(19)
(11) EP 1 726 355 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
29.11.2006  Patentblatt  2006/48

(21) Anmeldenummer: 06008568.5

(22) Anmeldetag:  25.04.2006
(51) Internationale Patentklassifikation (IPC): 
B01F 3/02(2006.01)
B01F 5/04(2006.01)
(84) Benannte Vertragsstaaten:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR
Benannte Erstreckungsstaaten:
AL BA HR MK YU

(30) Priorität: 04.05.2005 DE 102005020942

(71) Anmelder: Linde Aktiengesellschaft
65189 Wiesbaden (DE)

(72) Erfinder:
  • Obermeyer, Heinz-Dieter, Dr.
    85356 Freising (DE)
  • Ranke, Harald, Dr.
    82343 Pöcking (DE)
  • Reinhardt, Hans-Jürgen, Dr.
    87600 Kaufbeuren (DE)
  • Wellenhofer, Anton
    81247 München (DE)

(74) Vertreter: Gellner, Bernd et al
Patente und Marken Dr.-Carl-von-Linde-Strasse 6-14
82049 Pullach
82049 Pullach (DE)

   


(54) Gas-Gas-Mischer


(57) Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Mischen eines ersten und eines zweiten Gases mit einer Hauptleitung (1) zur Führung des ersten Gases, einer Zuleitung (4) für das zweite Gas, wobei sich die Zuleitung (4) bis in das Innere der Hauptleitung (1) erstreckt und an ihrem Ende im Wesentlichen parallel zur Symmetrieachse (5) der Hauptleitung (1) verläuft, und einem Düsenkopf (6), der an seinem hinteren Ende (8) mit der Zuleitung (4) verbunden ist. Der Düsenkopf (6) besitzt Austrittskanäle (13) für das zweite Gas, die um einen Winkel zwischen 15° und 75° gegen die Symmetrieachse (5) der Hauptleitung (1) geneigt sind.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zum Mischen eines ersten und eines zweiten Gases, wobei ein Strom eines ersten Gases in einer Hauptleitung geführt wird und das zweite Gas über eine Zuleitung zu einem Düsenkopf geführt und in mehrere Teilströme aufgeteilt wird. Femer bezieht sich die Erfindung auf eine Vorrichtung zum Mischen eines ersten und eines zweiten Gases mit einer Hauptleitung zur Führung des ersten Gases, einer Zuleitung für das zweite Gas, wobei sich die Zuleitung bis in das Innere der Hauptleitung erstreckt und an ihrem Ende im Wesentlichen parallel zur Symmetrieachse der Hauptleitung verläuft, und einem Düsenkopf, der an seinem hinteren Ende mit der Zuleitung verbunden ist, wobei der Düsenkopf Austrittskanäle für das zweite Gas besitzt.

[0002] Bei vielen Oxidationsprozessen in chemischen Reaktoren wird mit Sauerstoff angereicherte Luft als Oxidationsmittel eingesetzt. Der Sauerstoff wird hierzu mittels eines Injektors in den Luftstrom eingedüst, wobei eine möglichst gleichmäßige Verteilung des Sauerstoffs in dem Luftstrom erreicht werden muss. Anderenfalls könnten lokal erhöhte Sauerstoffkonzentrationen bei der anschließenden chemischen Reaktion zu lokalen Temperaturüberhöhungen, sogenannten "hot spots", führen, welche sich negativ auf die durchzuführende Reaktion auswirken können oder gar zu Schäden am Reaktor führen können.

[0003] In der EP 0 474 524 B1 wird eine Vorrichtung zum Mischen zweier Gasströme vorgeschlagen. Einem in einem Kanalabschnitt strömenden Hauptstrom eines ersten Gases wird über eine Zuleitung ein zweites Gas zugeführt. Das Ausstoßende der Zuleitung für das zweite Gas erstreckt sich koaxial zu der Achse des Kanalabschnitts und ist mit radial nach außen gerichteten Austrittskanälen versehen. Femer sind Umlenkbleche vorgesehen, so dass eine Rotationsbewegung des eingeleiteten zweiten Gases um die Achse des Kanalabschnitts erzeugt wird.

