| (19) |
 |
|
(11) |
EP 1 717 439 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims EN |
| (48) |
Corrigendum issued on: |
|
03.12.2008 Bulletin 2008/49 |
| (45) |
Mention of the grant of the patent: |
|
09.01.2008 Bulletin 2008/02 |
| (22) |
Date of filing: 11.04.2006 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Fuel injection system for internal combustion engines
Brennstoffeinspritzsystem für Brennkraftmaschine
Système d'injection de carburant pour moteurs à combustion interne
|
| (84) |
Designated Contracting States: |
|
DE FR IT |
| (30) |
Priority: |
18.04.2005 IT MI20050688
|
| (43) |
Date of publication of application: |
|
02.11.2006 Bulletin 2006/44 |
| (73) |
Proprietor: DELL'ORTO S.P.A. |
|
20038 Seregno (Milano) (IT) |
|
| (72) |
Inventors: |
|
- Dell'Orto, Pierluigi
20045, Besana Brianza (MILANO) (IT)
- Grassia, Pasquale
80125, Napoli (IT)
|
| (74) |
Representative: Faggioni, Giovanmaria et al |
|
Fumero-Studio Consulenza Brevetti Snc
Pettenkoferstrasse 20-22 80336 München 80336 München (DE) |
| (56) |
References cited: :
EP-A- 0 288 216 WO-A-94/18449
|
EP-A- 0 953 764 US-A1- 2003 047 625
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] The device subject of the present invention falls in the sector of fuel supply systems
for internal combustion engines. A large part of internal combustion engines is currently
supplied with fuel injection systems which, according to applications, have operating
pressures varying between 2 bar and 150 bar. The need arises therefrom to equip the
above-mentioned systems with pumps to supply pressurised fuel.
[0002] Depending on the desired pressure level, different types of variously-operated pumps
are used. In particular, for pressure levels between 2 and 5 bar, roller rotary electropumps
operated by a direct-current motor (as well as go-devil pumps or liquid-ring pumps)
are widely used in the technical practice. For higher pressure levels, mechanically-operated
alternative pumps are nearly always employed. In this type of systems, by-pass pressure
adjusters are normally employed.
[0003] Current anti-pollution regulations impose to adopt ever more advanced fuel-injection
systems even in small motorcycle engines. The need to limit costs and to keep such
engines efficient requires such systems not only to be functional and to have construction
simplicity, but also to consume little power.
[0004] Fig. 1 shows the diagram of a conventional fuel-injection system. The fuel to be
processed is drawn from tank 1 and arrives, through a filtering system 2, at pump
3 which provides to pressurise it and to send it to injector 4. Injector 4 adjusts
the fuel flow, which reaches the engine through the intake manifolds or is directly
injected into the combustion chamber.
[0005] Supply pressure adjustment is the task, as already mentioned, of a pressure adjuster
5 which, arranged downstream of the pump, is generally integrated in a by-pass circuit.
Pressure adjustment through a by-pass system provides for the pump capacity to be
oversize, according to the maximum flow rate required by the injector. In substance,
pump capacity is define according to the value of the flow rate required the injector
upon maximum power delivery by the engine, and is further suitably increased in order
to take into account the part of fuel which is in any case led into the by-pass circuit
by the adjuster. When, at low engine loads, the flow rate of the fuel to be injected
is smaller than the maximum flow rate, the exceeding flow is recirculated through
the by-pass. Thereby, maximum pump capacity is always processed, but only a part thereof
is actually used; thereby, all the energy imparted to the recirculated part of fuel
is lost. The pump will always operate at maximum power causing large energy consumption
with low engine loads.
[0006] It is an object of the present invention to propose a supply device for internal
combustion engines which overcomes the mentioned drawbacks and which is both simpler
- and hence cheaper from the point of view of the manufacture thereof - and more easily
controllable in its use, so as to achieve pressurisation and adjustment of fuel pressure,
as well as being cheaper from an energy point of view. These objects are achieved
through the features mentioned in claim 1.
[0007] In other words, the object of the present invention is achieved by employing a fuel
pressurisation system which provides both to pressurise the fuel and to adjust the
desired pressure value without using additional external devices, of the type of known
pressure adjusters.
