Technical Field
[0001] The present invention relates to a system and a method for manufacturing a flexible
copper clad laminate film (hereinafter, referred to as FCCL).
Background Art
[0002] As widely known in the art, an FCCL film is a polyimide-based film having a copper
plating layer laminated on its surface and is a very important basic element in producing
FPCBs (flexible printed circuit boards) used in mobile telephones, LCDs, PDPs, digital
cameras, and laptop computers. Methods for applying a copper plating layer to a surface
of a polyimide-based film to manufacture an FCCL include a method of using an adhesive
to attach the copper plating layer to the surface of the polyimide-based film, and
another method of electroplating the surface of a polyimide-based film, which has
a copper coating formed thereon, with copper to laminate a copper plating layer on
the film.
[0003] However, conventional copper plating and cleaning apparatuses used to manufacture
FCCLs according to the latter method, i.e. electroplating method, have a problem in
that since the copper plating layer is formed on a single surface of the polyimide-based
film, they exhibit low productivity and efficiency in producing FCCLs having copper
plating layers laminated on their both surfaces, which are used to produce multilayered
FPCBs for high densification of circuit patterns.
[0004] Furthermore, conventional copper plating and cleaning apparatuses used to manufacture
FCCLs have a large number of components including electrodes, feed rolls, and spray
nozzles installed in a plating or cleaning bath, in order to dip a polyimide-based
film being continuously supplied into a working fluid as well as perform plating or
cleaning processes of it. In addition, electrical lines and fluid tubes connected
to the components make it difficult to repair and maintain them or clean the plating
or cleaning bath.
[0005] The document
EP 1 514 957 A1 discloses a method for manufacturing a plated film by bringing a film having a conductive
surface into electrical contact with a cathode roll with a liquid film interposed
between the film and the cathode and forming a metal plating on the conductive surface
of the film, characterized in that the relation E
0>[(I/Cs)xd]/σ where E
0 is the reduction potential of the metal forming the plating, I is the value of the
current flowing through the cathode roll for plating, Cs is the area of the conductive
surface of the film in electrical contact with the cathode roll with a liquid film
interposed therebetween, d is the thickness of the gap between the cathode roll and
the conductive film, and σ is the conductivity of the liquid forming the liquid film
present in the gap. A cathode roll having a surface roughness Rmax of 1 µm or less
is also disclosed. Further a cathode roll having a Vickers hardness of the surface
of 200 or more is disclosed.
[0006] US 5,181,770 discloses an electrolyte solution for the electroforming of metal foil, such as copper.
The electrolyte contains an effective concentration of chloride ions to promote the
formation of the uniformly matte surface finish.
Disclosure of the invention
[0007] Therefore, the present invention has been made in view of the above-mentioned problems,
and it is an object of the present invention to provide a system and a method for
manufacturing FCCLs capable of efficiently electroplating both surfaces of a polyimide-based
film to form copper plating layers thereon while making it easy to repair and maintain
the apparatus or clean its plating or cleaning bath.
[0008] According to an aspect of the present invention, there is provided a flexible copper
clad laminate manufacturing system for continuously plating a to-be-plated film as
defined in claim 1.
[0009] According to another aspect of the present invention, there is provided an FCCL manufacturing
method as defined in claim 19 for continuously forming copper plating layers on both
surfaces of a polyimide-based film, which has copper coatings formed on both surfaces
thereof, as a to-be-plated object, the method including a pickling step of spraying
a thin acid solution to both surfaces of the to-be-plated object to remove oxide coatings
formed on the copper coatings; a first cleaning step of spraying a cleaning liquid
to the pickled object to remove the pickling liquid remaining thereon; a plating step
of forming copper plating layers, including copper nuclei, on the copper coatings
using a copper electrolyte as the working fluid; and a second cleaning step of removing
the copper electrolyte remaining on the copper coating layers using DI water as the
working fluid, wherein the plating and second cleaning steps are repeated at least
one time.
Brief Description of the Drawings
[0010] The foregoing and other objects, features and advantages of the present invention
will become more apparent from the following detailed description when taken in conjunction
with the accompanying drawings in which:
FIG. 1 is a sectional view briefly showing the overall construction of a flexible
copper clad laminate film manufacturing system according to the present invention;
FIG. 2 is a perspective view briefly showing the overall construction of a pickling
device, water-cleaning device, or antirust device, used in the flexible copper clad
laminate film manufacturing system according to the present invention;
FIG. 3 is a top view of the pickling device, water-cleaning device, or antirust device,
shown in FIG. 2;
FIG. 4 is a lateral view of the pickling device, water-cleaning device, or antirust
device, shown in FIG. 2;
FIG. 5 is a perspective view showing, from above, the pickling device, water-cleaning
device, or antirust device, shown in FIG. 2;
FIG. 6 is a lateral view of the pickling device, water-cleaning device, or antirust
device, shown in FIG. 2, with its movable lateral walls raised;
FIG. 7 is a perspective view briefly showing the overall construction of a copper
plating device used in the flexible copper clad laminate film manufacturing system
according to the present invention;
FIG. 8 is a top view briefly showing a plating bath used in the copper plating device
shown in FIG. 7;
FIG. 9 is a lateral view of the copper plating device shown in FIG. 7;
FIG. 10 is an exploded perspective view showing a plating bath with its conductive
rolls and internal walls removed;
FIG. 11 is a perspective view showing the construction of a jig according to a preferred
embodiment of the present invention; and
FIG. 12 is a lateral view of the copper plating device, shown in FIG. 7, with its
movable lateral walls raised.
Best Mode for Carrying Out the Invention
[0011] Preferred embodiments of the present invention will now be described in more detail
with reference to the accompanying drawings.
[0012] In the drawings, the same components are given the same reference numerals and repeated
description thereof will be omitted.
[0013] FIG. 1 is a sectional view briefly showing the overall construction a flexible copper
clad laminate film manufacturing system according to the present invention. In the
FCCL manufacturing system 100, referring to FIG. 1, a polyimide-based film is continuously
supplied as a to-be-plated object and has thin copper coatings on its both surfaces.
The polyimide-based film (hereinafter, referred to as a to-be-plated film F) is wound
around a to-be-plated film supply device 101 (hereinafter, referred to as a supply
device), which is positioned on the front end of the FCCL manufacturing system 100.
To manufacture an FCCL, the FCCL manufacturing system 100 plates the film F in such
a manner that copper layers are formed on copper coatings positioned on both surfaces
thereof, respectively, with a thickness of 8-30µm.
[0014] The FCCL film manufacturing system 100 according to the present invention, as shown
in FIG. 1, includes a supply device 101 positioned on its front end to supply a to-be-plated
film F; a pickling device 1 for pickling the film F supplied from the supply device
101; first, second, and third water-cleaning devices 3a, 3b, and 3c for cleaning the
film F, which has been pickled by the pickling device 1 and plated by at least one
plating devices, with a cleaning liquid, such as DI water (deionized water); first
and second plating devices 2a and 2b for plating the cleaned film F, in such a manner
that copper plating layers are formed on copper coatings on both surfaces thereof;
an antirust device 4 for spraying an antirust liquid to the copper plating layers
on the film F to prevent them corroding; a drying device 5 for drying the antirust
liquid on the film F, which has been plated; and a winding device 102 positioned on
the rear end of the drying device 5 to draw the film F wound around the supply device
101. These devices are detachably connected to one another and are positioned on a
single frame.
[0015] The to-be-plated object, for example, a to-be-plated film F having copper coatings
on both surfaces thereof and having a width of 150mm, is pre-treated for copper plating
by a pre-treating device, and is wound into a roll to be mounted on a rotation shaft
of the supply device 101. As the winding device 102 is actuated, the film F is rotated
together with the rotation shaft of the supply device 101, and is fed to the pickling
device 1 at a speed of about 0.1m/min. The supply device 101 is provided with a magnetic
brake (not shown) to maintain a predetermined supply speed of the film F without any
abrupt change. The winding device 102 has a motor as a driving device and a rotation
shaft connected thereto to feed the film F at a speed of 0.1m/min.
[0016] The pickling device 1 is adapted to remove oxide coatings from the upper and lower
surfaces of the film F supplied from the supply device 101 using a thin acid solution
as the pickling liquid. In the pickling device 1, a pickling liquid is sprayed to
the upper and lower surfaces of the film F, which is also dipped into the pickling
liquid contained in a pickling liquid reservoir, so that oxide coatings are removed
from both surfaces. The construction of the pickling device 1 is identical to that
of the water-cleaning devices 3a and 3c, except for the cleaning liquid used as the
working fluid, and will be referred to later when describing the cleaning devices.
[0017] The to-be-plated film F is, as mentioned above, a polyimide-based film having thin
copper coatings on both surfaces thereof. The copper coatings are very likely to oxidize
in the air, and oxide coatings created on their surfaces make it difficult to form
copper plating layers. Therefore, it is preferred to remove copper coatings from the
film F before plating treatment to improve plating efficiency and quality.
[0018] The first water-cleaning device 3a uses a cleaning liquid to remove the acid solution
remaining on the surfaces of the film F, which has passed through the pickling device
1. The first water-cleaning device 3a has the same overall construction as the pickling
device 1, except that it uses DI water as the cleaning liquid.
[0019] The plating devices 2a and 2b have a pair of conductive rolls (described later in
more detail) adapted contact the upper and lower surfaces of the film F, respectively,
and feed it. Negative (-) current is supplied to the conductive rolls and positive
(+) current is supplied to a pair of jigs positioned in the plating baths, in which
plating liquid, i.e. copper electrolyte is contained, of the plating devices 2a and
2b. As the negatively-charged film F passes through the positively-charged jigs, therefore,
copper plating layers are formed on both surfaces of the film F.
