(11) **EP 1 731 863 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:13.12.2006 Patentblatt 2006/50

(21) Anmeldenummer: 06011702.5

(22) Anmeldetag: 07.06.2006

(51) Int Cl.: F28F 3/08 (2006.01) F28F 3/04 (2006.01)

F28D 9/00 (2006.01)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Benannte Erstreckungsstaaten:

AL BA HR MK YU

(30) Priorität: 07.06.2005 DE 102005026328

(71) Anmelder: GEA Ecoflex GmbH 31157 Sarstedt (DE)

(72) Erfinder:

- Lehmann, Reinhard 31515 Wunstorf (DE)
- Julian Peschel 30659 Hannover (DE)
- Klaus Niepoth 47495 Rheinberg (DE)
- Jan Muksgaard Jensen 7400 Herning (DK)
- (74) Vertreter: Seewald, Jürgen Theaterstrasse 6 30159 Hannover (DE)

Wärmetauscherplatte für einen Plattenwärmetauscher und Verfahren zur Herstellung einer Wärmetauscherplatte

(57) Die Erfindung betrifft eine Wärmetauscherplatte für einen Plattenwärmetauscher mit nebeneinander angeordneten Ein- und Austrittsöffnungen und einer Profilierung. Aufgabe der vorliegenden Erfindung ist es, eine Lösung zur Verfügung zu stellen, die den Bau größerer Plattenwärmetauscher unter Beibehaltung der Anschlusslage ermöglicht. Gelöst wird diese Aufgabe dadurch, dass die Wärmetauscherplatte (2) aus zusammengeschweißten Blechsegmenten (10 bis 61) besteht sowie durch Verfahren zur Herstellung einer solchen Wärmetauscherplatte.

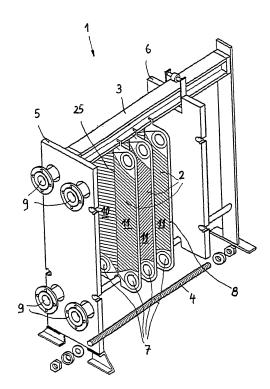


Fig.1

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Wärmetauscherplatte für einen Plattenwärmetauscher gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Herstellung einer solchen Platte.

1

[0002] Bei Plattenwärmetauschern bilden eine Anzahl von profilgeprägten dünnen Platten mit Durchlassöffnungen aneinander gereiht ein Paket von Fließspalten, die wechselseitig von den wärmetauschenden Medien durchflossen werden. Zwischen die Platten eingelegte Umfangsdichtungen gewährleisten, dass die gewünschte Durchströmung des Plattenpakets erreicht wird und dass dieses nach außen dicht ist.

[0003] Die in Plattenwärmetauschern eingesetzten Wärmetauscherplatten werden durch einen Umformprozess aus Metallblechen gefertigt. Als Plattenwerkstoffe kommen je nach Anwendungsfall austenitische Chrom-Nickel-Stähle, Chrom-Nickel-Molybdän-Stähle, Nickelbasislegierungen oder Titan zum Einsatz. Die aus diesen Werkstoffen bestehenden Metallbleche werden in Walzwerken mit maximalen Blechbreiten von 1250 mm, in Sonderfällen auch 1500 mm, hergestellt. Die Umformung der Metallbleche zu Wärmetauscherplatten erfolgt in speziellen Pressen, welche sowohl in Hinsicht auf die maximale Blechbreite als auch in Hinsicht auf die erreichbare Presskraft begrenzt sind.

[0004] Üblicherweise werden die Anschlüsse der Plattenwärmetauscher nebeneinander angeordnet. Dabei wird die maximal erreichbare Anschlussgröße von Rohrleitungen an einen Plattenwärmetauscher unmittelbar von der maximalen Breite der Wärmetauscherplatte bestimmt. Diese beträgt ca. 450 mm bei einer Blechbreite von 1250 mm und ca. 500 mm bei einer Blechbreite von 1500 mm.

[0005] Die zur Verfügung stehenden Blechbreiten verhindern den Bau größerer Plattenwärmetauscher, so dass vor allem die in energetischen und chemischen Anwendungen vorliegenden, großen Durchsätze nur über eine konstruktiv ungünstigere Anordnung der Anschlüsse oder mit einer großen Anzahl parallel geschalteter Plattenwärmetauscher realisierbar sind. Das hat erhebliche verfahrenstechnische Nachteile und ist wirtschaftlich ineffizient (hoher Aufwand für Verrohrung, Platzbedarf, Montage, Instrumentierung, Wartung etc.).

[0006] Aufgabe der vorliegenden Erfindung ist es, eine Lösung zur Verfügung zu stellen, die den Bau größerer Plattenwärmetauscher unter Beibehaltung der Anschlusslage ermöglicht.

[0007] Diese Aufgabe wird erfindungsgemäß mit einer Wärmetauscherplatte, die die Merkmale des Anspruchs 1 aufweist, sowie mit Verfahren zu deren Herstellung gelöst.

[0008] Durch das Zusammenschweißen von Blechsegmenten lassen sich größere Blechbreiten und damit auch größere Plattenwärmetauscher realisieren. Dazu können zunächst entweder flache Blechsegmente zu einem Wärmetauscherplatten-Rohling zusammenge-

schweißt werden, der anschließend zu einer fertigen Wärmetauscherplatte umgeformt wird, oder aber die zunächst flachen Blechsegmente werden zunächst umgeformt und anschließend zur fertigen Wärmetauscherplatte zusammengeschweißt.

[0009] In vorteilhafter Ausgestaltung der Erfindung kann das Zusammensetzen einer Wärmetauscherplatte aus Blechsegmenten dazu genutzt werden, Blechsegmente aus unterschiedlichem Material und/oder unterschiedlicher Wandstärke zusammenzufügen. So können z. B. bei Wärmetauscherplatten, die aus mindestens drei durch Querschweißnähte zusammengefügten Blechsegmenten bestehen, dass oder die Blechsegmente, die den zentralen Bereich der Wärmetauscherplatte bilden. mit einer geringeren Blechstärke ausgeführt werden, als die Blechsegmente, die die beiden Kopfbereiche der Wärmetauscherplatte bilden. Nach dem Stand der Technik richtet sich die Blechstärke einer Wärmetauscherplatte nach der verformungstechnisch notwendigen Blechstärke der Kopfbereiche, welche die höchsten lokalen Umformungsgrade aufweisen.

[0010] Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen Unteransprüchen.
[0011] Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert. In der dazugehörigen Zeichnung zeigen in schematischer Weise:

- Fig. 1 eine isometrische Darstellung eines Plattenwärmetauschers in teilweiser Explosionsdarstellung, wobei der Übersicht halber nur drei Wärmetauscherplatten dargestellt sind,
- Fig. 2 6 verschiedene Ausführungsformen erfindungsgemäßer Wärmetauscherplatten, bei denen die Blechsegmente mit geraden Schweißnähten zusammengeschweißt sind,
- Fig. 7-11 verschiedene Ausführungsformen erfindungsgemäßer Wärmetauscherplatten, bei denen die Blechsegmente mit der Kontur der Profilierung oder anderen Konturen der Wärme-tauscherplatte folgenden Schweißnähten zusammengeschweißt sind,
 - Fig.12-15 verschiedene Ausführungsformen erfindungsgemäßer Wärmetauscherplatten, bei denen die Blechsegmente in einer Kombination aus Längs- und Quernähten zusammengeschweißt sind, und
 - Fig. 16-20 jeweils einen Querschnitt durch eine Wärmetauscherplatte mit verschiedenen Ausführungen des Schweißnahtbereichs.
 - [0012] Der in Fig. 1 gezeigte Plattenwärmetauscher 1

2

50

55

25

besitzt Wärmetauscherplatten 2, die in ein Gestell 3 eingehängt sind und dann mittels Spannschrauben 4 zwischen zwei Spannplatten 5 und 6 verspannt werden, so dass die Wärmetauscherplatten 2 in einem Paket dicht aneinander liegen. Es werden auf jeder Seite des Plattenwärmetauschers 1 zwei Spannschrauben 4 eingesetzt, von denen in der Zeichnung nur eine dargestellt ist. [0013] Jede Wärmetauscherplatte 2 weist vier Einbzw. Austrittsöffnungen 7 auf und ist in dem Bereich zwischen diesen Öffnungen 7 profiliert. Mit dieser Profilierung stützen sich die Wärmetauscherplatten 2 aneinander ab. Des Weiteren sorgt diese Profilierung für eine Vergrößerung der Wärmeaustauschfläche und für die Erzeugung der dem Wärmeübergang förderlichen Turbulenz der Strömung zwischen den Platten sowie für eine bessere Verteilung der wärmetauschenden Medien über die Fläche der Wärmetauscherplatte 2. Zwischen den Wärmetauscherplatten 2 eingelegte Umfangsdichtungen 8 sorgen zum einen dafür, dass die wärmetauschenden Medien nicht nach außen dringen können, insbesondere aber auch dafür, dass die Medien separiert voneinander jeweils jedes zweite Wärmetauscherplattenpaar durchströmen. Der Zu- bzw. Abfluss der wärmetauschenden Medien erfolgt über Rohrstutzen 9, die an der Spannplatte 5 vorgesehen sind. Die Rohrstutzen 9 fluchten mit den Ein- und Austrittsöffnungen 7 der Wärmetauscherplatten 2. Die oben stehend kurz erläuterte Konstruktion eines Plattenwärmetauschers 1 ist allgemein bekannt und bedarf daher hier keiner weiteren Erläute-

[0014] Neu an dem in Fig. 1 dargestellten Plattenwärmetauscher 1 sind die Wärmetauscherplatten 2, die in diesem Ausführungsbeispiel aus zwei Blechsegmenten 10 und 11, welche mit einer, bezogen auf die Darstellung, geraden vertikalen Schweißnaht 25 zusammengefügt sind. Fig. 2 zeigt eine derartig zusammengesetzte Wärmetauscherplatte 2 in einer schematischen Draufsicht. [0015] Die Fig. 3 bis 6 zeigen weitere Ausführungsformen einer aus Blechsegmenten mit geraden Schweißnähten zusammengeschweißten Wärmetauscherplatte 2. In dem Ausführungsbeispiel gemäß Fig. 3 besteht die Wärmetauscherplatte 2 aus vier Blechsegmenten 12 bis 15, die durch eine gerade vertikale Schweißnaht 25 und eine gerade horizontale Schweißnaht 26 zusammengefügt sind.

[0016] In dem Ausführungsbeispiel gemäß Fig. 4 setzt sich die Wärmetauscherplatte 2 aus zwei Blechsegmenten 16 und 17 zusammen, die durch eine gerade horizontale Schweißnaht 26 miteinander verbunden sind.

[0017] Die Wärmetauscherplatte 2 gemäß Fig. 5 ist aus drei Blechsegmenten 18 bis 20 zusammengesetzt, die durch zwei gerade horizontale Schweißnähte 26 gefügt sind. Die beiden Segmente 18 und 20 bilden dabei die Ein-und Austrittsöffnungen 7 enthaltenen Kopfbereiche der Wärmetauscherplatte 2. Dabei haben die beiden Blechsegmente 18 und 20 aus verformungstechnischen Gründen eine größere Wandstärke als das den zentralen Bereich der Wärmetauscherplatte 2 bildende

Blechsegment 19. Sie können auch aus einem anderen Material angefertigt sein.

[0018] Die in Fig. 6 gezeigte Wärmetauscherplatte 2 besteht aus vier Blechsegmenten 21 bis 24, die durch gerade horizontale Schweißnähte 26 miteinander verbunden sind. Im Unterschied zum vorher stehenden Ausführungsbeispiel ist der zentrale Bereich der Wärmetauscherplatte 2 hier durch zwei Blechsegmente 22 und 23 gebildet. Auch bei diesem Ausführungsbeispiel können die einzelnen Blechsegmente 21 bis 24 mit unterschiedlicher Wandstärke und/oder aus unterschiedlichen Materialien bestehen, sofern sich diese miteinander verschweißen lassen.

[0019] In den Ausführungsbeispielen gemäß den Fig. 7-11 haben die Schweißnähte 25, 26 einen vom geraden Verlauf abweichenden Verlauf. Es ist zweckmäßig, wenn dieser Verlauf der Kontur der Profilierung der Wärmetauscherplatte 2 folgt. Es sind aber auch Schweißnähte 25, 26 möglich, die anderen Konturen der Wärmetauscherplatte 2 folgen. In Fig. 7 setzt sich die Wärmetauscherplatte 2 aus zwei Blechsegmenten 27, 28, in Fig. 8 aus zwei Blechsegmenten 29, 30, in Fig. 9 aus vier Blechsegmenten 31-34, in Fig. 10 aus vier Blechsegmenten 35-38 und in Fig. 11 aus drei Blechsegmenten 39-41 zusammen.

[0020] Die Ausführungsbeispiele gemäß den Fig. 12-15 zeigen Wärmetauscherplatten 2 mit einer Kombination von geraden und ungeraden Schweißnähten 25, 26. Dabei setzt sich in Fig. 12 die Wärmetauscherplatte 2 aus vier Blechsegmenten 42-45, in Fig. 13 aus sechs Blechsegmenten 46-51, in Fig. 14 aus vier Blechsegmenten 52-55 und in Fig. 15 aus sechs Blechsegmenten 56-61 zusammen.

[0021] Es versteht sich, dass auch bei den Ausführungsformen gemäß den Fig.7-15 einzelne oder mehrere der Blechsegmente 27-61 mit unterschiedlicher Wandstärke und/ oder aus unterschiedlichem Material gefertigt sein können.

[0022] Die Fertigung einer aus den Blechsegmenten 10 und 11, 12 bis 15, 16 und 17, 18 bis 20, 21 bis 24. 27 und 28, 29 und 30, 31 bis 34, 35 bis 38, 39 bis 41, 42 bis 45, 46 bis 51, 52 bis 55 bzw. 56 bis 61 zusammengesetzten Wärmetauscherplatte 2 kann durch zwei verschiedene Verfahren erfolgen. Bei dem einen Verfahren werden die Blechsegmente 10 bis 61 zunächst unverformt zu einem flachen Wärmetauscherplattenrohling zusammengeschweißt, der dann insgesamt zur fertigen Wärmetauscherplatte 2 umgeformt wird. Bei der anderen Verfahrensweise werden die einzelnen Blechsegmente 10 bis 61 einzeln umgeformt und anschließend zur fertigen Wärmetauscherplatte 2 zusammengesetzt. Die letzte Verfahrensweise hat den Vorteil, dass kleinere Pressen verwendet werden können.

[0023] Mögliche Ausführungen der Wärmetauscherplatte 2 im Bereich der Schweißnähte 25 und 26 gehen aus den Fig. 16 bis 20 hervor. In den Ausführungsbeispielen gemäß den Fig. 16 bis 18 ist die Wärmetauscherplatte 2 im Bereich der Schweißnähte 25 und 26 profilfrei

20

25

ausgeführt. Diese drei Ausführungsbeispiele unterscheiden sich dadurch, dass im Falle der Fig. 16 die Blechsegmente 10 bis 61 stumpf zusammengeschweißt sind, während sie in den Ausführungsbeispielen gemäß den Fig. 17 und 18 überlappend zusammengeschweißt sind. Im Ausführungsbeispiel gemäß Fig. 18 sind im Überlappungsbereich zwei Schweißnähte 25, 26 vorgesehen, wodurch die Stabilität der Wärmetauscherplatte 2 in diesem Bereich erhöht wird.

[0024] In den Ausführungsbeispielen gemäß den Fig. 19 und 20 ist die Wärmetauscherplatte 2 auch im Bereich der Schweißnähte 25 und 26 profiliert ausgeführt. Während in der Ausführung gemäß Fig. 19 eine Stumpfnaht 25, 26 vorgesehen ist, überlappen sich die Blechsegmente 10 bis 61 im Profilbereich. Dadurch wird die Profilierung der Wärmetauscherplatte 2 zur Zentrierung der Blechsegmente 10 bis 61 vor dem Zusammenschweißen genutzt. Auch bei diesem Ausführungsbeispiel ist zur Stabilisierung im Überlappungsbereich eine Doppelnaht 25, 26 vorgesehen. Natürlich ist auch eine Einfachnaht 25, 26 möglich.

Patentansprüche

- Wärmetauscherplatte für einen Plattenwärmetauscher mit nebeneinander angeordneten Ein- und Austrittsöffnungen und einer Profilierung, dadurch gekennzeichnet, dass die Wärmetauscherplatte (2) aus zusammengeschweißten Blechsegmenten (10 bis 61) besteht.
- Wärmetauscherplatte nach Anspruch 1, dadurch gekennzeichnet, dass die Schweißnaht bzw. die Schweißnähte (25, 26) einen geraden und/oder einen der Kontur der Profilierung oder einer anderen Kontur der Wärmetauscherplatte (2) folgenden Verlauf hat bzw. haben.
- Wärmetauscherplatte nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Blechsegmente (10 bis 61) in Quernähten (26) zusammengeschweißt sind.
- **4.** Wärmetauscherplatte nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, **dass** die Blechsegmente (10 bis 61) in Längsnähten (25) zusammengeschweißt sind.
- Wärmetauscherplatte nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Blechsegmente (10 bis 61) in einer Kombination aus Längsnähten (25) und Quernähten (26) zusammengeschweißt sind.
- **6.** Wärmetauscherplatte nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, **dass** sie aus mindestens drei durch Querschweißnähte (26) zusammenge-

fügten Blechsegmenten (18 bis 20, 21 bis 24, 35 bis 38, 46 bis 51, 52 bis 55, bzw. 56 bis 61) besteht, wobei die Blechsegmente (18, 20; 21, 24; 35, 38; 46, 47, 50, 51; 52, 55 bzw. 56, 61) der beiden Kopfbereiche aus einem anderen Material bestehen und/oder einen andere Wandstärke haben, als die den Zentralbereich der Wärmetauscherplatte (2) bildenden Blechsegmente (19; 22, 23; 36, 37; 48, 49; 53, 54 bzw, 57 bis 60).

- 7. Verfahren zur Herstellung einer Wärmetauscherplatte gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zunächst flachen Blechsegmente (10 bis 24) zu einem Wärmetauscherplattenrohling zusammengeschweißt werden, der anschließend zur fertigen Wärmetauscherplatte (2) umgeformt wird.
- 8. Verfahren zur Herstellung einer Wärmetauscherplatte gemäß gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zunächst flachen Blechsegmente (10 bis 24) umgeformt und anschließend zur fertigen Wärmetauscherplatte (2) zusammengeschweißt werden.

55

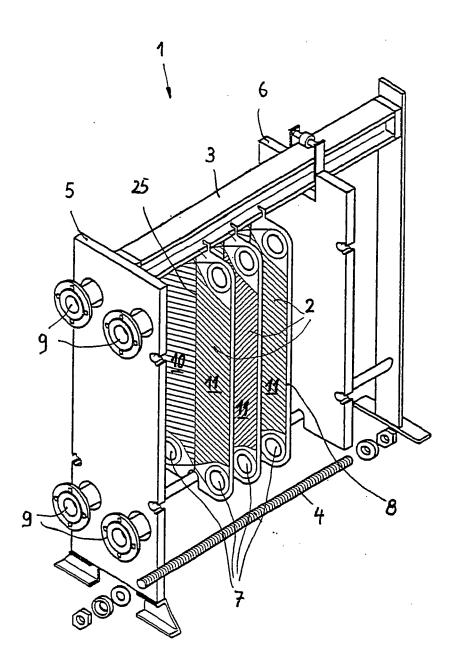
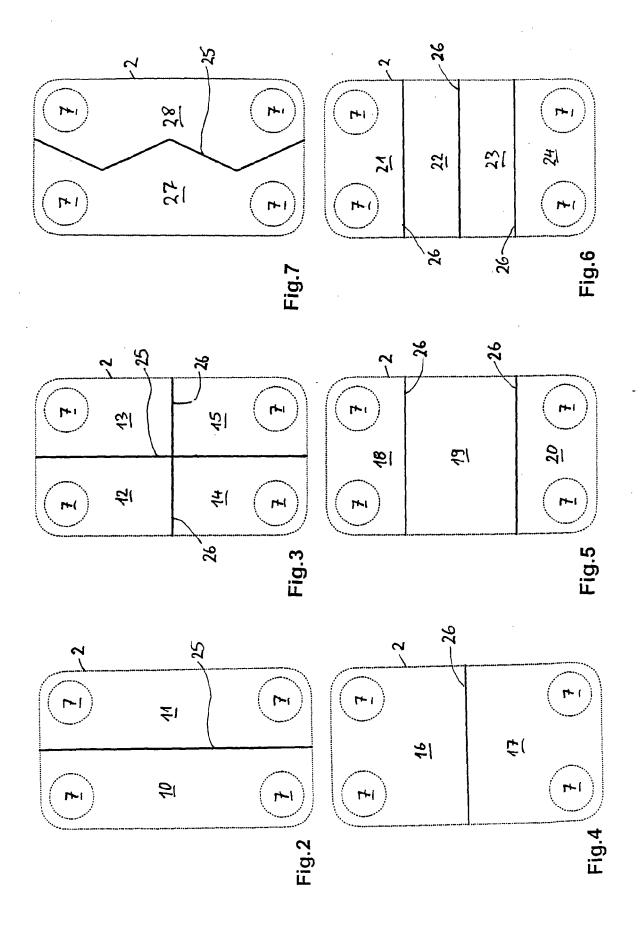
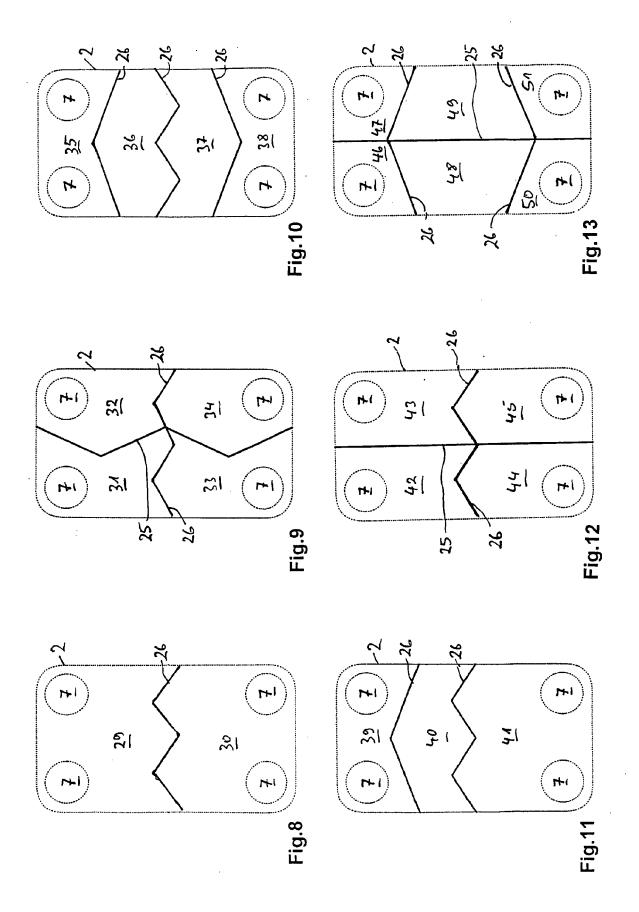
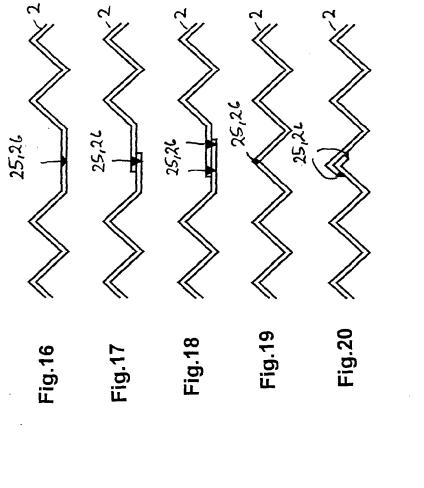
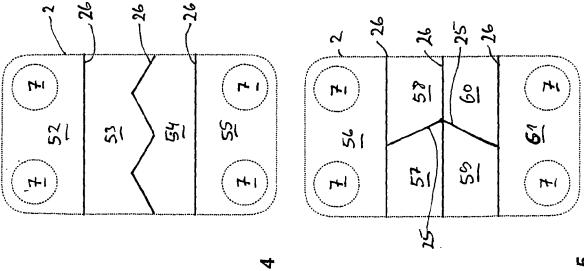






Fig.1