[0008] Further features and advantages of the invention are in any case more evident from
the following detailed description of a preferred embodiment, given merely by way
of a non-limiting example and shown in the accompanying drawings, wherein:
fig. 1 shows, as already mentioned, a fuel supply system according to the known art;
fig. 2 shows, in an extremely diagrammatic manner similar to that of fig. 1, a supply
system according to the present invention;
fig. 3 shows an axial section of a possible practical embodiment of the device according
to the invention;
fig. 4 shows a diagram of the excitation current of the electromagnet operating the
supply pump, in a system according to the present invention, as well as the piston
displacement diagram of an internal combustion engine supplied by such pump; and
fig. 5 is a diagram of the synchronisation signals of the supply pump and of the injector,
in a system according to the present invention.
[0009] As outlined in fig. 2, the system according to the present invention consists of
the same essential elements already seen in connection with fig. 1 of the known art,
i.e.:
- a tank 1;
- a filter 2;
- an electromagnetic pump 3; ;
- an injector assembly 4;
but is devoid of the by-pass pressure adjuster 5; this remarkably simplifies system
architecture and reduces the manufacturing and mounting costs thereof, but also carries
the further advantages highlighted in the following.
[0010] The operation of the proposed system provides that the fuel taken from tank 1 flows
through filtering system 2 and arrives at pump-injector assembly 3-4, which is capable
of adjusting the pressure to a preset value.
[0011] This result is possible if a pump is adopted such as the one described for example
in patents
EP-0.288.216 in the name of EATON,
EP-0.953.764-B1 in the name of MARELLI which, however, refer exclusively to pumps, for use in water
supply to coffee machines or in oil supply to 2-stroke engines; in the known art resulting
from these patents, excitation of the operating electromagnet causes displacement
of the piston in its fuel intake run, whereas the fuel supply run occurs under the
thrust of a pressure spring, which has been loaded during the intake run.
[0012] In
US-2003/ 0047625-A1 a pump device fully similar to the above-cited ones is shown, which is preferred
to as injector due to the fact that the pump supply chamber is directly equipped with
an outlet port; the injecting function, however, is directly driven by the pump piston.
Similar considerations apply to
EP-1.306.544 and to
EP-0.962.649.
[0013] In the arrangement according to the invention, which is better understandable if
reference to the practical embodiment shown in fig. 3 is made it has instead been
suggested to combine a pump body 3 with an injector body 4 to form a single assembly,
wherein the pumping function and the injecting function are controlled in a substantially
independent manner, even though from a single electronic control unit.
[0014] In pump 3, a bell body 10 is housed, wherein a chamber 11 is formed, where the fuel
arrives, within which a contrast spring 12 is housed; said spring rests above against
a fixed collar 3b of the fuel supply conduit 3a to pump unit 3, and rests below against
the upper surface of a piston 15. Said piston has at the same time the function both
of intake and supply piston of the fuel coming from conduit 3a, and that of movable
anchor, sensitive to the magnetic field generated by an electromagnet. As a matter
of fact, on the outside of body 10 and of piston 15, reel 13 of said electromagnet
is arranged, inwardly closed by a metal sheet 13a and housed in a supporting body
14. The wall of said metal sheet 13a builds, together with wall 14a of body 14, a
cylinder guiding the displacements of piston 15.
[0015] Piston 15 is hollow and its inner cylindrical chamber in turn builds a guide of the
same piston 15 on a cylindrical extension 16 of closing base 17 of body 3. In extension
16, a central cavity 18 is formed, which extends into an axial hole 18a in the same
base 17; hole 18a puts in communication chamber 18 with end chamber 19 mounting injector
unit 4, as better described in the following. In chamber 18, a non-return valve is
housed, consisting of a valve body 20, for example a spherical one, and of a contrast
spring 21.
[0016] When electromagnet reel 13 is electrically energised, it causes the upward (with
reference to the drawing) displacement of anchor 15; structure, size and arrangement
of spring 12 and valve 20-21, known per se, are such that the upward displacement
of anchor 15 determines, in addition to compression of spring 12, the opening of valve
20 and the flow of fuel from chamber 11, i.e. from conduit 3a, to chamber 18.
