

EP 1 741 690 A2 (11)

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

10.01.2007 Bulletin 2007/02

(21) Numéro de dépôt: 06116548.6

(22) Date de dépôt: 04.07.2006

(51) Int Cl.: C06B 21/00 (2006.01) B01F 15/04 (2006.01)

C06B 45/12 (2006.01)

(84) Etats contractants désignés:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Etats d'extension désignés:

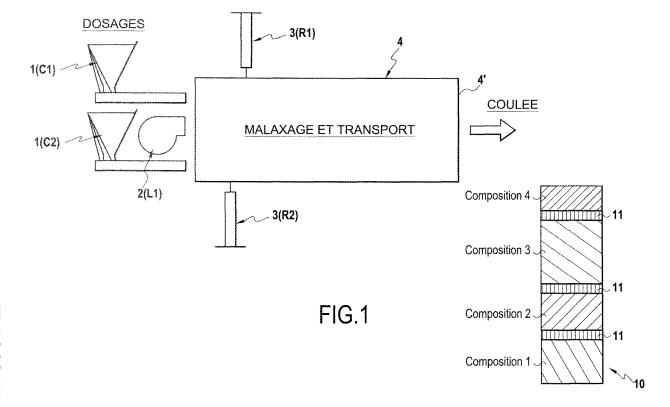
AL BA HR MK YU

(30) Priorité: 06.07.2005 FR 0507191

(71) Demandeur: SNPE Matériaux Energétiques 75004 Paris (FR)

(72) Inventeurs:

Marchetto, Virginie 33320, LE TAILLAN MEDOC (FR)


Gaudre, Marie 33185, LE HAILLAN (FR)

(74) Mandataire: Le Roux, Martine et al Cabinet Beau de Loménie 158, rue de l'Université 75340 Paris Cédex 07 (FR)

(54)Procédé et dispositif de fabrication en continu d'un objet pyrotechnique

(57)La présente invention a pour objet un procédé (et un dispositif associé) de fabrication en continu d'un objet pyrotechnique (10;20;30;40). Ledit procédé est du type procédé de malaxage et coulée en continu. De façon

caractéristique, il est mis en oeuvre avec modification de la composition du mélange coulé. Ledit procédé convient particulièrement à la fabrication d'objets pyrotechniques de grande taille.

EP 1 741 690 A2

Description

[0001] La présente invention a pour principal objet un procédé de fabrication en continu d'un objet pyrotechnique. Elle a également pour objet un dispositif convenant à la mise en oeuvre de ce procédé.

[0002] La présente invention, sous ses aspects procédé et dispositif, apporte une amélioration aux procédés et dispositifs existants à ce jour.

[0003] Elle trouve plus particulièrement application dans le domaine de la fabrication :

- des pâtes de propergol, notamment utiles à la propulsion des moteurs-fusées, des intercepteurs ...
- 10 des explosifs, et

20

30

35

40

45

50

55

- des objets pyrotechniques à structure bifonctionnelle du type tête explosive montée sur un corps de propulsion ...

[0004] Elle concerne plus particulièrement la fabrication d'objets pyrotechniques de grande taille (dont la masse m est telle que $100 \text{ kg} \le \text{m} < 500 \text{ tonnes}$).

[0005] Le procédé actuellement mis en oeuvre pour fabriquer ce type de produit est un procédé discontinu (dit "par batch"), qui consiste à préparer une certaine quantité de produit en une(plusieurs) malaxée(s), à couler la(les)dite(s) malaxée(s) en un ou plusieurs chargements, à cuire le(s)dit(s) chargement(s).

[0006] Dans une première étape, les différents ingrédients, pesés préalablement, sont introduits dans un malaxeur selon un ordre approprié où ils sont soigneusement et longuement malaxés, dans des conditions de pression (en général le vide) et de température bien précises.

[0007] Dans une seconde étape, le mélange, qui se présente alors sous la forme d'une pâte très visqueuse, est coulé dans un moule, avec des outillages de mise en forme. La coulée se fait soit par gravité, sous vide, par l'intermédiaire d'une grille; soit en source, à pression atmosphérique, par l'intermédiaire d'une canule (conduite) obturante ou non. Pour certains gros chargements, il est nécessaire d'enchaîner plusieurs malaxées/coulées dans un même moule.

[0008] L'ensemble - pâte coulée + moule - subit une cuisson pour assurer le durcissement de la pâte. Le moule constitue dans certains cas l'enveloppe même de l'objet pyrotechnique préparé, enveloppe qui est convenablement préparée pour la réalisation du chargement.

[0009] Certains chargements doivent être réalisés avec plusieurs formulations différentes, pour répondre à différentes contraintes, de balistique, de vulnérabilité, par exemple. Dans de tels cas, on réalise plusieurs opérations successives, en discontinu, avec lesdites formulations différentes et les chargements multi-compositions sont ainsi obtenus après plusieurs opérations de coulée et cuisson successives ... L'obtention, avec changement de formulation, de tels chargements (à composition variable), se révèle, dans le cadre d'un procédé discontinu, d'une mise en oeuvre particulièrement lourde et coûteuse.

[0010] Proposer un procédé continu, qui permette des changements de formulation performants et d'une mise en oeuvre aisée, tel est donc le problème technique auquel les inventeurs se sont confrontés.

[0011] Des procédés de fabrication en continu d'objets pyrotechniques ont déjà été décrits, notamment :

- par Eric Giraud, Jean-Michel Tauzia, G. Lacroix et Constance M. Murphy, Richard S. Muscato, William F. Newton, Frederick M. Gallant, Mark A. Michienzi, Sharperson G. Johnson, dans v 44 de ICT (Institut Chemische Technologie) 1998 - 29th International Annual Conference;
- par Hugh A. Bruck, Frederick M. Gallant et Swami Gowrisankaran dans Proceedings of IMECE 2003, 2003 ASME International Mechanical Engineering Congress and R & D Expo, Washington, DC, November 15-21, 2003.

