende Leitschaufeln 45 angeordnet. Die Laufschaufeln 1 sind dabei an dem Turbinenläufer 43 befestigt, während die Leitschaufeln 45 an einem den Turbinenläufer 43 umgebenden Leitschaufelträger 47 angeordnet sind. Durch die Welle 43, den Beschaufelungsbereich 51 sowie den Leitschaufelträger 47 ist ein ringförmiger Strömungskanal für ein Strömungsmedium A, zum Beispiel Heißdampf, gebildet. Der zur Zufuhr des Strömungsmediums A dienende Einströmbereich 49 wird durch ein stromaufwärts des Leitschaufelträgers 59 angeordnetes Einströmgehäuse 55 in radialer Richtung begrenzt. Ein Abströmgehäuse 57 ist stromabwärts am Leitschaufelträger 47 angeordnet und begrenzt den Abströmbereich 53 in radialer Richtung. Im Betrieb der Dampfturbine 59 strömt das Strömungsmedium A, hier ein Heißdampf, von dem Einströmbereich 49 in den Beschaufelungsbereich 51, wo das Strömungsmedium A unter Expansion Arbeit verrichtet, und verlässt danach über den Abströmbereich 53 die Dampfturbine 59. Das Strömungsmedium A wird anschließend in einem dem Abströmgehäuse 57 nachgeschalteten, in der FIG 8 nicht näher dargestellten, Kondensator für die Dampfturbine 59 gesammelt.

[0033] Beim Durchströmen des Beschaufelungsbereichs 51 entspannt sich das Strömungsmedium A und verrichtet Arbeit an den Laufschaufeln 1, wodurch diese in Rotation versetzt werden. Die Laufschaufeln 1 der Niederdruck-Dampfturbine 51 bestehen zumindest bereichsweise aus einem zellularen Werkstoff 5, wie in den Figuren 2 bis 7 beschrieben.

[0034] Dadurch weisen die Laufschaufeln 1 eine gegenüber herkömmlichen Laufschaufeln 1, (vgl. FIG 1) geringere Dichte auf und sind nicht so starken Belastungen infolge der Fliehkraft unterworfen. Die Laufschaufeln 1 bilden die Niederdruck-Beschaufelung der Niederdruck-Dampfturbine 59. Durch die bereichsweise Verwendung eines zellularen Werkstoffs 5 für die Laufschaufeln 1 können Laufschaufeln 1 aufgrund des Dichtevorteils mit größerer radialer Dimension zum Einsatz kommen, so dass ein größerer Strömungsquerschnitt mit geringeren Verlusten für die Dampfturbine 59 realisiert ist.

[0035] Neben den Laufschaufeln 1 können auch die Leitschaufeln 45 bereichsweise aus einem zellularen Werkstoff 5 bestehen, so dass im Beschaufelungsbereich 51 sowohl Laufschaufeln 1 als auch Leitschaufeln 45 in Leichtbauweise einsetzbar sind. Weiterhin ist eine Anwendung des neuen Schaufelkonzepts auf andere Arten von Strömungsmaschinen 3 möglich. So kann die Beschaufelung einer Gasturbine, eines Verdichters, einer Hochdruck- oder Mitteldruck-Teilturbine einer Dampfturbinenanlage Laufschaufeln 1 und/oder Leitschaufeln 45 mit dem zellularen Werkstoff 5, insbesondere einem Metallschaum 21, aufweisen.


Ansprüche

1. Laufschaufel (1) für eine Strömungsmaschine (3),
wobei diese im Schaufelblattbereich (7) zumindest bereichsweise aus einem zellularen Werkstoff (5) besteht,
wobei diese einen Innenbereich (13) und
einen den Innenbereich (13) umgebenden Mantelbereich (15) aufweist und
wobei in dem Mantelbereich (15) und nicht im Innenbereich (13) der zellulare Werkstoff (5) vorgesehen ist.
 
2. Laufschaufel (1) nach Anspruch 1,
wobei diese einen Befestigungsbereich (9),
insbesondere ein Schaufelfuß (11),
aufweist,
wobei der zellulare Werkstoff (5) in dem Befestigungsbereich (9) vorgesehen ist.
 
3. Laufschaufel (1) nach Anspruch 1 oder 2,
wobei der zellulare Werkstoff (5) eine äußere Oberfläche (39) mit gegenüber den Zellen (17,17A,17B) geschlossener Struktur bildet.
 
4. Laufschaufel (1) nach einem der vorhergehenden Ansprüche,
wobei der zellulare Werkstoff (5) ein Metallschaum (21) ist.
 
5. Laufschaufel (1) nach Anspruch 4,
wobei die Dichte des Metallschaums (21) zwischen etwa 5% bis 50%,
insbesondere zwischen etwa 8% bis 20%,
der Dichte des Massivmaterials (27) beträgt.
 
6. Laufschaufel (1) nach Anspruch 4 oder 5,
wobei der Metallschaum (21) aus einem hochtemperaturfesten Material,
insbesondere eine Nickelbasis- oder Kobaltbasislegierung, besteht.
 
7. Laufschaufel (1) nach einem der vorhergehenden Ansprüche,
wobei diese als eine Gasturbinenlaufschaufel,
als eine Dampfturbinenlaufschaufel,
insbesondere als eine Niederdruck-Dampfturbinenlaufschaufel, oder als eine Verdichterlaufschaufel ausgestaltet ist.
 
8. Strömungsmaschine (3) mit einer Laufschaufel (1) nach einem der vorhergehenden Ansprüche.
 
9. Strömungsmaschine (3) nach Anspruch 8,
wobei diese als eine Gasturbine,
eine Dampfturbine (59),
insbesondere eine Niederdruck-Dampfturbine,
oder ein Verdichter
ausgestaltet ist.
 




Zeichnung