[0017] When piston 15 has reached the upper end stop and stops, spring 21 causes the closure
of valve 20. If, at this stage, electromagnet reel 13 is de-energised, the fuel in
chamber 18, 18a, 19 - not being able to be released towards the injector (as better
explained in the following), nor backwards towards chamber 11 - remains pressurised,
under the action of piston 15, pushed by spring 12. The value of this pressure is
determined by the ratio between the load of said spring 12 on piston 15 and the useful
surface of piston 15.
[0018] Injector unit 4 is directly connected with pump unit 3 by way of the engagement of
extension 4a of body 4 into chamber 19, for example by simple screwing in.
[0019] The structure of the injector unit, known per se and hence not described in further
detail, essentially comprises: a first hollow cylindrical body 22, forming a first
injector supply chamber 22a; a bell body 23, in whose central chamber a contrast spring
24 is housed; a movable anchor 25, shaped as a cylinder and equipped with an axial
boring 25a; an reel 26, which partly surrounds the chamber housing spring 24 and partly
anchor 25; and a fuel injection nozzle 27, with corresponding closing needle 28, housed
in a chamber 29 formed at the bottom of the sliding seat of anchor 25. Needle 28 is
integral with anchor 25 and is therefore normally closed when electromagnet 26 is
not energised and spring 24 pushes anchor 25 downwards.
[0020] According to the present invention, chamber 18 of the pump unit is directly and freely
in communication with conduit 18a, with chamber 19, with chamber 22a, with the chamber
housing spring 24, with conduit 25a and with chamber 29 supplying injector 4. Therefore,
when the fuel is pressurised in chamber 18, it is equally so in chamber 29.
[0021] Thanks to this arrangement, it can be appreciated that, according to the main feature
of the present invention, an integrated assembly of pump and injector is accomplished,
in which, however, the operation of the pump unit can be considered somewhat distinct
from injector operation, due to the reasons set forth in the following.
[0022] The sizing of the pump unit, in relation to the delivery capability of the injector,
is such that, when the engine is operated at high rpm, i.e. when the maximum quantity
of supply fuel is required, a pump supply impulse must occur at each opening of the
injector. However, it is not necessary to guarantee the coincidence of the actuation
instant of electromagnet 13 controlling the displacements of piston 15, with the actuation
instant of electromagnet 26 controlling the opening of the injector; but rather, the
two actuation instants are preferably alternate, as appears clearly from the diagrams
of figs. 4 and 5, shown below.
[0023] With such a sizing of the pump unit, it then becomes also possible - when the engine
is operated at low rpm, i.e. at idle, and the fuel flow injected by the injector is
consequently relatively small - to actuate electromagnet 13 which controls the displacements
of piston 15 not following each actuation of electromagnet 26 which controls the opening
of the injector, but rather following a sequence of an integer number of actuations
of electromagnet 26, for example every two or three times. As a matter of fact, the
full run capacity of piston 15 may correspond - at these low rpm - to two or three
fuel injections into the engine, and at each fuel fuel-injection, piston 15 will cover
only half or a third of its run, to stop as soon as needle 28 of the injector closes.
[0024] In general, if the duration of the fuel injection phase is short and injector capacity
is accordingly small, only part of the fuel contained in chamber 18 will be released
and, as a result, in the following intake phase, piston 15 will suck only the fuel
amount required to replenish chamber 18. Thereby, flow rate adjustment occurs only
according to injector opening time. The energy used during each intake run is constant
upon varying of actuation frequency. If frequency decreases, cycle duration increases
and, once intake duration has been set, the time in which the magnet is not actuated
increases and, as a result, the energy used decreases. This is an obvious great advantage
over the known art in which, even at low engine rpm, when fuel demand is low, the
pump processes the entire flow even if most of it is bypassed, so that the entire
energy employed in such process is wasted.
