Field of the Invention
[0001] The present invention relates to semiconductors and photodetectors and more particularly
to germanium-on-insulator photodetectors and a method of fabricating the same.
Description of the Prior Art
[0002] In the semiconductor industry, there has been a problem with creating a high-speed,
high-efficiency photodetector that is compatible with conventional Si complementary
metal oxide semiconductor (CMOS) technology. As such, much research effort has been
carried out in an attempt to solve this problem.
[0003] One solution is the lateral trench detector described, for example, by
M. Yang, et al., IEEE Elect. Dev. Lett., vol. 23, p. 395 (2002) and
U.S. Patent No. 6,177,289 to Crow, et al. This detector uses deep trenches in Si to collect light absorbed deep in the substrate.
Despite its ease of integration with CMOS, this device has problems achieving high
speed because of RC delays due to its high capacitance, as well as limitations in
its ability to collect carriers generated deeper than the trench depth. Innovations
such as using a buried pn junction (
Q. Ouyang, et al., Device Research Conference, (2003)) or a buried insulator layer (
M. Yang, et al., IEDM Tech. Digest, p. 547, 2001) can improve the latter problem somewhat, though, due to the depth of the fingers
(several microns), these innovations are not easy to integrate into a standard CMOS
process.
[0004] Another solution is to build either a lateral or a vertical p-i-n detector on a relaxed
Ge layer grown by grading the Ge content of SiGe from pure Si to pure Ge. See, for
example,
J. Oh, IEEE J. Quantum Electron., vol. 38, 1238 (2002), and
S. B. Samavedam, et al., Appl. Phys. Lett., vol. 73, 2125 (1998). This technique has the advantage that Ge has much higher absorption than Si, particularly
at 850 nm, and therefore deep trenches are not necessary, enabling low-capacitance
detectors to be built. Ge also has higher electron and hole mobility than Si, enabling
faster collection of photogenerated carriers. The graded buffer layer also allows
low defect densities to be achieved in the final Ge layer. However, this technique
has the problem that very thick layers (on the order of greater than 1 µm) are needed
to reduce the dislocation density and also ensure that all the light is collected
in the top Ge layer. This can lead to reduced bandwidth because carriers generated
deep within the substrate have a longer distance to reach the electrodes. The thick
layers also cause problems with integration because thick layers typically create
a non-planar surface for processing.
[0005] Another solution that has been proposed is to build vertical or lateral p-i-n detectors
using Ge grown directly on a Si substrate. See, for example,
L. Colace, et al., IEEE J. Quantum Electron., vol. 35, 1843 (1999). This technique has the advantage that thick graded layers are not needed because
the Ge is grown directly on bulk Si substrates. Therefore, for long-wavelengths (λ
> 1.1 µm), the absorbing layer is restricted to the Ge layer allowing fast carrier
collection. However, this technique has the problem that for shorter wavelength light
(such as, for example, 850 nm), carriers are also generated in the underlying Si layer,
greatly reducing the speed of the detector. Moreover, Ge grown directly on Si has
a high defect density, and either selective-area growth or high-temperature annealing
is needed to reduce the dislocation density. See, for example,
H.S. Luan, et al., Appl. Phys. Lett, vol. 75, 2909 (1999), and
U.S. Patent No. 6,635,110 to Luan, et al. The annealing is especially problematic, because it can lead to significant Si diffusion
into the Ge layer, which can greatly reduce the absorption. The interdiffusion is
a particular problem for thin Ge layers, as the Si can diffuse throughout the entire
Ge layer.
[0006] Yet another solution is to fabricate a resonant-cavity detector as described in
J. D. Schaub, et al., IEEE Phot. Tech. Lett., vol. 11, 1647 (1999). This prior detector utilizes mirrors on the top and bottom of the absorbing region
to enhance the responsivity while still achieving high speed. The absorbing material
can still be Si in this case. However, this technique has the problem that it only
has high absorption near the resonance wavelength, which can be a fairly narrow peak.
Therefore, precise tuning of the incident wavelength and the cavity dimensions are
needed. Also, fabrication of the bottom mirror and the lateral overgrowth epitaxy
required to produce Si over this mirror is complicated.
[0007] The above problems could be solved by utilizing one aspect of the invention described
in
U.S. Patent No. 5,525,828 to Bassous, et al. as part of a broader invention on Si and SiGe lateral p-i-n and MSM detectors. In
the '828 patent, a p-i-n or MSM detector that utilizes an absorbing region consisting
of Ge over a buried insulating layer is described. This is the basic structure needed
for making a high-performance photodetector, because the Ge has an extremely-high
absorption at 850 nm (∼ 70 x that of Si at the same wavelength), while the buried
insulating layer blocks slow carriers generated in the Si substrate from being collected
at the surface electrodes. However, the '828 patent does not describe a specific structure
that could actually achieve high performance or be CMOS compatible, nor does it provide
a method by which such a structure could be made.
Summary of the Invention
[0008] The present invention provides a structure for a high-performance photodetector as
recited in claim 1 that includes a Ge absorbing layer on a thin SOI substrate, and
utilizing alternating n- and p-type surface electrodes. By "high-performance" it is
meant a photodetector that exhibits a -3 dB bandwidth greater than 15 GHz, and an
external quantum efficiency greater than 15%.
[0009] Advantageously, the photodetectors of the present invention achieve: (a) high bandwidth
by utilizing a buried insulating layer to isolate carriers generated in the underlying
substrate, (b) high quantum efficiency over a broad spectrum by utilizing a Ge absorbing
layer, (c) low voltage operation by utilizing an absorbing layer that is thin and
narrow electrode spacings, and (d) compatibility with CMOS devices by virtue of its
planar structure and use of a Group IV absorbing material. Examples of Group IV absorbing
materials include C, Si, Ge, Sn, Pb and combinations thereof.
[0010] Further advantageous embodiments are recited in dependent claims 2-12.
[0011] The present invention also provides a method for fabricating a high-performance photodetector
as recited in claim 13 using direct growth of Ge on a thin SOI layer, and subsequent
thermal annealing to achieve a high-quality absorbing layer.
[0012] Further advantageous embodiments are recited in dependent claims 14-19.
Brief Description of the Drawings
[0013] The present invention will now be described, by way of example only, with reference
to the accompanying drawings in which:
Fig. 1(a) is a cross-sectional view, and Fig. 1(b) is a plan view, which show one
embodiment of the present invention, which consists of a structure for a high-speed
lateral p-i-n Ge-on-insulator photodetector;
Figs. 1(c)-1(e) are cross-sectional views of: Fig. 1(c) a one-sided lateral p-i-n
Ge-on-insulator photodetector; Fig. 1(d) a symmetric metal-semiconductor-metal (MSM)
Ge-on-insulator photodetector; Fig. 1(e) an asymmetric MSM Ge-on-insulator photodetector;
Fig. 2(a) shows a cross-sectional diagram of the device in Fig. 1(a) including a compositionally-graded
Si1-xGex layer between the Si and Ge layers formed by annealing and subsequent interdiffusion.