[0012] Dans la première de ces publications, des résultats d'études sur la fabrication en continu de propergols solides sont présentés. Une équipe française a étudié un procédé de malaxage et coulée en continu, une équipe américaine un procédé de malaxage et extrusion en continu. Ces deux techniques sont considérées, par l'homme du métier, comme fort différentes. Ce document ne fournit par ailleurs aucun enseignement sur des changements de composition en cours de procédé ...

[0013] Dans la seconde de ces publications, la technologie en cause est celle du malaxage et extrusion ("TSE = Twin Screw Extrusion") en continu. Il est montré que des matériaux composites peuvent être obtenus avec un gradient de composition axial et/ou radial.

[0014] Les débouchés du procédé d'extrusion sont plus limitées que ceux du procédé de coulée, en référence à la taille des objets réalisables. Industriellement, ce procédé est mis en oeuvre pour la fabrication d'objets de quelques dizaines de grammes (quelques millimètres de diamètre) à une dizaine de kilogrammes (une dizaine de centimètres de diamètre), en grande série.

[0015] Cependant, le changement de composition en continu n'a été décrit que dans ce contexte de l'extrusion (dans lequel l'objet, qui présente une viscosité suffisante, est mis en forme dès la sortie de la filière), où il est assurément plus facilement maîtrisable que lors d'une coulée. Lors d'une coulée, on se trouve notamment confronté à des problèmes

d'interpénétration de jet.

5

15

30

35

40

45

50

[0016] Les inventeurs, confrontés au problème technique évoqué ci-dessus, n'ignoraient en fait :

- ni l'existence de réticences sérieuses pour renoncer au procédé traditionnel en discontinu ;
- ni l'existence de préjugés certains à l'encontre de la mise en oeuvre d'un changement de composition dans le cadre d'un procédé de malaxage et coulée en continu.

[0017] Ils ont développé la présente invention malgré lesdits réticences et préjugés et ont montré la faisabilité d'un procédé de malaxage et coulée en continu pour obtenir un objet pyrotechnique avec plusieurs compositions.

[0018] Selon son premier objet, la présente invention concerne donc un procédé continu de fabrication d'un objet pyrotechnique, qui comprend les phases ci-après, mises en oeuvre en continu :

- d'alimentation d'un organe de mélange en les différents constituants dudit objet,
- de mélange desdits différents constituants dans ledit organe de mélange, avec progression au sein de la structure dudit organe de mélange,
- de coulée du mélange obtenu en sortie dudit organe de mélange, ledit mélange présentant une viscosité comprise entre 200 et 3 000 Pa.s.

[0019] De façon caractéristique, dans le cadre dudit procédé, la phase d'alimentation s'effectue avec au moins une variation d'au moins l'un de ses paramètres, de sorte que la composition dudit mélange coulé est modifiée en cours de fabrication. On obtient ainsi un objet pyrotechnique, qui présente une composition variable.

[0020] Le procédé continu de l'invention est particulièrement bien adapté à la fabrication d'objets pyrotechniques de grande taille (dont la masse m est telle que 100 kg \leq m < 500 tonnes).

[0021] Les objets pyrotechniques en cause sont notamment des types précisés ci-dessus : chargements de propergol, explosifs, objets pyrotechniques bifonctionnels ... Il s'agit avantageusement d'objets pyrotechniques de grande taille, d'une centaine de kilogrammes à quelques centaines de tonnes (voir ci-dessus). Il peut notamment s'agir d'objets d'environ 200 tonnes.

[0022] Le procédé de fabrication desdits objets en cause est un procédé de malaxage et coulée en continu du type par exemple de ceux décrits en première partie de la première publication identifiée ci-dessus.

[0023] Ledit procédé est mis en oeuvre avec une pâte (coulable) qui présente une viscosité comprise entre 200 et 3 000 Pa.s, généralement entre 400 et 2 000 Pa.s. De manière générale, la viscosité de la pâte ne doit pas constituer un obstacle à sa coulée (d'où η < 3 000 Pa.s) ni à son dégazage, susceptible d'être mis en oeuvre lors du malaxage, au moins en fin dudit malaxage (d'où η \geq 200 Pa.s).

[0024] Les pâtes en cause, qui présentent une viscosité entre 200 et 3 000 Pa.s , avantageusement entre 400 et 2 000 Pa.s, sont du type de celles malaxées et coulées selon l'art antérieur.

[0025] De façon caractéristique, dans le cadre du procédé de l'invention, la composition desdites pâtes est modifiée en continu. La phase d'alimentation en les différents constituants est mise en oeuvre avec au moins une variation de l'un de ses paramètres. Un seul paramètre peut varier, une unique fois, au cours de l'opération de fabrication. De la même façon, au moins deux paramètres peuvent varier, au moins une fois, au cours de ladite opération de fabrication.

[0026] La(les) variation(s) en cause peu(ven)t être brutale(s) ou non. L'homme du métier connaît la notion de temps de séjour (la durée de temps de séjour (DTS) d'un procédé continu est le temps moyen nécessaire à une particule pour traverser le dispositif où ledit procédé est mis en oeuvre. Plusieurs particules, introduites en entrée dudit dispositif au même instant, ne ressortent pas en même temps. La durée de temps de séjour est une courbe statistique en cloche (gaussienne) qui donne le nombre de particules sortantes en fonction du temps. Chaque procédé continu possède une durée de temps de séjour propre, parfois modifiable). Ainsi, un changement brutal du débit d'un ingrédient en entrée met forcément un certain temps avant d'être effectif en sortie d'un procédé continu de malaxage avec transport. Il existe donc toujours, dans l'objet final, un gradient de composition. Un tel gradient est d'une amplitude d'autant plus faible que la(les) consigne(s) du(des) doseur(s) est(sont) changée(s) brutalement ; d'une amplitude d'autant plus conséquente que la(les)dite(s) consigne(s) est(sont) changée(s) plus progressivement. Dans tel ou tel contexte, on peut viser à l'obtention d'un gradient de faible amplitude et on veille alors à mettre en oeuvre un changement brutal de composition. Dans tel ou tel autre contexte, on peut, au contraire, viser à l'obtention d'un gradient d'amplitude conséquent. Ceci peut constituer un avantage d'un point de vue mécanique ou balistique.