[0025] The diagram of fig. 4 - which refers to the case of engine supply at the highest
rpm, and shows the piston position on the y axis and the progress of time on the x
axis - shows in the upper half that the displacement of piston 13 comprises an initial
supply phase a), a subsequent holding phase b), and a final return phase c). Phase
a) corresponds to piston rise, with reload of spring 15 and simultaneous fuel intake
towards chamber 18; phase b) is a piston holding phase while waiting to supply the
injector with fuel; and phase c) corresponds to the fuel injection phase, wherein
the fuel is released and the piston is moved downwards. It must here be remembered
that holding of piston 15 is carried out hydraulically, in the sense that it is determined
simply by closure of injector needle 28, which prevents the fuel from flowing. The
lower half of the diagram of fig. 4, to be compared directly with the upper half thereof,
shows the development of the excitation current (value on the y axis) over time (value
on the x axis); here it shows clearly that the excitation current increases dramatically
during phase a) which controls and displaces the piston, then drops to zero in phase
b) which holds the pressure of the piston, and in phase c) when the injector control
is activated.
[0026] The diagram of fig. 5 shows instead the time ratio between the activation signals
of electromagnet 13 of the pump and of injector 26, respectively; here it is evident
that the pump activation signal is generated immediately after the end of the injector
one. In other words, electromagnet 26 controlling the opening of injector needle 28
is energised and kept energised for the time necessary for the injection of the required
fuel amount according to the engine rpm; for all this time, fuel supply is guaranteed
by the displacement of piston 15 under the action of spring 12, which extends itself.
Following de-energising of electromagnet 26, pump unit electromagnet 13 is then energised,
which causes piston 15 to rise and spring 12 to reload.
[0027] By the described structure of the pump-injector assembly according to the present
invention, various advantages are hence obtained, which may be summed up in the following:
- the use of a pressure adjuster is abandoned. By opening electrically-controlled injector
27, the fuel is pumped thanks to the extension of spring 12, which provides to automatically
keep the pressure at the desired value; this value, determined according to the preload
assigned to the spring, remains virtually constant, given the modest variability of
the spring load during extension thereof;
- the injector supply phase can be completed in a very short time because the energy
required is already available and stored in the previously loaded spring. Since the
spring can be reloaded between an injection phase and the other, it is therefore not
necessary to keep to the characteristic movement times of electromagnet 13;
- the electric power installed to activate electromagnet 13 can be remarkably lower
because the work required for displacing piston 15 and for compressing spring 12 can
be produced over a longer time, i.e. precisely in the time between an injection phase
and the other;
- considerable energy savings are made, due to the following factors: the fact that
the pump must not treat excess fuel (i.e. the one normally recycled from the pressure
adjuster of the prior art); the fact that a single run of pump piston 15 can be used,
at low engine rpm, for multiple injector supplies; and the fact that, at intermediate
rpm, the supply run of piston 15 is limited and spring 12 does not extend completely,
hence the intake run is also limited to the one strictly necessary for the partial
reload of spring 12;
- further energy savings are obtained, due to the fact that no power consumption exists
in phase b) of holding of the cycle time, the holding being guaranteed hydraulically
by the temporary closure of the injector.
- it is further possible to simplify the control algorithm in the electronic control
unit, since the injector closure signal can be used as a control signal for the activation
of electromagnet 13, simplifying the synchronisation between pump and injector;
- reduced cost of the system, due to the reduction of the components (doing without
the pressure adjuster) and to the greater construction simplicity (integrated pump-injector
assembly);
[0028] It is understood, however, that the invention is not to be considered limited to
the particular arrangement illustrated above, which represents only an exemplary embodiment
thereof, but that different variants are possible, all within the reach of a person
skilled in the field, without departing from the scope of protection of the present
invention, as defined in the following claims.
1. Fuel-injection system for internal combustion engines, comprising a pump unit (3)
cooperating with an injector unit (4), the pump unit comprising a piston-cylinder
assembly (15; 13a-14a), an electromagnet (13) exercising its force of attraction on
a movable anchor (15), consisting of the piston or integral therewith, a spring (12)
acting on the anchor or piston (15) with an elastic force of a sign opposite to that
of the force of attraction of the electromagnet, the action of the electromagnet on
said anchor-piston causing the loading of said spring (12) during the fuel intake
phase, whereby
- said pump unit (3) is directly associated with an injector unit (4),
- said spring (12) controls the supply run of the piston (15) through the elastic
energy stored in said spring,
- said supply run pressurises the fuel, so as to supply it directly to the injector
unit (4), characterised in that
- fuel supply to the engine is driven only by the opening of the injector unit needle
(28).