[0004] Aufgabe vorliegender Erfindung ist es, ein Verfahren und eine Vorrichtung der eingangs genannten Art zu entwickeln, die eine möglichst homogene Mischung der beiden zusammengeführten Gase ermöglichen.

[0005] Diese Aufgabe wird durch ein Verfahren zum Mischen eines ersten und eines zweiten Gases gelöst, wobei ein Strom eines ersten Gases in einer Hauptleitung geführt wird und das zweite Gas über eine Zuleitung zu einem Düsenkopf geführt und in mehrere Teilströme aufgeteilt wird, wobei zumindest ein Teil der Teilströme unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung des ersten Gases in das erste Gas eingeleitet werden.

[0006] Die erfindungsgemäße Vorrichtung der eingangs genannten Art zeichnet sich dadurch aus, dass die Austrittskanäle um einen Winkel zwischen 15 und 75° gegen die Symmetrieachse der Hauptleitung geneigt sind.

[0007] Erfindungsgemäß sind die Austrittskanäle um einen Winkel zwischen 15° und 75°, bevorzugt 30° bis 60°, besonders bevorzugt um einen Winkel zwischen 40° und 50°, gegen die Symmetrieachse der Hauptleitung geneigt. Die Austrittskanäle sind dabei gegen die Strömungsrichtung des ersten Gases gerichtet. Durch schräg gegen die Hauptströmung des ersten Gases gerichtete Austrittskanäle wird erreicht, dass das abgestrahlte zweite Gas weit in die Hauptströmung eindringt und gleichzeitig gut mit der Hauptströmung durchmischt wird. Durch das schräge Abstrahlen des zweiten Gases wird eine verlängerte Mischstrecke erzeugt, so dass das zweite Gas bis in die laminare Randströmung des ersten Gases vordringt und sich auch mit dieser mischt.

[0008] Der Düsenkopf besitzt mehrere Austrittskanäle für das zweite Gas. Bevorzugt sind die Austrittskanäle so ausgeführt, dass dem austretenden Gas keine Drallströmung aufgeprägt wird. Es hat sich gezeigt, dass sich die beiden Gase homogener mischen, wenn das über die Zuleitung zugeführte Gas geradlinig aus dem Düsenkopf austritt und keine Rotationsbewegung ausführt.

[0009] Vorzugsweise werden die Zuleitung für das zweite Gas und der Düsenkopf so gestaltet, dass diese eine strömungsgünstige Form ohne Neigung zum Flattern besitzen. Dies wird dadurch erreicht, dass das vordere Ende des Düsenkopfs abgerundet ausgeführt ist, so dass dieser in der Strömung des ersten Gases keinen Auftrieb erfährt und eine stabile Lage beibehält. Zudem wird durch diese Formgebung der Strömungswiderstand verringert.

[0010] Das vordere Ende des Düsenkopfes besitzt bevorzugt ein elliptisches, parabelförmiges oder halbkugelförmiges Profil. Durch diese Formgebung wird zum einen der Strömungswiderstand deutlich verringert, zum anderen wird sichergestellt, dass der Düsenkopf in der Hauptströmung des ersten Gases keinen Auftrieb erfährt und so die Flattemeigung des Düsenkopfes verringert wird. Je nach Anwendungsfall kann es aber auch günstig sein, das vordere Ende des Düsenkopfes eben auszuführen.

[0011] Am hinteren Ende des Düsenkopfs erfolgt der Übergang auf die Zuleitung bevorzugt scharfkantig, wobei der Durchmesser des Düsenkopfs an dieser Stelle größer als der der Zuleitung ist. Der Übergang wirkt damit als Abrisskante. Vorzugsweise beträgt der Durchmesser der Zuleitung an der Verbindungsstelle zum Düsenkopf maximal 90% des Durchmessers des hinteren Endes des Düsenkopfes. Vorzugsweise beträgt der Winkel zwischen der Außenseite des Düsenkopfs und dem Übergang zur Zuleitung zwischen 30° und 90°.

[0012] Von Vorteil erstreckt sich die Zuleitung bis zur Symmetrieachse der Hauptleitung und die Symmetrieachse des Düsenkopfs verläuft koaxial mit der Symmetrieachse der Hauptleitung.