[0020] The first and second plating devices 2a and 2b have the same construction. As the
film F passes through the first plating device 2a, copper nuclei accumulate on the
copper coatings formed on both surfaces of the film, and primary copper plating layers
are created. Due to the copper nuclei, the second plating device 2b can efficiently
form copper plating layers on both surfaces of the film F with a desired thickness.
As such, the first plating device 2a facilitates the formation of copper plating layers
in the second plating device 2b.
[0021] The second and third water-cleaning devices 3b and 3c use DI water as the cleaning
liquid to remove the copper electrolyte remaining on the surfaces of the plating layers
formed on both surfaces of the film F while it passes through the first and second
plating devices 2a and 2b, respectively. Their construction is the same as the first
cleaning device, so repeated description thereof will be omitted.
[0022] The antirust device 4 has the same construction as the cleaning devices, except that
it uses an antirust liquid instead of the cleaning liquid. In the antirust device
4, an antirust liquid is sprayed to both surfaces of the film F, on which plating
layers are formed, and the film F is also dipped into the antirust liquid so that
the copper plating layers are prevented from rusting. The drying device 5 has a heater
and a blower (not shown) to dry the antirust liquid remaining on the surfaces of the
plating layers with hot wind. The film F is then wound into a roll around the winding
device 102.
[0023] FIG. 2 is a perspective view briefly showing the overall construction of the pickling
device, water-cleaning device, or antirust device, used in the FCCL film manufacturing
system according to the present invention shown in FIG. 1. FIG. 3 is a top view of
the pickling device, water-cleaning device, or antirust device, shown in FIG. 2. FIG.
4 is a lateral view of the pickling device, water-cleaning device, or antirust device,
shown in FIG. 2. FIG. 5 is a perspective view showing, from above, the pickling device,
water-cleaning device, or antirust device, shown in FIG. 2. FIG. 6 is a lateral view
of the pickling device, water-cleaning device, or antirust device, shown in FIG. 2,
with its movable lateral walls raised.
[0024] As mentioned above, the pickling device 1, the first to third water-cleaning devices
3a to 3c, and the antirust device 4 have the same construction, except for the type
of liquid employed, and will now be described as a whole with reference to the cleaning
device 1.
[0025] The cleaning device 1, as shown in FIG. 4, includes a cleaning bath 6 provided with
a number of nozzles 35a, 35b, 36a, and 36b for cleaning a to-be-plated film F and
adapted to contain a cleaning liquid sprayed from the nozzles 35a, 35b, 36a, and 36b;
a cleaning liquid reservoir 7 for reserving a cleaning liquid to be supplied to the
nozzles 35a, 35b, 36a, and 36b; a feed pump 8 for pumping the cleaning liquid from
the reservoir 7 to the cleaning bath 6 and the nozzles 35a, 35b, 36a, 36b and replenishing
the cleaning liquid reservoir 7 from an external cleaning liquid tank; and a filter
9 for filtering out alien substances from the cleaning liquid supplied to the cleaning
bath 6. As shown in FIG. 2, each of the above components is positioned on a single
support frame, as shown in FIG. 1, and constitutes a cleaning device 1.
[0026] Referring to FIGs. 2 to 5, the cleaning bath 6 includes an external case 10 having
the shape of a box with an opened top and a pair of internal walls 11 spaced inwardly
by a predetermined distance from both lateral walls 10a and 10b of the external case
10. The height of the internal walls 11 is lower than that of the external case 10,
as is clearly seen in FIG. 2, and the space between the internal walls 11 is defined
as a treatment bath 12 for cleaning the film F. The space between the internal walls
11 and the external case 10 acts as a discharge bath 15 for discharging a portion
of the cleaning liquid, which has flown over the internal walls 11, to the cleaning
liquid reservoir 7.
[0027] The treatment bath 12 contains the cleaning liquid (not shown) and the discharge
bath 15 collects the cleaning liquid, which has flown over the internal walls 11 constituting
the cleaning bath 12, to discharge it to the cleaning liquid reservoir 7 positioned
below the cleaning bath 6 via four discharge openings 16 formed on the bottom thereof.
The internal walls 11 have stationary lateral walls 17a positioned on both sides of
their both inner surfaces and movable lateral walls 17b coupled between the stationary
lateral walls 17a in such a manner that they can slide upwards and downwards.
[0028] The external case 10 has an upper guide roll 18 positioned on its upper portion in
front of the treatment bath 12 to guide the to-be-plated film F and feed rolls 19
positioned on its upper portion in rear of the treatment bath 12 to facilitate feeding
of the film F. The upper guide roll 18 is positioned in a guide roll support member
21, which is fixed to the upper portion of the front wall 20a of the external case
10, in such a manner that it can be rotated and lifted/lowered. The guide roll support
member 21 has elongated holes (not shown) extending in the vertical direction, in
which both ends of a shaft 22 of the upper guide roll 18 are rotatably positioned
so that the upper guide roll 18 can rotate about the shafts 22. Both sides of the
upper guide roll 18 are supported by height adjustment knobs 24, which have threaded
shafts 23 screw-coupled to the guide roll support member 21, as shown in FIG. 4. By
rotating the height adjustment knobs 24, therefore, the height of the upper guide
roll 18 can be adjusted minutely.
[0029] The external case 10 may have feed rolls 19 or conductive rolls 59 positioned its
rear wall 20b facing the upper guide roll 18, in order to facilitate feeding of the
film F while being drawn by the winding device 102 or plate copper plating layers
on copper coatings formed on the film F. The feed rolls 19 are made of rubber so that
the film F is endowed with frictional force for easy feeding. The upper guide roll
18 is made of a non-conductive synthetic resin, such as Teflon, to guide the film
F, which is fed by the rotating force of the winding device 102 and the feeding force
of the feeding rolls 19.
[0030] The feed rolls 19 are composed of a pair of upper and lower feed rolls 19a and 19b,
as shown in FIG. 4. The upper and lower feed rolls 19a and 19b have shafts 25a and
25b positioned in elongated holes formed in a feed roll support member 26 in the vertical
direction, respectively, as in the case of the upper guide roll 18. Both sides of
the shaft 25b are supported by height adjustment knobs 28, which have threaded shafts
27 screw-coupled to the feed roll support member 26, so that the height can be adjusted
by rotating the height adjustment knobs 28.
[0031] The treatment bath 12 has a lower guide roll 28 which is positioned between the upper
guide roll 18 and the feed rolls 19 to guide the film F in the lower central region
of the treatment bath 12. The lower guide roll 28 has a shaft 31 positioned in a slider
30, which is fitted into rectangular holes 29 formed on the lower central portion
of the pair of facing movable lateral walls 17b while extending in the vertical direction,
as shown in FIGs. 4 and 6 in more detail. The slider 30 is connected to lower roll
height adjustment knobs 33 via threaded shafts 32, which are screw-coupled to the
upper portion of movable lateral walls 17b.
[0032] As the slider 30 is lifted/lowered in the rectangular hole 29 by rotating the lower
roll height adjustment knobs 33, the height of the lower guide roll 28 is adjusted
minutely. As a result, the lower guide roll 28 can rotate with its outer peripheral
surface contacting the upper surface of the film F in a correct position and guide
the feeding of the film F inside the lower portion of the treatment bath 12.
[0033] As is clear from FIG. 4, the feeding path of the film F in the water-cleaning device
extends from the upper portion of the treatment bath 12 to the lower portion, where
it bends and extends up to the upper portion. The lower guide roll 28 is positioned
in such a manner that the feeding path bends around it. It can be understood by those
skilled in the art that the feeding path of the film F generally has a V-shaped configuration
when viewed in the lateral direction of the treatment bath 12. The slope of the feeding
path can be adjusted by varying the vertical position of the upper guide roll 18,
the lower guide roll 28, or the feed rolls 19. Particularly, the dipping depth of
the film F into cleaning liquid in the treatment bath 12 depends on the vertical position
of the lower guide roll 28.
[0034] A pair of facing spray nozzles 35a and 35b are positioned at both sides of the feeding
path of the film F between the upper and lower guide rolls 18 and 28 in the treatment
bath 12, respectively, and another pair of facing spray nozzles 36a and 36b are positioned
at both sides thereof between the lower guide roll 28 and the feed rolls 19 (or conductive
rolls in the case of a plating device), respectively. Inner spray nozzles 35a and
36a are positioned on the movable lateral walls 17b and outer spray nozzles 35b and
36b are positioned on the external case 10, as shown in FIG. 4.
[0035] The film F passes between the spray nozzles 35a and 35b, which face each other, as
well as the spray nozzles 36a and 36b, which face each other. The spray nozzles 35a
and 35b have spray slits 37 and 38 formed thereon, respectively, which face each other
and spray a cleaning liquid, such as DI water, to both surfaces of the film F for
cleaning. In the cleaning device 1, the film F can be cleaned by the spraying of cleaning
liquid from the spray nozzles 35a, 35b, 36a, and 36b and by being dipped into the
cleaning liquid contained in the treatment bath 12. The cleaning liquid sprayed from
the nozzles 35a, 35b, 36a, and 36b with a high pressure is supplied from the cleaning
liquid reservoir 7 by the feed pump 8.
[0036] In order to remove the cleaning liquid remaining on the film F which has been cleaned
by the cleaning liquid sprayed from the spray nozzles 35a, 35b, 36a, and 36b, as well
as by being dipped into the cleaning liquid contained in the treatment bath 12, the
spray nozzles 36a and 36b positioned between the lower guide roll 28 and the feed
rolls 19 (or conductive rolls in the case of a plating device) are provided with a
pair of squeeze rolls 39a and 39b, respectively. The squeeze rolls 39a and 39b are
preferably sponge rolls made of polypropylene (PP), for example, to prevent the film
F from being damaged.