[0027] Les paramètres de l'alimentation susceptibles de varier pour entraîner une variation de la composition du mélange coulé, sont notamment :

- le nombre de constituants intervenants,
- la nature desdits constituants intervenants, et
- les débits d'alimentation en lesdits constituants intervenants.

[0028] L'homme du métier n'ignore pas que les constituants en cause sont souvent des macro-composants (i. e. un (pré)mélange de plusieurs ingrédients de la formulation de base. On cherche ainsi à limiter le nombre de doseurs autour de l'organe de mélange), qui consistent principalement en des : charges, liants, réticulants et pré-mélanges actifs.

[0029] Dans le cadre de la mise en oeuvre du procédé de l'invention, on peut donc faire varier, avantageusement, la nature et/ou la quantité desdits charges, liants, réticulants et pré-mélanges actifs intervenant dans l'alimentation de l'organe de mélange.

[0030] De manière générale, la gestion de l'alimentation de l'organe de mélange, qui se fait donc, selon l'invention, avec au moins une variation de l'un des paramètres, peut être manuelle ou au moins en partie commandée électroniquement au moyen d'un programmateur approprié. En tout état de cause, la formulation coulée est modifiée, manuellement et/ou par programmation, en continu et simultanément à sa phase de coulée :

- soit par modification d'au moins un débit de constituant (généralement de macro-composant) initial, alimentant l'organe de mélange en entrée et/ou le long de son axe ;
- soit par ajout et/ou suppression d'au moins un constituant (généralement d'au moins un macro-composant), en entrée et/ou le long de l'axe de l'organe de mélange ;
- soit par modification d'au moins un débit de constituant initial et ajout et/ou suppression d'au moins un constituant, en entrée et/ou le long de l'axe de l'organe de mélange ...

[0031] Quelle que soit la variante exacte de mise en oeuvre de la coulée et plus particulièrement dans un contexte de coulée en source (voir plus loin), il est souhaitable que le mélange à couler arrive en sortie de l'organe de mélange, exempt de défaut ; i.e. dégazé. Il est donc avantageux que le mélange soit mis en oeuvre sous vide poussé, au moins en sa fin de progression au sein de la structure de l'organe de mélange. Par vide poussé, on entend dans ce contexte une pression inférieure à 150 mbar, avantageusement inférieure à 100 mbar.

[0032] Selon une première variante de mise en oeuvre, la coulée en continu du procédé de l'invention est une coulée gravitaire sous vide, par l'intermédiaire d'une grille de dégazage. Dans le cadre de cette variante, le dégazage en amont est moins critique puisque la coulée per se est assurée avec dégazage (sous vide, au travers d'une grille de dégazage). La mise en oeuvre d'une telle coulée gravitaire, dans le cadre du procédé de l'invention, est limitée aux contextes de faible hauteur de chute. Lors de changements de composition avec des hauteurs de chutes importantes, des problèmes de pénétration du jet peuvent survenir.

[0033] Selon une seconde variante de mise en oeuvre, la coulée en continu du procédé de l'invention est une coulée en source, à pression atmosphérique, au travers d'au moins une canule, obturante ou non. Ladite coulée est mise en oeuvre sur un mélange qui ne renferme pas ou très peu de gaz, généralement sur une pâte dégazée en amont (très généralement, dégazée au sein de la structure de l'organe de mélange). Avantageusement, une telle coulée en source est mise en oeuvre avec asservissement du mouvement relatif, canule/moule de réception du mélange coulé, au débit de coulée, de sorte que soit maintenue une distance faible (de l'ordre de quelques centimètres : il ne faut pas créer un enroulement de filet de pâte en augmentant trop cette distance ... ni faire plonger la(les) canule(s) dans la pâte), stable, entre la sortie de ladite au moins une canule et le niveau du mélange coulé dans ledit moule.

[0034] Un tel système de coulée en source avec canule(s) permet, même pour le remplissage d'objets de grande hauteur :

de couler à pression atmosphérique,

- d'éviter le mélange des différentes formulations par interpénétration du jet à l'impact.

[0035] On utilise un tel système avec canule(s) en veillant aux problèmes de son amorçage. Si la coulée de la pâte se fait en filets, le remplissage est incorrect, puisqu'il y a emprisonnement d'air. L'écoulement de la pâte doit être un écoulement piston. Soit on veille donc à utiliser une canule dimensionnée de façon adéquate, soit on associe à la canule un bouchon, soit on sacrifie le volume de la canule au premier remplissage ...

[0036] On utilise également un tel système avec canule(s) en veillant aux problèmes de sa fin d'utilisation. Lors de l'arrêt de l'alimentation de la(des) canule(s), la pâte contenue dans la canule s'écoule par gravité et vient :

- soit en excédent de volume du moule rempli,

- soit en défaut de volume pour le moule suivant à remplir (cas des petits chargements coulés en série),
- soit en égoutture continue (salissure avec risque pyrotechnique et nettoyage à prévoir).

[0037] Il est donc vivement souhaitable d'assurer une parfaite obturation de l'extrémité de la canule dès la fin de la distribution de la dose.