[0013] Für eine optimale Durchmischung der beiden Gase müssen alle Austrittskanäle gleichmäßig durchströmt werden. Es hat sich gezeigt, dass dies durch eine gleichmäßige Verteilung der Austrittskanäle in einer Reihe über den Umfang des Düsenkopfes erreicht werden kann. Vorzugsweise befinden sich die Austrittsöffnungen der Austrittskanäle im hinteren Drittel des Düsenkopfes. In diesem Bereich hat sich aufgrund der Profilierung des Düsenkopfes bereits eine definierte Strömung ausgebildet.

[0014] Es ist aber auch möglich, das zweite Gas über mehrere Reihen von Austrittskanälen in dem Düsenkopf in die Hauptströmung des ersten Gases einzudüsen. Weiter hat es sich als günstig erwiesen, einen zentralen, auf der Symmetrieachse der Hauptleitung liegenden Austrittskanal vorzusehen, aus dem ein Teil des zweiten Gases entgegen der Strömungsrichtung des ersten Gases ausströmt.

[0015] Durch den Düsenkopf wird in der Hauptleitung für das erste Gas ein bestimmter Strömungswiderstand hervorgerufen. Es hat sich insoweit gezeigt, dass sich eine gute Strömung in der Hauptleitung ausbildet, wenn der Durchmesser des hinteren Endes des Düsenkopfes, das heißt der maximale Durchmesser des Düsenkopfes, das 0,15- bis 0,3-fache des Durchmessers der Hauptleitung beträgt.

[0016] Die Querschnittsflächen der Austrittskanäle werden klein im Verhältnis zur Querschnittsfläche der Zuleitung gewählt. Damit ist umgekehrt der Strömungswiderstand in den Austrittskanälen groß gegen den Strömungswiderstand in der Zuleitung und eventuelle Druckschwankungen in dem über die Zuleitung zugeführten Gas wirken sich nicht oder nur geringfügig auf den Durchsatz durch die Austrittskanäle aus.

[0017] Die Austrittsgeschwindigkeit des zweiten Gases sollte deutlich unterhalb der Schallgeschwindigkeit liegen, um ein instationäres, stark kompressibles Verhalten auszuschließen. Vorzugsweise wird eine Austrittsgeschwindigkeit von weniger als der halben Schallgeschwindigkeit gewählt. Geeignete Austrittsgeschwindigkeiten liegen bei atmosphärischen Bedingungen im Bereich zwischen 50 m/s und 150 m/s, bevorzugt zwischen 70 m/s und 100 m/s.

[0018] Die Regelung des zweiten Gases erfolgt vorzugsweise nur durch eine Regelung des gesamten über die Zuleitung zugeführten Stromes an zweitem Gas. Die einzelnen, durch die jeweiligen Austrittskanäle ausströmenden Einzelstrahlen an zweitem Gas werden nicht separat geregelt.

[0019] Die Erfindung eignet sich insbesondere zur Sauerstoffanreicherung eines Luftstroms. Sauerstoffangereicherte Luft wird mit Vorteil in zahlreichen Oxidationsprozessen in der chemischen Industrie eingesetzt, so beispielsweise in Raffinerien, bei Claus-Verfahren oder FCC (Fluid Catalytic Cracking). Der Luftstrom wird in diesem Fall durch die Hauptleitung geleitet und Sauerstoff über die Zuleitung und den Düsenkopf in den Luftstrom eingedüst.

[0020] Es hat sich gezeigt, dass erfindungsgemäß Mischverhältnisse von zweitem Gas zu erstem Gas zwischen 1 zu 50 bis 1 zu 3 hergestellt werden können und Luftströme von bis zu 200.000 m3/h mit Sauerstoff angereichert werden können. Der bevorzugte Anwendungsbereich der Erfindung betrifft das Zumischen eines zweiten Gases in einen Strom eines ersten Gases, wobei der Strom des ersten Gases zwischen 1.000 m3/h und 200.000 m3/h, besonders bevorzugt zwischen 5.000 m3/h und 100.000 m3/h, beträgt.