[0037] Referring to FIG. 6, the movable lateral walls 17b are shown to be raised from the
position shown in FIG. 4 for easy cleaning or repair of the treatment bath 12. The
movable lateral walls 17b have a number of supporters 40 positioned on both sides
of their lower portion, as shown in FIG. 6. The supporters 40 are adapted to protrude
outwards by means of elastic devices, such as springs, and are supported on the upper
ends of the stationary lateral walls 17a, which positioned on both sides of the movable
lateral walls 17b, when the movable lateral walls 17b are raised. When the movable
lateral walls 17b are to be returned from the position shown in FIG. 6 to that shown
in FIG. 4, the user places the supporters 40 inside the movable lateral walls 17b,
which are then positioned between the stationary lateral walls 17a.
[0038] As the movable lateral walls 17b are raised, the lower guide roll 28, the inner spray
nozzles 35a and 36a, and the inner squeeze roll 39a, which are positioned thereon,
are raised together with the movable lateral walls 17b. In this state, each component
of the cleaning bath 6 can be easily repaired and the lower portion of the treatment
bath 12 can be easily cleaned.
[0039] The cleaning liquid reservoir 7, which is positioned on the lower portion of the
cleaning bath 6 constructed as above, has the shape of a box with an opened top. Four
discharge tubes 34 extend into the reservoir 7 while being connected to the discharge
openings 16 formed on the bottom of the discharge bath 15. Therefore, any cleaning
liquid flowing over the treatment bath 12 is collected by the discharge bath 15 and
is discharged to the reservoir 7 via the discharge tubes 34.
[0040] As shown in FIG. 2, the feed pump 8 is positioned on the lateral lower portion of
the cleaning liquid reservoir 7. The feed pump 8 is connected to the lower portion
of the reservoir 7, via a conduit 41, in order to pump the cleaning liquid reserved
in the reservoir 7 to the filter 9 and to remove impurities from the cleaning liquid.
After impurities are removed by the filter 9, the cleaning liquid is supplied to the
spray nozzles 35a, 35b, 36a, and 36b via inlet tubes 42a and 42b, which are connected
to the spray nozzles 35a, 35b, 36a, and 36b, respectively. After being supplied from
the spray nozzles 35a, 35b, 36a, and 36b to clean the film F, the cleaning liquid
is collected by the treatment bath 12. This completes the overall circulation.
[0041] The circulation of the cleaning liquid and the process of feeding and cleaning the
film F in the cleaning device 1, constructed as above, will now be described briefly.
The cleaning liquid is pumped at a flow rate of 70L/min by the feed pump 8 and passes
through the filter 9 to remove impurities from it. Then, the cleaning liquid is sprayed
to the film F from the spray nozzles 35a, 35b, 36a, and 36b in the treatment bath
12 with a high speed to remove impurities remaining on the surface of the film F.
[0042] After being sprayed, the cleaning liquid flows over the internal walls 11 of the
treatment bath 12 and is collected by the discharge bath 15, which has a number of
discharge openings 16 formed on its lower portion to return the cleaning liquid to
the cleaning liquid reservoir 7 through them. The dipping depth of the film F can
be adjusted by varying the vertical position of the lower guide roll 28. The slope
of the feeding path of the film F can be controlled by varying the vertical position
of the upper guide roll 18 and the feed rolls 19 (or conductive rolls). The cleaning
liquid remaining on the surface of the film F can be removed by the pair of squeeze
rolls 39a and 39b.
[0043] FIG. 7 is a perspective view briefly showing the overall construction of a copper
plating device used in the flexible copper clad laminate film manufacturing system
according to the present invention. FIG. 8 is a top view briefly showing a plating
bath used in the copper plating device shown in FIG. 7. FIG. 9 is a lateral view of
the copper plating device shown in FIG. 7. FIG. 10 is an exploded perspective view
showing a plating bath with its conductive rolls and internal walls removed. FIG.
11 is a perspective view showing the construction of a jig according to a preferred
embodiment of the present invention. FIG. 12 is a lateral view of the copper plating
device shown in FIG. 7, with its movable lateral walls raised.
[0044] The copper plating device 2, as shown in FIG. 7, includes a plating bath 50, a plating
liquid reservoir 51 positioned below the plating bath 50 for containing plating liquid
such as copper electrolyte, a plating liquid supply pump 52, and a filter 53. Each
component of the plating device 2 is positioned in a single support frame (not shown),
as in the case of the cleaning device 1.
[0045] Referring to FIGs. 7 to 12, the plating bath 50, which is positioned on the upper
portion of the copper plating device 2, includes an external case 54 having the shape
of a box with an opened top, and a pair of internal walls 55, that are positioned
to face each other while being spaced inwardly by a predetermined distance from both
lateral walls 54a and 54b of the external case 54 in the inward direction. The height
of the internal walls 55 is lower than that of the external case 54. The space between
the internal walls 55 acts as a reaction bath 56. The space between each internal
wall 55 and the external case 54 acts as a discharge bath 57.
[0046] The reaction bath 56 defined between the internal walls 55 contains copper electrolyte
as plating liquid. The discharge bath 57 contains the copper electrolyte which flows
over the internal walls 56 from the reaction bath 56. The discharge bath 57 has a
number of discharge openings 58, that are formed on the lower surface thereof so that
the copper electrolyte can be discharged via these openings to the plating liquid
reservoir 51 positioned below the plating bath 50.
[0047] As shown in FIG. 8, stationary lateral walls 55a are positioned on both inner sides
of the pair of internal walls 55, respectively, which are positioned inside the external
case 54 of the plating bath 50. Movable lateral walls 55b are coupled between the
respective stationary lateral walls 55a in such a manner that they can slide upwardly
and downwardly.
[0048] The external case 54 has the pair of conductive rolls 59 positioned on a side thereof,
as shown in FIGS. 8 and 9. The conductive rolls 59 are rotatably positioned in the
upper and lower portions of a conductive roll support member 60, which is fixed to
the upper portion of a front wall 61a, as in the case of the upper guide roll 18 of
the cleaning device 1. The conductive roll support member 60 has a pair of elongated
holes (not shown) extending in the vertical direction, to which both ends of shafts
62a and 62b of the conductive rolls 59 are fitted so that they can move vertically
along the holes while being able to rotate about the shafts 62a and 62b, respectively.
[0049] The pair of conductive rolls 59, as shown in FIG. 9, include a first conductive roll
59a positioned below, so as to contact the lower surface of the film F, and a second
conductive roll 59b positioned above, so as to press the upper surface of the film
F against the first conductive roll 59a. Particularly, the first conductive roll 59a
rotates with its outer peripheral surface contacting the lower surface of the film
F to guide its feeding. The second conductive roll 59b is positioned on the upper
surface of the film F and is adapted to rotate while pressing the upper surface of
the film F to guide its feeding. The shafts 62a and 62b of the conductive rolls 59a
and 59b have covers 63a and 63b positioned on both ends thereof, respectively, to
hide connection terminals of the conductive rolls 59a and 59b. The outer peripheral
surface of the conductive rolls 59a and 59b is made of titanium. The conductive rolls
59a and 59b are connected to an external current supply device (not shown) so that,
while the film F is fed, negative (-) current is supplied to them and copper coatings
of the film F contacting their outer peripheral surface are negatively charged.
[0050] As is clear from FIGs. 9 and 10, both sides of the shaft 62a are supported by height
adjustment knobs 64, which have threaded shafts 63 screw-coupled to the conductive
roll support member 60. By rotating the height adjustment knobs 64, therefore, the
height of the conductive rolls 59 can be adjusted minutely.
[0051] As shown in the drawings, a lower guide roll 65 is rotatably positioned on the movable
lateral walls 55b in the lower region of the plating bath 50 to guide the feeding
of the film F, as in the case of the cleaning device 1. As mentioned above, the pair
of movable lateral walls 55b are adapted to slide vertically at the center of the
internal walls 55 and have rectangular holes 13 formed at the center of their lower
portion while extending in the vertical direction. As shown in FIG. 9, both ends of
shafts 73 of the lower guide roll 65 are rotatably supported by a slider 74, which
is adapted to slide vertically along the rectangular holes 13 formed in the movable
lateral walls 55b. The lower guide roll 65 rotates with its outer peripheral surface
contacting the upper surface of the film F to guide the feeding of the film F inside
the reaction bath 56.
[0052] A feed roll 70 is positioned on the upper portion of a rear wall 61b of the external
case 54 while facing the conductive rolls 59. The feed roll 70 is rotatably coupled
to a pair of feed roll support members 66, which are fixed to the rear wall 61b and
have elongated holes (not shown) extending in the vertical direction. Both ends of
a shaft 67 of the feed roll 70 are fitted into the elongated holes formed in the feed
roll support member 66 so that the feed roll 70 can rotate about the shaft 67 and
move vertically in the longitudinal direction of the elongated holes.
[0053] The lower guide roll 65, as detailed in FIGs. 9 and 12, has a shaft 73 positioned
in a slider 74, which is fitted into rectangular holes 13 formed at the center of
the lower portion of the pair of facing movable lateral walls 55b while extending
in the vertical direction. The slider 74 is connected lower roll height adjustment
knobs 14 via threaded shafts 86, which are screw-coupled to the upper portion of the
movable lateral walls 55b.
[0054] As the slider 74 is lifted/lowered in the rectangular hole 13 by rotating the lower
roll height adjustment knobs 14, the height of the lower guide roll 65 is adjusted
minutely. As a result, the lower guide roll 65 can rotate with its outer peripheral
surface contacting the upper surface of the film F in a correct position, and then
guide the feeding of the film F inside the lower portion of the reaction bath 56.
[0055] As mentioned above, the conductive rolls 59 and the feed roll 70 are positioned in
the upper region of the external case 54 and the lower guide roll 65 is positioned
in the lower central region thereof between the conductive rolls 59 and the feed roll
70. As a result, the feeding path of the film F in the reaction bath 56 extends from
its upper portion to the lower portion, where it bends and extends up to the upper
portion. This means that the feeding bath generally has a V-shaped configuration when
viewed in the lateral direction of the reaction bath 56, as in the case of the cleaning
bath 1. The slope of the feeding path of the film F can be adjusted by varying the
vertical position of the conductive rolls 59, the lower guide roll 65, and the feed
roll 70. Particularly, the dipping depth of the film F into the reaction bath 56 depends
on the vertical position of the lower guide roll 65.