Fig. 2(b) shows the same device as in 2(a) where annealing has caused sufficient interdiffusion
such that the entire region above the buried insulating layer consists of a compositionally-graded
Si1-xGex layer;
Fig. 3(a) shows the bandwidth vs. bias data, Fig. 3(b) shows the absorption vs. wavelength
data, and Fig. 3(c) shows the LIV characteristics at λ = 822 nm for a device structure
similar to that described in Fig. 2(a);
Fig. 4 shows the device structure in Fig. 1(a) additionally including an anti-reflection
coating;
Fig. 5 shows the device structure in Fig. 1(a) additionally including a surface SiGe
layer;
Fig. 6 shows a cross-sectional diagram of another embodiment of the present invention
in which a Ge layer is located directly on a buried insulator;
Fig. 7 shows the device structure in Fig. 1(a) combined with a SOI CMOS;
Fig. 8 shows the device structure in Fig. 1(a) combined with a bulk CMOS using selective
SOI; and
Figs. 9(a)-9(g) show one method of fabricating the high-speed Ge-on-insulator photodetector
structure of the present invention.
Detailed Description of the Invention
[0014] Cross-sectional and plan-view diagrams of one embodiment of the present invention
are shown in Figs. 1(a) and 1(b). As shown in Fig. 1(a), the present invention provides
a Ge-on-insulator photodetector that is composed of a single-crystal semiconductor
substrate 10 (e.g., Si, Ge, SiGe, GaAs, InAs, SiGeC or SiC), an insulating layer 20
(e.g., an oxide, nitride, oxynitride or any combination thereof), and a thin layer
of essentially Si (hereinafter Si layer) 30 (e.g., an SOl layer, epi-Si, or amorphous
Si). In a preferred embodiment of the present invention, the initial substrate is
a Si-on-insulator (SOl) wafer, and therefore layer 10 is Si, and layer 20 is a buried
oxide, e.g., SiO
2. On top of the thin Si layer 30, is a layer of essentially Ge (hereinafter Ge layer)
40 which, in accordance with the present invention, is much thicker than the Si layer
30. In a preferred embodiment of the present invention, layers 30 and 40 are not-intentionally
doped, and should have as low a doping concentration as possible. The remainder of
the photodetector consists of isolation regions 50, interdigitated p-type contact
regions 60 and n-type contact regions 70, and surface electrodes 80. The plan-view
diagram of Fig. 1(b) shows that the isolation regions 50 surround the entire active
area of the device. Alternate surface electrodes are connected together away from
the active area of the device over the isolation regions 50. In accordance with the
present invention, the combined average Ge concentration of the Si layer and the Ge
layer is greater than 80%.
[0015] The photodetector of the present invention works by shining near-infrared light normal
to the top surface of layer 40. Electrons-hole pairs generated in the Ge layer 40
are collected by n- and p-type contacts 60 and 70, respectively. Electron-hole pairs
generated below the insulating layer 20, that is, in the substrate 10, are isolated
from the contacts, 60 and 70 and therefore simply recombine. The photodetector device
of the present invention achieves high speed on the order of about 15 GHz or greater
because light is only absorbed in layers 30 and 40 above the insulating layer 20,
and so the absorbing region, i.e., layers 30 and 40, can be made very thin. The device
also achieves high responsivity due to the short absorption length of infrared light
in Ge (~ 0.25 µm at λ = 850 nm, ~ 1 µm at λ = 1300 nm). In a preferred embodiment
of the present invention, the combined thickness,
d, of Si layer 30 and Ge layer 40 should be no more than about 500 nm. Furthermore,
the Ge layer 40 should have a minimum thickness of 50 nm in order to absorb sufficient
light to make a useful detector.
[0016] The thin Ge absorbing layer 40 allows the contact regions 60 and 70 to be close together,
enabling fast collection of the photogenerated carriers. In a preferred embodiment,
the spacing, S, between p-type contact region 60 and n-type contact region 70 is in
the range:
d <
S < 2
d, with typical values being between 0.1 and 1.0 µm. Generally, increased capacitance
and higher surface reflection degrades performance when
S is much less than
d, while the long carrier transit time reduces the bandwidth when
S is much greater than 2
d. Excessive dark current can also result from
d being too small. It is also desirable to make the surface electrodes 80 out of a
metal, and as thick as possible to reduce series resistance.
[0017] Candidate materials for the electrodes include, but are not limited to Al, Cu, Ti,
TiN, Pt, W, Ta, TaN, Pt, Pd, Hf, Indium tin oxide (ITO) and combinations or alloys
thereof. The electrode material may also include silicides and/or germanides of the
aforementioned metals. The combination of low capacitance due to the lateral geometry,
low series resistance due to thick metal electrodes and short transit times, along
with the high absorption coefficient of Ge, allow the photodetectors of the present
invention to simultaneously achieve high speed and high responsivity.
[0018] In another embodiment of the present invention, one or both of the implanted regions
may be eliminated. In particular, it is often convenient to eliminate the p-type implant,
as many high work function metals have low barrier height to the valence band of Ge.
By "low barrier height" it is meant that the difference between the electrode Fermi
level and the Ge conduction or valence band is less than
Eg/2 for the positive-biased or negative-biased electrode, respectively, where
Eg is the band gap of the Ge absorbing layer. This situation is shown in Fig. 1 (c),
where the electrode 82, previously above the p-type implant, now makes direct contact
to Ge layer 40. In a preferred embodiment, electrode 82 has a low barrier height to
the valence band of Ge layer 40 in order to minimize the dark current. In a similar
way, a p-type implant could be utilized, and the n-type implant eliminated. In the
case of both implants being eliminated, the detector essentially becomes a metal-semiconductor-metal
(MSM) photodetector, where both sets of electrodes are in direct contact with the
Ge absorbing layer. Though this configuration tends to have higher dark current than
the lateral p-i-n geometry, the MSM geometry could have acceptably low dark current
if operated at sufficiently low bias voltages. The MSM geometry could have electrodes
with the same metal (symmetric configuration), as shown in Fig. 1(d), or utilize different
materials for the positive and negative electrodes (asymmetric configuration) as shown
in Fig. 1(e). In the symmetric configuration, electrodes 85 are in direct contact
with the absorbing region 40, and preferably comprise a material with Fermi level
near the mid-gap of Ge, in order to minimize dark current. The concept of using an
asymmetric MSM photodetector to reduce dark current has already been demonstrated
on III-Vs by
W. A. Wohlmuth, et al., Appl. Phys. Lett., vol. 69, pg. 3578 (1996) and on bulk Ge by
C. O. Chui, et al., in IEEE Phot. Tech. Lett., vol. 15, p. 1585 (2003). In this configuration, the positive-biased electrodes 90 and negative-biased electrodes
92 have barrier heights to the conduction and valence bands, respectively, that are
less than
Eg/2, and preferably as low as possible.
[0019] The multi-layer structure design shown in Fig. 1(a) can also be optimized to take
advantage of the optical interference between the surfaces of the insulating layer
20. A peak in the light intensity reflected from these interfaces occurs when the
following relation is satisfied:

where
i is an integer, λ is the wavelength of the incident light in vacuum,
t2 is the thickness of the insulating layer 20, and
n2 is the refractive index of the insulating layer 20. In the case where the buried
oxide has a thickness at or near the condition for peak reflection, the thicknesses,
t3, of the Si layer 30 and the thickness,
t4, of the Ge layer 40 can also be adjusted to achieve peak absorption. In this case,
the peak absorption condition occurs when

where
i is an integer and λ is the wavelength of the incident light in vacuum, and
n3 and
n4 are the refractive indexes of the Si layer 30 and the Ge layer 40, respectively.