2. Fuel-injection system for internal combustion engines as claimed in claim 1, characterised in that
said fuel chamber (18) of the pump unit (3) is closed upstream by a non-return valve
(20) and, downstream, it is in direct communication with a supply chamber (29) formed
in said injector unit (4),
the fuel in said fuel chamber (18) and in said supply chamber (29) is kept under pressure
by the action of the pump unit piston (15), under the thrust of said spring (12).
3. Fuel-injection system for internal combustion engines as claimed in claim 2), characterised in that said supply chamber (29) is in direct, continuous communication with said fuel chamber
(18) formed in the pump unit (3).
4. Fuel-injection system for internal combustion engines as claimed in claim 1), 2) or
3), characterised in that the needle (28) of said injection unit is driven by an electromagnetic actuation,
and the opening of said needle drives the supply run of said pump unit piston (15).
5. Fuel-injection system for internal combustion engines as claimed in claim 1) or 2),
characterised in that the adjustment of the injector fuel supply pressure is determined by the ratio between
the load of said spring (12) and the useful surface of the piston (15).
6. Fuel-injection system for internal combustion engines as claimed in claim 1) or 2),
characterised in that the closure signal of the injector needle (28) is used, in an electronic control
unit, as a signal activating the electromagnet (13) of the pump unit (3).
7. Fuel-injection system for internal combustion engines as claimed in claim 6), characterised in that, at the maximum engine rpm, said electronic control unit sends a signal activating
the electromagnet (13) of the pump unit (3) following each deactivation signal of
the electromagnet (26) driving the needle (28) of the injector unit (4).
8. Fuel-injection system for internal combustion engines as claimed in claim 6), characterised in that, at the minimum engine rpm, said electronic control unit sends a signal activating
the electromagnet (13) of the pump unit (3) following a multiple integer number of
deactivation signals of the electromagnet (26) driving the needle (28) of the injector
unit (4).
9. Fuel-injection system for internal combustion engines as claimed in any one of the
preceding claims, characterised in that between said pump unit (3) and a fuel tank (1), there is a filter (2) only.
10. Fuel-injection system for internal combustion engines as claimed in any one of the
preceding claims, characterised in that said non-return valve (20) is placed between said fuel chamber (18) and a cylinder
chamber (11), wherein said spring (12) is housed, said cylinder chamber (1) being
directly connected with a fuel tank (1).
11. Fuel-injection system for internal combustion engines as claimed in any one of claims
1) to 10), characterised in that said piston (15) is hollow and is guided on the outside within a cylinder consisting
at least in part of the containment wall (13a) of the electromagnet reel (13).
12. Fuel-injection system for internal combustion engines as claimed in any one of the
preceding claims, characterised in that the electromagnet reel (13), closed on the inside by a metal sheet forming said wall
(13a), is housed in a support body (14), the base of which forms a further cylindrical
wall (14a) guiding the movements of the piston (15).
13. Fuel-injection system for internal combustion engines as claimed in claim 11), characterised in that said hollow piston (15) is further guided, on the inside, along a cylindrical appendix
(16) of a base (17) closing the pump unit body (3).
14. Fuel-injection system for internal combustion engines as claimed in claim 2) or 13),
characterised in that said fuel chamber (18) of the pump unit is formed in said appendix (16) guiding the
piston (15), in said chamber (18) being housed said non-return valve (20) and a respective
pressure spring (21), the seat of said non-return valve (20) being formed in the piston
head.
15. Fuel-injection system for internal combustion engines as claimed in claim 14), characterised in that said fuel chamber (18), formed in said appendix (16), extends into an axial hole
(18a) of the base (17) of the pump unit, which puts said chamber (18) in communication
with an end chamber (19) mounting the injector unit (4).