[0056] As shown in FIGs. 9 and 10, a pair of jigs 68a and 68b are positioned on both sides
of the feeding path of the film F between the conductive rolls 59 and the lower guide
roll 65 in the reaction bath 56, respectively, and another pair of jigs 69a and 69b
are positioned on both sides thereof between the lower guide roll 65 and the feed
roll 70, respectively. As shown in FIG. 10, the jigs 68a, 68b, 69a, and 69b have the
shape of a box with opened upper and front portions. The front portions of each pair
of jigs are opened and face each other. The jigs 68a, 68b, 69a, and 69b are classified
into inner jigs 68a and 69a and outer jigs 68b and 69b. The film F passes between
the front portions of each pair of jigs, which faces each other. The jigs 68a, 68b,
69a, and 69b are made of titanium, as in the case of the rolls, and positive (+) current
is supplied to them. When a copper electrolyte is contained in the reaction bath 56,
therefore, the jigs 68a, 68b, 69a, and 69b are positively charged.
[0057] A pair of squeeze rolls 73a and 73b are positioned on the downstream of the feeding
path of the film F between the jigs 68a, 68b, 69a, and 69b and the feed roll 70, as
shown in FIGs. 9 and 10. Brackets 77 of the outer squeeze roll 73b is fixed to the
upper portion of the rear wall 61b of the external case 54 and brackets 78 of the
inner squeeze roll 73a is rotatably installed on the upper portion of the movable
lateral walls 55b. The squeeze rolls 73a and 73b are sponge rolls made of polypropylene
(PP), for example.
[0058] As shown in FIG. 11, the jigs 68a, 68b, 69a, and 69b include a case 79 having the
shape of a box with opened upper and front portions and a basket 80 detachably coupled
to the case 79 and made of a mesh to contain copper balls 85, which contain phosphorus
to supplement copper ions to copper electrolyte contained in the reaction bath 56
when the jigs 68a, 68b, 69a, and 69b are dipped into it. The front portions of the
jigs 68a, 68b, 69a, and 69b, which are opened inside the reaction bath 56, face the
film F so that, when it passes between the jigs 68a, 68b, 69a, and 69b and is plated
with copper plating layers on its upper and lower surfaces, the loss of copper ions
from the copper electrolyte contained in the reaction bath 56 is efficiently compensated
for by copper balls 85.
[0059] The inner jigs 68a and 69a have shafts 71a and 72a rotatably positioned on the movable
lateral walls 55b and the outer jigs 68a and 69b have shafts 71b and 72b rotatably
positioned on the stationary lateral walls 55a. As the inner squeeze roll 73a pivots
away from the film F, particularly, from a position indicated by dotted lines in FIG.
12 and to that indicated by solid lines, the movable lateral walls 55b are raised
between the stationary lateral walls 55a. As a result, the inner jigs 68a and 69a,
the lower guide roll 65, and the inner squeeze roll 73a can be raised together with
the movable walls 55b. After being raised, the movable lateral walls 55b are supported
on the stationary lateral walls 55a by supporters 81 positioned on their power portion
so that they remain in the raised position. In this position, various members can
be easily repaired, or the reaction bath 56 can be easily repaired and cleaned.
[0060] As the outer jigs 68b and 69b and the inner jigs 68a and 69a are rotatably installed
to the stationary lateral walls 55a and the movable lateral walls 55b, respectively,
their installation angle can be adjusted by varying the slope of the feeding path
of the film F, which depends on the vertical position of the conductive rolls 59,
the lower guide roll 65, and the feed roll 70 in the elongated holes. As a result,
the film F is spaced the same distance from the outer jigs 68b and 69b and the inner
jigs 68a and 69a, which face each other, and is fed while being parallel to them.
This is advantageous in that the film F has copper plating layers formed on the upper
and lower surfaces thereof with a uniform thickness.
[0061] The plating bath 50, constructed as described above, has a plating liquid reservoir
51 positioned on its lower portion, which has the shape of a box with an opened top.
Four discharge tubes 82 extend into the plating liquid reservoir 51 while being connected
to the discharge openings 58, which are formed on the lower portion of the discharge
bath 57 on both sides of the reaction bath 56. Meanwhile, the temperature of the copper
electrolyte contained in the plating liquid reservoir 51 is a critical factor in the
plating process. In order to maintain a suitable temperature of the copper electrolyte,
the plating liquid reservoir 51, in which the copper electrolyte is reserved, has
a coil heater 83 positioned on its lower portion and a cooling coil 84 positioned
above the coil heater 83 while extending upwards and being wound around the four discharge
tubes 82, as shown in FIGs. 9 and 12. In addition, the plating liquid reservoir 51
has a temperature sensor (not shown) positioned therein to detect the temperature
of the electrolyte reserved therein.
[0062] As shown in FIG. 7, the plating liquid reservoir 51 has a feed pump 52 positioned
on the lower portion of its lateral surface while being connected to the lower portion
of the reservoir via a conduit to draw the copper electrolyte from the plating liquid
reservoir 51 and sent it to the filter 53. The filter 53 is positioned on top of the
feed pump 52 and is connected to it via a conduit (not shown) to remove impurities
from the copper electrolyte pumped by the feed pump 52. The circulation of the copper
electrolyte is identical to that of the cleaning liquid in cleaning device 1 and repeated
description thereof will therefore be omitted.
[0063] The circulation of the copper electrolyte and the process of feeding and plating
the film F in the plating device 2, constructed as above, will now be described briefly.
The copper electrolyte in the plating liquid reservoir 51 is compressed by the feed
pump 53 and passes through the filter 53 at a flow rate of 80L/min. Then, the copper
electrolyte is sprayed to the film F via a conduit 85 leading to the reaction bath
56. After being sprayed, the copper electrolyte flows over the internal walls 55 of
the reaction bath 56 and is collected by the discharge bath 57 for circulation.
[0064] As mentioned above, the dipping depth of the film F into working liquid is adjusted
by varying the vertical position of the lower guide roll 65 and the slope is controlled
by changing the vertical position of both ends of the conductive rolls 59 and the
feed roll 70. The flow rate can be regulated by a valve (not shown). Negative (-)
current is supplied to the film F via the pair of conductive rolls 59, and positive
(+) current is supplied to the pairs of jigs 68a, 68b, 69a, and 69b, which contain
copper balls including phosphorous. As the negatively-charged film F is dipped into
the copper electrolyte in the plating bath 50 and passes between the outer jigs 68b
and 69b and the inner jigs 68a and 69a, which are positively charged, copper plating
layers are formed on copper coatings on the upper and lower surfaces of the film F.
The copper electrolyte remaining on the surface of the copper plating layers are moved
when the film F passes between the pair of squeeze rolls 73a and 73b.
[0065] After copper plating layers are formed on the copper coatings in the plating device
2, the film F is subjected to antirust treatment in the antirust device 4 to prevent
the copper plating layers from rusting. After the antirust treatment, the film F passes
through the drying device 5 and is dried by hot air, as shown in FIG. 1. Then, the
film Ff is wound around the winding device 102 into a roll.
Industrial Applicability
[0066] As can be seen from the foregoing, the FCCL manufacturing apparatus according to
the present invention uses a pair of conductive rolls, which are positively charged,
and jigs positioned in the plating bath while facing each other, which are negatively
charged, to efficiently electroplate a polyimide-based film and form copper plating
layers on its both surfaces. In addition, impurities remaining on both surfaces of
the plated film are efficiently removed, and the apparatus is easy to maintain and
repair.
[0067] While this invention has been described in connection with what is presently considered
to be the most practical and preferred embodiment, it is to be understood that the
invention is not limited to the disclosed embodiment and the drawings, but, on the
contrary, it is intended to cover various modifications and variations within the
scope of the appended claims.
1. A flexible copper clad laminate film manufacturing
system (100) for continuously plating a to-be-plated film (F), which has copper coatings
on both surfaces thereof, to form copper plating layers on both surfaces of the film
while it is fed, the system comprising:
a pickling device (1) adapted to spray a pickling liquid to both surfaces of the to-be-plated
film to remove oxide coatings from the copper coatings;
a number of water-cleaning devices (3a, 3b, 3c) for removing the pickling liquid and
copper electrolyte remaining on the film;
at least one plating device (2a, 2b) positioned between the water-cleaning devices
to form copper plating layers on both surfaces of the film;
an antirust device (4) for preventing the copper plating layers, which have been formed
by the plating device, from rusting; and
a drying device (5) for drying the antirust liquid on the film, which has been subjected
to antirust treatment;
characterized in that at least one of the pickling device, the water-cleaning devices, the plating device,
and the antirust device comprise a lower guide roll (28, 65) that guides the to-be-plated
film (F) into a treatment bath (12, 50) and the lower guide roll is both selectively
adjustable to various depths within the treatment bath, and carried by the lower portion
of a pair of movable lateral walls (17b, 55b), which are positioned in such a manner
that they can slide vertically.
2. The flexible copper clad laminate film manufacturing system as claimed in claim 1,
wherein the pickling and water-cleaning devices comprise:
a cleaning bath (6) for containing a cleaning liquid to clean the to-be-plated film;
a cleaning liquid reservoir (7) for reserving a cleaning liquid to be supplied to
the cleaning bath; a feed pump (8) for pumping the cleaning liquid to the cleaning
bath to spray it to the film and supplying the cleaning liquid to the cleaning liquid
reservoir; and a filter (9) for removing alien substances from the cleaning liquid
supplied to the cleaning bath.
3. The flexible copper clad laminate film manufacturing system as claimed in claim 2,
wherein the cleaning bath comprises:
the treatment bath (12) being configured for containing a cleaning liquid to clean
the to-be-plated film while it is fed; an upper guide roll (18) and a feed roll (19)
rotatably positioned on the front upper portion and rear portion of the treatment
bath, respectively, to guide the film; the lower guide roll being positioned on the
lower portion of a pair of movable lateral walls (17b), which are positioned on both
sides of the internal center of the treatment bath in such a manner that they can
slide, to guide the film while it is fed; and a number of pairs of spray nozzles (35a,
35b, 36a, 36b) positioned on the treatment bath and the movable lateral walls between
the upper guide roll and the lower guide roll, as well as between the lower guide
roll and the feed roll, to spray a cleaning liquid to both surfaces of the film while
it is fed.
4. The flexible copper clad laminate film manufacturing system as claimed in claim 3,
wherein the cleaning bath further comprises a pair of squeeze rolls (39a, 39b) positioned
on the spray nozzles between the lower guide roll (28) and the feed roll (19) respectively,
to remove the cleaning liquid from the to-be-plated film.
5. The flexible copper clad laminate film manufacturing system as claimed in claim 3,
wherein the height of the upper guide roll (18), the lower guide roll (28), and the
feed roll (19) is minutely adjusted by threaded screws (23).
6. The flexible copper clad laminate film manufacturing system as claimed in claim 1,
wherein the copper plating device (2) comprises:
conductive rolls (59) for supplying negative current to the copper coatings formed
on both surfaces of the to-be-plated film; a plating bath (50) adapted to contain
a plating liquid, into which the film is dipped while being fed, and provided with
a number of pairs of jigs (69a, 69b), to which positive current is supplied to form
copper plating layers on the copper coatings of the film while it passes between them;
a plating liquid reservoir (51) positioned below the plating bath; a plating liquid
supply pump (52) for supplying a plating liquid from the plating liquid reservoir
to the plating bath; and a filter (53) for removing alien substances from the plating
liquid supplied to the plating bath.
7. The flexible copper clad laminate film manufacturing system as claimed in claim 1,
further comprising a supply device (101) positioned on the front end of the pickling
device (1) to wind the to-be-plated film into a roll around it and a winding device
(102) positioned on the rear end of the drying device (5) to feed the film in such
a manner that it passes through the pickling device, the water-cleaning devices (3a,
3b, 3c), and the copper plating device (2) at a predetermined speed.
8. A cleaning device (3) for manufacturing flexible copper clad laminate film comprising:
a cleaning bath (6) having an upper guide roll (18) and a feed roll (19) rotatably
positioned on the front upper portion and rear portion thereof, respectively, to guide
a to-be-plated film having copper coatings formed on its both surfaces, a lower guide
roll (28) that is both vertically adjustable relative to and carried by the lower
portion of a pair of movable lateral walls (17b), which are positioned on both sides
of the internal center in such a manner that the can slide, to guide the film while
it is fed, and a number of pairs of spray nozzles (35a, 35b, 36a, 36b) positioned
on external lateral walls (10a, 10b) and the movable lateral walls (17b) between the
upper guide roll and the lower guide roll, as well as between the lower guide roll
and the feed roll, to spray a cleaning liquid to both surfaces of the film while it
is fed, wherein the movable lateral walls (17b) are vertically slidable relative to
the external lateral walls (10a, 10b), a cleaning liquid reservoir (7) for reserving
a cleaning liquid to be supplied to the cleaning bath; a feed pump (8) for pumping
the cleaning liquid to the cleaning bath to spray it to the film and supplying the
cleaning liquid from an external cleaning liquid tank to the cleaning liquid reservoir;
and a filter (9) for removing alien substances from the cleaning liquid supplied to
the cleaning bath.
9. The cleaning device as claimed in claim 8, wherein the cleaning bath has an external
case (10) having the shape of a box with an open top, a treatment bath (12) positioned
at the center of the external case to clean the to-be-plated film, and a pair of internal
walls (11) adapted to delimit a discharge bath for discharging the cleaning liquid,
which overflows from the treatment bath, to the cleaning liquid reservoir (7), and
each internal wall has stationary lateral walls (17a) positioned on both sides of
its inner portion and one of the pair of movable lateral walls (17b) is adapted to
slide vertically between the stationary lateral walls.
10. The cleaning device as claimed in claim 8, wherein the cleaning bath further comprises
a pair of squeeze rolls (39a, 39b) positioned on the spray nozzles (35a, 35b, 36a,
36b) between the lower guide roll (28) and the feed roll (19), respectively, to remove
the cleaning liquid from the to-be-plated film.
11. The cleaning device as claimed in claim 8, wherein the height of the upper guide roll
(18), the lower guide roll (28), and the feed roll (19) is minutely adjusted by threaded
screws (23).
12. The cleaning device as claimed in claim 8, wherein the lower guide roll (28) is positioned
in a slider (30), which carries the lower guide roll and is positioned to move vertically
in rectangular holes formed in the movable lateral walls (17b).
13. A copper plating device (2) for manufacturing flexible copper clad laminate film comprising:
a plating bath (50) having conductive rolls (59) positioned on the front upper portion
thereof to guide a to-be-plated film and supply negative current to copper coatings
formed on both surfaces of the film, a feed roll (70) positioned on the rear upper
portion to feed the film, a lower guide roll (65) that is both vertically adjustable
relative to and carried by the lower portion of a pair of movable lateral walls (55b),
which are positioned at the center in such a manner that they can slide vertically,
to guide the film while it is fed, and a number of pairs of jigs (69a, 69b), to which
positive current is supplied to form copper plating layers on the copper coatings
of the film while it passes between them, the plating bath containing a plating liquid,
into which the film is dipped while being fed; a plating liquid reservoir (51) positioned
below the plating bath; a plating liquid supply pump (52) for supplying a plating
liquid from the plating liquid reservoir to the plating bath; and a filter (53) for
removing alien substances from the plating liquid supplied to the plating bath.
14. The copper plating device as claimed in claim 13, wherein the plating bath has an
external case (54) having the shape of a box with an open top and a pair of internal
walls (55) spaced a predetermined distance from both lateral walls of the external
case in the inward direction, respectively, to delimit a reaction bath (56) at the
center for plating the to-be-plated film and a discharge bath (57) for discharging
the plating liquid, which overflows from the reaction bath (56), to the plating liquid
reservoir (51), and each internal wall has stationary lateral walls (55a) positioned
on both sides of its inner portion and one of the pair of movable lateral wall (55b)
is adapted to slide vertically between the stationary lateral walls.
15. The copper plating device as claimed in claim 13, wherein the plating bath (50) further
comprises a pair of squeeze rolls (73a, 73b) positioned on the jigs (69a, 69b) between
the lower guide roll (65) and the feed roll (70), respectively, to remove the plating
liquid from the to-be-plated film.
16. The copper plating device as claimed in claim 13, wherein the height of the conductive
rolls (59), the lower guide roll (65), and the feed roll (70) is minutely adjusted
by threaded screws (86).
17. The copper plating device as claimed in claim 13, wherein the lower guide roll (65)
is positioned in a slider (71), which carries the lower guide roll and is positioned
to move vertically in rectangular holes formed in the movable lateral walls (55b).
18. The copper plating device as claimed in claim 13, wherein the jigs (69a, 69b) comprise
a case having an open surface, which faces the to-be-plated film, and a basket positioned
in the case while containing copper balls for supplementing copper ions to a copper
electrolyte.
19. A flexible copper clad laminate film manufacturing method for continuously forming
copper plating layers on both surfaces of a polyimide based film, which has copper
coatings formed on both surfaces thereof, as a to-be-plated object, the method using
the manufacturing system, the cleaning device or the copper plating device as set
forth in one of claims 1 to 18 comprising: a pickling step of spraying a thin acid
solution to both surfaces of the to-be-plated object to remove oxide coatings formed
on the copper coatings; a first cleaning step of spraying a cleaning liquid to the
pickled object to remove the pickling liquid remaining thereon; a plating step of
forming copper plating layers, including copper nuclei, on the copper coatings using
a copper electrolyte as the working fluid; and a second cleaning step of removing
the copper electrolyte remaining on the copper coating layers using DI water as the
working fluid, wherein the plating and second cleaning steps are repeated at least
one time.
20. The flexible copper clad laminate film manufacturing method as claimed in claim 19,
further comprising: an antirust step of subjecting the copper plating layers to antirust
treatment to prevent the copper plating layers, which have been finally formed on
the to-be-plated object, from rusting and a drying step of drying the antirust liquid.
1. Flexible kupferkaschierte Folienlaminatherstellungsanordnung (100) zum kontinuierlichen
Beschichten einer zu beschichtenden Folie (F), welche auf beiden Oberflächen Kupferbeschichtungen
aufweist, um Kupferbeschichtungsschichten auf beiden Oberflächen der Folie während
deren Beförderung auszubilden, wobei die Anordnung umfasst:
eine zum Sprühen von Beizflüssigkeit auf beide Oberflächen der zu beschichtenden Folie
ausgebildete Beizvorrichtung (1), um Oxidschichten von den Kupferbeschichtungen zu
entfernen;
eine Anzahl von Wasserreinigungsvorrichtungen (3a, 3b, 3c) zum Entfernen der Beizflüssigkeit
und dem auf der Folie verbliebenen Kupferelektrolyt;
mindestens eine Beschichtungsvorrichtung (2a, 2c), angeordnet zwischen den Wasserreinigungsvorrichtungen,
um Kupferbeschichtungsschichten auf beiden Oberflächen der Folie auszubilden;
eine Antioxidationsvorrichtung (4), um die durch die Beschichtungsvorrichtung ausgebildeten
Kupferbeschichtungsschichten vor dem Oxidieren zu bewahren; und
eine Trocknungsvorrichtung (5) zum Trocknen der Antioxidationsflüssigkeit auf der
Folie, welche während der Antioxidationsbehandlung aufgebracht wurde;
dadurch gekennzeichnet, dass
mindestens eine von der Beizvorrichtung, der Wasserreinigungsvorrichtungen, der Beschichtungsvorrichtung
und der Antioxidationsvorrichtung eine untere Führungsrolle (28, 65) umfasst, die
die zu beschichtende Folie (F) in einem Behandlungsbad (12, 50) führt, und die untere
Führungsrolle sowohl wahlweise einstellbar auf verschiedene Tiefen innerhalb des Behandlungsbades
ist und auch gehalten werden durch den unteren Bereich eines Paares von beweglichen
Seitenwänden (17b, 55b), welche in einer Weise angeordnet sind, dass diese vertikal
verschiebbar sind.
2. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 1 beansprucht,
wobei die Beizvorrichtung und Wasserreinigungsvorrichtungen umfassen:
ein Reinigungsbad (6) zum Enthalten einer Reinigungsflüssigkeit zum Reinigen der zu
beschichtenden Folie; einen Reinigungsflüssigkeitsbehälter (7) zum Aufbewahren einer
dem Reinigungsbad zuzuführenden Reinigungsflüssigkeit; eine Einspeisepumpe (8) zum
Pumpen der Reinigungsflüssigkeit zu dem Reinigungsbad, um diese auf die Folie zu sprühen
und die Reinigungsflüssigkeit dem Reinigungsflüssigkeitsbehälter zuzuführen; und einen
Filter (9) zum Entfernen von Fremdstoffen aus der dem Reinigungsbad zugeführten Reinigungsflüssigkeit.
3. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 2 beansprucht,
wobei das Reinigungsbad umfasst:
das zum Beinhalten einer Reinigungsflüssigkeit ausgebildete Behandlungsbad (12) zum
Reinigen der zu beschichtenden Folie während der Beförderung; eine obere Führungsrolle
(18) und eine Beförderungsrolle (19), entsprechend rotierbar am vorderen oberen Bereich
und hinteren Bereich des Behandlungsbads angeordnet, um die Folie zu führen; wobei
die untere Führungsrolle im unteren Bereich eines Paares von beweglichen Seitenwänden
(17b) angeordnet ist, welche auf beiden Seiten des inneren Mittelbereichs des Behandlungsbads
in einer Weise angeordnet sind, dass sie verschiebbar sind, um die Folie während der
Beförderung zu führen; und eine Anzahl von Paaren von Sprühdüsen (35a, 35b, 36a, 36b),
angeordnet am Behandlungsbad und den beweglichen Seitenwänden zwischen der oberen
Führungsrolle und der unteren Führungsrolle, wie auch zwischen der unteren Führungsrolle
und der Beförderungsrolle, um eine Reinigungsflüssigkeit auf beide Oberflächen der
Folie während der Beförderung zu sprühen.
4. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 3 beansprucht,
wobei das Reinigungsbad weiterhin umfasst ein Paar von Quetschrollen (39a, 39b), entsprechend
angeordnet bei den Sprühdüsen zwischen der unteren Führungsrolle (21) und der Beförderungsrolle
(19), um die Reinigungsflüssigkeit von der zu beschichtenden Folie zu entfernen.
5. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 3 beansprucht,
wobei die Höhe der oberen Führungsrolle (18), der unteren Führungsrolle (28) und der
Beförderungsrolle (19) exakt durch Gewindeschrauben (23) einstellbar ist.
6. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 1 beansprucht,
wobei die Kupferbeschichtungsvorrichtung (2) umfasst:
leitende Rollen (59) zum Bereitstellen eines negativen Stroms zu den auf beiden Oberflächen
der zu beschichtenden Folie ausgebildeten Kupferbeschichtungen; ein Beschichtungsbad,
ausgebildet um eine Beschichtungsflüssigkeit zu beinhalten, in welche die Folie während
der Beförderung eingetaucht wird, und ausgestattet mit einer Anzahl von Paaren von
Mitteln (69a, 69b), welchen positiver Strom zugeführt wird,
um Kupferbeschichtungsschichten auf den Kupferbeschichtungen der Folie während des
Durchlaufens zwischen ihnen zu bilden; einen Beschichtungsflüssigkeitsbehälter (51),
angeordnet unterhalb des Beschichtungsbads; einer Beschichtungsflüssigkeitszuführpumpe
(52) zum Zuführen einer Beschichtungsflüssigkeit von dem Beschichtungsflüssigkeitsbehälter
zu dem Beschichtungsbad; und einen Filter zum Entfernen von Fremdstoffen aus der dem
Beschichtungsbad zugeführten Beschichtungsflüssigkeit.
7. Flexible kupferkaschierte Folienlaminatherstellungsanordnung, wie in Anspruch 1 beansprucht,
weiterhin umfassend eine Zuführvorrichtung (101), angeordnet am vorderen Ende der
Beizvorrichtung (1), um die zu beschichtende Folie in einer Rolle um es aufzuwickeln
und einer Wickelvorrichtung (102), angeordnet am hinteren Ende der Trocknungsvorrichtung
(5), um die Folie in einer Weise zuzuführen, dass sie die Beizvorrichtung, die Wasserreinigungsvorrichtungen
(3a, 3b, 3c) und die Kupferbeschichtungsvorrichtung (2) in einer vorgegebenen Geschwindigkeit
durchläuft.
8. Reinigungsvorrichtung zur Herstellung flexibler kupferkaschierter Folienlaminate,
umfassend:
ein Reinigungsbad (6) mit einer oberen Führungsrolle (18) und einer Beförderungsrolle
(19), rotierbar entsprechend angeordnet am vorderen oberen Bereich und hinteren Bereich
davon, um eine zu beschichtende Folie mit auf beiden Oberflächen ausgebildeten Kupferbeschichtungen
zu führen, einer unteren Führungsrolle (28), die sowohl vertikal einstellbar relativ
zu als auch getragen wird durch den unteren Bereich eines Paars von beweglichen Seitenwänden,
welche auf beiden Seiten des inneren Mittelbereichs in einer Weise angeordnet sind,
dass sie verschiebbar sind, um die Folie während der Beförderung zu führen und
eine Anzahl von Paaren von Sprühdüsen (35a, 35b, 36a, 36b), angeordnet an den äußeren
Seitenwänden (10a, 10b) und den beweglichen Seitenwänden (17b) zwischen der oberen
Führungsrolle und der unteren Führungsrolle, wie auch zwischen der unteren Führungsrolle
und der Beförderungsrolle, um eine Reinigungsflüssigkeit auf beide Oberflächen der
Folie während deren Beförderung zu sprühen, wobei die beweglichen Seitenwände (17b)
vertikal verschiebbar sind, relativ zu den äußeren Seitenwänden; ein Reinigungsflüssigkeitsbehälter
(7) zum Beinhalten einer Reinigungsflüssigkeit, die dem Reinigungsbad zugeführt wird;
einer Förderpumpe (8) zum Pumpen von Reinigungsflüssigkeit zu dem Reinigungsbad zum
Sprühen dieser auf die Folie und zum Bereitstellen von Reinigungsflüssigkeit von einem
externen Reinigungsflüssigkeitstank zu dem Reinigungsflüssigkeitsbehälter; und einen
Filter zum Entfernen von Fremdstoffen aus der Reinigungsflüssigkeit, die dem Reinigungsbad
zugeführt wird.
9. Reinigungsvorrichtung, wie in Anspruch 8 beansprucht, wobei das Reinigungsbad ein
Außengehäuse (10) aufweist, mit der Form einer oben geöffneten Box, einem Behandlungsbad
(12), angeordnet in der Mitte des Außengehäuses, um die zu beschichtende Folie zu
reinigen, und einem Paar von Innenwänden (11), ausgebildet, um ein Ablassbad abzugrenzen
zum Ablassen der Reinigungsflüssigkeit, welche vom Behandlungsbad überläuft, zu dem
Reinigungsflüssigkeitsbehälter (7), und jede Innenwand hat stationäre Seitenwände
(17a), angeordnet auf beiden Seiten ihres inneren Bereichs und ein Paar von beweglichen
Seitenwänden (17b), ausgebildet, vertikal zwischen den stationären Seitenwänden, verschiebbar
zu sein.
10. Reinigungsvorrichtung, wie in Anspruch 8 beansprucht, wobei das Reinigungsbad weiterhin
umfasst ein Paar von Quetschrollen (39a, 39b), entsprechend angeordnet bei den Sprühdüsen
(35a, 35b, 36a, 36b) zwischen der unteren Führungsrolle (28) und der Beförderungsrolle
(19), um die Reinigungsflüssigkeit von der zu beschichtenden Folie zu entfernen.
11. Reinigungsvorrichtung, wie in Anspruch 8 beansprucht, wobei die Höhe der oberen Führungsrolle
(18), der unteren Führungsrolle (28) und der Beförderungsrolle (19) exakt durch Gewindeschrauben
einstellbar ist.
12. Reinigungsvorrichtung, wie in Anspruch 8 beansprucht, wobei die untere Führungsrolle
(28) in einem Gleitstück (20) angeordnet ist, welches die untere Führungsrolle trägt
und angeordnet ist, vertikal in rechteckigen Löchern der beweglichen Seitenwände bewegbar
zu sein.
