EP 1 722 176 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

15.11.2006 Patentblatt 2006/46

(51) Int Cl.:

F25B 41/06 (2006.01)

(21) Anmeldenummer: 06009027.1

(22) Anmeldetag: 02.05.2006

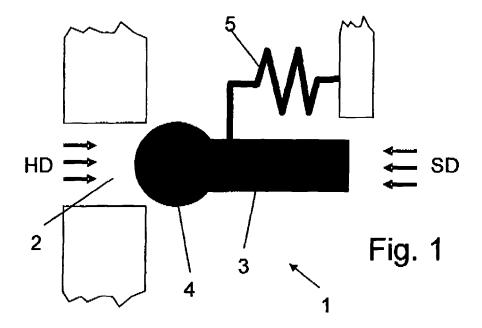
(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 13.05.2005 DE 102005023083


(71) Anmelder: Behr GmbH & Co. KG 70469 Stuttgart (DE)

(72) Erfinder: Wiebelt, Achim, Dr.-Ing. 71711 Steinheim (DE)

(74) Vertreter: Nestler, Jan Hendrik et al Behr GmbH & Co. KG Intellectual Property, G-IP Mauserstrasse 3 70469 Stuttgart (DE)

(54)Differenzdruckventil

(57)Die Erfindung betrifft ein Differenzdruckventil (1), insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite (HD) und der Saugdruckseite (SD) des Differenzdruckventils (1) anliegt, wobei das Differenzdruckventil ein Drosselelement (3), das den Durchfluss durch eine Drosselstelle (2) regelt, und eine das Drosselelement (3) in Schließrichtung vorspannende Feder (5) aufweist, und ferner das Drosselelement (3) einen kugelförmigen Kopf (4) und einen Schaft aufweist.

15

20

35

40

Beschreibung

[0001] Die Erfindung betrifft ein Differenzdruckventil (Delta-P-Ventil), insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaaniage, gemäß dem Oberbegriff des Anspruchs 1.

[0002] In Fig. 3 ist ein bekanntes Differenzdruckventil 101 als Prinzipskizze dargestellt. Hierbei wird der Durchfluss von Kältemittel durch eine Drosselstelle 102 mit Hilfe eines Ventilstifts 103 mit einem konischen Kopf 104 in Verbindung mit einer in der Zeichnung schematisch angedeuteten Feder 105 geregelt. Die Drücke in den durch die Drosselstelle 102 getrennten Räumen oder Strömungskanälen sind durch HD (Hochdruckseite) und SD (Saugdruckseite) bezeichnet, wobei die normale Strömungsrichtung von der Hochdruckseite HD zur Saugdruckseite SD verläuft. Der Kopf 104 ist hierbei saugdruckseitig angeordnet und der Schaft des Ventilstifts 103 durchdringt die Drosselöffnung. Die Feder 105 ist hochdruckseitig angeordnet.

[0003] Nachteilig bei diesem bekannten Differenzdruckventil ist, dass ein nahezu linearer Zusammenhang zwischen dem freien Strömungsquerschnitt und der anliegenden Druckdifferenz besteht, welcher nicht in allen Anwendungsfällen erwünscht ist.

[0004] Ferner sind eine Vielzahl von Rückschlagventilen bekannt bei denen eine Ventilkugel durch eine Feder vorgespannt im geschlossenen Zustand an einem Ventilsitz anliegt, der durch eine konische oder zylindrisch ausgebildete Drosselöffnung gebildet ist, und im geöffneten Zustand unter Kompression der Feder eine Durchflussöffnung freigibt. Derartige Rückschlagventile zeigen jedoch in aller Regel ein stark von den Erfordernissen bei Kältemittelkreisen abweichendes Öffnungsverhalten.

[0005] Derartige Ventile lassen noch Wünsche offen.
 [0006] Es ist Aufgabe der Erfindung, ein verbessertes
 Differenzdruckventil zur Verfügung zu stellen.