However, due to the strong absorption of infrared radiation by Ge, adequate response
can still be achieved even in off-resonance conditions, and so the above conditions
provide a means to optimize the device performance, but are not a strict requirement.
In one embodiment of the present invention, the insulating layer has a thickness,
t2, and refractive index,
n2, such that the following relation is obeyed:

where
i is an integer, and λ is the wavelength of the incident light in vacuum. In yet another
embodiment of the present invention the Si layer has thickness,
t3, and refractive index,
n3, and the Ge layer has thickness,
t4, and refractive index
n4, such that the following relation is obeyed:

where
i is an integer and λ is the wavelength of the incident light in vacuum.
[0020] Further constraints on the layer structure design are imposed if the material is
subjected to high-temperature annealing. By "high-temperature", it is meant an annealing
temperature greater than about 750°C. Annealing is used to reduce the dislocation
density of the as-grown material, and is also necessary as part of the fabrication
process in order to activate the n- and p-type implants that are used in forming contact
regions 60 and 70, respectively. In this case, the device structure is described by
Fig. 2(a), which comprises a single-crystal semiconductor substrate 110, an insulating
layer 120, a Si layer 130, an interdiffused Si
1-xGe
x layer 140, and a Ge layer 150. The interdiffused Si
1-xGe
x layer 140 has a Ge concentration,
x, that continuously varies between 0 adjacent to the Si layer 130 and 1 adjacent to
the Ge layer 150. The structure shown in Fig. 2(a) also includes alternating contact
regions 60 and 70, electrodes 80 and isolation regions 50.
[0021] In the limiting case of very high temperature annealing, as may be used after initial
growth of the Ge layer (see, for example,
U.S. Patent No. 6,635,110 to Luan, et al.), sufficient interdiffusion occurs such than the entire region above the insulating
layer 120 consists of a compositionally-graded Si
1-xGe
x layer 160, as is shown in Fig. 2(b), with a Ge concentration, x, that has a minimum
adjacent to the insulating layer 120 and maximum at the top surface of the Si
1-xGe
x layer 160. The structure shown in Fig. 2(b) also includes alternating contact regions
60 and 70, electrodes 80 and isolation regions 50. It is under these conditions, that
the merits of the present invention are considerable, as the buried insulator limits
the Si available for interdiffusion to the original Si layer. Therefore, for the embodiment
shown in Fig. 2(b), the original Si and Ge layer thicknesses should be such that the
average Ge concentration of the entire layer structure above the buried insulator
120 is greater than approximately 0.8, and as close to 1 as possible. In order to
obey this guideline, the original Ge layer should be at least 5 times the original
thickness of original Si layer. For instance, if the initial Si layer is 50 nm, then
the Ge layer should be no less than 250 nm.
[0022] A photodetector similar to that described in Fig. 2(a) has been fabricated and the
results are described in Figs. 3(a)-3(c). The initial Si layer was about 45 nm thick,
and the Ge layer was grown to a total thickness of 400 nm. After growth, the multi-layer
structure underwent a thermal cyclic annealing similar to the description given in
H. S. Luan, et al., Appl. Phys. Lett, vol. 75, 2909 (1999), where the temperature was ramped ten times between 780°C and 900°C and held at
each temperature for approximately 6 minutes. The width of the n-type and p-type contact
regions was 0.3 µm, while the spacing between the contact regions ranged between 0.3
to 1.3 µm. The contact metal was 30 nm of Ti, with 150 nm of Al to achieve low resistance,
and the contacts were contained within the contact boundaries with a clearance of
0.05 µm on either side.
[0023] The bias dependence of the -3 dB bandwidth for a devices with 10 x 10 µm
2 active area for different electrode spacings is shown in Fig. 3(a). The bandwidth
was extracted from impulse response measurements performed at a wavelength of 850
nm using a mode-locked Ti-sapphire laser. The bandwidth saturates at extremely-low
bias voltages of 1-2 V, depending on the electrode spacing. Even at zero bias, the
bandwidth is as high as 20 GHz. The highest bandwidth achieved was a value of 25 GHz
for a contact spacing of 0.4 µm.
[0024] Fig. 3(b) shows the calculated and measured quantum efficiency vs. wavelength for
a 30 x 30 µm
2 device with finger spacing of 1.3 µm, where the electrode shadowing factor (approximately
0.8) is not accounted for in the calculation. Quantum efficiencies of 38% and 52%
were obtained at wavelengths of 850 nm, and 900 nm, respectively. These results demonstrate
the benefits of the present invention, where, despite the very high-temperature annealing,
quantum efficiency very close to theoretical predictions for pure Ge is obtained,
except at very long wavelengths, where even a small amount of interdiffusion can reduce
the absorption. The device shows a moderate oscillatory dependence of the response,
but because of the strong absorption, particularly, at short wavelengths, precise
tuning is not absolutely necessary to achieve acceptable responsivity, in contrast
to Si resonant cavity detectors described in
J. D. Schaub, et al., IEEE Phot. Tech. Lett. vol. 11, 1647 (1999).
[0025] Fig. 3(c) shows the dark current and photocurrent for detectors as described above
with
S = 0.4 µm and 0.6 µm. The plot shows that under normal illumination conditions, light-to-dark
current ratios greater than 10
3 can be obtained. The higher dark current of the
S = 0.4 µm geometry at high biases is not a problem, since high-speed operation can
be obtained in these devices at bias voltages of < 1 V, or even zero bias as shown
in Fig. 3(a).
[0026] The device responsivity could be further improved by additionally including an anti-reflection
coating as depicted in Fig. 4. Without an anti-reflection coating, about 1/3 of the
light impinging upon the Ge surface is reflected before even entering the absorbing
region of the device. By utilizing a transparent dielectric layer 210 located on top
of the Ge surface 220, the reflection can be reduced to nearly 0%. Dielectric layer
210 only functions as an anti-reflection layer in the regions between the electrodes,
but could be deposited over the entire device, as shown in the drawing, for processing
convenience. The dielectric layer 210 ideally should have an index of refraction,
nar, that is approximately the square-root of the dielectric constant,
n4, of the Ge layer. However, any layer with a dielectric constant between 1 and
n4 will provide some degree of benefit. Candidate materials for the anti-reflection
coating include, but are not limited to SiO, SiON, SiN, diamond-like carbon (DLC),
SiLK (a thermosetting polyarylene polymer supplied by the Dow Chemical Co.) and SiCOH
(also referred to as a carbon-doped oxide), and combinations thereof. The structure
shown in Fig. 4 also includes substrate 10, insulating layer 20, Si layer 30, Ge layer
40, alternating contact regions 60 and 70, electrodes 80 and isolation regions 50.
[0027] Another embodiment of the present invention is shown in Fig. 5, where a thin surface
Si
1-zGe
z layer is utilized to improve the dark current. In general, Ge has poor surface passivation
properties, and oftentimes the main source of dark current can be leakage along the
surface layer between the contacts. By utilizing a thin Si
1-zGe
z surface layer 310, on top of Ge layer 320, a more controllable surface is obtained.
[0028] Si
1-zGe
z surface layer 310 could be deposited before or after high-temperature annealing to
reduce defects in the Ge layer. Since Si
1-zGe
z surface layer 310 is under tensile strain, it is important that it be thinner than
the critical thickness for formation of defects, since defects near to the surface
electrodes could be detrimental to the device performance. Depending upon the Ge content,
z, the thickness could range from approximately 20 nm for
z = 0.8 to only a few monolayers for pure Si. The structure shown in Fig. 5 also includes
substrate 10, insulating layer 20, Si layer 30, alternating contact regions 60 and
70, electrodes 80 and isolation regions 50.
[0029] In additional benefit in the above embodiment could be gained by fabricating the
photodiode on a SiGe-on-insulator (SGOI) substrate. This substrate is useful for CMOS
applications because the relaxed SiGe acts as a template for growth of strained Si,
which can improve the CMOS performance. In these embodiments, the initial Si layer
on top of the buried oxide is replaced by a SiGe layer. This embodiment of the present
invention helps the photodetector performance, by reducing even further the amount
of initial Si available for interdiffusion. The SiGe may also help reduce the dislocation
density in the Ge layer, since the lattice constant is closer to that of Ge than pure
Si. The reduced dislocation density could improve the dark current by reducing the
generation rate of electron-hole pairs.
[0030] It should be pointed out that for the embodiments shown in Fig. 4, high-temperature
annealing could cause interdiffusion and modify the layer structure profile as shown
in Fig. 2(a) or Fig. 2(b). Furthermore, it is understood that high-temperature annealing
of the embodiment described in Fig. 5, would result in an additional interdiffused
region between layers 310 and 320.
[0031] As mentioned previously, it is desirable to keep the initial Si layer above the buried
insulator as thin as possible to limit the Si available for interdiffusion. However,
in the embodiments shown above, the Si thickness cannot be reduced to zero, because
single-crystal Ge cannot be nucleated over SiO
2 without using exotic techniques such as lateral overgrowth. However, the present
invention also provides a photodetector structure that solves this problem by utilizing
a Ge directly on a buried insulator layer as shown in Fig. 6.
[0032] One way of achieving a Ge layer directly on a buried insulator, is to utilize a Ge
layer on a crystalline insulator (see, for example,
S. Guha, et al., Appl. Phys. Lett. vol. 80, 766 (2002)) as shown in Fig. 6. In this embodiment, the multi-layer structure would consists
of Si substrate 410, followed by single-crystal insulator layer 420, and Ge layer
430. The structure shown in Fig. 6 also includes alternating contact regions 60 and
70, electrodes 80 and isolation regions 50.
[0033] Because insulator layer 420 is crystalline, epitaxial Ge can be grown directly on
top of it without the need for an interleaving Si layer. Of course the Ge is still
lattice-mismatched to the crystalline insulator 420, and therefore a thick Ge layer
will likely still relax via the formation of misfit dislocations at the interface
between the Ge layer 430 and the insulator layer 420. However, in perovskite oxides,
the (110) crystal plane of the perovskite corresponds to the (100) crystal plane of
Si, such that the oxide has a rotated crystalline structure, with a lattice-constant
about 2% larger than Si. This can help to accommodate a portion of the 4% lattice
mismatch between Si and Ge, thereby leading to higher-quality Ge layers with reduced
defect density. The crystalline oxide need only be sufficiently thick to suppress
tunneling between the absorption region and the underlying substrate, and therefore
a thickness greater than about 5 nm is required. Candidate materials for the crystalline
oxide include, but are not limited to (Ba,Sr)O, BaTiO
3, SrTiO
3, SrRuO
3, MgO, TiO
2, and combinations thereof.
[0034] Another way of realizing the photodetector structure with a Ge layer on a buried
insulator layer is to utilize a bonded Ge-on-insulator substrate (see, for example,
A. Reznicek, et al., Spring MRS Meeting, San Francisco, 2004). In this embodiment, the multi-layer structure consists of Si substrate 410, followed
by insulator layer 420, and Ge layer 430. In the preferred embodiment, the insulator
layer is SiO
2 and the original Ge layer is transferred onto the SiO
2 layer either by wafer bonding a bulk Ge wafer, or a Ge layer grown on a Si substrate
by compositional grading, and then removing the remaining substrate by wafer splitting
or selective etching. In either case, this embodiment has the advantage of eliminating
the need for the Si underlayer between the Ge and the buried oxide, and also improving
the Ge absorbing layer quality.
[0035] One of the key advantages of the present invention is that it can straightforwardly
be integrated with Si CMOS. In particular, Fig. 7 shows how the embodiment described
in Fig. 1 (a)-1(b) could be combined with SOI CMOS. In this embodiment, the CMOS and
the photodetector utilize a common substrate 510 and buried insulator 520. The thin
Si layer 530 above the buried insulator acts as the active region for CMOS devices
540, and acts as the underlayer beneath Ge layer 550 of photodetector 560. In the
case of fully-depleted SOI, the same thickness of Si can be utilized for the CMOS
and the photodetector. Alternatively, if the CMOS is partially-depleted SOI, then
thicker Si can be utilized for the CMOS devices, either by regrowing extra Si in the
regions of the CMOS devices, or by etching back excess Si in the regions of the photodetector.
Since, in the preferred embodiment, the photodetector absorbing region is in the range
of 50 nm to 500 nm, the detector can retain reasonable planarity with the CMOS devices,
which typically have heights ranging from 200 nm to 250 nm above the buried oxide.
The structure shown in Fig. 7 also includes alternating contact regions 60 and 70,
electrodes 80 and isolation regions 50 in photodetector region 560.
[0036] The photodetector could also be combined with bulk Si CMOS as shown in Fig. 8. In
this embodiment, both devices share a common substrate 610, but the photodetector
utilizes a selective buried insulator 620, that is located in the regions beneath
photodetector 630, but not below CMOS devices 640. One possible method of creating
the selective buried insulator is the process called separation by implantation of
oxygen (SIMOX) wherein oxygen ions are first implanted into a Si substrate to form
at least a damaged region, followed by an annealing process. In this case, a buried
SiO
2 layer is created by implanting oxygen ions and then annealing at very high temperatures.
Alternatively, the photodetector could utilize a crystalline insulator, as described
in the embodiment of Fig. 6. In this case, the thin Si layer 650 above the buried
insulator could be eliminated such that the photodetector active region consists only
of Ge. The structure shown in Fig. 8 also includes alternating contact regions 60
and 70, electrodes 80 and isolation regions 50 in photodetector region 630.
[0037] In both embodiments shown in Fig. 7 and Fig. 8, it would be desirable for the Ge
to be deposited selectively, instead of over the entire wafer. This could be accomplished
quite readily, as it is fairly well-known in the art how to deposit Ge selective to
SiO or SiN. Selective deposition of the Ge provides flexibility as to when the photodetector
is fabricated with respect to the CMOS devices. Selective deposition also has the
advantage that defect reduction is more readily achieved in small-area structures,
and therefore high-temperature annealing to reduce the dislocation density can be
minimized or completely avoided.
[0038] Photodetectors that utilize the crystalline oxide structure have a particular advantage
in this respect.