13. Kupferbeschichtungsvorrichtung zur Herstellung flexibler kupferkaschierter Folienlaminate,
umfassend:
ein Beschichtungsbad (50) mit leitenden Rollen (59), angeordnet am vorderen oberen
Bereich davon, um die zu beschichtende Folie zu führen und einen negativen Strom an
den auf beiden Oberflächen der vorher gebildeten Kupferbeschichtungen bereitzustellen,
eine Beförderungsrolle (70), angeordnet am hinteren oberen Bereich, um die Folie zu
befördern, einer unteren Führungsrolle (65), die sowohl vertikal einstellbar zu als
auch durch den unteren Bereich eines Paars von beweglichen Seitenwänden (55b) getragen
wird, welche in der Mitte auf so eine Weise angeordnet sind, dass sie vertikal verschiebbar
sind, um die Folie während der Beförderung zu führen, und eine Anzahl von Paaren von
Mitteln (69a, 69b), zu welchen ein positiver Strom bereitgestellt wird, um Kupferbeschichtungsschichten
auf den Kupferbeschichtungen der Folie während des Passierens zwischen ihnen zu bilden,
wobei das Beschichtungsbad eine Beschichtungsflüssigkeit umfasst, in welche die Folie
während der Beförderung eingetaucht wird; ein Beschichtungsflüssigkeitsbehälter, angeordnet
unterhalb des Beschichtungsbads; eine Beschichtungsflüssigkeitszuführpumpe (52) zum
Bereitstellen einer Beschichtungsflüssigkeit von dem Beschichtungsflüssigkeitsbehälter
zu dem Beschichtungsbad; und einem Filter (53) zum Entfernen von Fremdstoffen aus
der zum Beschichtungsbad bereitgestellten Beschichtungsflüssigkeit.
14. Kupferbeschichtungsvorrichtung, wie in Anspruch 13 beansprucht, wobei das Beschichtungsbad
ein Außengehäuse (54) aufweist mit der Form einer oben geöffneten Box und einem Paar
von inneren Wänden (55), beabstandet in einem vorgegebenen Abstand von beiden jeweiligen
Seitenwänden des äußeren Gehäuses in Einwärtsrichtung, um ein Reaktionsbad (56) in
der Mitte bereitzustellen zum Beschichten der zu beschichtenden Folie und einem Ablassbad
(57) zum Ablassen der Beschichtungsflüssigkeit, welche vom Beschichtungsbad (56) überläuft
zu dem Beschichtungsflüssigkeitsbehälter (51); und jede innere Wand stationäre Seitenwände
(55a), angeordnet auf beiden Seiten ihres inneren Bereichs, hat und Paare von beweglichen
Seitenwänden (55b) hat, die ausgebildet sind, vertikal zwischen den stationären Seitenwänden
verschiebbar zu sein.
15. Kupferbeschichtungsvorrichtung, wie in Anspruch 13 beansprucht, wobei das Beschichtungsbad
(50) weiterhin umfasst ein Paar von Quetschrollen (73a, 73b), jeweils angeordnet an
den Mitteln (69a, 69b) zwischen der unteren Führungsrolle (65) und der Beförderungsrolle
(70), um die Beschichtungsflüssigkeit von der zu beschichtenden Folie zu entfernen.
16. Kupferbeschichtungsvorrichtung, wie in Anspruch 13 beansprucht, wobei die Höhe der
leitenden Rollen (59), der unteren Führungsrolle (65) und der Beförderungsrolle (70)
exakt durch Gewindeschrauben (86) einstellbar ist.
17. Kupferbeschichtungsvorrichtung, wie in Anspruch 13 beansprucht, wobei die untere Führungsrolle
(65) in einem Gleitstück (74) angeordnet ist, welches die untere Führungsrolle trägt
und angeordnet ist, vertikal in rechteckigen Löchern der beweglichen Seitenwände (55b)
bewegbar zu sein.
18. Kupferbeschichtungsvorrichtung, wie in Anspruch 13 beansprucht, wobei die Mittel (69a,
69b) ein Gehäuse mit einer offenen Oberfläche umfassen, welche auf die zu beschichtende
Folie ausgerichtet ist, und einen Korb, angeordnet in dem Gehäuse, umfasst, welcher
Kupferbälle enthält, um Kupferionen einem Kupferbad bereitzustellen.
19. Flexible kupferkaschierte Folienlaminatherstellungsverfahren zum kontinuierlichen
Bilden von Kupferbeschichtungsschichten auf beiden Oberflächen einer polyimid-basierenden
Folie, welche auf beiden Oberflächen davon geformte Kupferbeschichtungen hat, als
einen zu beschichtenden Gegenstand, wobei das Verfahren die Herstellungsanordnung,
die Reinigungsvorrichtung oder die Beschichtungsvorrichtung nach einem der Ansprüche
1 bis 18 verwendet, umfassend:
einen Beizschritt mit Sprühen einer dünnen Säurelösung auf beide Oberflächen des zu
beschichtenden Gegenstandes, um auf der Kupferbeschichtung gebildete Oxidschichten
zu entfernen; einen ersten Reinigungsschritt mit Sprühen einer Reinigungsflüssigkeit
auf den gebeizten Gegenstand, um die darauf verbleibende Beizflüssigkeit zu entfernen;
einen Beschichtungsschritt mit Bilden von Kupferbeschichtungsschichten, umfassend
Kupferkerne, auf den Kupferbeschichtungen unter Verwendung eines Kupferelektrolyts
als Arbeitsflüssigkeit; und einem zweiten Reinigungsschritt zum Entfernen des auf
den Kupferbeschichtungsschichten verbleibenden Kupferelektrolyts unter Verwendung
von DI-Wasser als Arbeitsflüssigkeit, wobei der Beschichtungs- und zweite Reinigungsschritt
wenigstens einmal wiederholt werden.
20. Flexible kupferkaschierte Folienlaminatherstellungsverfahren, wie in Anspruch 19 beansprucht,
weiterhin umfassend: einen Antioxidationsschritt, um die Kupferbeschichtungsschichten
einer Antioxidationsbehandlung zu unterziehen, um die Kupferbeschichtungsschichten,
welche endgültig auf dem zu beschichtenden Gegenstand gebildet wurden, vor einem Oxidieren
zu schützen und einem Trocknungsschritt zum Trocknen der Antioxidationsflüssigkeit.
1. Système de fabrication de film laminé souple recouvert de cuivre (100) destiné à plaquer
en continu un film devant être plaqué (F) ; qui présente des revêtements de cuivre
sur ses deux surfaces, pour former des couches de cuivrage sur les deux surfaces du
film au fur et à mesure qu'il est fourni, le système comprenant :
un dispositif de décapage (1) conçu pour pulvériser un liquide de décapage sur les
deux surfaces du film devant être plaqué pour éliminer les dépôts d'oxyde des revêtements
de cuivre ;
un nombre de dispositifs de nettoyage à l'eau (3a, 3b, 3c) destinés à éliminer le
liquide de décapage et l'électrolyte de cuivre restant sur le film ;
au moins un dispositif de placage (2a, 2b) positionné entre les dispositifs de nettoyage
à l'eau destiné à former des couches de cuivrage sur les deux surfaces du film ;
un dispositif antirouille (4) destiné à protéger les couches de cuivrage, qui ont
été formées par le dispositif de placage, contre la rouille ; et
un dispositif de séchage (5) destiné à sécher le liquide antirouille sur le film,
qui a été soumis au traitement antirouille ;
caractérisé en ce qu'au moins un du dispositif de décapage, des dispositifs de nettoyage à l'eau, du dispositif
de placage et du dispositif antirouille comprend un rouleau guide inférieur (28, 65)
qui guide le film devant être plaqué (F) dans le bain de traitement (12, 50) et en ce que le rouleau guide inférieur est à la fois ajustable sélectivement à différentes profondeurs
à l'intérieur du bain de traitement, et supporté par la partie inférieure d'une paire
de parois latérales mobiles (17b ; 55b), qui sont positionnées de telle manière qu'elles
puissent coulisser verticalement.
2. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
1, dans lequel les dispositifs de décapage et de nettoyage à l'eau comprennent : un
bain de nettoyage (6) destiné à contenir un bain de nettoyage pour nettoyer le film
devant être plaqué ; un réservoir de liquide de nettoyage (7) destiné à mettre en
réserve un liquide de nettoyage devant être fourni au bain de nettoyage ; une pompe
d'alimentation (8) destinée à pomper le liquide de nettoyage vers le bain de nettoyage
pour le pulvériser sur le film et à fournir le liquide de nettoyage au réservoir de
liquide de nettoyage ; et un filtre (9) destiné à éliminer les corps étrangers du
liquide de nettoyage fourni au bain de nettoyage.
3. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
2, dans lequel le bain de nettoyage comprend :
le bain de traitement (12) configuré pour contenir un liquide de nettoyage pour nettoyer
le film devant être plaqué au fur et à mesure qu'il est fourni ; un rouleau guide
supérieur (18) et un rouleau d'alimentation (19) positionnés de sorte à pouvoir tourner
sur la partie supérieure avant et la partie arrière du bain de traitement, respectivement,
pour guider le film ; le rouleau guide inférieur étant positionné sur la partie inférieure
d'une paire de parois latérales mobiles (17b) qui sont positionnées sur les deux côtés
du centre interne du bain de traitement de telle manière qu'elles puissent coulisser,
pour guider le film au fur et à mesure qu'il est fourni ; et un nombre de paires de
buses de pulvérisation (35a, 35b, 36a, 36b) positionnées sur le bain de traitement
et les parois latérales mobiles entre le rouleau guide supérieur et le rouleau guide
inférieur, ainsi qu'entre le rouleau guide inférieur et le rouleau d'alimentation,
pour pulvériser un liquide de nettoyage sur les deux surfaces du film au fur et à
mesure qu'il est fourni.
4. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
3, dans lequel le bain de nettoyage comprend en outre une paire de rouleaux presseurs
(39a, 39b) positionnés sur les buses de pulvérisation entre le rouleau guide inférieur
(28) et le rouleau d'alimentation (19), respectivement, pour éliminer le liquide de
nettoyage du film devant être plaqué.
5. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
3, dans lequel la hauteur du rouleau guide supérieur (18), du rouleau guide inférieur
(28) et du rouleau d'alimentation (19) est ajustée minutieusement au moyen de vis
filetées (23).
6. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
1, dans lequel le dispositif de cuivrage (2) comprend ;
des rouleaux conducteurs (59) destinés à fournir un courant négatif aux revêtements
de cuivre formés sur les deux surfaces du film devant être plaqué ; un bain de placage
(50) adapté pour contenir un liquide de placage, dans lequel le film est plongé au
fur et à mesure qu'il est fourni, et doté d'un nombre de paires de gabarits (69a,
69b) auxquels un courant positif est fourni pour former des couches de cuivrage sur
les revêtements de cuivre du film au fur et à mesure qu'il passe entre eux ; un réservoir
de liquide de placage (31) positionné en dessous du bain de placage ; une pompe d'alimentation
en liquide de placage (52) destinée à fournir un liquide de placage depuis le réservoir
de liquide de placage vers le bain de placage ; et un filtre (53) destiné à éliminer
les corps étrangers du liquide de placage fourni au bain de placage.
7. Système de fabrication de film laminé souple recouvert de cuivre selon la revendication
1, comprenant en outre un dispositif d'alimentation (101) positionné sur l'extrémité
avant du dispositif de décapage (1) pour enrouler autour de lui le film devant être
plaqué en un rouleau et un dispositif d'enroulement (102) positionné sur l'extrémité
arrière du dispositif de séchage (5) pour fournir de film de telle manière qu'il passe
à travers le dispositif de décapage, les dispositifs de nettoyage à l'eau (3a, 3b,
3c) et le dispositif de cuivrage (2) à une vitesse prédéterminée.
8. Dispositif de nettoyage (3) pour la fabrication d'un film laminé souple recouvert
de cuivre comprenant :
un bain de nettoyage (6) ayant un rouleau guide supérieur (18) et un rouleau d'alimentation
(19) positionnés de sorte à pouvoir tourner sur la partie supérieure avant et la partie
arrière de celui-ci, respectivement, pour guider un film devant être plaqué ayant
des revêtements de cuivre formés sur ses deux surfaces ; un rouleau guide inférieur
(28) qui est à la fois ajustable verticalement par rapport à la partie inférieure
d'une paire de parois latérales mobiles (17b), qui sont positionnées sur les deux
côtés du centre interne de telle manière qu'elles puissent coulisser, pour guider
le film au fur et à mesure qu'il est fourni, et un nombre de paires de buses de pulvérisation
(35a, 35b, 36a, 36b) positionnées sur les parois latérales externes (10a, 10b) et
les parois latérales mobiles (17b) entre le rouleau guide supérieur et le rouleau
guide inférieur, ainsi qu'entre le rouleau guide inférieur et le rouleau d'alimentation,
pour pulvériser un liquide de nettoyage sur les deux surfaces du film au fur et à
mesure qu'il est fourni, les parois latérales mobiles (17b) étant mobiles verticalement
par rapport aux parois latérales externes (10a, 10b) ; un réservoir de liquide de
nettoyage (7) destiné à contenir un liquide de nettoyage devant être fourni au bain
de nettoyage ; une pompe d'alimentation (8) destinée à pomper le liquide de nettoyage
vers le bain de nettoyage pour le pulvériser sur le film et à fournir le liquide de
nettoyage à partir d'un réservoir de liquide de nettoyage externe vers le réservoir
de liquide de nettoyage ; et un filtre (9) destiné à éliminer les corps étrangers
du liquide de nettoyage fourni au bain de nettoyage.
9. Dispositif de nettoyage selon la revendication 8, dans lequel le bain de nettoyage
possède un bac externe (10) ayant la forme d'une boîte avec une partie supérieure
ouverte, un bain de traitement (12) positionné au centre du bac externe pour nettoyer
le film devant être plaqué, et une paire de parois internes (11) adaptées pour délimiter
un bain de décharge pour décharger le liquide de nettoyage, qui déborde du bain de
traitement, vers le réservoir de liquide de nettoyage (7), et chaque paroi interne
possède des parois latérales immobiles (17a) positionnées sur les deux côtés de sa
partie interne et une de la paire de parois latérales mobiles (17b) est adaptée pour
coulisser verticalement entre les parois latérales immobiles.
10. Dispositif de nettoyage selon la revendication 8, dans lequel le bain de nettoyage
comprend en outre une paire de rouleaux presseurs (39a, 39b) positionnés sur les buses
de pulvérisation (35a, 35b, 36a, 36b) entre le rouleau guide inférieur (28) et le
rouleau d'alimentation (19), respectivement, pour éliminer le liquide de nettoyage
du film devant être plaqué.
11. Dispositif de nettoyage selon la revendication 8, dans lequel la hauteur du rouleau
guide supérieur (18), du rouleau guide inférieur (28) et du rouleau d'alimentation
(19) est ajustée minutieusement au moyen de vis filetées (23).
12. Dispositif de nettoyage selon la revendication 8, dans lequel le rouleau guide inférieur
(28) est positionné dans un coulisseau (20), qui supporte le rouleau guide inférieur
et est positionné de sorte à se déplacer verticalement dans les trous rectangulaires
formés dans les parois latérales mobiles (17b).
13. Dispositif de cuivrage (2) pour la fabrication d'un film laminé souple recouvert de
cuivre comprenant :
un bain de placage (50) ayant des rouleaux conducteurs (59) positionnés sur la partie
supérieure avant de celui-ci pour guider un film devant être plaqué et
fournir un courant négatif aux revêtements de cuivre formés sur les deux surfaces
du film, un rouleau d'alimentation (70) positionné sur la partie supérieure arrière
pour fournir le film, un rouleau guide inférieur (65) qui est à la fois ajustable
verticalement par rapport à la partie inférieure d'une paire de parois latérales mobiles
(55b) et supporté par ces parois, qui sont positionnées au centre de telle manière
qu'elles puissent coulisser verticalement, pour guider le film au fur et à mesure
qu'il est fourni, et
un nombre de paires de gabarits (69a, 69b), auxquels un courant positif est fourni
pour former des couches de cuivrage sur les revêtements de cuivre du film au fur et
à mesure qu'il passe entre eux, le bain de placage contenant un liquide de placage
dans lequel le film est plongé au fur et à mesure qu'il est fourni ; un réservoir
de liquide de placage (51) positionné au-dessous du bain de placage ; une pompe d'alimentation
en liquide de placage (52) destinée à fournir un liquide de placage depuis le réservoir
de liquide de placage vers le bain de placage ; et un filtre (53) destiné à éliminer
les corps étrangers du liquide de placage fourni au bain de placage.
14. Dispositif de cuivrage selon la revendication 13, dans lequel le bain de placage possède
un bac externe (54) ayant la forme d'une boîte avec une partie supérieure ouverte
et une paire de parois internes (55) espacées d'une distance prédéterminée des deux
parois latérales du bac externe dans la direction vers l'intérieur, respectivement,
pour délimiter un bain de réaction (56) au centre pour le placage du film devant être
plaqué et un bain de décharge (57) pour décharger le liquide de placage, qui déborde
du bain de réaction (56), vers le réservoir de liquide de placage (51) ; et chaque
paroi interne possède des parois latérales immobiles (55a) positionnées sur les deux
côtés de sa partie interne et une de la paire de parois latérales mobiles (55b) est
adaptée pour coulisser verticalement entre les parois latérales immobiles.
15. Dispositif de cuivrage selon la revendication 13, dans lequel le bain de placage (50)
comprend en outre une paire de rouleaux presseurs (73a, 73b) positionnés sur les gabarits
(69a, 69b) entre le rouleau guide inférieur (65) et le rouleau d'alimentation (70),
respectivement, pour éliminer le liquide de placage du film devant être plaqué.
16. Dispositif de cuivrage selon la revendication 13, dans lequel la hauteur des rouleaux
conducteurs (59), du rouleau guide inférieur (65) et du rouleau d'alimentation (70)
est ajustée minutieusement au moyen de vis filetées (86).
17. Dispositif de cuivrage selon la revendication 13, dans lequel le rouleau guide inférieur
(65) est positionné dans un coulisseau (71) qui supporte le rouleau guide inférieur
et est positionné de sorte à se déplacer verticalement dans les trous rectangulaires
formés dans les parois latérales mobiles (55b).
18. Dispositif de cuivrage selon la revendication 13, dans lequel les gabarits (69a, 69b)
comprennent un bac ayant une surface ouverte, qui fait face au film devant être plaqué,
et un panier positionné dans le bac alors qu'il contient des billes de cuivre pour
ajouter des ions de cuivre à un électrolyte de cuivre.
19. Procédé de fabrication de film laminé souple recouvert de cuivre destiné à former
en continu des couches de cuivrage sur les deux surfaces d'un film à base de polyimide,
qui présente deux revêtements de cuivre formés sur ses deux surfaces, en tant qu'objet
devant être plaqué, le procédé utilisant le système de fabrication, le dispositif
de nettoyage ou le dispositif de cuivrage tels que défini dans une des revendications
1 à 18 comprenant : une étape de décapage consistant à pulvériser une solution acide
en couche mince sur les deux surfaces de l'objet devant
être plaqué pour éliminer les dépôts d'oxyde formés sur les revêtements de cuivre
; une première étape de nettoyage consistant à pulvériser un liquide de nettoyage
sur l'objet décapé pour éliminer le liquide de décapage restant sur celui-ci ; une
étape de placage consistant à former des couches de cuivrage, y compris des noyaux
de cuivre, sur les revêtements de cuivre en utilisant un électrolyte de cuivre comme
fluide de travail ; et une seconde étape de nettoyage consistant à éliminer l'électrolyte
de cuivre restant sur les couches de revêtement de cuivre en utilisant de l'eau déionisée
comme fluide de travail, l'étape de placage et la seconde étape de nettoyage étant
répétées au moins une fois.
20. Procédé de fabrication de film laminé souple recouvert de cuivre selon la revendication
19, comprenant en outre : une étape antirouille consistant à soumettre les couches
de cuivrage à un traitement antirouille pour empêcher la corrosion par la rouille
des couches de cuivrage qui ont au final été formées sur l'objet devant être plaqué,
et une étape de séchage consistant à sécher le liquide antirouille.