[0007] Diese Aufgabe wird gelöst durch ein Differenzdruckventil mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 2. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.

[0008] Es wird ein Differenzdruckventil, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite und der Saugdruckseite des Differenzdruckventils anliegt, vorgeschlagen, wobei das Differenzdruckventil ein Drosselelement, das den Durchfluss durch eine Drosselstelle regelt, und eine das Drosselelement in Schließrichtung vorspannende Feder aufweist, und bei dem Drosselelement und Feder derart ausgebildet und eingerichtet sind, dass sich eine überproportionale Abhängigkeit des Durchlassquerschnitts von der anliegenden Druckdiffferenz ergibt.

[0009] Dieses Differenzdruckventil ermöglicht bei hohen Druckdifferenzen auf Grund des überproportional großen Strömungsquerschnitts auch eine größere Käl-

teleistung. Dabei ist es relativ kostengünstig herstellbar. Darüber hinaus kann das Ventil selbstregelnd arbeiten. Es kann daher auf elektronische Regelungen, Sensoren, elektrisch verstellbare Ventile usw. verzichtet werden. Als überproportional kommt dabei insbesondere eine Abhängigkeit $A_{Durchlass} \propto (\Delta p)^x$ mit x=1,1, 1,2, 1,3, 1,4, 1,5, 1,6, 1,7, 1,8, 1,9, 2,0, 2,25, 2,5, 2,75 oder 3 in Betracht. [0010] Weiterhin wird ein Differenzdruckventil, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite und der Saugdruckseite des Differenzdruckventils anliegt, vorgeschlagen wobei das Differenzdruckventil ein Drosselelement, das den Durchfluss durch eine Drosselstelle regelt, und eine das Drosselelement in Schließrichtung vorspannende Feder aufweist, und wobei das Drosselelement einen kugelförmigen Kopf aufweist. Diese Ausbildung kann sowohl in Alleinstellung, als auch in Kombination mit oben erwähnter Abhängigkeit von Durchlassquerschnitt und Druckdifferenz von Vorteil sein.

[0011] Auch dieses Differenzdruckventil ermöglicht bei hohen Druckdifferenzen auf Grund des überproportional großen Strömungsquerschnitts auch eine größere Kälteleistung. Dabei ist es relativ kostengünstig herstellbar. Auch dieses Ventil kann selbstregelnd im obigen Sinne ausgeführt sein.

[0012] Das Drosselelement des Differenzdruckventils kann einen Schaft aufweisen. Der Schaft des Drosselelements ist bevorzugt zylinderförmig ausgebildet.

[0013] Der Kopf des Drosselelements ist bevorzugt mittels einer Klebeverbindung zentriert am Schaft angebracht. Es kann sich aber auch als vorteilhaft erweisen, Kopf und Schaft des Drosselelements einstückig auszubilden. Der Schaft hat bevorzugt einen Durchmesser von weniger als 2 mm.

[0014] Die Kugeldurchmesser der Drosselelemente betragen bevorzugt zwischen 1,5 und 2,0 mm, der Schaft ist entsprechend kleiner dimensioniert. Da eine hohe Fertigungsgenauigkeit für den Kopf erforderlich ist, sind insbesondere Kugeln aus der Kugellagerfertigung, die relativ kostengünstig bei hohen Genauigkeiten erhältlich sind, geeignet. Die Durchmesserdifferenz des kugelförmigen Kopfes und der durch diesen zu verschließenden Drosselöffnung beträgt - insbesondere bei den genannten Kugeldurchmessern - vorzugsweise maximal 0,01 mm. Auch 0,005 mm, 0,0075 mm, 0,015 mm oder 0,02 mm sind denkbar.