[0039] Figs. 9(a)-9(g) show one method of fabricating the high-speed Ge-on-insulator photodetector
structure of the present invention. In this embodiment, the starting material is a
thin SOI substrate 700 as shown in Fig. 9(a); substrate 700 includes Si substrate
701, buried insulator 702, and SOI layer 703. Next, a Ge layer 704 is epitaxially-grown
directly on top of the SOI layer 703 as shown in Fig. 9(b). Optionally, a thin Si
seed layer (5-30 nm) can be grown before the Ge layer 704, in order to improve the
quality of the Ge layer. The temperature for the initial Ge growth is kept very low
(approximately 300°-350°C) in order to avoid three-dimensional growth. Then, after
growth of this initial Ge layer, the temperature can be raised to grow the remaining
portion of the layer. Normally, after growth, the Ge layer will be highly relaxed,
but have a high threading dislocation density of approximately 10
9 cm
-2. In order to reduce the dislocation density, the material is annealed to provide
the structure shown in Fig. 9(c). The annealing can be performed at a uniform temperature,
or using cyclic annealing as described in
U.S. Patent No. 6,635,110, the content of which is incorporated herein by reference. In Fig. 9(c), reference
numeral 705 denotes Si
1-xGe
x layer caused by interdiffusion and reference numeral 706 denotes the remaining top
Ge layer after interdiffusion.
[0040] The temperature and times for the annealing will vary depending upon the thickness
of the Ge layer, whether or not the layer is grown uniformly or patterned, and whether
or not the underlying insulator is an amorphous or crystalline insulator. The annealing
is performed to reduce threading dislocations in the resulting multi-layer structure.
Typical annealing temperatures are from about 750° to about 900°C. Nevertheless, annealing
is generally advantageous to reduce the dislocation density and improve the material
quality and therefore, the use of the buried insulator is critical to limit the Si
available for interdiffusion. After annealing, isolation regions 707 are formed by
etching down to the buried oxide layer and then refilling with an insulating material,
as shown in Fig. 9(d). In the figure, the insulating isolation regions 707 are shown
to the same height as the Ge active area, but in general, the isolation regions do
not need to be the same height as the Ge active area. However, the isolation regions
707 should be sufficiently thick to cover to the highly-defective region near the
Si/Ge interface. This ensures that the surface electrodes do not touch the highly-defective
regions when they cross the isolation region edge, a situation which could cause excessive
device leakage.
[0041] Next, alternating p-type and n-type contacts, 709 and 708, respectively are formed
as shown in Figs. 9(e) and 9(f). The p-type implants are shown to be formed first,
followed by the n-type implants, however the order of the implants could be reversed.
In the preferred embodiment, the contacts are formed by ion implantation using a resist
or dielectric mask. After implantation of each species, the contacts are annealed
in order to activate the implants. Alternatively, both sets of contacts can be implanted
and then annealed at the same time. For the n-type contacts, the preferred dopant
species are As, P or Sb, while for the p-type contacts, the preferred dopant species
is B. The implant depth should be kept sufficiently low so that the dopant species
remain far from the defective layer near the bottom of the Ge layer. Therefore, in
the preferred embodiment, the peak as-implanted dopant concentration for both the
n-type and p-type contacts should be only about 5-30 nm from the surface.
[0042] The conducting electrodes 710 are then formed as shown in Fig. 9(g). The electrodes
could be fabricated by a number of means, including, but not limited to evaporation,
sputtering, or chemical vapor deposition. The electrode patterning can also be performed
by a number of techniques such as lift-off, deposition and etching or chem-mechanical
polishing. The electrode resistance should be sufficiently low so that the device
performance is not limited by RC delay, and therefore the optimal thickness and width
of the fingers is a function of the device area (which affects the capacitance) and
the resistivity of the finger material. For instance, for a 10 x 10 µm
2 active area, the capacitance is typically 50 fF. Therefore, in order to achieve a
bandwidth of 30 GHz, the electrode resistance should be less than about 100 Ω. For
Al fingers with a width of 200 nm, this corresponds to a thickness range of approximately
150 to 300 nm. For square device geometries, because the capacitance scales with device
area, while the electrode resistance remains constant, it is desirable to keep the
device area as small as possible without disrupting the ability to effectively collect
the incident light. The device area should also be no larger than needed to couple
the light into the active area of the device in order to maximize the light-to-dark
current ratio. Given these conditions, device areas in the range of 100 µm
2 and 1000 µm
2 are preferred.
[0043] Another requirement of the electrode material is that it should make good Ohmic contact
to both n-type and p-type Ge. However, given the narrow band gap of Ge, this is generally
not a problem, and sufficient Ohmic contact can be made with nearly any metal. Candidate
metals for the electrodes include, but are not limited to Al, Cu, Ti, TiN, Pt, W,
Ta, TaN, Pt, Pd, Hf, ITO and combinations thereof. Silicides and germanides of the
aforementioned metals are also contemplated herein.
[0044] The process illustrated in Figs. 9(a)-9(g) could also include the deposition of an
anti-reflection coating. The anti-reflection coating could be deposited after the
electrode formation as shown in Fig. 4, or earlier in the process. A surface SiGe
layer described in Fig. 5 could also be grown either immediately after the Ge layer
growth, or preferably after completion of the cyclic annealing. This latter situation
would prevent the formation of dislocations near the sample surface, where they could
have a greater negative affect on the device performance. The surface SiGe layer could
also be selectively deposited after formation of the isolation layers, with the advantage
that it would cover any of the remaining exposed sidewalls, thus reducing the chance
of sidewall induced leakage. Advantageously, the entire Ge layer could be grown after
formation of the isolation regions. This embodiment has the advantage that the Ge
layer would only be grown in a small area, and thus defect reduction during growth
and subsequent annealing should be facilitated. However, care must be taken in this
embodiment to ensure that the lower sidewalls are not exposed after growth to prevent
leakage from the electrodes touching this highly-defective region.
[0045] While the invention has been particularly shown and described with respect to illustrative
and preferred embodiments thereof, it will be understood by those skilled in the art
that the foregoing and other changes in form and details may be made therein without
departing from the scope of the invention. Thus, the present invention should be limited
only by the scope of the appended claims.
1. A semiconductor photodetector comprising:
a first layer of a single-crystal semiconductor substrate (10);
a second layer of an insulating material located on said first layer (20) ;
a third layer comprising essentially Si located on said second layer (30);
a fourth layer (40) comprising essentially Ge located on said third layer, said fourth
layer having a surface layer;
isolation regions (50) surrounding said third and said fourth layer and having a top
border adjacent to or above said fourth layer and a bottom border adjacent to said
second layer; and
a set of electrodes (80) on said surface layer comprising a plurality of interdigitated
members, where the portion of said fourth layer immediately adjacent to one electrode
is doped n-type (60) and the portion of said fourth layer immediately adjacent to
the nearest neighboring electrode is doped p-type (70).
2. The semiconductor photodetector of Claim 1, wherein said single-crystal semiconductor
substrate (10) is Si and said second layer (20), is silicon oxide.
3. The semiconductor photodetector of Claim 1 or Claim 2, wherein said fourth layer (40)
has a thickness greater than 50 nm, and the combined thickness of said third layer
(30) and said fourth layer (40) is less than 500 nm.