16. Fuel-injection system for internal combustion engines as claimed in claim 2) or 15),
characterised in that said injector unit (4) is directly connected with the pump unit (3) by the engagement
of an extension (4a) of the same with said end chamber (19), preferably by simple
screwing.
1. Kraftstoffeinspritzsystem für Brennkraftmaschinen, umfassend eine Pumpeneinheit (3),
die mit einer Einspritzventileinheit (4) zusammenwirkt, wobei die Pumpeneinheit eine
Kolben-Zylinder-Baugruppe (15; 13a-14a) umfasst, einen Elektromagneten (13), der seine
Anziehungskraft auf einen beweglichen Anker (15) ausübt, bestehend aus dem Kolben
oder einer damit einstückigen Feder (12), die mit einer Federkraft mit einem Vorzeichen,
das dem der Anziehungskraft des Elektromagneten entgegengesetzt ist, auf den Anker
oder Kolben (15) wirkt, wobei die Wirkung des Elektromagneten auf den genannten Anker-Kolben
die Belastung der genannten Feder (12) während der Kraftstoffansaugphase verursacht,
wobei
- die genannte Pumpeneinheit (3) direkt einer Einspritzventileinheit (4) zugeordnet
ist,
- die genannte Feder (12) den Zuführhub des Kolbens (15) durch die in der genannten
Feder gespeicherte Federenergie steuert,
- der genannte Zuführhub den Kraftstoff druckbeaufschlagt, um ihn der Einspritzventileinheit
(4) direkt zuzuführen, dadurch gekennzeichnet, dass
- die Kraftstoffzufuhr zum Motor nur durch das Öffnen der Nadel (28) der Einspritzventileinheit
erfolgt.
2. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 1, dadurch gekennzeichnet, dass
die genannte Kraftstoffkammer (18) der Pumpeneinheit (3) in Durchflussrichtung stromaufwärts
durch ein Rückschlagventil (20) verschlossen ist und stromabwärts in direkter Kommunikation
mit einer in der genannten Einspritzventileinheit (4) gebildeten Versorgungskammer
(29) steht,
der Kraftstoff in der genannten Kraftstoffkammer (18) und in der genannten Versorgungskammer
(29) durch die Wirkung des Kolbens (15) der Pumpeneinheit unter der Schubwirkung der
genannten Feder (12) unter Druck gehalten wird.
3. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 2, dadurch gekennzeichnet, dass die genannte Versorgungskammer (29) in direkter kontinuierlicher Kommunikation mit
der in der Pumpeneinheit (3) gebildeten genannten Kraftstoffkammer (18) steht.
4. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Nadel (28) der genannten Einspritzeinheit durch eine elektromagnetische Betätigung
angetrieben wird und dass das Öffnen der genannten Nadel den Zuführhub des genannten
Kolbens (15) der Pumpeneinheit antreibt.
5. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Einstellung des Kraftstoffzufuhrdrucks des Einspritzventils von dem Verhältnis
zwischen der Belastung der genannten Feder (12) und der Nutzfläche des Kolbens (15)
bestimmt wird.
6. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Schließsignal der Einspritzventilnadel (28) in einem elektronischen Steuergerät
als ein den Elektromagneten (13) der Pumpeneinheit (3) aktivierendes Signal verwendet
wird.
7. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 6, dadurch gekennzeichnet, dass das genannte elektronische Steuergerät bei der maximalen Motordrehzahl, auf jedes
Deaktivierungssignal des die Nadel (28) der Einspritzventileinheit (4) antreibenden
Elektromagneten (26) folgend, ein den Elektromagneten (13) der Pumpeneinheit (3) aktivierendes
Signal sendet.
8. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 6, dadurch gekennzeichnet, dass das genannte elektronische Steuergerät bei der Mindestdrehzahl des Motors, auf eine
mehrfache ganze Zahl von Deaktivierungssignalen des die Nadel (28) der Einspritzventileinheit
(4) antreibenden Elektromagneten (26) folgend, ein den Elektromagneten (13) der Pumpeneinheit
(3) aktivierendes Signal sendet.
9. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass sich zwischen der genannten Pumpeneinheit (3) und einem Kraftstoffbehälter (1) nur
ein Filter (2) befindet.
10. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das genannte Rückschlagventil (20) zwischen der genannten Kraftstoffkammer (18) und
einer Zylinderkammer (11) angeordnet ist, in der die genannte Feder (12) untergebracht
ist, wobei die genannte Zylinderkammer (11) direkt mit einem Kraftstoffbehälter (1)
verbunden ist.
11. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass der genannte Kolben (15) hohl ist und an der Außenseite in einem Zylinder geführt
wird, der wenigstens teilweise aus der Umschließungswand (13a) der Elektromagnetenspule
(13) besteht.
12. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Elektromagnetenspule (13), die an der Innenseite durch ein Blech geschlossen
ist, das die genannte Wand (13a) bildet, in einem Lagerungsgehäuse (14) untergebracht
ist, dessen Basis eine weitere zylindrische Wand (14a) bildet, welche die Bewegungen
des Kolbens (15) leitet.
13. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 11, dadurch gekennzeichnet, dass der genannte hohle Kolben (15) ferner an der Innenseite an einem zylindrischen Fortsatz
(16) einer Basis (17), die das Gehäuse der Pumpeneinheit (3) schließt, entlang geführt
wird.
14. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 2 oder 13, dadurch gekennzeichnet, dass die genannte Kraftstoffkammer (18) der Pumpeneinheit in dem genannten den Kolben
(15) leitenden Fortsatz (16) ausgebildet ist, wobei in der genannten Kammer (18) das
genannte Rückschlagventil (20) und eine jeweilige Druckfeder (21) untergebracht sind,
wobei der Sitz des genannten Rückschlagventils (20) im Kolbenkopf ausgebildet ist.
15. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 14, dadurch gekennzeichnet, dass die in dem genannten Fortsatz (16) gebildete genannte Kraftstoffkammer (18) in ein
Axialloch (18a) der Basis (17) der Pumpeneinheit hinein verläuft, was die genannte
Kammer (18) mit einer auf der Einspritzventileinheit (4) sitzenden Endkammer (19)
in Kommunikation bringt.
16. Kraftstoffeinspritzsystem für Brennkraftmaschinen nach Anspruch 2 oder 15, dadurch gekennzeichnet, dass die genannte Einspritzventileinheit (4) durch den Eingriff einer Verlängerung (4a)
derselben mit der genannten Endkammer (19), vorzugsweise durch einfaches Schrauben,
direkt mit der Pumpeneinheit (3) verbunden ist.
1. Système d'injection de carburant destiné à des moteurs à combustion interne, comprenant
une unité de pompe (3) coopérant avec une unité d'injecteur (4), l'unité de pompe
comprenant un ensemble piston-cylindre (15 ; 13a à 14a), un électroaimant (13) exerçant
sa force d'attraction sur une ancre mobile (15), constituée du piston ou intégrée
à celui-ci, un ressort (12) agissant sur l'ancre ou piston (15) avec une force élastique
d'un signe opposé à celui de la force d'attraction de l'électroaimant, l'action de
l'électroaimant sur ladite ancre-ledit piston provoquant le chargement dudit ressort
(12) durant la phase d'admission de carburant, grâce à quoi
- ladite unité de pompe (3) est directement associée à une unité d'injecteur (4),
- ledit ressort (12) commande la course d'alimentation du piston (15) par l'intermédiaire
de l'énergie élastique emmagasinée dans ledit ressort,
- ladite course d'alimentation met sous pression le carburant, de façon à le fournir
directement à l'unité d'injecteur (4), caractérisé en ce que
- l'alimentation en carburant au moteur est commandée uniquement par l'ouverture du
pointeau (28) de l'unité d'injecteur.
2. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 1, caractérisé en ce que
ladite chambre de carburant (18) de ladite unité de pompe (3) est fermée en amont
par un clapet anti-retour (20) et en aval, elle est en communication directe avec
une chambre d'alimentation (29) formée dans ladite unité d'injecteur (4),
le carburant dans ladite chambre de carburant (18) et dans ladite chambre d'alimentation
(29) est maintenu sous pression par l'action du piston d'unité de pompe (15), sous
la poussée dudit ressort (12).
3. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 2, caractérisé en ce que ladite chambre d'alimentation (29) est en communication directe continue avec ladite
chambre de carburant (18) formée dans l'unité de pompe (3).
4. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 1, 2 ou 3, caractérisé en ce que le pointeau (28) de ladite unité d'injection est commandé par un actionnement électromagnétique,
et en ce que l'ouverture dudit pointeau commande la course d'alimentation dudit piston d'unité
de pompe (15).
5. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 1 ou 2, caractérisé en ce que le réglage de la pression d'alimentation en carburant d'injecteur est déterminé par
le rapport entre la charge dudit ressort (12) et la surface utile du piston (15).
6. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 1 ou 2, caractérisé en ce que le signal de fermeture du pointeau d'injecteur (28) est utilisé, dans une unité de
commande électronique, en tant que signal activant l'électroaimant (13) de l'unité
de pompe (3).
7. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 6, caractérisé en ce que, au régime en tours par minute du moteur maximum, ladite unité de commande électronique
envoie un signal activant l'électroaimant (13) de l'unité de pompe (3), après chaque
signal de désactivation de l'électroaimant (26) commandant le pointeau (28) de l'unité
d'injecteur (4).
8. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 6, caractérisé en ce que, au régime en tours par minute du moteur minimum, ladite unité de commande électronique
envoie un signal activant l'électroaimant (13) de l'unité de pompe (3), après un nombre
entier multiple de signaux de désactivation de l'électroaimant (26) commandant le
pointeau (28) de l'unité d'injecteur (4).
9. Système d'injection de carburant destiné à des moteurs à combustion interne selon
l'une quelconque des revendications précédentes, caractérisé en ce que entre ladite unité de pompe (3) et un réservoir de carburant (1), il n'y a qu'un
filtre (2).
10. Système d'injection de carburant destiné à des moteurs à combustion interne selon
l'une quelconque des revendications précédentes, caractérisé en ce que ledit clapet anti-retour (20) est placé entre ladite chambre de carburant (18) et
une chambre de cylindre (11), où ledit ressort (12) est logé, ladite chambre de cylindre
(1) étant directement reliée à un réservoir de carburant (1).
11. Système d'injection de carburant destiné à des moteurs à combustion interne selon
l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit piston (15) est creux et est guidé sur l'extérieur à l'intérieur d'un cylindre
constitué au moins en partie de la paroi de confinement (13a) de la bobine d'électroaimant
(13).
12. Système d'injection de carburant destiné à des moteurs à combustion interne selon
l'une quelconque des revendications précédentes, caractérisé en ce que la bobine d'électroaimant (13), fermée sur l'intérieur par une feuille métallique
formant ladite paroi (13a), est logée dans un corps de support (14), dont la base
forme une autre paroi cylindrique (14a) guidant les mouvements du piston (15).
13. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 11, caractérisé en ce que ledit piston creux (15) est en outre guidé, sur l'intérieur, le long d'un appendice
cylindrique (16) d'une base (17) fermant le corps d'unité de pompe (3).
14. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 2 ou 13, caractérisé en ce que ladite chambre de carburant (18) de l'unité de pompe est formée dans ledit appendice
(16) guidant le piston (15), dans ladite chambre (18) étant logés ledit clapet anti-retour
(20) et un ressort de pression respectif (21), le siège dudit clapet anti-retour (20)
étant formé dans la tête de piston.
15. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 14, caractérisé en ce que ladite chambre de carburant (18), formée dans ledit appendice (16), s'étend dans
un trou axial (18a) de la base (17) de l'unité de pompe, lequel place ladite chambre
(18) en communication avec une chambre d'extrémité (19) installant l'unité d'injecteur
(4).
16. Système d'injection de carburant destiné à des moteurs à combustion interne selon
la revendication 2 ou 15, caractérisé en ce que ladite unité d'injecteur (4) est directement reliée à l'unité de pompe (3) par l'engagement
d'une extension (4a) de celle-ci avec ladite chambre d'extrémité (19), de préférence
par un simple vissage.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description