[0038] Dans le cadre de la présente invention, les spécificités de mise en oeuvre de ces deux variantes de coulée se sont révélées exploitables pour la mise en oeuvre d'un procédé en continu avec variation de la composition de la pâte

50

45

15

20

30

35

40

coulée.

[0039] Par rapport au procédé discontinu largement exploité à ce jour, le procédé continu de l'invention, dans un contexte de changement de formulation, permet de réduire les coûts de réalisation, par :

- simplification de la géométrie (en particulier interne : voir les figures 3A et 3B annexées) d'objets préparés : il est en effet possible de jouer sur la composition du propergol et non plus uniquement sur la géométrie interne du chargement pour répondre à des spécificités balistiques et mécaniques particulières ;
 - obtention de chargements multi-compositions (notamment bi-compositions) sans cuisson intermédiaire.
- 10 [0040] De plus, l'utilisation d'un procédé continu permet :
 - la réduction des zones de danger, de par la faible quantité de matière mise en oeuvre ;
 - la réduction de l'emprise au sol : les opérations de malaxage et coulée sont réalisées au même endroit,
 - la diminution des coûts de fabrication : procédé d'une mise en oeuvre rapide, sans transport de cuve, sans séquence successive de malaxage et coulée ;
 - une bonne reproductibilité ;
 - une bonne flexibilité : il est possible de formuler un grand nombre de formulations différentes.

[0041] On insiste enfin sur les avantages de la variante préférée de mise en oeuvre du procédé de l'invention, variante avec coulée en source :

- le vide n'est pas indispensable lors de la coulée,
- les temps de coulée sont réduits (par l'absence de mise sous vide mais aussi grâce à la possibilité de remplir à grande vitesse),
- les outillages nécessaires sont simples et peu nombreux,
 - on peut obtenir un remplissage sans création de cavités, sans interpénétration, avec des gradients de compositions plans, assez bien délimités entre les différentes formulations ...

[0042] L'intérêt du procédé de l'invention et les nombreux domaines d'applications dudit procédé n'ont pas échappé à l'homme du métier.

[0043] Il peut notamment être mis en oeuvre :

- pour obtenir une structure de l'objet pyrotechnique avec variation de composition selon son axe longitudinal, avec au moins une variation, par exemple brutale, de la composition du mélange coulé. On peut ainsi couler une composition moins dense après une composition plus dense, voire l'inverse; les débits de coulée étant, en tout état de cause, adaptés;
- pour obtenir une structure de l'objet pyrotechnique avec variation de composition selon son axe radial, avec une variation brutale de la composition du mélange coulé. On peut ainsi couler une composition plus dense après une composition moins dense, voire l'inverse; les débits de coulée, étant, en tout état de cause, adaptés.

[0044] Les paramètres, débit, viscosité, densité, sont à régler pour obtenir le résultat escompté.

[0045] Le procédé de l'invention a notamment des débouchés :

dans la réalisation de chargements de très grande taille (100 kg à moins de 500 tonnes (par exemple, environ 200 tonnes) de propergol), multi-compositions, substituts de chargements à géométrie de noyau complexe (voir les figures 3A et 3B annexées) ...;

dans la réalisation d'explosifs présentant des parties peu sensibles, plus exposées et des parties très sensibles, moins exposées (voir la figure 4 annexée) ... ,

dans la réalisation d'objets pyrotechniques à structure bifonctionnelle (voir la figure 5 annexée);

- dans la réalisation d'intercepteurs ...

[0046] On en vient maintenant au deuxième objet de la présente invention, un dispositif de fabrication en continu d'un objet pyrotechnique. Ledit dispositif convient pour une fabrication du type malaxage et coulée en continu, avec variation dans l'alimentation de l'organe de malaxage, tout particulièrement pour la mise en oeuvre du procédé décrit ci-dessus.

[0047] Ledit dispositif comprend:

- un organe de mélange (ou malaxage) qui convient pour assurer le mélange avec transport des différents constituants de l'objet pyrotechnique en fabrication ; ledit organe de mélange comportant au moins une ouverture de récupération

5

40

15

25

30

35

45

45

__

50

desdits constituants mélangés (une ouverture pour la délivrance desdits constituants mélangés),

5

20

45

50

55

- un ensemble de dispositifs d'alimentation dudit organe de mélange en lesdits constituants (un ensemble de doseurs aptes à délivrer les différents constituants, liquides et/ou solides ...) et
- un dispositif de coulée, agencé au niveau de ladite au moins une ouverture de récupération dudit organe de mélange, qui convient pour la coulée du mélange obtenu dans un moule.

[0048] L'ensemble des dispositifs d'alimentation convient pour assurer en continu des variations de l'alimentation de l'organe de mélange.

[0049] Ainsi, l'un au moins desdits dispositifs est-il susceptible d'être arrêté et/ou démarré en cours d'opération ; et/ou l'un au moins desdits dispositifs est-il susceptible d'assurer sa fonction d'alimentation (partielle) à différents débits ... ledit ensemble des dispositifs d'alimentation convient-il pour assurer au moins une variation d'au moins l'un des paramètres de l'alimentation, de sorte que la composition du mélange coulé est modifiée en cours de fabrication.

[0050] Le dispositif de l'invention comporte avantageusement entre outre des moyens électroniques de commande d'au moins l'un de ses dispositifs d'alimentation.

[0051] Ledit dispositif de l'invention comporte avantageusement des moyens pour maintenir un vide poussé dans son organe de mélange, au moins dans la partie dudit organe de mélange attenante à sa au moins une ouverture de récupération.

[0052] Pour ce qui concerne le dispositif de coulée, sa structure est évidemment adaptée au type de coulée visé.

[0053] Selon une première variante, ledit dispositif de coulée comprend un système de coulée gravitaire avec au moins une conduite débouchant au travers d'une grille de dégazage dans une armoire de coulée sous vide.