4. The semiconductor photodetector of any preceding Claims, wherein said second layer
(20) has a thickness,
t2, and refractive index,
n2, such that the following relation is obeyed:

where
i is an integer and λ is the wavelength of the incident light in vacuum.
5. The semiconductor photodetector of any preceding Claims, wherein said third layer
(30) has thickness,
t3, and refractive index,
n3, and said fourth layer (40) has thickness,
t4, and refractive index
n4, such that the following relation is obeyed:

where
i is an integer and λ is the wavelength of the incident light in vacuum.
6. The semiconductor photodetector of any of the preceding Claims, further comprising
a transparent dielectric laye (210) on top of the portions of said surface layer not
in direct contact with said electrodes and having a refractive index between 1 and
that of said fourth layer so as to act as an anti-reflection coating.
7. The semiconductor photodetector of any preceding Claims, further comprising a fifth
layer (140) of Si1-xGex between said third layer and said fourth layer and formed by interdiffusion between
the Si in said third layer and the Ge in said fourth layer.
8. The semiconductor photodetector of Claim 1, wherein the difference between Fermi energy
of a first electrode and valence band edge of said fourth layer is less than Eg/2, and where the difference between conduction band edge of said fourth layer and
Fermi energy of said second electrode is less than Eg/2,where Eg is the band gap of said fourth layer.
9. A semiconductor photodetector of Claim 1, further comprising:
a fifth layer (310) comprising essentially Si1-zGez and having a surface layer on said fourth layer, wherein said
isolation regions (50) surround said third layer and said fourth layer and said fifth
layer and have a top border adjacent to or above said fourth layer and a bottom border
adjacent to said second layer and said
set of electrodes (80) on said surface layer comprise a plurality of interdigitated
members, where the entire portion of said fifth layer immediately adjacent to one
electrode is doped n-type and the entire portion of said fifth layer immediately adjacent
to the nearest neighboring electrode is doped p-type.
10. The semiconductor photodetector of Claim 9, wherein the thickness and Ge concentration
of said fifth layer are such that said fifth layer does not exceed the thickness limit
for thermodynamic stability.
11. The semiconductor photodetector of Claim 9, wherein said fourth layer has a thickness
greater than 50 nm, and the combined thickness of said third layer and said fourth
layer and said fifth layer is less than 500 nm.
12. A semiconductor integrated circuit comprising a semiconductor photodetector as claimed
in any of the preceding claims and a plurality of SOI MOSFET devices, wherein said
single-crystal semiconductor substrate and said second layer of an insulating material
are shared between said MOSFET devices and said photodetector.
13. A method of fabricating a semiconductor photodetector, the method comprising the steps:
forming a semiconductor structure comprising a single-crystal semiconductor substrate
(10); a second layer of an insulating material (20), and a third layer comprising
essentially Si (30);
growing epitaxially a fourth layer (40) of essentially Ge, the fourth layer having
a surface layer;
annealing to reduce threading dislocation density;
forming isolation regions (50) surrounding said third layer and said fourth layer,
said isolation regions having a top border adjacent to or above said fourth layer
and a bottom border adjacent to said second layer;
forming alternating stripes of p-type (70) and n-type (60) doped material adjacent
to said surface layer such that regions of non-intentionally-doped material remain
between said alternating stripes; and
forming a set of electrodes (80) on said surface layer comprising a plurality of interdigitated
members, wherein the entirety of the portion of said electrodes that is in contact
with said surface layer also is in contact with said stripes of p-type and n-type
doped material.
14. The method of Claim 13, further comprising forming a Si seed layer before the growth
of said fourth layer of Ge.
15. The method of any of Claims 13 or 14, wherein said stripes of p-type and n-type doped
material are formed by ion implantation and subsequent annealing.
16. The method of any of Claims 13 to 15, further comprising the deposition of a transparent
dielectric material on top of the portions of said surface layer not in direct contact
with said electrodes and having a refractive index between 1 and that of said fourth
layer so as to act as an anti-reflection coating.
17. The method of any of Claims 13 to 16, further comprising the steps:
growing epitaxially a fifth layer (310) of essentially Si1-zGez, the fifth layer having a surface layer; and wherein said
isolation regions (150) surround said third layer and said fourth layer and said fifth
layer and have a top border adjacent to or above said fourth layer and a bottom border
adjacent to said second layer.
18. The method of Claim 17, wherein said fifth layer of essentially Si1-zGez, is grown after the annealing, but before the forming of the isolation regions.
19. The method of Claim 17, wherein said fifth layer of essentially Si1-zGez, is grown after step forming of the isolation regions, but before forming the alternating
stripes of p-type and n-type doped material.
1. Halbleiter-Photodetektor mit:
einer ersten Schicht eines einkristallinen Halbleitersubstrats (10);
einer zweiten Schicht eines isolierenden Materials, das sich auf der ersten Schicht
befindet (20);
einer dritten Schicht mit im Wesentlichen Si, die sich auf der zweiten Schicht befindet
(30);
einer vierten Schicht (40) mit im Wesentlichen Ge, die sich auf der dritten Schicht
befindet, wobei die vierte Schicht eine Oberflächenschicht aufweist;
Isolationsbereichen (50), welche die dritte und die vierte Schicht umgeben und eine
obere Grenze benachbart zu oder über der vierten Schicht und eine untere Grenze benachbart
zu der zweiten Schicht aufweisen; und
einem Satz von Elektroden (80) auf der Oberflächenschicht mit einer Mehrzahl von verschachtelten
Elementen, wobei der Teil der vierten Schicht unmittelbar benachbart zu einer Elektrode
n-leitend (60) dotiert ist und der Teil der vierten Schicht unmittelbar benachbart
zu der am nächsten benachbarten Elektrode p-leitend (70) dotiert ist.
2. Halbleiter-Photodetektor nach Anspruch 1, wobei das einkristalline Halbleitersubstrat
(10) aus Si besteht und die zweite Schicht (20) aus Siliciumoxid besteht.
3. Halbleiter-Photodetektor nach Anspruch 1 oder 2, wobei die vierte Schicht (40) eine
Dicke von mehr als 50 nm aufweist und die kombinierte Dicke der dritten Schicht (30)
und der vierten Schicht (40) weniger als 500 nm beträgt.
4. Halbleiter-Photodetektor nach einem der vorhergehenden Ansprüche, wobei die zweite
Schicht (20) eine Dicke
t2 und einen Brechungsindex
n2 derart aufweist, dass die folgende Beziehung gilt:

wobei
i eine ganze Zahl ist und die Wellenlänge des einfallenden Lichts im Vakuum ist.
5. Halbleiter-Photodetektor nach einem der vorhergehenden Ansprüche, wobei die dritte
Schicht (30) eine Dicke
t3 und einen Brechungsindex
n3 und die vierte Schicht (40) eine Dicke
t4 und einen Brechungsindex
n4 derart aufweisen, dass die folgende Beziehung gilt:

wobei
i eine ganze Zahl ist und die Wellenlänge des einfallenden Lichts im Vakuum ist.
6. Halbleiter-Photodetektor nach einem der vorhergehenden Ansprüche, der des Weiteren
auf der Oberseite der Teile der Oberflächenschicht, die nicht in direktem Kontakt
mit den Elektroden sind, eine transparente dielektrische Schicht (210) aufweist, die
einen Brechungsindex zwischen 1 und jenem der vierten Schicht aufweist, um so als
Antireflexbeschichtung zu wirken.
7. Halbleiter-Photodetektor nach einem der vorhergehenden Ansprüche, der des Weiteren
zwischen der dritten Schicht und der vierten Schicht eine fünfte Schicht (140) aus
Si1xGex beinhaltet, die durch Interdiffusion zwischen dem Si in der dritten Schicht und dem
Ge in der vierten Schicht gebildet ist.
8. Halbleiter-Photodetektor nach Anspruch 1, wobei der Unterschied zwischen der Fermi-Energie
einer ersten Elektrode und der Valenzbandkante der vierten Schicht weniger als Eg/2 beträgt und wobei der Unterschied zwischen der Leitungsbandkante der vierten Schicht
und der Fermi-Energie der zweiten Elektrode weniger als Eg/2 beträgt, wobei Eg die Bandlücke der vierten Schicht ist.
9. Halbleiter-Photodetektor nach Anspruch 1, der des Weiteren beinhaltet:
eine fünfte Schicht (310), die im Wesentlichen Si1-xGex beinhaltet und eine Oberflächenschicht auf der vierten Schicht aufweist, wobei
die Isolationsbereiche (50) die dritte Schicht und die vierte Schicht und die fünfte
Schicht umgeben und eine obere Grenze benachbart zu oder über der vierten Schicht
und eine untere Grenze benachbart zu der zweiten Schicht aufweisen und
der Satz von Elektroden (80) auf der Oberflächenschicht eine Mehrzahl von verschachtelten
Elementen beinhaltet, wobei der gesamte Teil der fünften Schicht unmittelbar benachbart
zu einer Elektrode n-leitend dotiert ist und
der gesamte Teil der fünften Schicht unmittelbar benachbart zu der am nächsten benachbarten
Elektrode p-leitend dotiert ist.
10. Halbleiter-Photodetektor nach Anspruch 9, wobei die Dicke und die Ge-Konzentration
der fünften Schicht derart sind, dass die fünfte Schicht die Dickengrenze für thermodynamische
Stabilität nicht überschreitet.
11. Halbleiter-Photodetektor nach Anspruch 9, wobei die vierte Schicht eine Dicke von
mehr als 50 nm aufweist und die kombinierte Dicke der dritten Schicht und der vierten
Schicht und der fünften Schicht weniger als 500 nm beträgt.
12. Integrierter Halbleiterschaltkreis mit einem Halbleiter-Photodetektor nach einem der
vorhergehenden Ansprüche und einer Mehrzahl von SOI-MOSFET-Bauelementen, wobei sich
die MOSFET-Bauelemente und der Photodetektor das einkristalline Halbleitersubstrat
und die zweite Schicht aus einem isolierenden Material teilen.
13. Verfahren zur Herstellung eines Halbleiter-Photodetektors, wobei das Verfahren die
Schritte umfasst:
Bilden einer Halbleiterstruktur mit einem einkristallinen Halbleitersubstrat (10),
einer zweiten Schicht aus einem isolierenden Material (20) und einer dritten Schicht
(30), die im Wesentlichen Si beinhaltet;
epitaxiales Aufwachsen einer vierten Schicht (40) aus im Wesentlichen Ge, wobei die
vierte Schicht eine Oberflächenschicht aufweist;
Tempern zur Reduzierung der Fadenversetzungsdichte;
Bilden von Isolationsbereichen (50), welche die dritte Schicht und die vierte Schicht
umgeben, wobei die Isolationsbereiche eine obere Grenze benachbart zu oder über der
vierten Schicht und eine untere Grenze benachbart zu der zweiten Schicht aufweisen;
Bilden von alternierenden Streifen aus p-leitend (70) und n-leitend (60) dotiertem
Material benachbart zu der Oberflächenschicht derart, dass Bereiche von nicht absichtlich
dotiertem Material zwischen den alternierenden Streifen verbleiben; und
Bilden eines Satzes von Elektroden (80) auf der Oberflächenschicht mit einer Mehrzahl
von verschachtelten Elementen, wobei die Gesamtheit des Teils der Elektroden, der
in Kontakt mit der Oberflächenschicht ist, auch in Kontakt mit den Streifen aus dem
p-leitend und n-leitend dotierten Material ist.
14. Verfahren nach Anspruch 13, das des Weiteren das Bilden einer Si-Kristallkeimschicht
vor dem Aufwachsen der vierten Schicht aus Ge umfasst.
15. Verfahren nach Anspruch 13 oder 14, wobei die Streifen aus dem p-leitend bzw. n-leitend
dotierten Material durch Ionenimplantation und nachfolgendes Tempern gebildet werden.
16. Verfahren nach einem der Ansprüche 13 bis 15, das des Weiteren die Deposition eines
transparenten dielektrischen Materials auf der Oberseite der Teile der Oberflächenschicht
umfasst, die nicht in direktem Kontakt mit den Elektroden sind, das einen Brechungsindex
zwischen 1 und jenem der vierten Schicht aufweist, um so als Antireflexbeschichtung
zu wirken.
17. Verfahren nach einem der Ansprüche 13 bis 16, das des Weiteren die Schritte umfasst:
epitaxiales Aufwachsen einer fünften Schicht (310) aus im Wesentlichen Si1-xGex, wobei die fünfte Schicht eine Oberflächenschicht aufweist; und wobei
die Isolationsbereiche (150) die dritte Schicht und die vierte Schicht und die fünfte
Schicht umgeben und eine obere Grenze benachbart zu oder über der vierten Schicht
und eine untere Grenze benachbart zu der zweiten Schicht aufweisen.
18. Verfahren nach Anspruch 17, wobei die fünfte Schicht aus im Wesentlichen Si1-xGex nach dem Tempern, jedoch vor dem Bilden der Isolationsbereiche aufgewachsen wird.
19. Verfahren nach Anspruch 17, wobei die fünfte Schicht aus im Wesentlichen Si1-xGex nach dem Schritt des Bildens der Isolationsbereiche, jedoch vor dem Bilden der alternierenden
Streifen aus p-leitend bzw. n-leitend dotiertem Material aufgewachsen wird.
1. Un photo-détecteur à semi-conducteur comprenant :
une première couche de substrat semi-conducteur (10) monocristallin ;
une deuxième couche (20) de matériau isolant, placée sur ladite première couche ;
une troisième couche (30) comprenant essentiellement du Si, située sur ladite deuxième
couche ;
une quatrième couche (40) comprenant essentiellement du Ge, placée sur ladite troisième
couche, ladite quatrième couche ayant une couche de surface ;
des régions d'isolation (50), entourant lesdites troisième et quatrième couches et
ayant une frontière supérieure adjacente à, ou au-dessous de, ladite quatrième couche
et une frontière inférieure adjacente à ladite deuxième couche ; et
un jeu d'électrodes (80) sur ladite couche de surface, comprenant une pluralité d'organes
interdigités, dans lequel la partie de ladite quatrième couche immédiatement adjacente
à une électrode est de dopage de type n (60), et la partie de ladite quatrième couche
immédiatement adjacente à l'électrode voisine la plus proche est de dopage de type
p (70).
2. Le photo-détecteur à semi-conducteur selon la revendication 1, dans lequel ledit substrat
de semi-conducteur (10) monocristallin est du Si (10), et ladite deuxième couche (20)
est de l'oxyde de silicium.
3. Le photo-détecteur à semi-conducteur selon la revendication 1 ou la revendication
2, dans lequel ladite quatrième couche (40) présente une épaisseur supérieure à 50
nm, et l'épaisseur combinée de ladite troisième couche (30) et de ladite quatrième
couche (40) est inférieure à 500 nm.
4. Le photo-détecteur à semi-conducteur selon l'une quelconque des revendications précédentes,
dans lequel ladite deuxième couche (20) présente une épaisseur t
2 et un indice de réfraction n
2 tels que la revendication suivante soit satisfaite :

dans laquelle i est un entier et λ est la longueur d'onde de la lumière incidente
dans le vide.
5. Le photo-détecteur à semi-conducteur selon l'une quelconque des revendications précédentes,
dans lequel ladite troisième couche (30) présente une épaisseur t
3 et un index de réfraction n
3, et ladite quatrième couche (40) présente une épaisseur t4 et un indice de réfraction
n4 tels que la relation suivante soit satisfaite :

dans laquelle i est un entier et λ est la longueur d'onde de la lumière incidente
dans le vide.
6. Le photo-détecteur à semi-conducteur selon l'une quelconque des revendications précédentes,
comprenant en outre une couche diélectrique (2100) transparente, au-dessus des parties
de ladite couche de surface qui ne sont pas en contact direct avec lesdites électrodes,
et ayant un indice de réfraction entre 1 et celui de ladite quatrième couche, de manière
à agir comme un revêtement anti-reflet.
7. Le photo-détecteur à semi-conducteur selon l'une quelconque des revendications précédentes,
comprenant en outre une cinquième couche (140) en Si1-xGex, située entre ladite troisième couche et ladite quatrième couche et formée par interdiffusion
entre le Si présent dans ladite troisième couche et le Ge présent dans ladite quatrième
couche.
8. Le photo-détecteur à semi-conducteur selon la revendication 1, dans lequel la différence
entre l'énergie de Fermi d'une première électrode et le bord de la bande de valence
de ladite quatrième couche est inférieure à Eg/2, et dans lequel la différence entre le bord de la bande de conduction de ladite
quatrième couche et l'énergie de Fermi de ladite deuxième électrode est inférieure
à Eg/2, dans laquelle Eg est la bande interdite de ladite quatrième couche.
9. Un photo-détecteur à semi-conducteur selon la revendication 1, comprenant :
une cinquième couche (310), comprenant essentiellement du Si1-zGez et ayant une couche de surface sur ladite quatrième couche, dans lequel
lesdites régions d'isolation (50) entourent ladite troisième couche et ladite quatrième
couche et ladite cinquième couche et ont une frontière supérieure adjacente à, ou
au-dessus de, ladite quatrième couche et une frontière inférieure, adjacente à ladite
deuxième couche, et
ledit jeu d'électrodes (80) sur ladite couche de surface comprend une pluralité d'organes
interdigités, dans lequel la partie entière de ladite cinquième couche immédiatement
adjacente à une électrode est d'un dopage de type n, et la partie entière de ladite
cinquième couche immédiatement adjacente à l'électrode voisine la plus proche et d'un
dopage de type p.
10. Le photo-détecteur à semi-conducteur selon la revendication 9, dans lequel l'épaisseur
et la concentration de Ge de ladite cinquième couche sont telles que ladite cinquième
couche ne dépasse pas la limite d'épaisseur de la stabilité thermodynamique.
11. Le photo-détecteur à semi-conducteur selon la revendication 9, dans lequel ladite
quatrième couche a une épaisseur supérieure à 50 nm, et l'épaisseur combinée de ladite
troisième couche et de ladite quatrième couche et de ladite cinquième couche est inférieure
à 500 nm.
12. Un circuit intégré à un semi-conducteur, comprenant un photo-détecteur à semi-conducteur,
tel que revendiqué à l'une quelconque des revendications précédentes, et une pluralité
de dispositifs SOI MOSFET, dans lequel ledit substrat à semi-conducteur monocristallin
et ladite deuxième couche de matériau isolant sont partagés entre lesdits dispositifs
MOSFET et ledit photo-détecteur.
13. Un procédé de fabrication d'un photo-détecteur à semi-conducteur, le procédé comprenant
les étapes consistant à :
la formation d'une structure à semi-conducteur comprenant un substrat à semi-conducteur
(10) monocristallin, une deuxième couche (20) d'un matériau isolant, et une troisième
couche (30) composée essentiellement de Si ;
la mise en croissance épitaxiale d'une quatrième couche (40) formée essentiellement
de Ge, la quatrième couche ayant une couche de surface ;
un recuit pour réduire la densité de dislocation de bande ;
la formation de régions d'isolation (50), entourant ladite troisième couche et ladite
quatrième couche, lesdites régions d'isolation ayant une frontière supérieure, adjacente
à, ou au-dessus de, ladite quatrième couche, et une frontière inférieure adjacente
à ladite deuxième couche ;
la formation d'une alternance de bandes de matériau dopé de type p (70) et de type
n (60) adjacentes à ladite couche de surface, de manière que des régions de matériau
dopé non intentionnellement restent situées entre lesdites bandes alternantes ; et
la formation d'un jeu d'électrodes (80) sur ladite couche de surface comprenant une
pluralité d'organes interdigités, dans lequel la totalité de la partie desdites électrodes
qui est en contact avec ladite couche de surface est également en contact avec lesdites
bandes de matériau à dopage de type p et de type n.
14. Le procédé selon la revendication 13, comprenant en outre la formation d'une couche
d'ensemencement de Si avant la croissance de ladite quatrième couche de Ge.
15. Le procédé selon l'une quelconque des revendications 13 ou 14, dans lequel lesdites
bandes de matériau dopé de type p et de type n sont formées par implantation d'ions,
suivie par un recuit.
16. Le procédé selon l'une quelconque des revendications 13 à 15, comprenant en outre
la déposition d'un matériau diélectrique transparent, en partie supérieure des parties
de ladite couche de surface qui n'est pas en contact direct avec lesdites électrodes
et ayant un indice de réfraction entre 1 et celui de ladite quatrième couche, pour
agir comme revêtement anti-reflet.
17. Le procédé selon l'une quelconque des revendications 13 à 16, comprenant en outre
les étapes consistant à :
produire une croissance épitaxiale d'une cinquième couche (310) formée essentiellement
de Si1-zGez, la cinquième couche ayant une couche de surface ; et dans lequel lesdites
régions d'isolation (150) entourent ladite troisième couche et ladite quatrième couche
et ladite cinquième couche et ont une frontière supérieure, adjacente à, ou au-dessus,
de ladite quatrième couche et une frontière inférieure, adjacente à ladite deuxième
couche.
18. Le procédé selon la revendication 17, dans lequel ladite cinquième couche essentiellement
formée de Si1-zGez est mise en croissance après le recuit, mais avant le formage des régions d'isolation.
19. Le procédé selon la revendication 17, dans lequel ladite cinquième couche essentiellement
formée de Si1-zGez est mise en croissance après l'étape de formage des régions d'isolation, mais avant
la formation de l'alternance de bandes de matériau à dopage de type p et de type n.