[0015] Bevorzugt ist das Verhältnis von Kugeldurchmesser zu Drosselöffnungsdurchmesser kleiner als 1,02. Ist das Verhältnis kleiner 1, so dringt der Kopf des Drosselelements in die Drosselöffnung ein, weshalb ein axialer Anschlag vorzusehen ist, beispielsweise am Schaft. Auf Grund eines möglichen Verklemmens und Festsetzens ist jedoch ein Verhältnis von Kugeldurchmesser zu Drosselöffnungsdurchmesser von 1,0 ohne andere Maßnahmen eher ungeeignet. Im Übrigens sind auch Verhältnisse von 1,01, 1,03, 1,04, 1,05 oder 1,1

15

denkbar.

[0016] Der Kopf des Drosselelements ist bevorzugt saugdruckseitig angeordnet, wobei sich der Schaft des Drosselelements von der Drosselöffnung weg erstreckt, so dass der Schaft nicht durch die Drosselöffnung ragt. Dies hat des weiteren den Vorteil, dass bei einer angeklebten Kugel als Kopf die Klebeverbindung nicht auf Zug, sondern nur auf Druck belastet wird, so dass die Verbindung auch bei langem Betrieb betriebssicher ist. Die schaftseitig angeordnete Feder ist entsprechend ebenfalls saugdruckseitig angeordnet. Hierbei wird auch die Feder bevorzugt auf Druck belastet. Die Anbringung der Feder erfolgt bevorzugt am Schaft und nicht an der Kugel.

[0017] Der Drosselquerschnitt ist bevorzugt bei großen Druckdifferenzen überproportional größer als bei kleinen Druckdifferenzen, so dass bei maximalem Leistungsbedarf auch ausreichend viel Fluid das Differenzdruckventil durchströmen kann.

[0018] Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:

- Fig. 1 eine Prinzipskizze eines erfindungsgemäßen Differenzdruckventils.
- Fig. 2 ein Diagramm des Drosselquerschnitts über dem Differenzdruck, und
- Fig. 3 eine Prinzipskizze eines herkömmlichen Differenzdruckventils.

[0019] Ein als Expansionsorgan in einer Kraftfahrzeug-Klimaanlage dienendes Differenzdruckventil 1 weist zur Regelung des Kältemitteldurchflusses (Kältemittel vorliegend R744) eine Drosselstelle 2 auf, wobei die Drosselstelle 2 durch ein kugelförmig ausgebildetes Ende eines Ventilstifts 3, das an der vorliegend zylindrischen Drosselöffnung im geschlossenen Zustand dicht anliegt, gebildet ist. Hierbei beträgt die Durchmesserdifferenz von Drosselöffnung und Kugel 0,005 mm bei einem Kugeldurchmesser von 2 mm.

[0020] Der Ventilstift 3 weist besagtes kugelförmiges Ende, im Folgenden als Kopf 4 bezeichnet, im Bereich der Drasselstelle 2 und einen hiermit mittels Kleben verbundenen zylinderförmigen Schaft auf, der sich von der Drosselstelle 2 weg erstreckt, also nicht in die Drosselöffnung hinein ragt. Der Schaft hat vorliegend einen Durchmesser von 1,5 mm. Am Schaft des Ventilstifts 3 ist eine Feder 5 mit ihrem einen Ende angebracht, welche eine Schließkraft auf den Ventilstift 3 ausübt, so dass bei fehlender oder geringer Druckdifferenz die Drosselöffnung durch der Kopf 4 des Ventilstifts 3 in Folge einer zumindest im Wesentlichen fluiddichten Anlage des entsprechenden konischen Bereiches des Ventilstifts 3 an den Ventilsitze geschlossen ist (vgl. stark schematisierte Darstellung von Fig. 1). Dabei wird die Feder 5 auf Druck belastet.

[0021] In Fig. 2 sind die optimalen Betriebspunkte (COP = Coefficient of performance) durch den Bereich zwischen den beiden durchgezogenen Linien dargestellt. Wie aus dem Diagramm ersichtlich, verläuft die Kennlinie eines erfindungsgemäßen Differenzdruckventils 1 mit kugelförmigem Ende in Verbindung mit einer Feder mit der Federkonstante von 23 N/mm im Bereich geringer Differenzdrücke nahe der oberen Bereichsgrenze, imd im weiteren Verlauf verläuft die Kennlinie annähernd mittig. Dahingegen verlaufen die Kennlinien herkömmlicher Differenzdruckventile 101 mit konischem Kopf 104 in Form einer Geraden, so dass je nach Federkonstante stets ein Bereich außerhalb des optimalen Bereichs verläuft. Diese Charakteristik ermöglicht nicht nur bei geringem Bedarf sondern insbesondere auch bei hohem Bedarf an Kältemitteldurchsatz, also im Hochiastbetrieb, eine deutlich verbesserte Kälteleistung.

[0022] Steigt bei Betrieb die Druckdifferenz zwischen Saugdruckseite SD und Hochdruckseite HD, so verschiebt sich der Ventilstift 3 entgegen der Federkraft in Richtung Saugdruckseite SD und die Drosselstelle 2 öffnet sich allmählich. Mit weiter steigender Druckdifferenz wird die Drosselöffnung auf Grund der Geometrie des Kopfes 4 deutlich schneller freigegeben, so dass sich ein nicht linearer Zusammenhang zwischen der Druckdifferenz und dem freigegebenen Strömungsquerschnitt, welcher in Zusammenhang mit der Durchflussmenge steht, ergibt (vgl. Fig. 2).

[0023] Gemäß einer nicht in der Zeichnung dargestellten Variante ist der Durchmesser des Kopfes kleiner als der Durchmesser der Drosselöffnung, so dass der Kopf vollständig in die Drosselöffnung eindringen kann. Am Schaft ist jedoch ein flanschartiger Anschlag vorgesehen, der die Bewegung begrenzt und die Drosselöffnung in der Endstellung verschließt. Hier kann insbesondere eine immer vorhandene Restöffnung realisiert werden, beispielsweise um bei einem Abstellen der Klimaanlage eine übermäßige lokale Druckerhöhung zu vermeiden, wie sie insbesondere bei CO₂-Kältemittelkreisläufen ein Problem darstellen kann.

Patentansprüche

1. Differenzdruckventil, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite (HD) und der Saugdruckseite (SD) des Differenzdruckventils (1) anliegt, wobei das Differenzdruckventil ein Drosselelement, das den Durchfluss durch eine Drosselstelle (2) regelt, und eine das Drosselelement (3) in Schließrichtung vorspannende Feder (5) aufweist, dadurch gekennzeichnet, dass Drosselelement (3) und Feder (5) derart ausgebildet und eingerichtet sind, dass sich eine überproportionale Abhängigkeit des Durchlassquerschnitts von der anliegenden Druckdiffferenz ergibt.

40

45

50

15

20

40

45

- 2. Differenzdruckventil, insbesondere Differenzdruckventil nach Anspruch 1, insbesondere für ein Expansionsorgan einer Kraftfahrzeugklimaanlage, zur Regelung eines Durchflusses eines Fluids in Abhängigkeit einer Druckdifferenz, die zwischen der Hochdruckseite (HD) und der Saugdruckseite (SD) des Differenzdruckventils (1) anliegt, wobei das Differenzdruckventil ein Drosselelement, das den Durchfluss durch eine Drosselstelle (2) regelt, und eine das Drosselelement (3) in Schließrichtung vorspannende Feder (5) aufweist, dadurch gekennzeichnet, dass das Drosselelement (3) einen kugelförmigen Kopf (4) aufweist.
- Differenzdruckventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Drosselelement
 (3) einen Schaft aufweist.
- Differenzdruckventil nach Anspruch 3, dadurch gekennzeichnet, dass der Schaft des Drosselelements (3) zylinderförmig ausgebildet ist.
- 5. Differenzdruckventil nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Kopf (4) mittels einer Klebeverbindung am Schaft des Drosselelements (3) angebracht ist.
- 6. Differenzdruckventil nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Kopf (4) und der Schaft des Drosselelements einstückig ausgebildet sind.
- Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Durchmesserdifferenz des kugelförmigen Kopfes (4) und der durch diesen zu verschließenden Drosselöffnung maximal 0,01 mm beträgt.
- 8. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis des Durchmessers des kugelförmigen Kopfes (4) und des Durchmessers der durch diesen zu verschließenden Drosselöffnung kleiner als 1,02 ist.
- 9. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kopf (4) des Drosselelements (3) saugdruckseitig angeordnet ist, wobei sich der Schaft des Drosselelements (3) von der Drosselöffnung weg erstreckt.
- Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feder (5) saugdruckseitig angeordnet ist.
- 11. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

- die Feder (5) am Schaft des Drosselelements (3) angebracht ist.
- **12.** Differenzdruckventil nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Feder (5) auf Druck belastet ist.
- 13. Differenzdruckventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der effektive Drosselquerschnitt bei großen Druckdifferenzen überproportional größer als bei kleinen Druckdifferenzen ist.
- **14.** Verwendung eines Differenzdruckventil nach einem der vorhergehenden Ansprüche als Expansionsorgan einer Kraftfahrzeug-Klimaanlage.

55

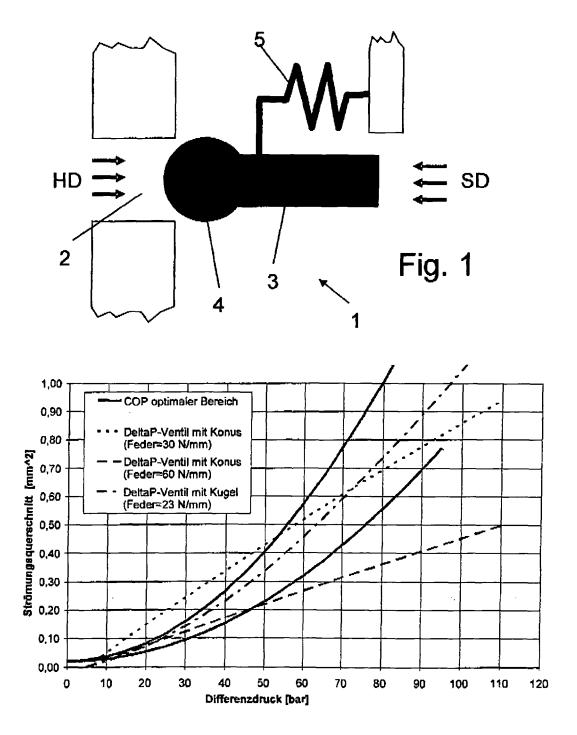
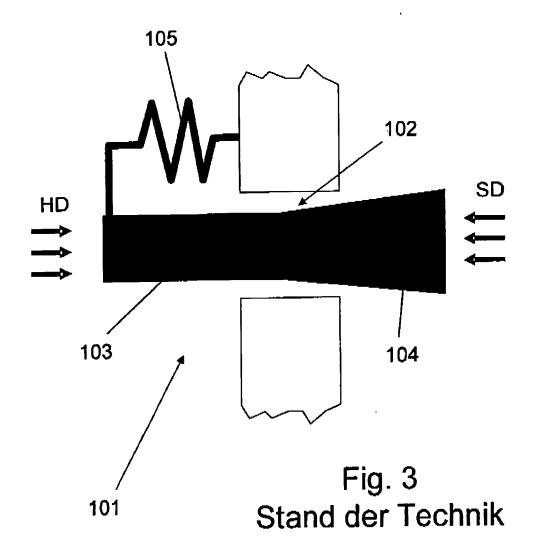



Fig. 2