[0054] Selon une seconde variante, ledit dispositif de coulée comprend un système de coulée en source, fonctionnant à pression atmosphérique, avec au moins une canule, obturante ou non. Un tel système comprend avantageusement des moyens d'asservissement du mouvement relatif canule(s)/moule(s) de réception, au débit de coulée, de sorte que soit maintenue une distance faible, stable, entre la sortie débouchante de ladite au moins une canule et le niveau de mélange coulé dans le moule correspondant. Avec un tel système, on peut couler sans interpénétration, à pression atmosphérique, des formulations de différentes compositions, avec des hauteurs de chute importantes. L'intervention d'un tel système est particulièrement opportune dans un contexte de fabrication de gros objets.

[0055] L'organe de mélange intervenant est une machine de malaxage en continu qui peut être une bivis, co- ou contrarotative ou une monovis.

[0056] Les dispositifs d'alimentation sont généralement agencés dans la partie amont de l'organe de mélange et l' (les) ouverture(s) de récupération est(sont) elle(s) généralement agencée(s) dans la partie aval dudit organe de mélange. L'organisation des dispositifs d'alimentation, en périphérie dudit organe de dosage, est généralement telle que les charges énergétiques "tombent" dans des composants liquides, introduits légèrement en amont ; ce, pour des raisons évidentes de sécurité.

[0057] Lesdits dispositifs d'alimentation comprennent en principe des trémies d'alimentation équipées de dispositifs de dosage, avantageusement du type doseurs pulvérulents, pompes doseuses ou pompes de type seringue.

[0058] On se propose maintenant de décrire l'invention, de façon nullement limitative, en référence aux figure annexées.

[0059] La figure 1 est un schéma de principe du procédé de l'invention.

[0060] La figure 2A est un schéma de principe d'une variante de mise en oeuvre, avec coulée gravitaire, du procédé de l'invention.

[0061] La figure 2B est un schéma de principe d'une variante de mise en oeuvre, avec coulée en source, du procédé de l'invention.

[0062] La figure 3A montre un chargement à iso-composition de l'art antérieur (nécessitant un noyau à géométrie complexe, pour répondre au cahier des charges) tandis que la figure 3B montre un chargement bi-composition de l'invention (à noyau simplifié, répondant au même cahier des charges).

[0063] La figure 4 montre l'obtention, selon l'invention, avec variation brutale de la composition du mélange coulé, d'un objet pyrotechnique présentant une variation de composition selon son axe radial.

[0064] La figure 5 est un schéma de principe du procédé de l'invention mis en oeuvre pour obtenir un objet pyrotechnique bifonctionnel (tête et moteur intégré).

[0065] Le principe du procédé de l'invention est illustré sur la figure 1, où sont représentées, de la gauche vers la droite, les étapes :

- de dosage des macro-composants : deux macro-composants "charges", référencés C1 et C2, sont susceptibles d'être délivrés via les deux doseurs 1, indépendants ; un macro-composant "liant", référencé L1, est susceptible d'être délivré via le doseur 2 ; deux macro-composants "réticulants", référencés R1 et R2, sont susceptibles d'être délivrés via les deux doseurs 3, indépendants ;
- de malaxage et transport dans l'organe de mélange 4;

- de coulée, en aval de l'ouverture de récupération 4' dudit organe de mélange 4 ;
- d'obtention de l'objet pyrotechnique 10 à composition variable le long de son axe longitudinal. Ledit objet présente successivement quatre zones de compositions différentes, par exemple :
 - composition 1 : C1 + L1 + R1
 - composition 2 : C1 + C2+ L1 + R1
 - composition 3 : C1 + C2 + L1 + R2
 - composition 4 : C1 + C2' + L1 + R2 (débit de C'2 inférieur à celui de C2) ;
 séparées chacune par une zone 11 de gradient de composition.

[0066] Sur les figures 2A et 2B, deux variantes du procédé de l'invention sont illustrées. Sur lesdites figures, on a mieux schématisé les différents éléments du dispositif en cause.

[0067] En 1, 2 et 3 sont toujours représentés des doseurs convenant à l'alimentation de l'organe de mélange 4a ou 4b en, respectivement,

5 des charges C1 et C2,

5

10

20

30

35

50

des liants L1 et L2,

un réticulant R1.

[0068] L'organe de mélange, schématisé sur la figure 2A, est une machine monovis 4a. En son extrémité débouchante 4a', il est couplé à un dispositif de coulée gravitaire qui comprend une conduite 6 avec grille de dégazage 6'. Ladite conduite 6 débouche via sa grille de dégazage 6' dans l'armoire de coulée sous vide 8. Au sein de ladite armoire 8, on trouve le moule 7 destinée à recevoir la pâte coulée.

[0069] L'organe de mélange, schématisé sur la figure 2B, est une machine bivis 4b corotative. En son extrémité débouchante 4b', il est couplé à un dispositif de coulée en source qui comprend la canule 5. Elle délivre la pâte via son extrémité débouchante 5' dans le moule 7. Ledit moule 7 est stabilisé sur le plateau d'un dispositif 9 apte à le déplacer verticalement. En début de coulée, la canule 5 pénètre dans le moule 7 et au fur et à mesure de ladite coulée, le moule 7 est descendu, via ledit dispositif 9.

[0070] A la considération desdites figures 2A et 2B, on réalise les résultats susceptibles d'être obtenus.

[0071] La figure 3B montre, comme précisé ci-dessus, un objet pyrotechnique 20, obtenu selon l'invention, répondant au même cahier des charges que celui de la figure 3A. Ledit objet pyrotechnique 20 est bi-composant ; sa structure comprend le propergol A et le propergol B séparé par un gradient de composition 21.

[0072] Le propergol A est coulé en première phase du procédé grâce à un premier dosage de ses différents constituants. Ensuite, on modifie les consignes de dosage, sans arrêter l'organe de mélange, pour obtenir un second dosage qui correspond au propergol B. Ledit propergol B est coulé dans la seconde phase du procédé. Le changement de formulation peut avoir lieu en un temps très court et donc se retrouver sur une hauteur de gradient de composition faible.

[0073] La figure 4 illustre en continu la coulée de deux compositions explosives :

- la première 31, "fluide", moins sensible,
- la seconde 32, "visqueuse", plus sensible.

[0074] On obtient un objet pyrotechnique 30 bi-composant, au sein de la structure duquel la composition 32, la plus sensible, est protégée par la composition 31.

[0075] La figure 5 illustre la fabrication selon l'invention (en continu) d'un objet pyrotechnique bifonctionnel 40. Ledit objet comporte une tête explosive 40a (coulée en premier), monté sur un corps 40b, convenant à la propulsion (coulé en second).

45 **[0076]** On se propose maintenant d'illustrer l'invention par l'exemple ci-après, à considérer avec la figure 2B annexée.

Exemple

[0077] On dispose de cinq doseurs (deux, référencés 1, convenant chacun à la délivrance de charges, deux, référencés 2, convenant chacun à la délivrance d'un liant et un, référencé 3, convenant à la délivrance d'un réticulant) agencés autour d'une bivis 4b de laboratoire. Dans cette bivis 4b, on prépare un propergol composite inerte, mais représentatif d'un propergol réel. On s'affranchit ainsi des consignes de sécurité.

[0078] Le profil de vis, adapté au type de composition, permet l'homogénéisation, à 50°C et 100 mbar, du propergol, avec un débit global de 4 kg/h.

[0079] Chacun des cinq doseurs est apte à distribuer en continu un macro-composant, dont la composition massique est précisée dans le tableau ci-après :

Macrocomposants	Composition (% en masse)
Liant: L1	
- PBHT (polybutadiène hydroxytéléchélique)	37,65
- Alu (aluminium)	49,64
- Colorant rouge	0,07
- DBTL (dibutyldilaurate d'étain)	0,1
- DMP30 (2,4,6-tri(diméthylaminométhyl)phénol)	0,32
- DOZ (diisooctylazélate)	12,22
Liant: L2	
- PBHT	74,80
- Colorant vert	0,08
- DBTL	0,21
- DMP30	0,65
- DOZ	24,26
Réticulant : R1	
- MDCI (4,4-dicyclohexylméthanediisocyanate)	100
Charges: C1	
- Sucre cristallisé 342,7 μm	100
Charges : C2	
- Sucre cristallisé 342,7 μm	76,80
- KCl 10 μm	10,50
- Sucre glace 70 μm	12,65
- Colorant rouge	0,05

[0080] Des colorants interviennent, afin de repérer facilement les changements de composition. On remplit successivement le moule 7 avec une composition 1 rose, puis une composition 2 verte, puis une composition 3 pourpre (voir ci-après).

[0081] En sortie de la bivis 4b, la pâte est coulée en source, à pression atmosphérique, directement dans la structure définitive de l'objet : moule 7. A cette fin, un tuyau souple 5 (\varnothing = 12 mm et h = 50 cm) a été monté sur la filière et utilisé comme canule.

[0082] Ledit moule 7 est disposé sur le plateau d'un dispositif élévateur 9.

[0083] Au démarrage, ledit plateau est en position haute, alors que la canule 5, plus précisément son extrémité débouchante 5', est au contact du fond du moule 7.

La machine est mise en route avec une composition 1 du type

R1 + L1 + C1.

R1 est délivré à 73 g/h,

L1 est délivré à 1 839,5 g/h, et

C1 est délivré à 1 869,2 g/h; ce qui correspond à un débit global d'environ 3,8 kg/h.

Le moule 7 est ainsi rempli sur environ 15 cm, en 40 à 45 min, via la canule 5 qui est remontée au fur et à mesure.

 A l'issue de cette première phase de remplissage, le doseur de liant L1 est arrêté brusquement. Simultanément, le doseur de liant L2 est démarré brusquement. La machine débite alors une composition 2 du type R1 + L2 + C1. R1 est délivré à 70,8 g/h,

L2 est délivré à 900 g/h, et

C1 est délivré à 2 760 g/h; ce qui correspond à un débit global d'environ 3,7 kg/h.

[0084] Le remplissage avec ladite composition 2 est mis en oeuvre pendant 40 à 45 min, sur une hauteur d'environ 15 cm, avec remontée de la canule 5.

 A l'issue de cette seconde phase de remplissage, le doseur de charge C1 est arrêté brusquement. Simultanément, le doseur de charge C2 est démarré. La machine débite désormais une composition 3 du type R1 + L2 + C2

8

5

10

15

20

25

30

33

40

45

50

R1 est délivré à 70,8 g/h,

L2 est délivré à 900 g/h, et

C2 est délivré à 2 760 g/h; ce qui correspond à un débit total d'environ 3,7 kg/h.

[0085] Le remplissage avec ladite composition 3 est mis en oeuvre pendant 40 à 45 min, sur une hauteur d'environ 15 cm, en fait jusqu'au remplissage complet de l'objet (avec remontée de la canule au fur et à mesure).

[0086] La maquette obtenue est traitée thermiquement.

[0087] Elle montre alors clairement les trois zones successives de différentes couleurs, correspondantes aux trois compositions 1 (rose), 2 (verte), 3 (pourpre). Lesdites trois zones sont séparées par des zones de gradient.

[0088] La durée de temps de séjour de la pâte a été mesurée, dans le cas de l'essai réalisé. Elle est d'environ 3 min 30 s au sein de la bivis 4b seule et d'environ 6 min dans ladite bivis 4b couplée aux 50 cm de tuyau souple : canule 5.

Revendications

15

20

25

35

50

- 1. Procédé continu de fabrication d'un objet pyrotechnique (10;20;30;40), comprenant les phases ci-après, mises en oeuvre en continu :
 - d'alimentation d'un organe de mélange (4;4a;4b) en les différents constituants (C1, C2, L1, L2, R1, R2) dudit objet (10;20;30;40),
 - de mélange desdits différents constituants (C1, C2, L1, L2, R1, R2) dans ledit organe de mélange (4;4a;4b), avec progression au sein de la structure dudit organe de mélange (4;4a;4b),
 - de coulée du mélange obtenu en sortie dudit organe de mélange (4;4a;4b), ledit mélange présentant une viscosité comprise entre 200 et 3 000 Pa.s,

caractérisé en ce que ladite phase d'alimentation s'effectue avec au moins une variation d'au moins l'un de ses paramètres, de sorte que la composition dudit mélange coulé est modifiée en cours de fabrication.

- 2. Procédé selon la revendication 1, caractérisé en ce que ledit au moins un paramètre susceptible de varier est choisi parmi :
 - le nombre de constituants intervenants,
 - la nature desdits constituants intervenants, et
 - les débits d'alimentation en lesdits constituants intervenants.
 - 3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'au moins l'un des constituants (C1, C2, L1, L2, R1, R2) résulte d'un mélange préalable de plusieurs ingrédients.
- **4.** Procédé selon la revendication 3, **caractérisé en ce que** lesdits ingrédients sont des réticulants (Ri), des liants (Li), des pré-mélanges actifs ou des charges pulvérulentes (Ci).
 - **5.** Procédé selon l'une des revendication 1 à 4, **caractérisé en ce que** l'alimentation dudit organe de mélange (4;4a; 4b) est au moins en partie commandée électroniquement au moyen d'une programmation appropriée.
- **6.** Procédé selon l'une quelconque des revendications 1 à 5, **caractérisé en ce que** ledit mélange est mis en oeuvre sous vide poussé, au moins en sa fin de progression au sein de la structure dudit organe de mélange (4;4a;4b).
 - 7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la coulée mise en oeuvre est une coulée gravitaire sous vide par l'intermédiaire d'une grille de dégazage (6').
 - **8.** Procédé selon l'une quelconque des revendications 1 à 6, **caractérisé en ce que** la coulée, mise en oeuvre sur un mélange ne renfermant pas ou très peu de gaz, est une coulée en source, à pression atmosphérique, au travers d'au moins une canule (5) obturante ou non.
- 9. Procédé selon la revendication 8, caractérisé en ce que ladite coulée en source est mise en oeuvre avec asservissement du mouvement relatif, canule(s)(5)/moule(s) de réception (7) du mélange coulé, au débit de coulée, de sorte que soit maintenue une distance faible, stable, entre la sortie (5') de ladite au moins une canule (5) et le niveau du mélange coulé dans ledit moule correspondant (7).

10. Dispositif de fabrication en continu d'un objet pyrotechnique (10;20;30;40), comprenant :

5

10

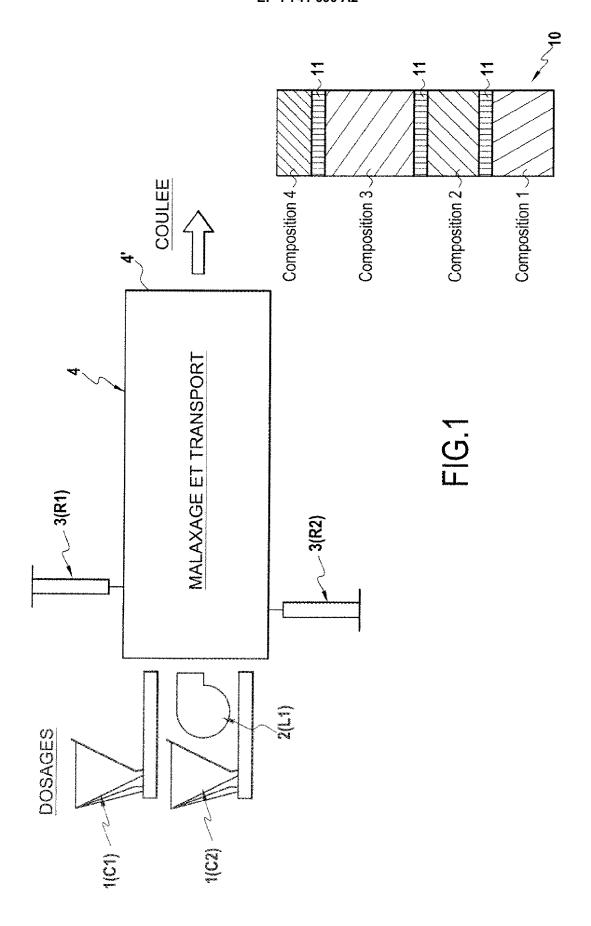
15

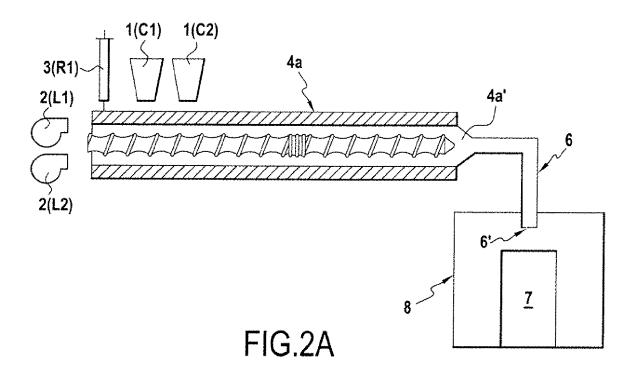
20

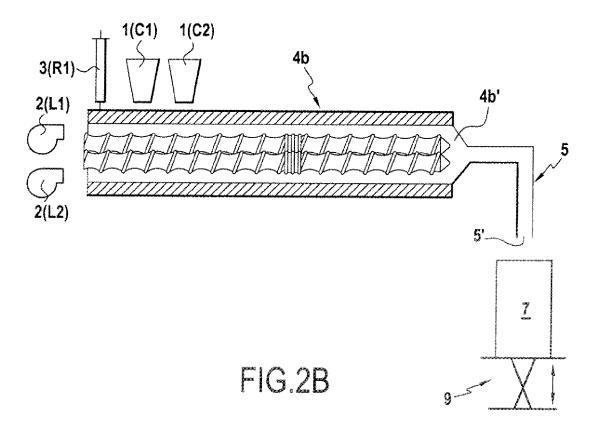
25

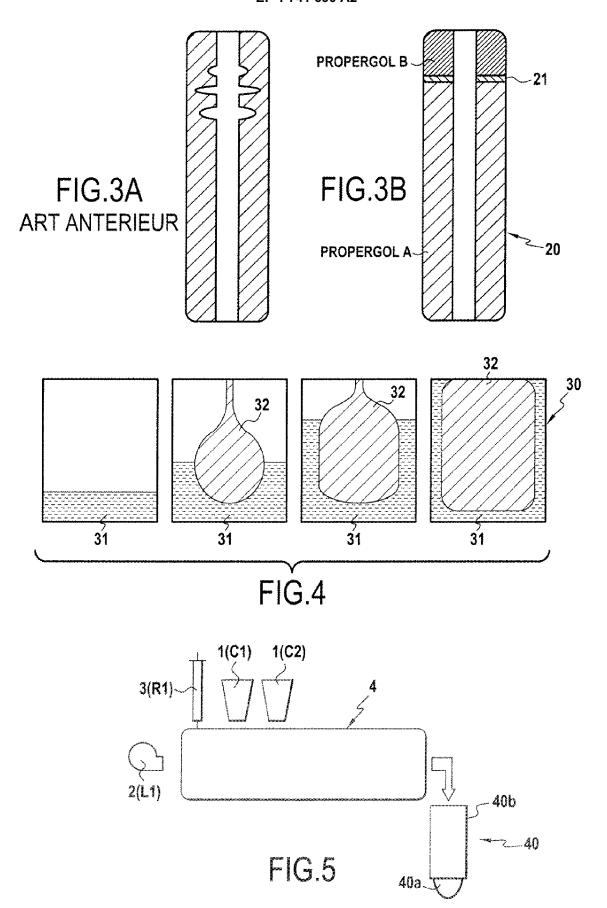
30

35


40


45


50


55

- un organe de mélange (4;4a;4b) du type monovis (4a) ou bivis corotative (4b) ou contrarotative convenant pour assurer le mélange avec transport des différents constituants (C1, C2,L1, L2, R1, R2) dudit objet pyrotechnique (10;20;30;40); ledit organe (4;4a;4b) comportant au moins une ouverture de récupération (4';4'a; 4'b) desdits constituants mélangés,
- un ensemble de dispositifs d'alimentation (1+2+3) dudit organe de mélange (4;4a;4b) en lesdits constituants (C1, C2, L1, L2, R1, R2); ledit ensemble de dispositifs d'alimentation (1+2+3) convenant pour assurer, en continu, des variations de l'alimentation dudit organe de mélange (4;4a;4b),
- un dispositif de coulée, agencé au niveau de ladite au moins une ouverture de récupération (4';4'a;4'b) dudit organe de mélange (4;4a;4b), convenant à la coulée du mélange obtenu dans un moule (7) ; ledit dispositif de coulée comprenant un système de coulée gravitaire avec au moins une conduite (6) débouchant au travers d'une grille de dégazage (6') dans une armoire de coulée sous vide (8) ou un système de coulée en source à pression atmosphérique avec au moins une canule (5) obturante ou non.
- **11.** Dispositif selon la revendication 10, **caractérisé en ce qu'**au moins l'un des dispositifs d'alimentation (1, 2, 3) est susceptible d'assurer sa fonction d'alimentation à différents débits.
- **12.** Dispositif selon la revendication 10 ou 11, **caractérisé en ce qu'**il comporte en outre des moyens pour maintenir un vide poussé dans ledit organe de mélange (4;4a;4b), au moins dans la partie attenante dudit organe de mélange à sa au moins une ouverture de récupération (4';4'a;4'b).
- 13. Dispositif selon l'une quelconque des revendications 10 à 12, caractérisé en ce que ledit dispositif de coulée comprend un système de coulée en source à pression atmosphérique avec au moins une canule (5) obturante ou non et en ce qu'il comprend en outre des moyens d'asservissement du mouvement relatif, canule(s)(5)/moule(s) de réception (7), au débit de coulée, de sorte que soit maintenue une distance faible, stable, entre la sortie débouchante (5') de ladite au moins une canule (5) et le niveau du mélange coulé dans ledit moule correspondant (7).

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Littérature non-brevet citée dans la description

- ERIC GIRAUD; JEAN-MICHEL TAUZIA; G. LACROIX; CONSTANCE M. MURPHY; RICHARD S. MUSCATO; WILLIAM F. NEWTON; FREDER-ICK M. GALLANT; MARK A. MICHIENZI; SHARP-ERSON G. JOHNSON. 29th International Annual Conference, 1998, vol. 44 [0011]
- HUGH A. BRUCK; FREDERICK M. GALLANT; SWAMI GOWRISANKARAN. Proceedings of IM-ECE 2003, 2003 ASME International Mechanical Engineering Congress and R & D Expo, 15 Novembre 2003 [0011]