[0021] Die erfindungsgemäße Vorrichtung ist klein, stabil und kann schnell in eine Rohrleitung eingebaut werden. Vorzugsweise sind hierzu entsprechende Flansche vorgesehen.

[0022] Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von dem in der Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Hierbei zeigt die:
Figur
eine erfindungsgemäße Vorrichtung zur Anreicherung eines Hauptstroms mit einem zweiten Gas, insbesondere zur Anreicherung eines Luftstroms mit Sauerstoff.


[0023] In die Luft führende Hauptleitung 1 ist ein Stutzen 3 mit Flanschen 2 angeschweißt. Der Luftstrom 15 verläuft in der Figur von rechts nach links. In die Hauptleitung 1 ragt durch den Stutzen 3 radial eine Zuleitung 4, über die der in der Hauptleitung 1 strömenden Luft Sauerstoff zugeführt werden kann. Die Zuleitung 4 erstreckt sich bis zur Symmetrieachse 5 der Hauptleitung 1, ist dann abgewinkelt und endet koaxial mit der Symmetrieachse 5.

[0024] Mit der Zuleitung 4 ist ein Düsenkopf 6 verbunden. Der Düsenkopf 6 ist.an seinem vorderen, der Zuleitung 4 abgewandten Ende 7 elliptisch abgerundet. Am hinteren Ende 8 des Düsenkopfs 6 ist der Übergang zur Zuleitung 4 stufenförmig und scharfkantig ausgebildet. Anstelle des in der Figur dargestellten stufenförmigen Übergangs mit einem 90°- Winkel zwischen der Außenseite des Düsenkopfes 6 und dessen Rückseite, sind auch Übergänge mit Winkeln zwischen 30° und 90°, bevorzugt 45°, möglich.

[0025] Das vordere, dem Düsenkopf 6 zugewandte Ende der Zuleitung 4 besitzt einen Durchmesser 9, der 90% des hinteren Durchmessers 10 des Düsenkopfes 6 beträgt.

[0026] Der maximale Durchmesser 10 des Düsenkopfs 6 beträgt das 0,15- bis 0,3-fache des inneren Durchmessers der Hauptleitung 1, um den Widerstand für die strömende Luft klein zu halten und eine ausreichende Stabilität des Düsenkopfes 6 zu gewährleisten.

[0027] Durch die Anordnung und Formgebung des Düsenkopfs 6 bildet sich eine gleichmäßige Luftströmung um den Düsenkopf 6 aus. Der Auftrieb des Düsenkopfs 6 in dem Luftstrom und die Neigung der Zuleitung 4 und des Düsenkopfs 6, in der Luftströmung zu flattern, werden minimiert.

[0028] Das Innere des Düsenkopfs 6 ist mit einer zentralen Kammer 11 versehen, die zur Zuleitung 4 hin offen ist. Von der zentralen Kammer 11 gehen eine koaxial mit der Symmetrieachse 5 verlaufende Bohrung 12 sowie mehrere unter einem Winkel von 45° zur Symmetrieachse 5 verlaufende Austrittskanäle 13 aus. Die Austrittsöffnungen der Austrittskanäle 13 liegen auf einem auf der Mantelfläche des Düsenkopfs 6 liegenden Kreis.

[0029] Die Austrittskanäle 13 sind von außen in den Düsenkopf 6 gebohrt und jeweils am äußeren Ende entgratet. Die Bohrungen für die Austrittskanäle 13 verlaufen geradlinig durch den Körper des Düsenkopfs 6.

[0030] Die Querschnittsflächen der Austrittskanäle 13 sowie der zentralen Bohrung 12 sind klein gegen die Querschnittsfläche der Zuleitung 4. Vorzugsweise beträgt das Verhältnis der Querschnittsfläche eines Austrittskanals 13 zu der der Zuleitung 4 weniger als 2 %. Durch diese Ausführungsform wird sichergestellt, dass der Strömungswiderstand in einem Austrittskanal 13 groß gegen den Strömungswiderstand der Zuleitung 4 ist. Druckschwankungen in dem über die Zuleitung 4 zugeführten Sauerstoffstrom 14 und Druckschwankungen in der in der Hauptleitung 3 strömenden Luft 15 wirken sich so nicht oder nur unwesentlich auf den Sauerstoffdurchsatz durch die Austrittskanäle 13 aus.

[0031] Die Geschwindigkeit des durch die Austrittskanäle 13 ausströmenden Sauerstoffs 16 beträgt vorzugsweise weniger als 50 % der Schallgeschwindigkeit, um instationäre Strömungsverhältnisse zu vermeiden.

[0032] Zudem sind die Austrittskanäle 12, 13 geradlinig durch den Düsenkopf 6 gebohrt, so dass der durch die Austrittskanäle 12, 13 ausströmende Sauerstoff keinerlei Drall erfährt. Die Bildung von Wirbeln, in denen sich Sauerstoff nicht mischt, wird so verhindert. Durch die Ausströmungsrichtung 16 von 45° gegen die Luftströmung 15 wird ein weites Eindringen der Mischstrahlen 16 in den Luftstrom 15 gesichert. Der Mischstrom dringt bis in die laminaren Strömungsschichten am Rand der Hauptleitung 1 vor und durchmischt sich mit der Luft.


Ansprüche

1. Verfahren zum Mischen eines ersten und eines zweiten Gases, wobei ein Strom (15) eines ersten Gases in einer Hauptleitung (1) geführt wird und das zweite Gas über eine Zuleitung (4) zu einem Düsenkopf (6) geführt und in mehrere Teilströme (16) aufgeteilt wird, dadurch gekennzeichnet; dass zumindest ein Teil der Teilströme (16) unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung (15) des ersten Gases in das erste Gas eingeleitet werden.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass alle Teilströme (16) unter einem Winkel zwischen 15° und 75° entgegen der Strömungsrichtung (15), des ersten Gases in das erste Gas eingeleitet werden.
 
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Teilströme (16) keine Rotationsbewegungskomponente aufweisen.
 
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste Gas Luft und das zweite Gas Sauerstoff ist.
 
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Strom (15) des ersten Gases zwischen 1.000 m3/h und 200.000 m3/h, bevorzugt zwischen 5.000 m3/h und 100.000 m3/h, beträgt.
 
6. Vorrichtung zum Mischen eines ersten und eines zweiten Gases

- mit einer Hauptleitung (1) zur Führung des ersten Gases,

- einer Zuleitung (4) für das zweite Gas, wobei sich die Zuleitung (4) bis in das Innere der Hauptleitung (1) erstreckt und an ihrem Ende im Wesentlichen parallel zur Symmetrieachse (5) der Hauptleitung (1) verläuft, und

- einem Düsenkopf (6), der an seinem hinteren Ende (8) mit der Zuleitung (4) verbunden ist,

- wobei der Düsenkopf (6) Austrittskanäle (13) für das zweite Gas besitzt,

dadurch gekennzeichnet,
dass die Austrittskanäle (13) um einen Winkel zwischen 15° und 75° gegen die Symmetrieachse (5) der Hauptleitung (1) geneigt sind.
 
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Durchmesser (10) des hinteren Endes (8) des Düsenkopfes (6) größer als der Durchmesser (9) der Zuleitung (4) ist und der Übergang von dem hinteren Ende (8) des Düsenkopfes (6) zu der Zuleitung (4) scharfkantig erfolgt.
 
8. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass das dem hinteren Ende (8) gegenüberliegende vordere Ende (7) des Düsenkopfes (6) abgerundet ist.
 
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das vordere Ende (7) des Düsenkopfes (6) ein elliptisches, parabelförmiges oder halbkugelförmiges Profil besitzt.
 
10. Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass der Durchmesser (9) der Zuleitung (4) höchstens das 0,9-fache des Durchmessers (10) des hinteren Endes (8) des Düsenkopfes (6) beträgt.
 
11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Durchmesser (10) des hinteren Endes (8) des Düsenkopfes (6) das 0,1- bis 0,3-fache des Durchmessers (9) der Hauptleitung (1) beträgt.
 
12. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass der Düsenkopf (6) einen zentralen, auf der Symmetrieachse (5) der Hauptleitung (1) liegenden Austrittskanal (12) aufweist.
 




Zeichnung








Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente